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Abstract

Supersymmetric hybrid inflation is an exquisite framework to connect inflationary cosmology

to particle physics at the scale of grand unification. Ending in a phase transition associated

with spontaneous symmetry breaking, it can naturally explain the generation of entropy,

matter and dark matter. Coupling F-term hybrid inflation to soft supersymmetry breaking

distorts the rotational invariance in the complex inflaton plane—an important fact, which

has been neglected in all previous studies. Based on the δN formalism, we analyze the

cosmological perturbations for the first time in the full two-field model, also taking into

account the fast-roll dynamics at and after the end of inflation. As a consequence of the

two-field nature of hybrid inflation, the predictions for the primordial fluctuations depend

not only on the parameters of the Lagrangian, but are eventually fixed by the choice of

the inflationary trajectory. Recognizing hybrid inflation as a two-field model resolves two

shortcomings often times attributed to it: The fine-tuning problem of the initial conditions is

greatly relaxed and a spectral index in accordance with the PLANCK data can be achieved in

a large part of the parameter space without the aid of supergravity corrections. Our analysis

can be easily generalized to other (including large-field) scenarios of inflation in which soft

supersymmetry breaking transforms an initially single-field model into a multi-field model.
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1 Introduction

Supersymmetric hybrid inflation is a promising framework for describing the very early universe.

Not only does it account for a phase of accelerated expansion; it also provides a detailed picture of

the subsequent transition to the radiation dominated phase. Different versions are F-term [1,2],

D-term [3, 4] and P-term [5] inflation, with supersymmetry during the inflationary phase being

broken by an F-term, a D-term or a mixture of both, respectively.

Hybrid inflation is very attractive for a number of reasons. It can be naturally embedded

into grand unification, and the GUT scale MGUT yields the correct order of magnitude for

the amplitude of the primordial scalar fluctuations [2]. Moreover, supergravity corrections are

typically small, since during inflation the value of the inflaton field is O(MGUT), i.e. much

smaller than the Planck scale. Hybrid inflation ends by tachyonic preheating, a rapid ‘waterfall’

phase transition in the course of which a global or local symmetry is spontaneously broken [6].

Pre- and reheating have recently been studied in detail for the case where this symmetry is

B−L, the difference between baryon and lepton number. The decays of heavy B−L Higgs

bosons and heavy Majorana neutrinos can naturally explain the primordial entropy, the observed

baryon asymmetry and the dark matter abundance [7–9].1 Finally, inflation, preheating and the

formation of cosmic strings are all accompanied by the generation of gravitational waves that

can be probed with forthcoming gravitational wave detectors [12–16].

The supersymmetric extension of the Standard Model with local B−L symmetry is described

by the superpotential

W = λΦ

(
v2

2
− S1S2

)
+

1√
2
hni n

c
in
c
iS1 + hνij5

∗
in

c
jHu +WMSSM . (1)

The first term is precisely the superpotential of F-term hybrid inflation, with the singlet super-

field Φ containing the inflaton φ and the waterfall superfields S1 and S2 containing the Higgs

field χ responsible for breaking B−L at the scale v. The next two terms involve the singlet

superfields nci whose fermionic components represent the charge conjugates of the three genera-

tions of right-handed neutrinos. These two terms endow the singlet neutrinos with a Majorana

mass term and a Yukawa coupling to the MSSM Higgs and lepton doublets, denoted here by Hu

and 5∗ in SU(5) notation. λ and h are coupling constants.

In a universe with an (almost) vanishing cosmological constant, F-term supersymmetry

breaking leads to a constant term in the superpotential,

W0 = αm3/2M
2
Pl , (2)

where m3/2 is the vacuum gravitino mass at low energies and α a model-dependent O(1) param-

eter. In the Polonyi model, one has α = exp (
√

3− 2) [17]. For definiteness, we choose α ≡ 1 in

the following. We assume that the supersymmetry breaking field is located in its minimum and

1For related earlier work, cf. Refs. [10, 11].
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that its dynamics can be neglected during inflation. Together with the non-vanishing F-term of

the inflaton field during inflation, FΦ = λ v2/2, this constant term in the superpotential induces

a term linear in the real part of the inflaton field in the scalar potential [18],

V (φ) ⊃ − [3W (φ)− FΦ φ]
W ∗0
M2

Pl

+ h.c. ⊃ −4αm3/2 Re {FΦ φ} , W (Φ) = FΦΦ + ... . (3)

The real and the imaginary part of the inflaton field are thus governed by different equations

of motion, requiring an analysis of the inflationary dynamics in the complex inflaton plane. As

a consequence, all of the inflationary observables are sensitive to the choice of the inflationary

trajectory. In this sense, the measured values of these quantities do not point to a particular

Lagrangian or specific values of the fundamental model parameters. To large extent, they

are the outcome of a random selection among different initial conditions which has no deeper

meaning within the model itself. We emphasize that these conclusions apply in general to

every inflationary model in which inflation is driven by one or several large F-terms. In the

presence of soft supersymmetry breaking, these F-terms will always couple to the constant in

the superpotential and thus induce linear terms in the scalar potential of exactly the same form

as in Eq. (3). The analysis in this paper can hence be easily generalized to other models of

inflation, in particular also to models of the large-field type.

Taking the two-field nature of hybrid inflation into account, we find that the initial conditions

problem of hybrid inflation is significantly relaxed and we can obtain successful inflation in

accordance with the PLANCK data [19] without running into problems due to cosmic strings [20].

First results of this two-field analysis were presented in Ref. [21]. Non-supersymmetric multi-field

hybrid inflation, commonly referred to as ‘multi-brid’ inflation, has been studied in Refs. [22,23].

The model investigated here differs from multi-brid inflation in two regards: (i) we embed

inflation into a realistic model of particle physics and (ii) we study inflation in the context of

softly broken supersymmetry. Furthermore, we note that, during the final stages of preparing

this paper, evidence for a B-mode signal in the polarization of the CMB radiation was announced

by the BICEP2 Collaboration [24]. In App. B, we discuss the implications of this very recent

development on F-term hybrid inflation.

Our discussion is organized as follows. In Sec. 2, we analyze the connection between W0 and

the spectral index analytically for inflation along the real axis. In Sec. 3, we then turn to the

generic situation of arbitrary inflationary trajectories in the complex plane. We perform a full

numerical scan of the parameter space, based on a customized version of the δN formalism, in

order to determine the inflationary observables and again reconstruct our results analytically.

Sec. 4 demonstrates how these results relax the initial conditions problem of F-term hybrid in-

flation and Sec. 5 is dedicated to an investigation of the allowed range for the gravitino mass.

Finally, we conclude in Sec. 6. As a supplement, we derive in App. A simple analytical expres-

sions that allow to estimate the scalar amplitude as well as the scalar spectral tilt in general

multi-field models of inflation in the limit of negligible effects due to isocurvature perturbations.
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2 Hybrid inflation on the real axis

2.1 Successes and shortcomings

The potential energy of the complex inflaton field φ = 1√
2
ϕeiθ, determined by the superpotential

given in Eqs. (1) and (2), receives contributions from the classical energy density of the false

vacuum [1], from quantum corrections [2], from supergravity corrections [25] and from soft

supersymmetry breaking [18],

V (φ) = V0 + VCW(φ) + VSUGRA(φ) + V3/2(φ) , (4)

V0 =
λ2v4

4
, (5)

VCW(φ) =
λ4v4

32π2
ln

(
|φ|
v/
√

2

)
+ . . . , (6)

VSUGRA(φ) =
λ2v4

8M4
Pl

|φ|4 + . . . , (7)

V3/2(φ) = −λv2m3/2(φ+ φ∗) + . . . , (8)

where MPl ' 2.44 × 1018 GeV denotes the reduced Planck mass. During inflation, the energy

density of the Universe is dominated by the false vacuum contribution V0, while the inflaton

dynamics are governed by the field-dependent terms VCW, VSUGRA and/or V3/2. Inflation ends

when the waterfall field χ becomes tachyonically instable at ϕ = v. The scalar potential deter-

mines the predictions for the amplitude As and the spectral tilt ns of the scalar power spectrum

as well as the amplitude f local
NL of the local bispectrum. These should be compared to the recent

measurements by the PLANCK satellite [20,26],

As = (2.18+0.06
−0.05)× 10−9 , ns = 0.963± 0.008 , f local

NL = 2.7± 5.8 . (9)

In the following, we shall consider Yukawa couplings λ & 10−5, comparable to Standard Model

Yukawa couplings, and v ∼ O(MGUT). In this case, supergravity corrections are negligible,

cf. Ref. [18].2 Most analyses also neglect the linear term in Eq. (8), which arises due to soft

supersymmetry breaking. For small values of λ and sufficiently large gravitino masses, this term

is however important and can even dominate the inflaton potential [18].

Hybrid inflation with a linear term has been analyzed in detail in Ref. [27]. The authors

focused on initial conditions along the real axis with θi = π, to avoid fine-tuning of the initial

conditions.3 The linear term namely induces a local minimum at large field values in the inflaton

potential and for θi 6= π the inflaton may get trapped in this false minimum, preventing successful

2In our numerical analysis described in Sec. 3.1, we however do incorporate the full supergravity expression.
3Note that our sign convention for the linear term differs from the one in Ref. [27]. We also remark that the

inflaton potential in Eq. (4) is invariant under reflection across the real axis, θ → −θ. This restricts the range

of physically inequivalent values for, say, final inflaton phases at the end of inflation, θf , from (−π, π] to [0, π],

which is why we will not consider any further negative θf values in the following.
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Figure 1: Contour lines in the (v, λ) plane along which inflation on the real axis succeeds in reproducing the

observed value of As; the red and blue contours correspond to θf = 0 and θf = π, respectively. The gravitino

mass is varied over four different values, m3/2 = 0.1, 1, 10 and 100 TeV, and consistency with the observed value

of the scalar spectral index is indicated by the green contour segments. The region to the right of the thick

light-blue line is excluded due to the non-observation of cosmic strings.

inflation if the initial conditions are chosen unfittingly. For θi = π, successful inflation is difficult

to achieve but possible for carefully chosen parameter values. The observed spectral index can

be obtained by resorting to a non-minimal Kähler potential [28].

Recently, it has been observed that for inflation along the real axis with θi = 0 the observed

spectral index can be obtained for a canonical Kähler potential [29,30] in the hill-top regime of

hybrid inflation [31], if one allows for severe fine-tuning of the initial conditions. Furthermore,

the current bound on the tension of cosmic strings [20] is naturally satisfied in this case,

Gµ < 3.2× 10−7 , (10)

where G = (8πM2
Pl)
−1 is Newton’s constant and µ ' 2πv2 is the string tension [15]. These are

interesting results despite the fine-tuning problem of initial conditions. In both cases, θi = 0 and

θi = π, the inflaton phase remains unchanged during inflation, so that at the end of inflation

the final phase θf either corresponds to 0 or to π. In Fig. 1, we compare the constraints on

the parameters v and λ imposed by the normalization of the scalar power spectrum for these

two situations. In doing so, we also vary the gravitino mass and determine the parameter

combinations for which the scalar spectral index falls into the 2σ range around the measured

best-fit value. The results shown in Fig. 1 are based on the numerical analysis described in

Sec. 3. We observe that, while the case θf = π (blue contours) is almost excluded by the cosmic

string constraint, this constraint is automatically satisfied in most of the parameter space for

the case θf = 0 (red contours). To sum up, we find that hybrid inflation on the positive real
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axis is able to reproduce the scalar spectral index for a canonical Kähler potential and is in less

severe tension with the non-observation of cosmic strings. At the same time, hybrid inflation on

the negative real axis has the virtue that it does not require the initial position of the inflaton

to be finely tuned.

2.2 Understanding the hill-top regime

In this section, our goal is to analytically reconstruct our results for As and ns depicted in Fig. 1

for the case of hybrid inflation on the real axis in the the hill-top regime (θf = 0) based on a

canonical Kähler potential. This analysis will prove to be a useful preparation for our general

investigation of hybrid inflation in the complex plane in Sec. 3. As the amplitude of the local

bispectrum f local
NL is slow-roll suppressed in the single-field case, we do not study it in this section;

for a discussion of f local
NL in the general two-field scenario, cf. Sec. 3.2.

The inflaton field is a complex scalar, φ = 1√
2
(σ + iτ), and the relevant variables are its

real and imaginary parts normalized to the symmetry breaking scale v, x ≡ σ/v and y ≡ τ/v.

During the inflationary phase, the inflaton potential is flat in global supersymmetry at tree-level.

The one-loop quantum and tree-level supergravity corrections only depend on |φ|, the absolute

value of the inflaton field. Supersymmetry breaking generates an additional term linear in σ,

such that one obtains for the scalar potential

V (x, y) ' V0 + af(z)− bx , z ≡ x2 + y2 , a ≡ λ4v4

128π2
, b ≡

√
2λv3m3/2 . (11)

where we have neglected the quartic supergravity term and with the one-loop function

f(z) ≡ (z + 1)2 ln(z + 1) + (z − 1)2 ln(z − 1)− 2z2 ln z − 1 . (12)

We choose the sign convention such that b > 0. For z > 1, i.e. σ2 + τ2 > v2, inflation can

take place, ending in a waterfall transition at z = 1.4 In the slow-roll regime, the equations of

motion for the two real inflation fields σ and τ as well as the Friedmann equation for the Hubble

parameter H read,

3Hσ̇ = −∂σV , 3Hτ̇ = −∂τV , H2 =
V

3M2
Pl

. (13)

As V0 vastly dominates the potential energy V for all times during inflation, we shall approximate

H2 by H2
0 = V0/(3M

2
Pl) in the following for the purposes of our analytical calculations.

The number of e-folds between a critical point φc, at which inflation ends, and an arbitrary

point φ in the complex plane are given by a line integral along the inflationary trajectory,

N(φ) = −
∫ t(φ)

t(φc)
Hdt . (14)

4Typically, the slow-roll condition for the slow-roll parameter η, cf. Eq. (17), is violated slightly before z = 1 is

reached. We will take this into account when solving the equations of motion for the inflaton fields numerically.

For the purpose of the analytical estimates of this section, this effect is negligible.
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As explained in App. A, in general multi-field models of inflation, the scalar amplitude As and

the scalar spectral tilt ns are approximately given by the simple single-field-like expressions

As =
H2

8π2εM2
Pl

, ns = 1− 6 ε+ 2 η , (15)

if (and only if) isocurvature modes during inflation do not give a significant contribution to the

scalar power spectrum. ε and η are the slow-roll parameters along the inflationary trajectory,

ε =
1

2
M2

Pl

∂aV ∂aV

V 2
, (16)

η =
M2

Pl

V

1

∂cV ∂cV
∂aV (∂a∂bV )∂bV , (17)

with the inflaton ‘flavor’ indices a, b and c all running over σ and τ . In the following, we shall use

these expression to obtain simple analytical estimates for As and ns. Hence, in order to make

connection between our predictions and the measured values for the inflationary observables, we

need to evaluate ε and η in Eqs. (16) and (17) N∗ ' 50 e-folds before the end of inflation, when

the CMB pivot scale k∗ = 0.05 Mpc−1 exits the Hubble horizon.

In this section, we shall restrict ourselves to inflation along the real axis. Since

3Hẏ = − 1

v2
∂yV = −2a

v2
f ′(z) y , (18)

with f ′(z) = ∂zf(z), the real axis with y = 0 is a indeed a stable solution of the slow-roll

equations. In x direction, one has

3Hẋ = − 1

v2
∂xV = − 1

v2

(
2af ′(z)x− b

)
. (19)

If the constant term b can be neglected, one obtains the standard form of hybrid inflation. In

this case, N∗ ' 50 e-folds correspond in field space to a point |x∗| � 1, where f ′(x2
∗) ' 2/x2

∗,

which leads to the spectral index

ns ' 1− 1

N∗
' 0.98 . (20)

This value is disfavoured by the recent PLANCK data. It deviates from the measured central

value ns ' 0.96 by about 3σ.

For sufficiently large values of b, an interesting new regime opens up for field values very

close to the critical point [30]. This is apparent from Fig. 2, where the potential is displayed

for representative values of v, λ and m3/2. Note that the first derivative of the loop-induced

potential is always positive,

f ′(z) = 2(z + 1) ln

(
1 +

1

z

)
+ 2(z − 1) ln

(
1− 1

z

)
> 0 . (21)

As a consequence, for initial conditions xi > 1, cancellations between the gradients of the linear

term and the one-loop potential can lead to extreme slow roll. The second derivative of the loop

potential is always negative,

f ′′(z) = 2 ln

(
1− 1

z2

)
< 0 , (22)
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Figure 2: Scalar potential for inflation along the real axis in the complex inflaton field space after adding a

constant term W0 to the superpotential. Slow-roll inflation is possible for both θ = 0 and θ = π. Here, we have

chosen parameter values v = 3.6× 1015 GeV, λ = 2.1× 10−3 and m3/2 = 50 TeV.

and diverges for z → 1. This allows small values of ns, if x∗ is sufficiently close to the critical

point. For the example shown in Fig. 2, the point of 50 e-folds is x∗ ' 1.3. Note that successful

inflation requires carefully chosen initial conditions. The inflaton rolls in the direction of the

critical point only if xi . 1.5. We will come back to the problems related to the necessary tuning

of the initial conditions in more detail in Sec. 4. Also for initial values xi < −1, the linear term

significantly modifies the loop-induced potential, but qualitatively the picture does not change.

Let us now consider the hill-top regime quantitatively. Close to the critical point, i.e. for

x∗ − 1� 1, one has for the first and the second derivative of the one-loop function f

∂xf(x2)
∣∣
x∗

= 4x∗
[(
x2
∗ − 1

)
ln
(
x2
∗ − 1

)
+
(
x2
∗ + 1

)
ln
(
x2
∗ + 1

)
− 2x2

∗ lnx2
∗
]

= 8 ln 2 +O(x∗ − 1) ,
(23)

∂2
xf(x2)

∣∣
x∗

= 12x2
∗ ln

(
1− 1

x4
∗

)
+ 4 ln

(
x2
∗ + 1

x2
∗ − 1

)
= 8 ln [8(x∗ − 1)] +O(x∗ − 1) .

(24)

The value of x∗ is determined by, cf. Eq. (14),

N∗ =
v2

M2
Pl

∫ x∗

1

V

∂xV
dx , (25)

and using Eq. (23) one obtains

N∗ =
v2

M2
Pl

4π2

λ2(1− ξ) ln 2
(x∗ − 1) , (26)

where the parameter ξ measures the relative importance of the two contributions to the slope

9



of the potential in Eq. (11),

ξ ≡ 29/2π2

λ3 ln 2

m3/2

v
. (27)

Consistency (i.e. the inflaton rolling towards the critical line) requires ξ < 1, which yields an

upper bound on the gravitino mass, cf. also the discussion in Sec. 5,

m3/2 <
λ3 ln 2

29/2π2
v . (28)

Clearly, tuning λ and m3/2, one can move x∗ very close to the critical point. This enhances

the amplitude of the scalar fluctuations,

As =
H2

0

8π2εM2
Pl

∣∣∣∣
x∗≈1

=
π2

3(ln 2)2 λ2 (1− ξ)2

(
v

MPl

)6

. (29)

From Eqs. (15), (17) and (24) one obtains for the spectral index

ns − 1 ' 2 η|x∗≈1 '
λ2

2π2

M2
Pl

v2
ln

(
2 ln 2 λ2

π2

M2
Pl

v2
N∗(1− ξ)

)
. (30)

Finally, eliminating ξ by means of Eq. (29), one obtains a relation between the spectral index

and the amplitude of scalar fluctuations, which is independent of the gravitino mass,

ns − 1 ' − λ2

4π2

M2
Pl

v2
ln

(
3π2As
4λ2N2

∗

M2
Pl

v2

)
. (31)

Note that this relation is very different from standard hybrid inflation, where As and ns are

determined by v and N∗, respectively, and where the dependence on λ is very weak.

For larger couplings λ, the gradient of the one-loop potential increases and a longer path in

field space is needed to obtain N∗ ' 50 e-folds. To achieve this for GUT-scale field values, i.e.

x∗ = O(1), a larger gravitino mass is needed to reduce the gradient of the total potential. A

rough estimate for the spectral index can be obtained by using for the second derivative of the

potential the approximation for large field values, ∂2
xf |x∗ ' −4/x2

∗, which yields

ns − 1 ∼ − λ2

4π2

M2
Pl

v2

1

x2
∗
. (32)

This expression agrees with Eq. (31) up to an O(1) factor. Note that a numerical determination

of x∗ is needed in order to obtain quantitative result for ns.

The domain of successful inflation in the (v, λ) plane reproducing the measured amplitude

of the scalar fluctuations and the spectral index is displayed in Fig. 3. The left panel shows the

result of a numerical analysis. Since the real axis is merely a special case of all possible trajec-

tories in the complex plane, these results were obtained using the two-field method described in

Sec. 3.1. For each (v, λ) pair, the measured amplitude of the primordial fluctuations is used to

fix the gravitino mass, cf. the grey contour lines. In the green band, the spectral index lies in the

range ns = 0.963±0.016, cf. Eq. (9). In the right panel, the numerical results are compared with

10



C
o
sm

ic
strin

g
b
o
u
n
d

m3 � 2 < 10 MeV A
s

min
> A

s

obs

m3 � 2

10 MeV

100 MeV

1 GeV

10 GeV

100 GeV

1 TeV

10 TeV

100 TeV 1 PeV 10 PeV

1014 1015 1016
10- 5

10- 4

10- 3

10- 2

Symmetry breaking scale v @GeVD

S
u
p
e
rp
o
te
n
ti
a
l
c
o
u
p
li
n
g
Λ

C
o
sm

ic
strin

g
b
o
u
n
d

m3 � 2 < 10 MeV A
s

min
> A

s

obs

Eq. H 32 L

Eq. H 31 L

10 - 3

10 - 2

10 - 1

10 0

101

10 2

x* - 1

1014 1015 1016
10- 5

10- 4

10- 3

10- 2

Symmetry breaking scale v @GeVD
S
u
p
e
rp
o
te
n
ti
a
l
c
o
u
p
li
n
g
Λ

Figure 3: Constraints on the model parameters of hybrid inflation, v, λ and m3/2, imposed by the measured

values for the inflationary observables and the cosmic string bound (light-blue curve) for θf = 0. For each (v, λ)

pair, the gravitino mass is adjusted, as indicated by the grey contour lines in the left panel, such that the scalar

amplitude As comes out right. In the region labeled Amin
s > Aobs

s , our prediction for As is always larger than

the observed value Aobs
s , even if m3/2 is set to 0. Along the solid black lines, the best-fit value for the scalar

spectral index is reproduced, with the green band indicating the corresponding 2σ confidence interval. All of the

black and grey contour curves in both panels are the result of our full numerical calculation, cf. Sec. 3. The red

and blue curves in the right panel are by contrast based on our (semi-)analytical results for ns in the small-x∗

and large-x∗ regime, respectively, cf. Eqs. (31) and (32). The initial field values x∗ are indicated by the grey

dot-dashed contour lines.

the analytical estimates. The small-x∗ approximation in Eq. (31) works approximately up to

x∗−1 ∼ 0.1, whereas Eq. (32), after inserting numerical values for x∗, provides a rough estimate

for x∗ − 1 & 0.1. The four parameter points discussed in Ref. [30] correspond to x∗ − 1 ∼ 0.01,

i.e. they require a rather strong fine-tuning of the initial position of the inflaton field.

3 Hybrid inflation in the complex plane

So far, we have considered inflation for θ = 0. Due to the linear term in the inflaton potential, a

new interesting hilltop region has emerged, which allows for a small spectral index consistent with

observation. This improvement in ns is only achieved, however, at the price of a considerable

fine-tuning of the initial position of the inflaton field on the real axis.

The situation changes dramatically once we take into account the fact that, also due to the

linear term in the inflaton potential, F-term hybrid inflation is a two-field model of inflation:

As we have demonstrated in Sec. 2, the potential depends in fact differently on the real and

the imaginary part of the inflaton field φ and not only on its absolute value ϕ. The rotational
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Figure 4: Two-field dynamics of the complex inflaton in field space. The solid green lines represent possible

inflationary trajectories in the scalar potential V (σ, τ) (dot-dashed orange contour lines.) Lines of constant N

are marked by dashed blue contours, with the beginning and end of inflation (N = N∗ and N = 0, respectively)

marked by thicker contours. Along the light-blue trajectory, the measured values of As and ns are reproduced.

The model parameters are again set to v = 3.6× 1015 GeV, λ = 2.1× 10−3 and m3/2 = 50 TeV, cf. Fig. 2.

invariance in the complex plane is thus broken, which is why, depending on the initial value

of the inflaton phase, θi, the inflaton may actually traverse the field space along complicated

trajectories that strongly deviate in shape from the simple trajectories on the real axis.5 In order

to obtain a complete picture of hybrid inflation, it is therefore important to extend our analysis

from the previous section to the general case of inflation in the complex plane. To do so, we

will first introduce our formalism, by means of which we are able to calculate predictions for the

inflationary observables in the case of multi-field inflation. Then, we will apply this formalism

to hybrid inflation in the complex plane and present our numerical results. After that, we will

finally demonstrate how our numerical findings can be roughly reconstructed based on analytical

expressions.

3.1 Inflationary observables in the δN formalism

The analytical estimates presented in the previous section were mostly based on an effective

single-field approximation. However, in order to fully capture the two-field nature of hybrid

inflation, we have to go beyond this approximation and perform a numerical analysis of the

inflationary dynamics in the complex plane. In doing so, we shall employ an extended version

of the so-called ‘backward method’ developed by Yokoyama et al. [32, 33] in the context of the

δN formalism [34–39].

5This is illustrated in Figs. 4 and 5, which show a set of possible inflationary trajectories in field space for

typical parameter values. We will come back to these plots in Sec. 3.2, when presenting our numerical results.
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Figure 5: Effect of a large constant term in the superpotential, W0 = m3/2M
2
Pl, on the inflationary trajectories

in the complex plane. Colour code, labels and parameter values as in Fig. 4, but now with m3/2 = 150 TeV.

The essence of the δN formalism is that it identifies the curvature perturbation ζ on uniform

energy density hypersurfaces as the fluctuation δN in the number of e-folds which is induced by

the fluctuation of the inflaton in field space, δφ, around its homogeneous background value,6

ζ ≈ δN . (33)

In calculating δN , one is free to either specify a boundary condition N = N (0) at early or at late

times and then either evolve N forward or backward in time. Obviously, the backward method

described by Yokoyama et al. [32,33] pursues the latter approach, cf. also the geometrical analysis

presented in Ref. [40]. The former approach is implemented in the ‘forward method’ developed

by the authors of Refs. [41, 42]. Either way, it is important to notice that the δN formalism

in its standard formulation, cf. Eq. (34), comes with intrinsic limitations. For instance, the

possible interference between different modes at the time of Hubble exit is usually neglected and

all perturbations are instead taken to be uncorrelated and Gaussian. Likewise, the universe is

assumed to eventually reach the adiabatic limit with no isocurvature modes remaining at late

times. Finally, the decaying modes in the curvature perturbation spectrum cannot be accounted

for by the δN formalism. More advanced computational techniques to overcome this latter

problem have recently been proposed in the literature [43]. But, as we do not have to deal with

6More concretely, δN is calculated as the fluctuation in the number of e-folds between the initial flat hyper-

surface at t = t∗, i.e. at the time when the CMB pivot scale k∗ = 0.05 Mpc−1 exists the Hubble horizon, and

some appropriately chosen final uniform energy density hypersurface at t = tf , on which all possible inflationary

trajectories have already converged. This latter hypersurface is hence constructed such that, for all later times,

the universe is in the adiabatic regime and can be described by a single cosmic clock. Consequently, the curvature

perturbation ζ remains constant for all times t ≥ tf .
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any, say, temporal violation of the slow-roll conditions, these decaying modes are negligible in

our case just as in any other ‘standard scenario’ of slow-roll inflation. We therefore do not have

to resort to a more sophisticated method and can safely stick to the δN formalism. Similarly,

as the two slow-roll parameters ε and η are always small except during the last few e-folds of

inflation, we will make use of the slow-roll approximation for most of the inflationary period. At

the same time, the smallness of ε and η also guarantees that the ‘relaxed slow-roll conditions’

stated in Ref. [32] are satisfied for most times. This justifies why Yokoyama et al.’s backward

method is applicable to our inflationary model in its slow-roll formulation.

In the δN formalism, the inflationary observables As, ns and f local
NL are all determined by the

derivatives of the function N w.r.t. to the various directions in field space,

As =

(
H

2π

)2

NaNa , ns = 1− 2

(
H ′

H
+
NaN ′a
N bNb

)
, f local

NL =
5

6

NaNabN
b

(N cNc)
2 , (34)

where Na and Nab are the first and second partial derivatives of N in the sense of a function on

field space and with a prime denoting differentiation w.r.t. to N in the sense of a time coordinate.

For an arbitrary number of canonically normalized real inflaton fields φc, we have7

Na(N) =
∂N ({φc(N)})

∂φa
, Nab(N) =

∂2N ({φc(N)})
∂φa∂φb

, X ′(N) =
dX(N)

dN
. (35)

As we shall not consider the possibility of a non-canonical Kähler potential, we have assumed

canonical kinetic terms for all scalar fields in writing down Eq. (34).8

In order to obtain predictions for As, ns and f local
NL which can be compared with observations,

all quantities on the right-hand sides of the relations in Eq. (34) need to be evaluated at N = N∗.

As for Na and Nab, the traditional way to do this, followed by many authors in the literature,

is to directly calculate N as function on field space by solving the equations of motion for the

scalar fields φc and then to take the partial derivatives of the such obtained expression for N .

This ‘brute force’ approach is, however, prone to numerical imprecisions and in particular not

suited for comparing results from different authors. Every author has to come up with his

own numerical procedure to compute N and its derivatives, which impedes the comparability of

independent studies. By contrast, the backward method by Yokoyama et al. is an elegant and

standardizable means of computing the derivatives Na and Nab directly as the solutions of simple

first-order differential equations, rendering the intermediate step of calculating the function N

first obsolete. Let us now outline how we adapt this method to the scenario of hybrid inflation

in the complex plane.

It is convenient to divide the evolution of the inflaton field in field space into three stages: (i)

the phase of slow-roll inflation at early times, (ii) the phase of fast-roll inflation shortly before

7In the remainder of this paper, all ‘flavour’ indices a, b, c, ... always run over σ and τ , just as in Sec. 2.2.
8Typically, the most important consequence of a non-canonical Kähler potential would be the new Planck-

suppressed terms it induces in the scalar potential. Such terms could definitely still be included into our analysis

without having to modify Eq. (34).
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the instability in the scalar potential is reached, and (iii) preheating in the course of the waterfall

transition at the end of inflation. In order to quantify the time at which the transition between

the slow-roll and the fast-roll stages takes place, we generalize the slow-roll parameters ε and η

in Eqs. (16) and (17) to the case of multi-field inflation [34],

εtot = εaεa ≡ ε , ηtot =
(
ηabηab

)1/2
∼ |η| , εa =

MPl√
2

Va
V
, ηab = M2

Pl

Vab
V

. (36)

Slow-roll inflation is characterized by both generalized slow-roll parameters being at most of

O(10−1). As εtot � ηtot for all times during inflation, the end of slow-roll inflation is marked

by the time when ηtot = η0
tot ≡ 10−1/2. The radial inflaton component at this time, ϕη, can be

readily estimated making use of the second derivative of the one-loop potential in the limit of a

large field excursion during inflation, ∂2
xf ' −4/x2. To good approximation, we have9

ϕη = ϕ
(
ηtot = η0

tot

)
'


(
η0

tot

)−1/2
λ/(2
√

2π)MPl ; λ� 2
√

2π
(
η0

tot

)1/2
v/MPl

v ; λ� 2
√

2π
(
η0

tot

)1/2
v/MPl

. (37)

As long as ϕ ≥ ϕη, the slow-roll approximation is valid and the evolution of ϕ and θ is

governed by the slow-roll equations,

ϕ′(N) = M2
Pl

V,ϕ
V

, θ′(N) =

(
MPl

ϕ

)2 V,θ
V
. (38)

In order to solve these equations, we specify boundary conditions for them at the end of slow-roll

inflation, ϕ = ϕη and θ = θf , where θf is nothing but the free parameter labeling the different

possible trajectories in field space, which we introduced in Sec. 2.1. At this point, it is worth

emphasizing that technically θf is not defined as the inflaton phase at the onset of the waterfall

transition, but as the phase at the end of slow roll. If we were to define θf as the inflaton

phase at the end of fast roll, it would no longer suffice to parametrize the set of inflationary

trajectories; in addition to θf , one would also have to know the final inflaton velocity φ̇ in order

to fully characterize a particular trajectory. For small values of λ, this distinction between the

different possibilities to define θf is of course irrelevant, since ϕη ' v. In the large-λ regime, the

inflaton phase might however drastically change during the stage of fast roll, in which case it is

important to precisely define what is meant by θf .

In Eq. (38), we have omitted the interaction between the inflaton and the waterfall field. This

reflects the fact that we assume the waterfall field to be stabilized at its origin throughout the

entire inflationary phase. Of course, unknown Planck-scale physics could result in the waterfall

field having a large initial field value and/or a large initial velocity. But as long as we focus

on the field dynamics around the GUT scale, it is natural to assume that the waterfall field

has rolled down to its origin before the onset of the last N∗ e-folds due to is inflaton-induced

9In principle, the linear term in the scalar potential induces a slight dependence of ηtot on the phase θ. For all

relevant gravitino masses, this dependence is however completely negligible. In our numerical analysis, we employ

the exact expression for ϕη evaluated at θ = π/2 for definiteness.
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GUT-scale mass. Guided by this expectation, we restrict ourselves to the study of slow-roll

inflation in the so-called ‘inflationary valley’, in which the waterfall field vanishes. An extension

of our analysis incorporating arbitrary initial field values and velocities for the inflaton as well

as for the waterfall field is left for future work,10 cf. also our discussion in Sec. 4.

For given values of v, λ, m3/2 and θf , the slow-roll equations in Eq. (38) have unique solutions,

which describe the time evolution of the homogeneous background fields ϕ(N) and θ(N). At

the same time, the slow-roll equations for the fluctuations δϕ(N) and δθ(N) together with the

relation δN = Naδφ
a + 1

2!Nabδφ
aδφb + O

(
δφ3
)

[34, 37] may be used to derive the following

slow-roll transport equations for the partial derivatives Na [32] and Nab [41],

N ′a(N) = −P baN b(N) , N ′ab(N) = −P caNcb(N)− P cbNca(N)−QcabNc(N) . (39)

Here, P ba and Qcab are functions of V and its partial derivatives evaluated along the inflationary

trajectory, P = P (N) = P (ϕ(N), θ(N)) and Q = Q(N) = Q(ϕ(N), θ(N)),

P ba = ηba − 2 εa ε
b ,

Qcab =
1

MPl

[
M3

Pl

V c
ab

V
−
√

2 (ηcaεb + ηcbεa + ηabε
c) + 4

√
2 εa εb ε

c

]
.

(40)

According to Yokoyama et al.’s backward formalism, we specify the initial conditions for the

differential equations in Eq. (39) at the end of slow-roll inflation, when ϕ = ϕη. In Cartesian

coordinates, the hypersurface in field space on which this condition is satisfied is given by

Σ (σ, τ) = 0 , Σ (σ, τ) = ϕ− ϕη =
(
σ2 + τ2

)1/2 − ϕη . (41)

Often it is assumed that at the end of slow-roll inflation the universe has already reached the

adiabatic limit, which is equivalent to taking the energy density or equivalently the Hubble rate

on this hypersurface to be constant, H|Σ=0 = const. This renders Yokoyama et al.’s method

insensitive to the further evolution of the inflaton field at times after ϕ = ϕη. As a consequence

of this assumption, the conversion of isocurvature into curvature perturbations during the final

stages of inflation as well as after inflation is neglected, which may however have important

effects in some cases such as, for instance, multi-brid inflation [22, 23, 46]. To remedy this

shortcoming of the backward method in its original formulation, we explicitly take into account

the variation of the function N on the Σ = 0 hypersurface. Let us denote N |Σ=0 by N (0), such

that all of the four following conditions are equivalent to each other,

ηtot = η0
tot , ϕ = ϕη , Σ (σ, τ) = 0 , N (σ, τ) = N (0) (σ, τ) . (42)

After some algebra along the lines of Refs. [32,33], we then find the initial values of Na and

Nab at time N = N (0),

Na(N
(0)) = N (0)

a +
V

ΣbVb

Σa

M2
Pl

, Nab(N
(0)) = N

(0)
ab +

V

ΣcVc

Σab + Ξab
M2

Pl

, (43)

10Neglecting the effect of spontaneous supersymmetry breaking on hybrid inflation, i.e. working with W0 = 0,

arbitrary initial conditions for the inflaton-waterfall system have been discussed in Refs. [44,45], mainly in regard

of the question as to which initial conditions are capable of yielding a sufficient number of e-folds during inflation.
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where all quantities on the right-hand sides of these two relations are to be evaluated at N = N (0)

and with Ξab being defined as

Ξab =
1

MPl

[(
Σeηef ε

f/
√

2 +MPl ε
eΣef ε

f

Σdεd
−
√

2 εdεd

)
ΣaΣb

2 Σcεc
(44)

−
(

1√
2
ηdbΣd +MPlΣ

d
bεd

)
Σa

Σcεc
+
√

2 Σaεb

]
+ (a↔ b) .

Our result for Na(N
(0)) is identical to the one derived in Ref. [40], which represents the first

analysis properly taking care of the fact that N (0) is in general actually not a constant. By

contrast, our expression for Nab(N
(0)) has not been derived before. It represents a straightfor-

ward generalization of the initial conditions for Nab stated in Refs. [32, 33, 41, 42] to the case of

non-constant N (0). As we will see shortly, the universe reaches the adiabatic limit in the course

of the preheating process. This allows us to fix the origin of the N time axis, N = 0, at some

appropriate time during preheating and distinguish between two contributions to the function

N (0): the number of e-folds elapsing during the final fast-roll stage of inflation, NFR, as well as

the number of e-folds elapsing during preheating, NPH,

N (0) = NFR +NPH . (45)

In this sense, our improved treatment of the initial conditions for Na and Nab now also includes

the evolution of curvature and isocurvature modes during fast-roll inflation as well as preheating.

For a given slow-roll trajectory hitting the Σ = 0 hypersurface for some inflaton phase θf ,

we compute NFR by solving the full equations of motion for the two inflaton fields between

the point φ = ϕη/
√

2 eiθf and the instability in the scalar potential.11 These equations are

of second order and thus require us to specify the initial velocities of the inflaton fields on

the Σ = 0 hypersurface, ϕ′(N (0)) and θ′(N (0)). The unique choice for these initial conditions

ensuring consistency with our treatment of the slow-roll regime obviously corresponds to the

expressions in Eq. (38) evaluated at N = N (0) and it is precisely these velocities that we use in

computing NFR. Nonetheless, we observe that our results for NFR are rather sensitive to the

values we choose for ϕ′(N (0)) and θ′(N (0)). This sensitivity becomes weaker once we lower η0
tot,

the critical value of ηtot dividing the fast-roll from the slow-roll regime. On the other hand,

going to a smaller value of η0
tot also reduces the portion of the inflationary evolution during

which the transport equations in Eq. (39) are to be employed, the simplicity of which motivated

us to base our analysis on Yokoyama et al.’s backward method in the first place. It is therefore

also under the impression of these observations that, seeking a compromise between too large

and too small η0
tot, we set η0

tot to an intermediate value such as 10−1/2 rather than to 10−1 or 1.

11In the case of critically large gravitino masses, not all trajectories hitting the Σ = 0 hypersurface may also

reach the instability. Some trajectories may instead only approach a minimal ϕ value, v < ϕmin < ϕη, and then

‘bend over’ in order to run towards a local minimum on the real axis located at ϕ� ϕη, cf. Figs. 8 and 14. Such

trajectories must then be discarded as they do not give rise to a possibility for inflation to end.
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In order to compute NPH, we solve the full second-order equations of motion for the two

inflaton fields σ and τ as well as for the waterfall field χ from the onset of the phase transition

up to the time when the Hubble rate has dropped to some fraction f of its initial value H0

and the universe has reached the adiabatic limit. Here, our numerical calculations indicate

that a fraction of 1 − f ∼ 1 % · · · 10 % is enough, so as to obtain a sufficient convergence of all

inflationary trajectories. Moreover, we note that, as χ ≡ 0 is a classically stable solution, it is

necessary to introduce a small artificial shift ∆χ of the field χ at the beginning of preheating,

so as to allow the waterfall field to reach the true vacuum. The two parameters f and ∆χ are

physically meaningless and just serve as auxiliary quantities in our numerical analysis. Their

values must therefore be chosen such that our results for NPH remain invariant under small

variation of these parameters.

Our procedure to determine NPH captures of course only the classical dynamics of the water-

fall transition and misses potentially important non-perturbative quantum effects. A treatment

of preheating at the quantum level however requires numerical lattice simulations, which goes

beyond the scope of this paper—and which is actually also not necessary for our purposes. As

we are able to demonstrate numerically, NPH and its derivatives never have any significant effect

on our predictions for As, ns, and f local
NL , if solely computed based on classical dynamics. Bar-

ring the unlikely possibility that quantum effects yield a substantial enhancement of NPH, the

evolution of the inflaton during the waterfall transition is thus completely negligible from the

viewpoint of inflationary physics. Because of this, we will simply discard the contribution from

preheating to the function N (0) in the following and approximate it by its fast-roll contribution,

N (0) ≈ NFR. This also automatically entails that we do not need to consider the evolution of

the waterfall field χ any further. As we focus on hybrid inflation in the inflationary valley, we

can simply set χ to 0 at all times.

In conclusion, we summarize that, for given values of the parameters v, λ, m3/2 and θf , we

have to perform four steps in order to compute our predictions for the observables As, ns and

f local
NL . (i) First, we determine N (0) ≈ NFR by solving the second-order equations of motion for σ

and τ from the Σ = 0 hypersurface to the instability in the scalar potential. Here, we specify the

initial velocities of σ and τ such that they are consistent with Eq. (38) evaluated on the Σ = 0

hypersurface. (ii) Subsequently, we solve the slow-roll equations for ϕ and θ in Eq. (38) starting

on the Σ = 0 hypersurface and then going backward in time up to the point when the CMB

scales leave the Hubble horizon, i.e., in terms of the number of e-folds, from N = N (0) up to

N = N∗. (iii) With the slow-roll solutions for ϕ and θ at hand, we are able to solve the transport

equations for the partial derivatives Na and Nab in Eq. (39) in the interval N (0) ≤ N ≤ N∗. In

doing so, we employ the initial conditions for Na and Nab at the time N = N (0) in Eq. (43).

(iv) The derivatives Na and Nab evaluated at time N = N∗ eventually allows us to calculate the

inflationary observables according to Eq. (34).
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3.2 Phase dependence of the inflationary observables

Inflationary trajectories in the complex plane

As a first application of the above developed formalism, we are now able to study the dynamics

of the inflaton field in the complex plane. In order to find all viable inflationary trajectories

in the complex inflaton field space, we impose two conditions: (i) on the Σ = 0 hypersurface,

the slope of the scalar potential in the radial direction must be positive12 and (ii) the fast-roll

motion during the last stages of inflation must end on the instability in the scalar potential,

V,ϕ (ϕη, θf ) > 0 , ϕFR(N)→ v . (46)

Together, these two requirements are sufficient to ensure that the inflaton does not become

trapped in the local minimum on the positive real axis. For vanishing or small gravitino mass,

they are always trivially fulfilled and θf can take any value between 0 and π. However, once

the slope of the linear term begins to exceed the slope of the one-loop potential, the range of

allowed θf values becomes more and more restricted, until eventually only phases θf ∼ π remain

viable. This effect is illustrated in Figs. 4 and 5, which respectively show the set of possible

inflationary trajectories for an intermediate as well as for a large value of the gravitino mass,

while v and λ are set to identical values in both plots. Note that for Fig. 4 we have chosen

the same parameter values as for Fig. 2, which renders this figure the continuation of Fig. 2

from the real axis to the complex plane. Both Fig. 4 and Fig. 5 demonstrate how the linear

term distorts the rotational invariance of the scalar potential by adding a constant slope in the

direction of the real inflaton component σ. As for Fig. 5, the situation is however more extreme

in consequence of the enhanced gravitino mass compared to Fig. 4. Inflation on the positive

real axis is, for instance, no longer possible for such a large gravitino mass; instead, θf has at

least to be slightly larger than π/4. Moreover, as an important consequence of our ability to

determine all inflationary trajectories, we are now in the position to identify the region in field

space which may provide viable initial conditions for inflation. In fact, this region is nothing but

the fraction of field space traversed by all inflationary trajectories for N > N∗. We will return

to the issue of initial conditions for inflation in Sec. 4.

Inflationary observables for individual parameter points

In the next step, as we now know the trajectories along which the inflaton can move across

field space, we are able to compute the inflationary observables for given values of v, λ and

m3/2 and study their dependence on θf . In the limit of very small gravitino masses, when the

slope of the inflaton potential is dominated by the one-loop potential, this dependence becomes

increasingly negligible and As, ns and f local
NL as functions of θf approach constant values. On

the other hand, for very large values of m3/2, all viable trajectories start out at a similar initial

12This condition generalizes the requirement ξ < 1, which we imposed in Sec. 2.2, to the full two-field case.
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Figure 6: Amplitude As and spectral index ns of the primordial scalar power spectrum as functions of the inflaton

phase at the end of slow-roll inflation, θf , for v = 3.6× 1015 GeV, λ = 2.1× 10−3 and m3/2 = 50 TeV.

inflaton phase θi and run mostly in parallel to the real axis, cf. Fig. 5. Due to this similarity

between the different viable trajectories, the dependence of the inflationary observables on θf is

again rather weak for the most part. There is however one crucial exception: In the large-m3/2

regime, θf is bounded from below, θf ≥ θmin
f > 0 and once θf approaches θmin

f , the scalar and

the bispectrum amplitudes, As and f local
NL , begin to rapidly increase. This is due to the fact that

for θf & θmin
f the inflaton trajectory hits the instability in the scalar potential at a very shallow

angle, so that initial isocurvature perturbations induce large shifts δN in N , and hence large

curvature perturbations, at late times. But at any rate, the most interesting case is the one of

intermediate gravitino masses, when the gradients of the one-loop potential and the linear term

are of comparable size and the inflationary observables strongly depend on θf . An example for

such a situation is given in Figs. 6 and 7, in which we show As, ns and f local
NL as functions of θf

for the same parameter values that we also used for Figs. 2 and 4. Now it becomes evident that

for these parameter values and a final phase θf of π/16 the observed values for As and ns can

be nicely reproduced, while f local
NL safely stays within the experimental bounds.

An important lesson which we learn from Figs. 6 and 7 is that the Lagrangian parameters,

v, λ and m3/2, and hence the functional form of the scalar potential do not fix the inflationary

observables at all. Under a variation of the inflationary trajectory, As, ns and f local
NL vary over

significant ranges, in which the observed values are not singled out in any way. We therefore

conclude that the values for the inflationary observables realized in our universe do not point

to a particular Lagrangian, but rather seem to be a mere consequence of an arbitrary selection

among different possible trajectories. This is a very characteristic feature of hybrid inflation in

the complex plane, which distinguishes it from other popular inflation models. InR2 inflation [47]

or chaotic inflation [48], for instance, the shape of the scalar potential is the key player behind the

predictions for the inflationary observables. As we now see, the philosophical attitude in hybrid

inflation is certainly a different one: Here, the main virtue of inflation are mainly its qualitative

aspects—the fact that it solves the initial conditions problems of big bang cosmology, explains
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Figure 7: Amplitude f local
NL of the local bispectrum (black curve) and naive single-field slow-roll estimate for this

quantity (grey curve), cf. Eq. (50), as functions of the inflaton phase at the end of slow-roll inflation, θf , for

v = 3.6× 1015 GeV, λ = 2.1× 10−3 and m3/2 = 50 TeV.

the origin of the primordial density perturbations and is consistent with a compelling model of

particle physics at very high energies. Its quantitative outcome is the mere result of a selection

process that has no deeper meaning within the model itself.

Amplitude and spectral tilt of the scalar power spectrum

In the third step of our numerical investigation, we perform a calculation of the inflationary

observables, as we just did it for one parameter point, for all values of v, λ, m3/2 and θf of

interest. In this scan of the parameter space, we shall cover the following parameter ranges,

1014 GeV ≤ v ≤ 1016 GeV , 10−5 ≤ λ ≤ 3× 10−2 , 10 MeV ≤ m3/2 ≤ 100 PeV . (47)

The ranges for v and λ are chosen such that on the one hand, for values of λ not much smaller

than typical Standard Model Yukawa couplings, the measured value of the scalar amplitude As

can be reproduced and that on the other hand the bound on the cosmic string tension in Eq. (10)

is obeyed in most cases. At the same time, the m3/2 range covers all values of gravitino masses

which are commonly assumed in supersymmetric models of electroweak symmetry breaking. As

our results will confirm, the such defined parameter space contains all the phenomenologically

interesting parameter regimes for hybrid inflation.

Let us first focus on As and ns, the two observables related to the scalar power spectrum,

before we then comment on f local
NL , the amplitude of the local bispectrum. Both As and ns depend

on all three Lagrangian parameters v, λ and m3/2 as well as on the choice among the different

inflationary trajectories, which we label by θf . As As has been measured very precisely by the

various CMB satellite experiments, cf. Eq. (9), we are able to eliminate one free parameter,

say, the gravitino mass, by requiring that our prediction for As must always coincide with the

observed best-fit value for the scalar amplitude, Aobs
s = 2.18× 10−9,

As
(
v, λ,m3/2, θf

)
= Aobs

s ⇒ m3/2 = m3/2 (v, λ, θf ) . (48)
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Figure 8: Viable parameter space for hybrid inflation in the complex plane for two different values of the final

inflaton phase θf . Color code and labels as in the left panel of Fig. 3. In contrast to Fig. 3, we now also find

regions in parameter space where our predictions for the scalar amplitude are always smaller than the observed

value Aobs
s . In these regions, it is impossible to increase As by going to larger gravitino masses as this would cause

the inflaton to miss the instability in the scalar potential and reach the local minimum on the positive real axis,

cf. our discussion of Eq. (46).

This renders all remaining inflationary observables functions of v, λ and θf only. Next, we

demand that our prediction for ns must fall into the 2σ range around the measured best-fit

value for the scalar spectral index, nobs
s = 0.963,

nobs
s − 2∆ns ≤ ns(v, λ, θf ) ≤ nobs

s + 2∆ns , ∆ns = 0.08 , (49)

which provides us with 95 % C.L. exclusion contours in the (v, λ) plane for every individual value

of θf . As examples of such exclusion contours, we show the viable region in the (v, λ) plane for

θf = π/16 and π/4 in Fig. 8. These two plots generalize the left panel of Fig. 3 from hybrid

inflation on the real axis to the full two-field scenario.

By comparing our parameter constraints in the two-field case with the results obtained in

Sec. 2.2, we are able to identify the similarities and differences between hybrid inflation on the

real axis and hybrid inflation in the complex plane. These observations belong to the most

important results of our analysis. First of all, we note that for small but nonzero θf and fixed v,

we always find two pairs of (λ,m3/2) values such that As and ns are successfully reproduced. In

our plots of the (v, λ) plane, this is reflected by the appearance of two bands of viable parameter

values stretching from small v and small λ to large v and large λ. The lower one of these two

bands directly derives from the band in Fig. 3. The second band is however completely new,

representing a genuine feature of hybrid inflation in the complex plane. We will qualitatively

explain the origin of this second band in our semi-analytical discussion in Sec. 3.3. For now,

let us focus on its behaviour as we vary the inflaton phase θf and its physical implications. In
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the limit θf → 0, the upper and the lower branch of the 95 % C.L. region in the (v, λ) plane

move into opposite directions. While the lower branch approaches the 95 % C.L. region which

we identified in the single-field case, the upper branch moves to smaller values of v and larger

values of λ. In this process, it also becomes increasingly thinner. On the other hand, as θf

is further increased, the two bands move closer together, until they fully merge and eventually

shrink away to smaller values of v and λ, cf. right panel of Fig. 8. Remarkably enough, for small

θf and fixed λ, the upper branch of parameter solutions makes smaller values of the symmetry

breaking scale v accessible. These points in parameter space are hence further away from the

cosmic string bound and alleviate the tension between the predictions of hybrid inflation and

the non-observation of cosmic strings. In particular, if future observations should lead to an

even more stringent bound on Gµ that, for fixed value of λ, rules out symmetry breaking scales

v up to some certain value, this λ value might still be viable in combination with a smaller value

of v and nonzero θf .

As a second observation, we note that in the two-field case certain parts of the (v, λ) plane

are excluded because they do not allow to reproduce the spectral amplitude without violating

the second condition in Eq. (46). For small v and large λ values as well as gravitino masses as

we would expect them from the single-field case, the inflationary trajectories still hit the Σ = 0

hypersurface. But during the fast-roll stage towards the end of inflation, they roll off the hill-

top in the scalar potential into the wrong direction, such that the inflaton becomes eventually

trapped in the false vacuum on the positive real axis.13 In the case of hybrid inflation on the

real axis, such a behaviour of course never occurs. Here, once the inflaton starts out its journey

on the correct side of the hill-top, it will also always hit the instability.

Finally, we observe that for θf & π/4 the scalar spectral index always comes out too large.

This is due to the fact that for such large values of θf the inflationary trajectories begin to look

more and more similar to the trajectory on the negative real axis. Our inability to reproduce the

scalar spectral index for θf & π/4 is hence nothing but the original problem of a too large value

for ns in the case of standard hybrid inflation. As pointed out in Ref. [27], a viable possibility to

reduce the scalar spectral index on the negative real axis is to resort to a non-canonical Kähler

potential. Therefore, it would be interesting to investigate by how much our upper bound on

θf might be relaxed in dependence of non-minimal couplings in the Kähler potential. Such a

study is however beyond the scope of this paper and left for future work. For the time being,

we merely conclude that, while hybrid inflation in the complex plane is not exclusively limited

to the hill-top regime on the positive real axis, it is still certainly necessary that the inflationary

trajectories pass close to this regime.

13We thank A. Westphal for pointing out that, technically speaking, we have to ensure that the inflaton never

comes closer to the ridge in the scalar potential than H0/(2π). Otherwise, quantum fluctuations may let the

inflaton tunnel to the other side of the hill-top causing it to roll down towards the false vacuum. The natural

scale of the inflaton excursion, v, is however much larger than the inflationary Hubble scale, v � H0. For all

practical purposes, it is hence sufficient to make sure that the inflaton never actually reaches the ridge.
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Figure 9: Viable parameter space for hybrid inflation in the complex plane for arbitrary values of the final inflaton

phase θf . Color code and labels as in the left panel of Fig. 3 as well as in Fig. 8. The contour lines for the gravitino

mass correspond to the case θf = 0. For larger θf , the gravitino mass at a fixed point in the (v, λ) plane slightly

increases: at most by roughly half an order of magnitude, but typically significantly less.

In order to summarize our constraints on the model parameters of hybrid inflation imposed

by the inflationary observables as well as the cosmic string bound, we marginalize our results

over the inflaton phase θf . The result of this step is depicted in Fig. 9, in which we show the

union of all of our 95 % C.L. regions. The dark-green band marks the allowed parameter region

in the case of single-field hybrid inflation in the hill-top regime, while the light-green region

becomes available as soon as we allow for nonzero θf . This increase in the totally accessible

parameter region demonstrates that the Lagrangian parameters of hybrid inflation are in fact

not as tightly constrained as has previously been thought. Instead, it is possible to reproduce

the inflationary observables in a large fraction of parameter space, which certainly boosts the

vitality of the entire model. Finally, we remark that, also in the white region on the top left,

it is in principle possible to obtain a viable value for the spectral index. This merely requires

a fine-tuning of θf very close to zero, so as to push the upper branch of parameter solutions to

ever smaller values of λ. However, since one of the basic motivations for our study is to show

how the fine-tuning problem of single-field hybrid inflation in the hill-top regime can be avoided

or relaxed, we shall not discuss this possibility in more detail.

Primordial non-Gaussianities

In the fourth and last step of our numerical analysis, we study our predictions for the amplitude

of the local bispectrum, f local
NL . As is well-known, f local

NL is suppressed by the slow-roll parameters
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ε and η in the case of single-field slow-roll inflation [49],

f local
NL =

5

12
(1− ns) =

5

6
(η − 3ε) , (50)

where ε and η are to be evaluated at N = N∗. Hence, as far as hybrid inflation on the real axis is

concerned, we expect f local
NL not to be larger than of O(10−2), which is two orders of magnitude

below the sensitivity of the PLANCK satellite, cf. Eq. (9). And indeed, requiring single-field

hybrid inflation in the hill-top regime to correctly reproduce the measured values of As and ns,

we always find an amplitude of the local bispectrum of f local
NL ∼ 0.015.

How does this situation now change in the full two-field case? In answering this question,

we shall restrict ourselves to values for v, λ and m3/2, which already yield the correct values of

As and ns for one specific final inflaton phase θf . This is to say that we will only investigate

our predictions for f local
NL in the respective 95 % C.L. regions in the (v, λ) plane. In the lower

branches of those 95 % C.L. regions, our two-field model effectively behaves like a single-field

model, such that our predictions for As and ns are well described by the analytical expressions

derived in Sec. 2.2. As expected, this is also reflected in our predictions for f local
NL , which are

slow-roll suppressed to most extent in these regions of parameter space.14 In Fig. 7, we plot

for instance f local
NL as a function of θf for a parameter point in the lower band of the 95 % C.L.

region corresponding to θf = π/16 and it is clearly seen that f local
NL never exceeds values of

O(10−2). Furthermore, Fig. 7 illustrates that, in the limits θf → 0 and θf → π, our numerical

multi-field result nicely approaches the single-field expectation according to Eq. (50). For θf

values in between 0 and π, our multi-field prediction is by contrast slightly larger than our naive

single-field estimate; but the deviation is always at most of O(1). This slight enhancement of

f local
NL is a direct consequence of the inherent multi-field nature of hybrid inflation and indicates

that, for hybrid inflation off the real axis, effects such as the inhomogeneous end of inflation

or the late-time conversion of isocurvature modes to curvature modes become important [50].

Nonetheless, it is safe to conclude that in most of the lower bands of our 95 % C.L. regions also

the generation of non-Gaussianities is, up to O(1) corrections, well explained in an effective

single-field picture. Note that this is in contrast to the situation in multi-brid inflation, where

the simple single-field description breaks down and genuine multi-field dynamics are responsible

for a sizable value of f local
NL [22, 23,46].

The upper branches of our 95 % C.L. regions are much closer to those parts of parameter

space in which As cannot be reproduced without violating the second condition in Eq. (46). The

trajectories corresponding to these parameter points are hence much more strongly bent than

the trajectories corresponding to the parameter points in the lower branches of the 95 % C.L.

regions. In these corners of parameter space, the multi-field character of hybrid inflation hence

14An exception are regions corresponding to very small gravitino masses, m3/2 . 1 GeV, in combination with

large final inflaton phases, θf & 3π/32. Here, f local
NL can become roughly as large as 0.5. The origin of such large

non-Gaussianities is the same as in the upper branches of the 95 % C.L. regions, cf. further below.
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Figure 10: Prediction for the amplitude of the local bispectrum, f local
NL , in the upper branches of our 95 % C.L.

regions as a function of θf and m3/2. At any point in the (θf ,m3/2) plane, the parameters v and λ are fixed such

that As = Aobs
s ≡ 2.18× 10−9 and ns = nobs

s ≡ 0.963.

comes much more into effect, resulting in the generation of quite sizable non-Gaussianities up

to values as large as f local
NL ∼ 0.5. We are able to substantiate this qualitative understanding

by studying the time evolution of f local
NL in the course of inflation. Generally speaking, if, in

Yokoyama et al.’s backward method, one does not fix the number of e-folds during inflation, N∗,

at N∗ = 50, but allows it to freely vary, N∗ → N ≥ N (0), any given inflationary observable O
turns into a time-dependent quantity O(N). Applying this procedure to f local

NL reveals that the

final value of the local bispectrum amplitude, f local
NL (N∗), is mostly determined at late times when

N & N (0). At earlier times, N . N∗, the variation of f local
NL (N) is by contrast rather weak. This

confirms our intuition that the large non-Gaussianities encountered in the upper branches of

our 95 % C.L. regions mainly originate from the strong curvature of the inflationary trajectories

towards the end of inflation as well as from the conversion of isocurvature to curvature modes

associated with this curvature. At the same, a similar analysis for As indicates that the final

value of the scalar amplitude, As(N∗) is in most cases already fixed at early times, N . N∗. In

summary, we therefore conclude that, in hybrid inflation in the complex plane, the scalar power

spectrum is predominantly sourced by adiabatic perturbations around the time when the CMB

pivot scale exits the Hubble horizon, N ∼ N∗, while f local
NL is mainly generated by isocurvature

perturbations at the time when the inflationary trajectory bends around at the end or after

slow-roll inflation. At the level of the observables related to the scalar power spectrum, we are

hence always free to work in an effective single-field approximation; at the level of the local

bispectrum, this approximation however breaks down in certain parts of the parameter space.

26



Finally, before concluding this section, we summarize our results for f local
NL in the upper

branches of our 95 % C.L. regions in Fig. 10. In this figure, we display our predictions for f local
NL

as a function of θf and m3/2, with the parameters v and λ always chosen such As = Aobs
s and

ns = nobs
s . Remarkably enough, f local

NL can become as large as roughly 0.5. At the same time, the

2σ uncertainty in the measured value of the scalar spectral index results in an uncertainty in

these predictions of at most a factor of 2. Together, these two observations imply a conservative

upper bound on the amplitude of the local bispectrum,

f local
NL . 1 . (51)

This bound provides an interesting means to falsify hybrid inflation. If future CMB experiments

should reach a better sensitivity to primordial non-Gaussianities and an f local
NL value larger than 1

should be measured, hybrid inflation would be in serious trouble.

3.3 Analytical reconstruction of the numerical results

Having presented the outcome of our numerical analysis in the previous section, we now attempt

to partly reconstruct our results by means of (semi-)analytical approximations. Here, we will

focus on the constraints on v and λ which we obtained by requiring that inflation must yield the

correct values for As and ns. As for the non-Gaussianity parameter f local
NL , we merely remark

that, as long as it is possible to work in an effective single-field picture, f local
NL can be, up to

O(1) corrections, well approximated by the naive single-field expression in Eq. (50). Once the

multi-field dynamics of hybrid inflation come into effect, the only possibility we see to determine

f local
NL is a full-fledged numerical analysis as we perform it in this paper.

In our (semi-)analytical discussion of the inflationary observables in Sec. 2.2, we managed to

reproduce the 95 % C.L. region in the (v, λ) for the special case of single-field hybrid inflation in

the hill-top regime, i.e. for θf = 0, cf. the right panel of Fig. 3. Now we attempt to extend this

analysis to the full two-field case. In a first step, it is important to understand the qualitative

difference between the inflationary trajectories respectively corresponding to points in the upper

and points in the lower branches of our 95 % C.L. regions. To do so, note that, for fixed symmetry

breaking scale v, larger gravitino masses are required in the upper branches than in the lower

branches so as to keep the potential flat enough by compensating for the comparatively larger

values of λ, cf. Sec. 2.2. Therefore, the individual contributions to the slope of the inflaton

potential all have a larger magnitude in the upper branches, which effectively results in a larger

field excursion during inflation in these parts of parameter space. This is illustrated in Fig. 11,

in which we display several inflationary trajectories corresponding to parameter points along a

vertical cross section through the (v, λ) plane for θf = π/16, cf. the left panel of Fig. 8. While

the last 50 e-folds of inflation along trajectory № 2, which belongs to a point in the lower band

of the 95 % C.L. region for θf = π/16, easily fit into a very small field range, z∗−1 ' 1.6×10−2,
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Figure 11: Various possible inflationary trajectories for fixed symmetry breaking scale, v = 1015 GeV, and final

inflaton phase, θf = π/16. Recall that θf is defined on the Σ = 0 hypersurface, where ηtot = η0tot ≡ 10−1/2, not

along the instability in scalar potential (blue dashed curve). For each trajectory, λ and m3/2 are adjusted such

that As = Aobs
s ≡ 2.18 × 10−9. The parameter points corresponding to trajectories № 2 and № 6 are located in

the lower and the upper band of the 95 % C.L. region for θf = π/16, respectively, cf. the left panel of Fig. 8. For

these two trajectories, the scalar spectral index therefore comes out right, ns = nobs
s ≡ 0.963. At the same time,

we have ns > nobs
s for trajectories № 1 and № 7 and ns < nobs

s for trajectories № 3, № 4 and № 5. The black and

orange circles mark the respective position of the inflaton field at N = N∗ ≡ 50.

the same number of e-folds along trajectory № 6, which belongs by contrast to a point in the

associated upper band, require a much larger field excursion, z∗ − 1 ' 0.98.

This difference in the field excursion during inflation also explains the absence of the second

branch of parameter solutions in the case of single-field hybrid inflation in the hill-top regime.

Such large z∗ values as they are required in the new band of parameter solutions simply clash

with the position of the local maximum on the positive real axis. In other words, on the real

axis, only one successful inflationary trajectory fits in between the instability and the ridge in

the scalar potential for a fixed value of v. On the other hand, allowing the inflaton to freely

move in the full complex plane, the possibility of reproducing the inflationary observables along

an alternative, much longer trajectory opens up, cf. Fig. 11.

In summary, the lower branches of our 95 % C.L. regions come in general with smaller values

of z∗ than the corresponding upper branches. In addition to that, z∗ also decreases as we move

along the lower branches to smaller and smaller values of v and λ. This behaviour is analogous

and has the same origin as the behaviour of x∗ in the single-field case, cf. the right panel of
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Figure 12: Two-field dynamics of the complex inflaton in field space for v = 1.8× 1015 GeV, λ = 4.8× 10−4 and

m3/2 = 500 GeV, to be compared to Fig. 4. Both the parameter point used for this plot as well as the one in

Fig. 4 are located in the lower band of the 95 % C.L. region for θf = π/16, cf. the left panel of Fig. 8. Note how

the decrease in the parameter values results in a much smaller initial value of the inflaton field at N = N∗ ≡ 50.

For θf = π/16, we have z∗ − 1 ' 6.7× 10−2 in this figure and z∗ − 1 ' 7.5× 10−1 in Fig. 4.

Fig. 3. Moving to smaller values of λ, one has to simultaneously reduce the gravitino mass

to maintain the balance between the logarithmic and the linear contribution to the slope of

the scalar potential. Both contributions then become smaller in magnitude, which results in a

smaller field excursion. This can be seen by comparing Fig. 4 and Fig. 12, which display the

two-field dynamics of hybrid inflation in the complex plane for two different points in the lower

band of the 95 % C.L. region for θf = π/16, cf. the left panel of Fig. 8.

The smallness of z∗ in the lower branches of our 95 % C.L. regions suggests that, in these

regions of parameter space, an effective single-field description might apply. The inflationary

trajectories do not significantly deviate in shape from those in the single-field case and hence it

appears feasible to describe the lower bands to first approximation by the small-field expression

in Eq. (31). And indeed, Eq. (31), although it has been derived in the context of single-field

inflation, provides a fair description of the location of the lower bands in the (v, λ) plane,

especially for θf values close to zero. As an example, we show in Fig. 13 how well we are able

to reproduce the lower band of the 95 % C.L. region for θf = π/16, assuming that ns can be

still calculated according to Eq. (31). This result is of course no surprise. Already in Sec. 3.2,

we noted that the lower branches of the 95 % C.L. regions asymptotically approach the band of

parameter solutions for θf = 0, as soon as θf is lowered to ever smaller values.

How do we now go about reproducing the upper branches of our 95 % C.L. regions? In

this case, the situation is unfortunately much more complicated. The relevant inflationary

trajectories often times run very close by the ridge in the scalar potential before reaching the

instability and are therefore usually strongly curved. This renders it difficult to integrate the
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Figure 13: Comparison of our analytical and numerical results for the 95 % C.L. region in the (v, λ) plane for

a final inflaton phase of θf = π/16. Color code and labels as in the right panel of Fig. 3 as well as in Fig. 8.

The black and grey contour curves are the result of our full numerical calculation. The red and blue curves are

by contrast based on our (semi-)analytical results for ns in the small-z∗ and large-z∗ regime, respectively, cf.

Eqs. (31) and (52). The initial field values z∗ are indicated by the grey dot-dashed contour lines.

slow-roll trajectories analytically in order to obtain a two-field analogue of the relation between

the inflaton field value and the number of e-folds which we managed to derive in the single-field

case, cf. Eq. (26). Besides that, any appropriate generalization of Eq. (26) would presumably

look rather convoluted and not lead to further insights. We therefore decide to pursue a different,

already well-tested semi-analytical approach and intend to make use of the fact that z∗ is always

very large in the upper bands of the 95 % C.L. regions.

Let us assume for a moment that the effective single-field description also holds in the upper

branches of the 95 % C.L. regions. Given the curved shape of the trajectories, it is a priori not

obvious that this simplified picture indeed applies; but the comparison with the full numerical

results will shortly justify our assumption. In the effective single-field picture, we can then

determine the scalar spectral index based on the effective slow-roll parameters ε and η, cf.

Eq. (16) and (17) as well as App. A. In the large-z∗ regime and for small phases, we have

ns − 1 ' 2 η =
2M2

Pl

V

V aVabV
b

V cVc

z∗�1−→ − λ2

4π2

M2
Pl

v2

1

z∗
+O

(
z
−3/2
∗ , θ2

∗

)
, (52)

which we immediately recognize as the straightforward generalization of Eq. (32). Similarly as

in Sec. 2.2, also this large-field approximation of ns neglects the isocurvature contributions to

the scalar power spectrum. Owing to our numerical analysis in Sec. 3.2, we also know the values

of z∗ for every point in the various (v, λ) planes. Inserting these numerical results for z∗ into

Eq. (52), we always find two curves in the (v, λ) plane, at least as long as θf is not too large,
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along which the observed value for ns is reproduced, cf. the blue contour lines in Fig. 13. In the

vicinity of the upper branches of the 95 % C.L. regions, z∗ as a function of v and λ depends to

good approximation only on the ratio β = λMPl/v,

z∗ ≈ f(β) . (53)

Here, the function f is such that Eq. (52) yields the correct value of ns not only for one β value,

but actually for two distinct values of this ratio. For instance, in the case of θf = π/16, we have

the two solutions β1 ' 1.3 and β2 ' 1.7. In between these two β values, the spectral index is

smaller, outside the interval [β1, β2], it is larger than the observed value. The two cases β = β1

and β = β2 just represent the two curves along which the correct ns value can be reproduced.

Here, the larger β value always results in a very good description of the upper band in the

(v, λ) plane. At the same time, the smaller of the two β solutions induces a contour line in the

(v, λ) plane, which generalizes the blue contour in the right panel of Fig. 3 and which therefore

describes the lower band very well in the large-z∗ regime.

As anticipated, our semi-analytical approach based on Eq. (52) succeeds in reproducing the

numerical result for ns. This indicates that, at the level of the power spectrum, the curvature

of the trajectory as well as the conversion of isocurvature to curvature modes are negligible in

most parts of the parameter space and we are allowed to work in a simplified effective single-field

picture. In general, this effective single-field description however breaks down at the level of the

bispectrum as discussed at the end of Sec. 3.2.

4 Initial conditions

The hill-top regime of single-field hybrid inflation is plagued by two problems related to the

initial position of the inflaton field on the real axis. First, the initial value of the inflaton field,

ϕi, must be carefully tuned. Using the approximation x∗ − 1� 1, we find that the CMB pivot

scale exits the Hubble horizon roughly at a field value, cf. Eq. (26),

ϕ∗
v
' 1 +

λ2

4π2
ln 2 (1− ξ)N∗

(
MPl

v

)2

. (54)

At the same time, the scalar potential exhibits a local maximum and a local minimum at

ϕmax

v
' 1

2 ln 2

1

ξ
,

ϕmin

MPl
'
(
λ2

2π2
ln 2 ξ

MPl

v

)1/3

, (55)

where the position of the local minimum is determined by the interplay between the linear term

V3/2 and the supergravity correction VSUGRA to the scalar potential, cf. Eqs. (7) and (8). Hence,

successful inflation can only be achieved for an initial field value ϕi satisfying

ϕ∗ < ϕi < ϕmax . (56)
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The same conclusion also holds when the small-x∗ approximation is no longer applicable, as can

for instance be seen from Fig. 2. An initial field value slightly larger than ϕmax would result in

a trajectory leading into the false vacuum on the other side of the hill-top at ϕ = ϕmin, whereas

an initial value smaller than ϕ∗ does not allow for a sufficiently long period of inflation. Note

that this problem cannot be simply solved by setting ξ to a small value, as the scalar amplitude

could no longer be reproduced in such a case, cf. Eq. (29).

Second, at the onset of inflation, a sufficiently homogeneous region with volume H−3 is

generally required [51]. While chaotic inflation [48] can naturally accommodate the existence of

such a homogeneous region, even if the universe starts out from chaotic initial conditions, V (ϕ) ∼
ϕ̇2
i /2 ∼ (~∇ϕi)2/2 ∼ M4

Pl, F-term hybrid inflation fails to do so because it is associated with

relatively low values of the inflationary Hubble parameter, H0 ∼ 104 · · · 1011 GeV. This is to say

that hybrid inflation taking place at the GUT scale comes with an ‘initial’ horizon problem [52].

Assuming that at pre-inflationary times the energy density of the universe decreases from some

Planckian value down to the GUT scale in consequence of an ordinary radiation-dominated

expansion, one finds that around N ∼ N∗ one Hubble patch (for instance, the one which will

inflate to become the observable universe) consists of roughly 107 (1016GeV/MGUT) causally

disconnected Planck domains [52]. It is thus hard to explain why the same fine-tuned initial

value should separately occur in each causally disconnected Planck domain.15

An attractive way out of these two initial conditions problems is to have some kind of pre-

inflation before the onset of hybrid inflation, during which the energy density of the universe falls

from the Planck scale to the GUT scale. In this case, the initial homogeneous region required

for hybrid inflation can be generated during the earlier phase of pre-inflation. In particular,

if pre-inflation corresponds to eternal inflation realized in a local minimum of the potential,

probably even the one located at ϕ = ϕmin, the inflaton can reach the hybrid inflation regime,

ϕ ∼MGUT, through a tunneling process. Similar ideas have for instance been developed in the

context of locked inflation [53], chain inflation [54] and multiple inflation [55].

What is now the situation in the two-field case? We can best answer this question by

studying the course of the inflationary trajectories; cf. Fig. 14, which shows the inflaton field

space in polar coordinates for a large and a rather small gravitino mass, respectively. The small

blue arrows represent the gradient field of the scalar potential, i.e. the direction of the slow-roll

trajectories at any given point in field space. The pink lines denote a vanishing slope in the

radial direction, which, as can be seen from the arrows, can be either a maximum, a minimum

or a saddle point. The familiar hill-top and the false vacuum appear along the positive real axis,

i.e. for θ = 0. Correspondingly, the green-shaded regions indicate all initial field values whose

trajectories lead to the critical line, whereas in the white-shaded regions, the trajectories lead

into the false vacuum at ϕ = ϕmin. The dashed blue lines denote the instability in the scalar

15If the real fundamental scale M∗ actually lies somewhere between the Planck scale and the GUT scale,

MGUT .M∗ �MPl, as for instance in extra-dimensional theories, the required fine-tuning can be relaxed.
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Figure 14: Initial conditions in the complex plane. The blue arrows indicate the direction of the slow-roll

trajectories at any given point in field space. The dark-green regions mark all possible initial conditions which

lead to inflation ending on the instability. The light-green regions, encircled by the dashed blue lines, show the

last 50 e-folds of inflation. If the inflaton starts out its journey in the white regions, it becomes eventually trapped

in the false vacuum. The values for v, λ and m3/2 are chosen as in Figs 4 and 12, respectively.

potential and the initial flat hypersurface at t = t∗, respectively.

In this paper, our goal is not to precisely quantify the amount of fine-tuning required in

the initial conditions of hybrid inflation. Before we could do that, we would need to define a

suitable measure in field space, taking also possible displacements of the waterfall fields as well

as variations in the initial velocities into account. For analyses along these lines, cf. for instance

Refs. [44, 45, 56, 57]. Instead, we here merely intend to make the point that recognizing hybrid

inflation as a two-field model in the complex plane significantly relaxes the two problems related

to the initial conditions for the inflaton field, in particular the fine-tuning problem, cf. Fig. 14.

Now, a significant part of the field space yields initial conditions leading to a sufficient amount

of inflation ending in the right vacuum (darker green region). The initial position of the inflaton

field no longer needs to be fine-tuned. This is to be compared with the situation for θf = 0,

where suitable initial conditions lie between the right dashed blue and the pink line. In the left

panel of Fig. 14, this segment of the real axis is hardly visible.

As far as the horizon problem is concerned, we note that now, where the inflaton is allowed

to freely move in the complex plane, inflation can also start out at the Planck scale.16 One could

therefore imagine that hybrid inflation begins with ϕi ∼MPl within a sufficiently homogeneous

16Typically, this requires an initial phase close to θi ∼ π, which re-introduces the necessity of a mild fine-tuning.

However, the further the inflaton moves down from the Planck scale, the more do the trajectories spread in polar

field space. The amount of fine-tuning can therefore always be controlled and reduced by specifying the initial

conditions for the inflaton field at lower and lower energy scales.
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initial region, whereby the horizon problem would be solved. But, this picture rests upon the

assumption that the initial velocity of the inflaton is suppressed for some reason. In the case

of hybrid inflation starting out at the Planck scale, we would expect that |ϕ̇| ∼ M2
Pl, such that

the inflaton would easily overshoot the inflationary region. In order to fully solve the horizon

problem in hybrid inflation, we must therefore explain why the initial velocity of the inflaton at

the Planck scale is suppressed. Compared to the challenge of fine-tuning the inflaton field value

in 107 causally disconnected regions at the GUT scale, the task of suppressing |ϕ̇| in one Planck

domain seems however much more manageable. Therefore, also without invoking any extension

of the model, the initial horizon problem appears to be relaxed as well. As an alternative to

a suppressed initial velocity, one could also attempt to come up with an explicit scenario of

pre-inflation. Both options seem promising and interesting; a more detailed investigation is left

for future work.

5 Bounds on the gravitino mass

Up to this point, we have considered the gravitino mass, m3/2 ≥ 10 MeV, as a free input pa-

rameter. We consequently found parameter solutions over a wide range of gravitino mass scales,

m3/2 ∼ 10 MeV · · · 10 PeV. Interestingly, this range of gravitino masses includes all relevant

values commonly employed in supersymmetric models of electroweak symmetry breaking. In

this section, we now specify in more detail the allowed range of gravitino masses, discussing in

particular the consequences of the production of gravitinos in the early universe.

5.1 Supersymmetry breaking and slow-roll inflation

Throughout our analysis, we assume that supersymmetry becomes softly broken in a hidden

sector already before the onset of inflation. During inflation, supersymmetry is in addition

broken by the tadpole term for the inflaton field Φ in the superpotential, Winf = λ v2/2 Φ ∼ λv3.

Our decision to ignore the dynamics of vacuum supersymmetry breaking is justified as long as

|Winf | > |W0|, which translated into an upper bound on the gravitino mass,

m3/2 .
λv3

M2
Pl

∼ 100 TeV

(
λ

10−3

)( v

1015 GeV

)3
. (57)

Two further bounds on the gravitino mass can be derived from requiring successful slow-roll

inflation to occur. In Sec. 2.2, we derived a first upper bound on the gravitino mass in the

hill-top regime on the real axis, cf. Eq. (28), from the requirement that at least 50 e-folds of

inflation must fit in between the instability in the scalar potential and the hill-top,

m3/2 <
λ3 ln 2

29/2 π2
v ' 3 TeV

(
λ

10−3

)3 ( v

1015 GeV

)
. (58)

Also outside the hill-top regime, the requirement of consistent slow-roll inflation imposes an

upper bound on the gravitino mass. For large values of m3/2, all trajectories leading to successful
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inflation run initially in parallel to the θf = π trajectory, cf. Fig. 5, so that we can restrict our

discussion to this case. Increasing m3/2 steepens the scalar potential, thereby pushing the

initial field value z∗ to ever larger values. As z∗ approaches the Planck scale, the supergravity

contributions to the scalar potential become important, until at z∗ ∼M2
Pl the slow-roll condition

for η is violated. The requirement of achieving 50 e-folds of inflation at sub-Planckian field values

without violating the slow-roll conditions therefore yields an upper bound on m3/2. An analytical

analysis of the inflaton slow-roll equation on the negative real axis leads us to

m3/2 . 3× 10−3H0 ∼ 350 TeV

(
λ

10−3

)( v

1015 GeV

)2
, (59)

where H0 denotes the inflationary Hubble scale. Note that both Eq. (58) and Eq. (59) are

obtained solely from requiring at least 50 e-folds of slow-roll inflation. Demanding in addition

that the correct values for As and ns be successfully reproduced yields even tighter upper bounds

on m3/2, which vary as functions of the final inflaton phase θf , cf. Fig. 8.

5.2 Nonthermal gravitino production

After the end of inflation, gravitinos are generated thermally and nonthermally. A too large

abundance of these gravitinos leads to the infamous cosmic gravitino problem [58,59], with the

precise bounds depending on the mass hierarchies of the theory. In the following, we briefly

review nonthermal [60–62] and thermal [63] gravitino production and derive the resulting con-

straints on the parameter space of hybrid inflation. Then we comment on possibilities to relax

or avoid these constraints.

After the end of inflation (and preheating), the energy density of the universe is dominated

by the contributions from the non-relativistic scalar particles of the waterfall-inflaton sector. As

a consequence of the constant term in the superpotential, the resulting mass eigenstates ϕ1,2 are

a maximal mixture of the inflaton and waterfall gauge eigenstates ϕ and χ. They hence both

obtain a large vacuum expectation value (vev), 〈ϕ1,2〉 = v/
√

2, and their masses are given by

mϕ ' λv, with a small mass splitting proportional to the gravitino mass m3/2. These particles

can decay into gravitinos, thereby yielding a population of nonthermal gravitinos. The decay

rate into a pair of gravitinos is given as [62,64,65]

Γ3/2 =
c

96π

(
〈ϕ〉
MPl

)2 m3
ϕ

M2
Pl

, (60)

where we have assumed that the fields ϕ1,2 are lighter than the sgoldstino z, i.e. the complex

scalar in the hidden-sector chiral multiplet responsible for soft supersymmetry breaking.17 Note

that this decay channel only opens up as soon as H < m3/2, since it requires a helicity flip

which is not possible for effectively massless gravitinos [60]. Exploiting the conservation of the

17If on the contrary the fields ϕ1,2 were heavier than the sgoldstino, i.e. if mϕ > mz, cf. Ref. [66], the gravitino

abundance could be significantly suppressed [67], depending on the details of the supersymmetry breaking sector.
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comoving entropy density after the end of reheating, the resulting abundance of nonthermally

produced gravitinos normalized to the entropy density s is given by

Y nt
3/2 =

n3/2

s
= 2

Γ3/2

Γϕ

nϕ(tf )

s
, (61)

with Γϕ denoting the total decay rate of ϕ bosons, nϕ(tf ) their comoving number density at the

end of reheating, i.e. at matter-radiation equality, ρrad(tf ) = ρm(tf ) = nϕ(tf )mϕ. Expressing

the energy and entropy density of the thermal bath in terms of the reheating temperature,

TR(tf ) = (45/(π2g∗))
1/4
√

ΓϕMPl, we find the resulting gravitino abundance to be inversely

proportional to the reheating temperature,

Y nt,0
3/2 =

3

2

(
90

π2g∗

)1/2 Γ3/2

mϕ

MPl

TR
. (62)

The thermal contribution on the other hand, stemming mainly from supersymmetric QCD

2-to-2 scatterings in the thermal bath, can be expressed as, cf. App. D of Ref. [8],

Y th
3/2 =

ρc
m3/2s0

εC1

(
TRH

1010 GeV

)[
C2

( m3/2

100 GeV

)
+

(
100 GeV

m3/2

)( mg̃

1 TeV

)2
]
, (63)

with s0 = 2.9× 103 cm−3 and ρc/h
2 = 1.052× 10−5 GeV/cm3 denoting the entropy and critical

energy densities today. The coefficient functions C1 and C2 can be calculated analytically and

feature a weak dependence on the reheating temperature, the parameter ε accounts for details of

the reheating process which cannot be taken into account analytically. For the analysis here, it

is sufficient to choose representative, constant values for these parameters, C1 = 0.26, C2 = 0.13

and ε = 1 [9]. Moreover, we will set the gluino mass to mg̃ = 1 TeV.

Stringent bounds on the gravitino mass are obtained when assuming that the gravitino is the

lightest supersymmetric particle (LSP). In this case, the total gravitino abundance is restricted

by the measured relic abundance of dark matter,(
Y nt

3/2 + Y th
3/2

)
m3/2 <

ρc
s0

ΩDM = 4.3× 10−10 GeV , (64)

where we have used ΩDMh
2 = 0.12 [68]. Making use of the relation between m3/2, v and λ

imposed by the correct normalization of the scalar power spectrum, cf. Eq. (48), and treating

the reheating temperature as a free parameter, this bound can be translated into constraints on

v and λ, cf. Fig. 15. As it turns out, it is the region of small v and λ values, corresponding to

gravitino masses m3/2 . 1 TeV, that is in agreement with the bound in Eq. (64). The resulting

lower and upper bounds on the reheating temperature (driven by the nonthermal and thermal

contributions, respectively) are depicted by the blue and red contour lines. Comparing Fig. 15

with Fig. 9, we see that for very light gravitinos stringent bounds on the reheating temperature

apply, e.g. m3/2 . 1 GeV requires TRH . 108 GeV. Note that the decrease of the upper bound on

TRH for large values of λ, responsible for extending the excluded region, is due to the first term in

the squared brackets on the right-hand side of Eq. (63), which takes over at m3/2 & 100 GeV. For
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Figure 15: Bounds on the reheating temperature in the gravitino LSP scenario. The yellow/red-shaded region

marks the viable parameter space, with the blue (red) contour lines referring to the corresponding lower (upper)

bounds on the reheating temperature. The grey region is excluded if the gravitino is the LSP. The darker grey

regions show how this constraint can be relaxed for Γϕ/ΓX = 10 (medium grey) or Γϕ/m3/2 = 10 (darkest grey).

this figure, we chose θf = π/8 for concreteness. As m3/2 however changes only very mildly for

fixed v and λ as well as θf varying in the interval 0 . θf . π/4, our conclusions are independent

of this particular choice.

From Figs. 9 and 15, we see that the region corresponding to m3/2 & 1 TeV is excluded

in the case of a gravitino LSP. However, for such large gravitino masses, we would anyway

expect that the gravitino is not the LSP in the supersymmetric mass spectrum. Unstable

gravitinos in the mass rangem3/2 ∼ 1 . . . 10 TeV are subject to severe constraints from primordial

nucleosynthesis [69,70], which are difficult to circumvent. Gravitinos heavier thanm3/2 & 10 TeV

however decay before the onset of big bang nucleosynthesis. Then the requirement that the

abundance of the LSP produced in gravitino decays does not exceed the measured dark matter

abundance imposes a bound similar to Eq. (64),

m3/2Y3/2 . 4× 10−10 GeV

(
m3/2

mLSP

)
, (65)

which can however be loosened for large LSP annihilation cross sections and/or high gravitino

decay temperatures, cf. e.g. Ref. [27]. Fully worked examples of the gravitino LSP and the heavy

gravitino setup can be found in Refs. [9, 71], respectively.
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There are two further loopholes in the derivation of the bounds from nonthermal gravitino

production which we want to point out here. The derivation leading to Eq. (62) assumes that

the ϕ1,2 mass eigenstates decay directly into light particles forming the thermal bath. However,

in a generic scenario, the ϕ particles may first decay into another heavy particle species X which

becomes the dominant contribution to the energy density of the universe before decaying into

the thermal bath itself. For example, in Ref. [9] the ϕ particles decay into heavy Majorana

neutrinos, thereby setting the stage for nonthermal leptogenesis. Assuming that the vev of the

X particles remains at 0, a sufficiently long intermediate period governed by these particles

(ΓX � Γϕ) can significantly reduce the resulting gravitino abundance,

Y nt
3/2 =


ΓX
Γϕ

Y nt,0
3/2 for X non-relativistic(

ΓX
Γϕ

)1/2
Y nt,0

3/2 for X relativistic

. (66)

The reason for this suppression is that during the X-dominated phase no gravitinos are produced

according to Eq. (60), while the onset of the radiation dominated era, crucial to linking the

produced gravitino abundance to the reheating temperature, is delayed.

A further suppression of the final gravitino abundance arises if m3/2 < Γϕ. In this case,

part of the initial abundance of ϕ particles will have decayed before the nonthermal gravitino

production sets in, leading to

Y nt
3/2 =


exp

[
− 2Γϕ

3m3/2

]
Y nt,0

3/2 for matter domination after H = Γϕ

exp
[
− Γϕ

2m3/2

]
Y nt,0

3/2 for radiation domination after H = Γϕ

. (67)

Fig. 15 illustrates the resulting relaxation of the constraints in the (v, λ) plane. The light-grey

contour marks the excluded region for single-stage reheating, the darker shaded regions show

how this bound relaxes taking into account the two above mentioned effects, with Γϕ/ΓX = 10

and Γϕ/m3/2 = 10, respectively. Of course, this also enlarges the allowed range for the reheating

temperature.

In summary, while at first sight the gravitino problem seems to exclude a significant part of

the parameter space in the case of gravitino LSP, cf. Fig. 15, there are several ways to avoid these

constraints, e.g. assuming mϕ � mz with some assumptions on the supersymmetry breaking

sector or particular mass hierarchies in the reheating process. However, when embedding hybrid

inflation into a more complete model of particle physics and the early universe, these options may

not all be available and in particular, the reheating temperature may not be a free parameter.

The above mentioned bounds and possible loopholes must then carefully be taken into account.

In any case, the gravitino mass range suitable for rendering hybrid inflation in accordance with

the PLANCK data is interesting both from a particle physics as well as from a cosmological

point of view, as it contains the mass range relevant for supersymmetric electroweak symmetry

breaking and at the same time mass scales which can be restricted by early universe cosmology.
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6 Conclusions and outlook

Supersymmetric hybrid inflation models typically feature a true vacuum in which supersymmetry

is fully restored. A simple and straightforward way to accommodate soft low-energy supersym-

metry breaking in this Minkowski vacuum is to assume that supersymmetry is spontaneously

broken by non-vanishing F-terms in a hidden sector, whose dynamics are already completely

fixed during inflation. This effectively results in a constant term in the superpotential propor-

tional to the vacuum gravitino mass. Since the mass scale of the gravitino is typically expected

to be much smaller than the energy scale of inflation, the effect of this term on the inflationary

dynamics has been widely neglected. However, since the inclusion of this term breaks the ro-

tational invariance of the scalar potential in the complex inflaton plane, its effects can be very

important even for small gravitino masses. F-term hybrid inflation is consequently a two-field

model of inflation, such that its predictions for the observables related to the primordial fluc-

tuations depend not only on the parameters of the scalar potential, but in particular also on

the choice of the inflationary trajectory. This puts the measured values of the amplitude of the

scalar power spectrum, the scalar spectral index and the amplitude of the local bispectrum into

new light: their precise values are no longer dictated by the fundamental model parameters,

but are rather strongly influenced by a selection process at very early times that appears to be

random within the model itself. As these insights only rely on the presence of a large F-term

driving inflation and the assumption of soft symmetry breaking in a hidden sector at very high

scales, similar conclusions should apply in comparable inflationary scenarios. We expect that

our study and in particular our analysis of the linear term in the scalar potential can be easily

generalized to other models of inflation, including large-field models, in which supersymmetry

breaking turns an originally single-field model into a multi-field model.

In this paper, we analyzed the inflationary dynamics of F-term hybrid inflation in the complex

plane based on the δN formalism. After extending the method presented in Refs. [32,33] so as to

explicitly take into account the contributions to the curvature perturbation spectrum produced

after the end of slow-roll inflation, we calculated the inflationary observables related to the scalar

power spectrum and the local bispectrum as functions of the symmetry breaking scale v, the

superpotential coupling λ, the gravitino mass m3/2 and the choice of the inflationary trajectory,

labeled by the final inflaton phase θf . We found that the predictions for the scalar power

spectrum are well described in an effective single-field approximation, whereas the bispectrum

can obtain large contributions from the inherently multi-field dynamics. In ordinary single-field

slow-roll inflation, we would expect the primordial non-Gaussianities to be suppressed by the

slow-roll parameters. By contrast, in hybrid inflation in the complex plane, we partly obtained

f local
NL values roughly as large as 0.5. We cross-checked the results of our numerical analysis by

means of analytical calculations, which provided us with accurate analytical formulas for the

hill-top regime on the real axis as well as with semi-analytical formulas for the two-field case.
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The results of our analysis demonstrate that F-term hybrid inflation is in much better shape

than widely believed in two important points. First, the fine-tuning in the initial conditions

necessary to obtain successful inflation is greatly reduced. Second, the measured scalar spec-

tral index can be reproduced in a significant part of the parameter space without resorting

to a non-canonical Kähler potential. Roughly speaking, a correct spectral index is obtained

when the contributions to the slope of the scalar potential from one-loop corrections and from

supersymmetry breaking have opposite sign, but are of comparable size. This is typically ac-

complished along trajectories in the complex plane corresponding to θf . π/4, i.e. trajectories

which pass through the vicinity of the hill-top region on the real axis. Taking into account

the effect of supersymmetry breaking hence links the CMB observables to the mass scale of

soft supersymmetry breaking. The resulting mass range for the gravitino mass turns out to

lie in a region which is very interesting, including the mass range relevant for supersymmetric

electroweak symmetry breaking, for gravitino LSP dark matter as well as for nonthermal dark

matter production through the decay of heavy gravitinos. A crucial further development which

will have an important impact on F-term hybrid inflation is the ongoing search for primordial

B-mode polarization of the CMB radiation. If the recent results of the BICEP2 experiment are

confirmed, an explanation within the framework of small-field inflation will be challenging.
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A Simple estimate for the scalar spectral index

Consider a set of scalar fields φa with canonical kinetic terms,

S[φ] =

∫
d4x
√
g

(
1

2
gµν∂µφ

a∂νφa − V (φ)

)
. (68)

In the slow-roll regime of an inflationary phase, the trajectories in field space are determined by

the equations of motion

3Hφ̇a = −∂aV , (69)
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where H is the Hubble parameter obeying the Friedmann equation and ∂a = ∂/∂φa. To obtain

the number of e-folds of expansion as a function of an initial point φ in field space, one has to

evaluate a line integral along the inflationary trajectory, cf. Eq. (14), as well as throughout the

preheating process until the point in time when the universe reaches the adiabatic limit.

The amplitude as well the the spectral index for the primordial scalar fluctuations are then

given by the compact expressions [34]:

As =

(
H

2π

)2

∂aN∂aN , ns − 1 =
M2

Pl

∂cN∂cN

(
2 ∂a∂b lnV − δab∂

dV ∂dV

V 2

)
∂aN∂bN . (70)

In general, the calculation of N(φ) is difficult since it requires knowledge of the entire trajectory

including the transition from inflation to preheating. However, in effective single-field cases18

where fluctuations orthogonal to the trajectory yield a negligible contribution to δN , cf. Eq. (33),

one can use as an approximation

∂aN ∝ ∂aV , (71)

evaluated at N = N∗. The expressions in Eq. (70) can then be written in a form familiar from

single-field inflation,

As =

(
H

2π

)2 1

2 εM2
Pl

, ns = 1− 6 ε+ 2 η , (72)

where ε and η are the slow-roll parameters along the inflationary trajectory given in Eqs. (16)

and (17). In fact, performing a field redefinition from the fields φa to a new basis ϕa, such that

ϕ0 points along the inflationary trajectory and all other fields ϕa with a 6= 0 are orthogonal to

the trajectory, ε and η can be simply written as

ε =
1

2

M2
Pl

V 2

(
∂V

∂ϕ0

)2

, η =
M2

Pl

V

∂2V

(∂ϕ0)2
. (73)

Using Eq. (72) as an approximation, one obtains for the spectral index in hybrid inflation,

cf. Eqs. (11) and (12),

ns − 1 ' 2η =
2

V

M2
Pl

v2

∂2
xV (∂xV )2 + 2 ∂xV (∂x∂yV )∂yV + ∂2

yV (∂yV )2

(∂xV )2 + (∂yV )2
, (74)

where

∂xV = 2af ′x− b , ∂yV = 2af ′y , ∂x∂yV = 4af ′′xy , (75)

∂2
xV = 4af ′′x2 + 2af ′ , ∂2

yV = 4af ′′y2 + 2af ′ . (76)

18In general, the predictions of multi-field models of inflation can strongly deviate from the single-field estimate,

cf. for instance Refs. [22,23,46]. However, as our numerical analysis, in which we take into account all potentially

important effects, shows, this is typically not the case for the power spectrum in F-term hybrid inflation.
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B Comment on the recent evidence for CMB B-modes

During the final stages of preparing this paper, the BICEP2 collaboration reported on a measure-

ment of the CMB B-mode power spectrum with unprecedented sensitivity [24]. The observed

power spectrum is well fit by the Λ-Cold-Dark-Matter model (which already features B-modes

simply because of gravitational lensing) including an additional contribution from primordial

tensor perturbations due to inflation with a tensor-to-scalar ratio of r = 0.2+0.07
−0.05. According to

this result and a conservative estimate of the foreground dust polarization, the null hypothesis

r = 0 is ruled out at a confidence level of 5.9σ.

Before arriving at a final conclusion, we will have to wait if these ground-breaking results are

confirmed by other upcoming experiments. Nevertheless, it is indispensable to comment here on

the implications of this measurement on the inflation model discussed in this paper. In F-term

hybrid inflation, the tensor-to-scalar ratio is given as

r =
AT
As

=
2H2

π2AsM2
Pl

' 2.2× 10−6

(
2.18× 10−9

As

)(
λ

10−2

)2 ( v

1016GeV

)4
, (77)

which is, by itself, obviously much too small to explain the BICEP2 result. There are several

attempts for model building that can produce larger tensor perturbation in the context of hybrid

inflation, for example, by introducing a non-minimal Kähler potential [12, 72] or switching to

smooth [73] or shifted hybrid inflation [74]. However, these modifications can only enhance the

tensor-to-scalar ration to at most r ' 0.03. Therefore, the clear conclusion is that F-term hybrid

inflation alone cannot explain the signal measured by the BICEP2 experiment.

Another source for CMB B-modes, which is inherent to F-term hybrid inflation ending in a

phase transition associated with the spontaneous breaking of a U(1) symmetry, is the cosmic

string network formed at the end of inflation. It leads to a signal in the B-mode spectrum which

is peaked at larger multipoles than the signal expected from primordial gravitational waves, cf.

Ref. [75] for a recent analysis. Generically, cosmic strings with a tension close to the current

experimental upper bound, cf. Eq. (10), can have a significant effect on the B-mode power

spectrum at multipoles ` ∼ 100, which is currently under investigation [76,77].

Finally, we note that the BICEP2 result is in tension with the upper bound on r deduced

from the PLANCK data, r < 0.11 [19]. This tension can be relaxed by going to less minimal

theoretical models, for instance by allowing for a large running of the scalar spectral index.

But in particular upcoming experimental data from B-mode observation experiments such as

PLANCK [78], the Keck Array [79], ABS [80], SPTpol [81] or POLARBEAR [82] will be crucial

for any final conclusion.
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