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We find that the evolution equation for the three-particle quark-gluon B-meson light-cone distri-
bution amplitude (DA) of subleading twist is completely integrable in the large Nc limit and can be
solved exactly. The lowest anomalous dimension is separated from the rest, continuous, spectrum
by a finite gap. The corresponding eigenfunction coincides with the contribution of quark-gluon
states to the two-particle DA φ

−
(ω) so that the evolution equation for the latter is the same as for

the leading-twist DA φ+(ω) up to a constant shift in the anomalous dimension. Thus “genuine”
three-particle states that belong to the continuous spectrum effectively decouple from typical ob-
servables to the leading-order accuracy. Our results suggest that the study of 1/mb corrections to
heavy-meson decays in the framework of QCD factorization or light-cone sum rules requires a much
simpler nonperturbative input than it is usually assumed.
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B-meson light-cone distribution amplitudes (DAs)
are the main nonperturbative input to the QCD de-
scription of weak decays involving light hadrons in
the final state [1, 2]. In particular the leading-twist
DA gives a dominant contribution in the heavy quark
expansion and it received considerable attention al-
ready [3–9]. Utility of the QCD factorization tech-
niques depends, however, on the possibility to control,
or at least estimate, the corrections suppressed by
powers of the b-quark mass that involve higher-twist
DAs. This task is attracting increasing attention and
in the last years there have been several efforts to com-
bine light-cone sum rules with the expansion in terms
of B-meson DAs [10–13]. This technique allows one
to tame infrared divergences which appear in higher-
twist contributions in the purely perturbative frame-
work. The problem is that higher-twist B-meson DAs
involve contributions of multiparton states and are
very poorly known.

In this letter we point out that the structure of
subleading twist DAs is much simpler as compared
to what one may assume from their general partonic
decomposition [14, 15]. This structure is revealed
by considering the scale dependence of the DAs in
the limit of large number of colors, Nc → ∞, i.e.
neglecting the 1/N2

c corrections to the renormaliza-
tion group equations. It turns out that the evolution
equation for the three-particle DA in this approxima-
tion is completely integrable and can be solved ex-
actly. The lowest anomalous dimension is separated
from the rest, continuous, spectrum by a finite gap.
The corresponding eigenfunction defines what can be
called the “asymptotic” three-particle B-meson DA
and has a relatively simple form. Most remarkably, it

turns out that the higher-twist contribution to the
two-particle B-meson DA φ−(ω) that is related to
the three-particle DA by QCD equations of motion
(EOM), is expressed entirely in terms of this “asymp-
totic” state, the states that belong to the continuous
spectrum do not contribute. As the result the DA
φ−(ω) evolves autonomously and does not mix with
“genuine” three-particle contributions. The evolution
equation for φ−(ω) is the same as for the leading-twist
DA φ+(ω) up to a constant shift in the anomalous di-
mension. We suggest a simple model for φ−(ω) that
can be used in phenomenology.
Following established conventions [3] we define the

B-meson DAs as matrix elements of the renormalized
nonlocal operators built of an effective heavy quark
field hv(0), a light (anti)quark and gluons at a light-
like separation:

iF (µ)Φ+(z, µ) = 〈0|q̄(nz)/nγ5hv(0)|B̄(v)〉,
iF (µ)Φ−(z, µ) = 〈0|q̄(nz)/̄nγ5hv(0)|B̄(v)〉, (1)

and

−2iF (µ)Φ3(z1, z2, µ) =

= 〈0|q̄(nz1)gGµν(nz2)n
νσµρnργ5hv(0)|B̄(v)〉.(2)

Here vµ is the heavy quark velocity, nµ is the light-
like vector, n2 = 0, such that n · v = 1, Γ stands for
an arbitrary Dirac structure, |B̄(v)〉 is the B̄-meson
state, µ is the factorization scale and F (µ) is the B-
meson decay constant in the heavy quark effective
theory (HQET). Wilson lines connecting the fields are
not shown for brevity; they are always implied.
The functions Φ+ and Φ− are the leading- and

subleading-twist two-particle B-meson DAs [2], and
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Φ3 is the (lowest twist) three-particle DA that is the
only one relevant for the present study. In notations
of [14] Φ3 = ΨA − ΨV . These three DAs are related
by an EOM [2, 14]

∂zzΦ−(z) = Φ+(z) + 2

∫ z

0

wdwΦ3(z, w) (3)

that can be solved to obtain Φ− as a sum of the so-
called Wandzura-Wilczek (WW) term expressed in
terms of Φ+ [2], and a certain integral of the quark-
gluon DA Φ3. The latter contribution is nontrivial
because it involves a function of two variables. We
will demonstrate, however, that this complication is
to a large extent illusory as the integral appearing in
the EOM essentially decouples from “genuine” quark-
gluon correlations. This simplification is exactly anal-
ogous to what has been observed before [16–19] for
the structure function g2(x,Q

2) in polarized deep-
inelastic lepton-proton scattering.
The following discussion is based on properties of

the renormalization group equations for heavy-light
operators under collinear conformal transformations.
The corresponding generators read

S+ = z2∂z + 2jz , S0 = z∂z + j , S− = −∂z , (4)

where j = 1 is the conformal spin, jq = 1 for the
light quark and jg = 3/2 for the gluon. The genera-
tors satisfy the standard SL(2) commutation relations
[S+, S−] = 2S0 , [S0, S±] = ±S± . We distinguish
the generators acting on quark and gluon coordinates
by the subscript Sq and Sg, respectively.
The starting observation is that both the one-loop

renormalization group equations (RGE) for the DAs
and the EOM relations are invariant under special
conformal transformations [8, 20]. It is therefore nat-
ural to expand the DAs in terms of the eigenfunctions
of the corresponding generator [8]

Q(j)
s (z) =

e−iπj

z2j
eis/z , iS

(j)
+ Q(j)

s = sQ(j)
s . (5)

They form a complete orthonormal set

〈Q(j)
s |Q(j)

s′ 〉j = Γ(2j)s1−2j δ(s− s′) , (6)

with respect to the SL(2) invariant scalar product [21]

〈Φ1|Φ2〉j =
∫

C−

DjzΦ1(z)Φ2(z) , (7)

where Djz =
2j−1
π d2z [i(z − z̄)]2j−2.

Thus we write the two-particle DAs as

Φ+(z) = − 1

z2

∫ ∞

0

ds s eis/zφ̃+(s) ,

Φ−(z) = − i

z

∫ ∞

0

ds eis/zφ̃−(s) , (8)

and the three-particle DA

Φ3(z1, z2) =
−i
z21z

3
2

∞∫

0

ds s4
1∫

0

du uū2 e
is( u

z1
+ ū

z2
)
φ̃3(s, u).

(9)

Here and below ū = 1−u. Inserting these expressions
in the EOM relation (3) one derives for the expansion
coefficients

φ̃−(s, µ) = φ̃+(s, µ)− 2s2
∫ 1

0

du uū φ̃3(s, u, µ) . (10)

Invariance under special conformal transformations
means that terms with different values of s cannot
get mixed by the RGE. The leading twist contribu-

tions φ̃+(s, µ) have autonomous scale dependence:

(
µ
∂

∂µ
+ β(g)

∂

∂g
+
αs

2π
E+(s, µ)

)
F (µ) φ̃+(s, µ) = 0 ,

where [7, 8]

E+(s, µ) = 2CF

[
ln
(
µs

)
− ψ(1)− 5/4

]
. (11)

The RGE for the three-particle DA Φ3 is more com-
plicated,

(
µ
∂

∂µ
+ β(g)

∂

∂g
+
αs

2π
H
)
F (µ)Φ3(z1, z2, µ) = 0 ,

where the “Hamiltonian” H to the one-loop accuracy
is given by a sum of two-particle kernels

H = Nc H+N−1
c δH = Hqg +Hgh +Hqh . (12)

The kernels take the following form [8, 20, 22, 23]:

Hqg = Nc

[
ψ (Jqg+3/2) + ψ (Jqg−3/2)− 2ψ(1)− 3/4

]

+
2

Nc
(−1)Jqg−3/2Γ (Jqg − 3/2)

Γ (Jqg + 3/2)
,

Hgh = Nc

[
ln
(
iµS+

g

)
− ψ(1)− 1/2

]
,

Hqh = − 1

Nc

[
ln
(
iµS+

q

)
− ψ(1)− 5/4

]
, (13)

where Jqg is defined in terms of the corresponding

quadratic Casimir operator Jqg(Jqg−1) = (~Sq+ ~Sg)
2.

Note that in difference to [8, 20, 23] we include
the QCD coupling in the definition of the quark-
antiquark-gluon operator: Gµν 7→ gGµν .
The Hamiltonian H commutes with the generator

of special conformal transformations

Q1 = i
(
S+
q + S+

g

)
. (14)

This implies that the RGE is “diagonal” in s but this
symmetry alone is not sufficient to find the solution.
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It turns out, however, that the large-Nc Hamiltonian,
H, has an additional “hidden” symmetry. Namely, it
is possible to show that the operator

Q2 =
9

4
iS+

q − iS+
g

(
S+
g S

−

q + S0
gS

0
q

)
− iS0

g

(
S0
qS

+
g − S0

gS
+
q )

(15)

commutes with Q1 and the large-Nc kernel H:

[Q1,Q2] = [Q1,H] = [Q2,H] = 0 . (16)

This property is known as complete integrability.
In the formalism of the quantum inverse scattering
method (QISM) [24] the charges Q1,Q2 appear in the
expansion of the element C(u) of the monodromy ma-
trix for an open spin chain, C(u) ∝ u2Q1 + Q2. The
commutation relation [C(u),H] = 0 can be verified by
a direct calculation, or with help of the QISM tech-
niques. The derivation will be given elsewhere [25].
The “conserved charges” Q1, Q2 and the “Hamil-

tonian” H are self-adjoint operators with respect to
the SL(2) scalar product (7):

〈Ψ|Φ〉 =
∫

C−

D1z1

∫

C−

D 3
2
z2 Ψ(z1, z2)Φ(z1.z2) ,

and can be diagonalized simultaneously:

Q1Ys,x(z1, z2) = s Ys,x(z1, z2) , s > 0

Q2Ys,x(z1, z2) = −sx2 Ys,x(z1, z2) , x2 ∈ R

H Ys,x(z1, z2) = E(s, x) Ys,x(z1, z2) . (17)

The eigenfunctions Ys,x are labeled by two “quan-
tum numbers” and provide the basis of the Sklyanin’s
representation of Separated Variables. They can be
found with help of the method developed in [26],

Ys,x(z1, z2) =
is2

z21z
3
2

∫ 1

0

du uū eis(u/z1+ū/z2)

× 2F1

(− 1
2 − ix,− 1

2 + ix

2

∣∣∣− u

ū

)
. (18)

The functions Ys,x are symmetric under reflection
x → −x. Since the eigenvalue x2 has to be real, x
can take real or imaginary values. There exists only
one normalizable solution corresponding to imaginary
x, x = i/2, in which case the hypergeometric function
disappears:

Y (0)
s (z1, z2) =

is2

z21z
3
2

∫ 1

0

du uū eis(u/z1+ū/z2) . (19)

This solution (ground state) has the minimal energy

E0 ≡ E(s, x = i/2) = ln(µs)− ψ(1)− 1/4 (20)

and describes the “asymptotic” quark-gluon DA with
the lowest anomalous dimension. The state is nor-
malized as

〈Y (0)
s |Y (0)

s′ 〉 = δ(s− s′) . (21)

The eigenfunctions corresponding to real values of x
belong to the continuous spectrum. They are orhog-
onal to the ground state and normalized as

〈Ys,x|Ys′,x′〉 = δ(s− s′)δ(x − x′)
cothπx

x(x2 + 9/4)
, (22)

The corresponding eigenvalue (energy) is

E(s, x) = ln(µs) + ψ
(
3/2 + ix

)
+ ψ

(
3/2− ix

)

− 3ψ(1)− 5/4 . (23)

The gap between the ground state and the continuous
spectrum ∆E = E(s, 0)−E0 = 2ψ(3/2)−ψ(2)−ψ(1)
coincides with the gap in the spectrum of anomalous
dimensions of twist-three quark-gluon operators with
large number of derivatives, see Ref. [27].
The 1/N2

c corrections to the ground state energy
E0(s) = NcE0 + 1/NcδE0 can be calculated in a stan-
dard quantum-mechanical perturbation theory. The
answer can be written as

E0(s) = E+(s) + ∆ +O(1/N−3
c ) , (24)

where E+(s) is the lowest anomalous dimension for
subleading twist operators, Eq. (11), and the differ-
ence does not depend on s:

∆ = Nc +N−1
c

(
π2/3− 3

)
. (25)

It coincides exactly with the gap between the
spectrum of anomalous dimensions of twist-three
quark-antiquark-gluon operators and the leading-
twist quark-antiquark operators at N → ∞ (here N
is number of derivatives), cf. [18].
The three-particle DA Φ3(z1, z2, µ) can be ex-

panded in eigenfunctions of the large-Nc Hamiltonian

Φ3(z1, z2, µ) =

∫ ∞

0

ds
[
η0(s, µ)Y

(0)
s (z1, z2)

+

∫ ∞

−∞

dx η(s, x, µ)Ys,x(z1, z2)
]
, (26)

where the coefficient functions η0(s, µ) and η(s, x, µ)
are multiplicatively renormalized up to 1/N2

c correc-
tions. Remarkably enough, only the ground state con-
tributes to the integral in the EOM relation (3); con-
tributions from the continuum vanish identically (for
arbitrary η(s, x, µ)). One finds

∫ z

0

wdwΦ3(z, w, µ) = − 1

2z2

∫ ∞

0

sds eis/z η0(s, µ) ,
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leading to the following very simple relation

φ̃−(s, µ) = φ̃+(s, µ) + η0(s, µ) . (27)

Going over to the momentum space

Φ±(z) =

∫ ∞

0

dω e−iωzφ±(ω) , (28)

Φ3(z1, z2) =

∫ ∞

0

dω1 dω2 e
−i(ω1z1+ω2z2)φ3(ω1, ω2)

one obtains the following representation for the two-
particle DAs [8, 9]

φ+(ω, µ) =

∫ ∞

0

ds φ̃+(s, µ)
√
ωsJ1(2

√
ωs) ,

φ−(ω, µ) =

∫ ∞

0

ds φ̃−(s, µ)J0(2
√
ωs) , (29)

and the asymptotic quark-gluon DA

φas3 (ω1, ω2, µ) = −ω2
√
ω1

∫ ∞

0

ds
√
sη(0)(s, µ)

∫ 1

0

du
√
uJ1

(
2
√
sω1u

)
J2

(
2
√
sω2ū

)

=
ω1ω2

ω1 + ω2

[
f1(ω1 + ω2)− f0(ω1 + ω2)

]
+ ω1

[
f1(ω1 + ω2)− f1(ω1)

]
, (30)

where

fk(ω) =

∫ ∞

0

ds η(0)(s, µ)
(√
ωs

)−k
Jk

(
2
√
ωs

)
. (31)

For small momenta φas3 (ω1, ω2, µ) ∼ O(ω1) and ∼
O(ω2

2) in the limits ω1 → 0 and ω2 → 0, respectively.
This behavior is in agreement with arguments based
on quark-gluon duality [10]. If both quark and gluon
momenta are small one obtains

φas3 (ω1, ω2, µ)
ω1,ω2→0

= −ω1ω
2
2

12

∫ ∞

0

ds s2 η(0)(s, µ) .

An interesting property of the asymptotic DA (30)
is that it does not decrease for large gluon mo-
menta ω2 → ∞ (because of the last term that is
ω2-independent). As a consequence, existence of the
limit z1, z2 → 0 and the relation of the normaliza-
tion of the asymptotic DA to matrix elements of local
operators even at a single scale requires specific can-
cellations that amount to a fine-tuning, see below.

The scale-dependence of the coefficients φ̃+(s, µ)
and η0(s, µ) differs by a simple factor

F (µ) φ̃+(s, µ) = E(s;µ, µ0)F (µ0) φ̃+(s, µ0) , (32)

F (µ) η0(s, µ) = L∆/β0E(s;µ, µ0)F (µ0) η0(s, µ0) ,

where ∆ is defined in Eq. (24) and

E(s;µ, µ0) = exp

[
−
∫ µ

µ0

dτ

τ
Γcusp(αs(τ)) ln(τs/s0)

]

=

(
µ

µ0

)−
2CF
β0

(
µ0s

s0

) 2CF
β0

lnL

L
−

4CF π

β2
0

αs(µ0)

Here L = αs(µ)/αs(µ0), s0 = e5/4−γE , β0 = 11
3 Nc −

2
3nf and Γcusp(αs) =

αs

π CF + . . . is the cusp anoma-
lous dimension [28, 29]. These equations present our
main result.
For the simplest phenomenologically acceptable

model of the leading-twist B-meson DA at a low scale
µ = µ0 one usually takes [3]

φ+(ω) =
ω

λ2B
e−ω/λB 7→ φ̃+(s) = e−sλB , (33)

where λB is defined as

1

λB
=

∫ ∞

0

dω

ω
φ+(ω) . (34)

This is the most important nonperturbative param-
eter in the QCD factorization approach [1, 2], λB ≃
300− 600 MeV [5, 15].
We suggest a similar simple model for the sublead-

ing twist DA

η0(s, µ0) = φ3 s
2 e−sλ3 , φ3 =

1

6

[
λ2E − λ2H

]
, (35)

where λ2E , λ
2
H are the local matrix elements of quark-

gluon operators [3, 15] and λ3 is a parameter (sim-
ilar to λB) that characterizes the spread of the DA
in s-space. One can take λ3 ≃ λB as the simplest
assumption.
For this model one obtains

φ−(ω) =
e−ω/λB

λB
+
φ3
λ33
e−ω/λ3

(
2− 4

ω

λ3
+
ω2

λ23

)
,

φas3 (ω1, ω2) = −φ3ω1

λ43
e−

ω1+ω2
λ3

[(
ω1 − 2λ3

) (
1− e

ω2
λ3

)

+
ω2

λ3

(
ω2 + ω1 − 2λ3

)]
. (36)
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The recent QCD sum rule calculation [15] gives λ2E −
λ2H = −0.03±0.03 GeV2. This is a rather small num-
ber so that φ3 ≪ λ2B and the corresponding contribu-
tion is further suppressed at large scales by the factor
(αs(µ)/αs(µ0))

∆/β0 (33). Hence the DA φ−(ω, µ) is
likely to be dominated by the WW contribution.
Note that despite the fact that η0(s, µ0) is expo-

nentially suppressed at large s, the quark-gluon DA
φas3 (ω1, ω2) does not decrease at large gluon momenta
ω2 → ∞; the prefactor s2 in (35) is chosen for the
existence of the z1, z2 → 0 limit. This fine-tuning is
lifted at higher scales so that the relation of the mo-
ments of DAs with matrix elements of local operators
is lost [5]. It would be interesting to study the arising
large-momentum contributions using the expansion of
the type suggested in [6] (see also [9]).
To summarize, we have shown that “genuine”

three-particle contributions of quark-gluon states es-
sentially decouple from the subleading-twist two-
particle DA φ−(ω) [2] so that its properties are similar
to the leading-twist DA. We expect that such “gen-

uine” three-particle contributions do not contribute
directly to many physical observables at the tree
level because three-particle and two-particle twist-
three contributions to the products of currents are
typically related by Ward identities; hence they can-
not have a different scale dependence. We also expect
that similar simplification holds for twist-four distri-
butions. This study is in progress [25]. The goal is
to find important degrees of freedom in multiparticle
quark-gluon distributions in heavy mesons that can
be parametrized by a minimum number of nonper-
turbative parameters. This would allow one to in-
crease significantly the accuracy of QCD predictions
for heavy meson (and baryon) decays based on the
heavy-quark expansion.
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