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Abstract: We revisit the strong coupling limit of the cusp anomalous dimension in

planar N = 4 super Yang-Mills theory. It is known that the strong coupling expansion is

asymptotic and non-Borel summable. As a consequence, the cusp anomalous dimension

receives non-perturbative corrections, and the complete strong coupling expansion should

be a resurgent transseries. We reveal that the perturbative and non-perturbative parts

in the transseries are closely interrelated. Solving the Beisert-Eden-Staudacher equation

systematically, we analyze in detail the large order behavior in the strong coupling pertur-

bative expansion and show that the non-perturbative information is indeed encoded there.

An ambiguity of (lateral) Borel resummations of the perturbative expansion is precisely

canceled by the contributions from the non-perturbative sectors, and the final result is real

and unambiguous.
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1 Introduction

In recent years, there is remarkable progress in the understanding of the AdS/CFT duality

[1–3]. In planar AdS/CFT between N = 4 super Yang-Mills (SYM) theory and string

theory on AdS5 × S5, integrability is a key concept in the investigation. Here we refer

to [4] for a comprehensive review on the AdS/CFT integrability, but of course there are

many important results after that review. In particular, recently a new formulation, called

Quantum Spectral Curve, to solve the spectral problem in planarN = 4 SYM was proposed

in [5, 6].

In this work, we focus on a well-studied quantity called the cusp anomalous dimension

Γcusp(g) (or sometimes called the scaling function). Throughout this paper, we use the
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conventional notation of the coupling constant g, which is related to the ’t Hooft coupling

λ = g2
YMN by

g =

√
λ

4π
. (1.1)

The cusp anomalous dimension appears in several contexts. It appears as a UV divergence

of a (light-like) Wilson operator with a cusp or as an IR divergence of a gluon scattering

amplitude. These divergences are closely related by the so-called Wilson loop/amplitude

duality [7–10]. It is well-known that the cusp anomalous dimension also appears as a

logarithmic divergence of conformal dimension ∆ for a twist-two operator with large spin

S:

∆− S = 2Γcusp(g) logS + · · · , S →∞. (1.2)

Note that this logarithmic behavior is universal for any g, thus the cusp anomalous dimen-

sion is a good interpolating function from weak to strong coupling. From these examples,

it is obvious that to understand the cusp anomalous dimension is an important task.

Very surprisingly, the cusp anomalous dimension in planar N = 4 SYM can be com-

puted at any coupling by solving the so-called Beisert-Eden-Staudacher (BES) equation

[11] (see also [12])! This is one of the greatest achievements in the AdS/CFT integrability.

We can learn many things through this equation. At weak coupling, the cusp anomalous

dimension admits the standard perturbative expansion in g2:

Γcusp(g) = 4g2

[
1− π2g2

3
+

11π4g4

45
− 2

(
73π6

630
− 4ζ(3)2

)
g6 +O(g8)

]
, g → 0. (1.3)

As observed in [11], this weak coupling expansion is a convergent series with finite radius

g = 1/4. Therefore, it is expected that there are no non-perturbative corrections1 of

the form e−A/g, and the perturbative expansion (1.3) is sufficient to reconstruct the full

function Γcusp(g). The weak coupling result was confirmed up to four loops [16, 17].

At strong coupling, the problem is much more involved. The BES equation predicts

the strong coupling expansion

Γcusp(g) = 2g

(
1− 3 log 2

4πg
− K

16π2g2
+ · · ·

)
, g →∞, (1.4)

where K = 0.915965594 . . . is Catalan’s constant. These coefficients were first predicted in

[18] by the numerical analysis. In [19–21], the leading coefficient was computed analytically,

and then, in [22], the expansion was systematically computed up to 1/g40. Of course, the

strong coupling prediction (1.4) should be compared with the direct string worldsheet

computation. In fact, the worldsheet computation up to two loops shows that the strong

coupling prediction (1.4) is perfectly reproduced [23–26]. This agreement is obviously a

strong evidence of the planar AdS/CFT duality.

1To be precise, a convergent series is not a sufficient condition for non-existence of non-perturbative

corrections. A counter-example is the exact planar free energy in ABJM theory [13]. As shown in [14], it

receives a non-perturbative correction of the form e−2π
√
2λ at strong coupling even though its perturbative

1/
√
λ expansion is convergent. The same also happens for the so-called interpolation function [15] (see

(6.3)).
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However, this is not the end of the story at strong coupling. A crucial observation in [22]

is that the strong coupling perturbative expansion (1.4) is very likely asymptotic and non-

Borel summable due to singularities on the positive real axis in Borel plane. At first glance,

the non-Borel summability causes a serious problem in the perturbative resummation, and

it seems that the Borel resummation procedure does not work any more. However, there is a

beautiful resolution for this resummation problem. As well-known, the Borel singularities

on the positive real axis cause an ambiguity of Borel resummations because one has to

avoid the singularities when performing the inverse Borel transform (see figure 1). There

are several choices for the integration contours to avoid the singularities. The important

point is that the ambiguity has non-perturbative order e−Ag, where A is related to the

closest Borel singularity to the origin. Therefore a natural expectation is that there is a

non-perturbative correction of the same order, and that its Borel resummation precisely

cancels the ambiguity in the perturbative resummation. As a result, the total sum should

give the same answer for any choice of the contours in the Borel resummations.

This beautiful structure of cancellation of ambiguities goes under the name of resur-

gence and it was developed by Ecalle [27]. Since then it has been applied at first in quantum

mechanical systems [28, 29] and only very recently it has been applied to quantum field

theory [30–32] to obtain a weak coupling interpretation of the IR renormalons .

Similarly, in the cusp anomalous dimension, the Borel resummation of the strong cou-

pling perturbative expansion alone is insufficient to reconstruct the full function Γcusp(g).

To resolve the Borel resummation problem, we need non-perturbative corrections. In a se-

ries of works [22, 33–35], it turned out that the cusp anomalous dimension should receives

the following non-perturbative corrections

Γcusp(g)

2g
= Γ(0)

cusp(g)− Λ2

2πg
Γ(1)

cusp(g) +
Λ4

16π2g2
Γ(2)

cusp(g) +O(Λ6), g →∞, (1.5)

where Γ
(0)
cusp(g) is the perturbative contribution above and Λ2 is a non-perturbative scale,

related to the ’t Hooft coupling as follows

Λ2 = σ
Γ(3

4)

Γ(5
4)

(2πg)1/2e−2πg. (1.6)

Note that the (complex) parameter σ depends on a choice of Borel resummations, as

will be seen later. The non-perturbative scale is closely related to the mass gap of the

O(6) sigma model2, which describes the effective string worldsheet theory in the high spin

limit, as explained in [36] (see also [37]). In each non-perturbative sector, Γ
(n)
cusp(g) has the

asymptotic (non-Borel summable) 1/g expansion3:

Γ(n)
cusp(g) =

∞∑
`=0

Γ
(n)
`

(2πg)`
. (1.7)

2The O(6) sigma model, being an asymptotically free two-dimensional field theory, is affected by the so

called IR renormalons. See [38] for a recent discussion of the resurgence properties of the O(N) models and

the connections with the IR renormalons problem.
3One can always set Γ

(n)
0 = 1 by factoring out an appropriate factor.
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In principle, one can compute the coefficients Γ
(n)
` by solving the BES equation at strong

coupling, but this is a highly non-trivial task. A very first few coefficients in the leading

non-perturbative sector Γ
(1)
cusp(g) were computed in [35].

One of our goals in this paper is to show that there are non-trivial relations among the

coefficients Γ
(n)
` . In particular, the perturbative coefficients Γ

(0)
` already know information

on the non-perturbative sector! See (5.2) for a concrete result. This is clearly a conse-

quence of the resurgent analysis [39], recently developed in many contexts in theoretical

physics. To confirm this fact, we develop the method in [35], and numerically compute the

coefficients Γ
(n)
` (n = 0, 1, 2) up to ` = 180 with sufficiently high precision. The fact that

the perturbative and non-perturbative parts are interrelated to each other provides us a

strong consistency test of the strong coupling solution. If an obtained solution is wrong,

one would encounter a discrepancy with the resurgent expectation. Moreover, one can pre-

dict the non-perturbative correction from the perturbative result without solving the BES

equation. We also demonstrate that the ambiguity of the Borel resummations in the per-

turbative sector is precisely canceled by the same ambiguity in the non-perturbative sector.

As a consequence, the final answer is always real-valued and unambiguous. Our results

show that the cusp anomalous dimension at strong coupling is a resurgent transseries.

The organization of this paper is as follows. In Section 2, we briefly review some

basic concepts in Borel resummation and resurgence theory, we refer to [39] for a longer

discussion. We discuss then, in Section 3, how to obtain the strong coupling expansion of

the cusp anomalous dimension from the solution to the BES equation. To better understand

the resurgent properties of the cusp anomaly in N = 4, in Section 4 we analyze a toy model

solution to the BES equation previously presented in [35]. In Section 5, we finally study the

cusp anomaly in N = 4 and show how to reconstruct all the non-perturbative corrections,

i.e. the full transseries solution for Γcusp(g), simply from the perturbative strong coupling

asymptotic expansion. We show how the transseries representation for Γcusp(g) is free from

ambiguities and we comment on the relation between the cusp anomaly and the mass gap

of the O(6) sigma model. We draw our conclusions in 6.

Note added: While this work was being completed, we became aware of related work

[40], which has some overlap with this paper.

2 Borel resummations and resurgent transseries

As we will review in details later on, in the strong coupling regime the perturbative con-

tribution to the cusp anomaly, Γ
(0)
cusp(g), and the perturbative corrections in each non-

perturbative sector, Γ
(n)
cusp(g), all take the form of asymptotic power series in 1/z (z = 2πg)

f(z) = c+
∞∑
n=0

fn
zn+1

, z →∞ , (2.1)

where the coefficients fn diverge factorially like Γ(n+ α), for some constant α, denoting a

Gevrey-1 type series. For the terminology in the Borel analysis, see [39], for instance.
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For this kind of asymptotic power series, the standard Borel transform4 proves to be

an extremely useful object, which is defined as

B[f ](t) =
∞∑
n=0

fn
Γ(n+ 1)

tn . (2.2)

Note that this series converges at least in a neighborhood of the origin t = 0. We can thus

obtain an analytic continuation of the original formal power series by a Laplace transform

of B[f ]

Sθf(z) = c+

∫ eiθ∞

0
dt e−t z B[f ](t) , (2.3)

usually called Borel resummation of f(z) in the direction θ.

When B[f ](t) contains singularities along a particular direction θ, in the complex t-

plane, also called Borel plane, we will say that θ is a Stokes line for f (or equivalently

B[f ]). Along a Stokes line we cannot directly use the resummation Sθ, but we can easily

dodge the singularities by defining the two lateral resummations

Sθ+f(z) = c+

∫ ei (θ+ε)∞

0
dt e−t z B[f ](t) ,

Sθ−f(z) = c+

∫ ei (θ−ε)∞

0
dt e−t z B[f ](t) .

(2.4)

Note that if the direction θ does not contain any singularity, the two lateral summations

coincide with each others and with the standard Borel resummation (2.3): Sθ = Sθ+ = Sθ− .

When θ is a Stokes line, we have Sθ+ 6= Sθ− , but it is still possible to relate the

two different analytic continuations of the asymptotic series f(z) via the so-called Stokes

automorphism, Sθ, in the direction θ

Sθ+ = Sθ− ◦Sθ = Sθ− ◦ (Id−Discθ) ,

Sθ+ − Sθ− = −Sθ− ◦Discθ .
(2.5)

Where Discθ encodes the full discontinuity across θ.

By a simple contour deformation, we can rewrite the difference between the two re-

summations along θ+ and θ− as a sum over Hankel’s contours, and the discontinuity of S
across θ is given as an infinite sum of contribution coming from each one of the singular

points, see Figure 1.

From simple residue theory, it is easy to see that the difference between the two re-

summations generates a new type of non-analytic term, beyond the realm of formal power

series, schematically of the form

(Sθ+ − Sθ−) ∼ 2πi e−t∗ z (a+O(1/z)) , (2.6)

where the point t∗ is a singularity of B[f ](t) in the direction θ, i.e., arg(t∗) = θ. These

exponentially suppressed terms are nothing new, in semi-classical calculations we know

4If the coefficients fn grows asymptotically as Γ(n + α), it is sometimes more useful to use a slightly

different Borel transform where the coefficient fn gets divided precisely by Γ(n+ α).
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Figure 1. The difference between left and right resummation along the singular direction θ as a

sum over Hankel contours.

that generically the perturbative expansion receives non-perturbative corrections usually

referred to as instantons corrections. So, whenever we have to deal with an asymptotic

perturbative expansion, we expect that the most general solutions to our problem, in the

case at hand the cusp anomalous dimension at strong coupling, will take the transseries

form

F (z) = σ0 f
(0)(z) + σ1 e−t1 zf (1)(z) + σ2 e−t2 zf (2)(z) + ... , (2.7)

where the exponentially suppressed terms e−ti z correspond to non-perturbative corrections

with (possibly complex)“instanton actions” ti, while the asymptotic power series f (i)(z) ∼∑
n≥0 f

(i)
n z−n−1 correspond to the perturbative expansions on top of the non-perturbative

corrections5. The complex numbers σi are called transseries parameters, they are constants

only in wedges of the complex plane, θ1 < arg(z) < θ2, but they can jump precisely when

arg(z) crosses a Stokes line.

As we will see in a concrete example in Section 4, from the sum over Hankel’s con-

tours as in Figure 1, we can compute the discontinuity of the analytic continuation of the

perturbative expansion f (0)(z) and this is given by

(Sθ+ − Sθ−)f (0)(z) = A1 e−t1 zf (1)(z) +A2 e−t2 zf (2)(z) + ... (2.8)

where the only ti appearing are the one corresponding to all the singular points in the

direction θ, i.e. arg ti = θ, the constants Ai are complex numbers usually called Stokes

constants (or analytic invariants) while the f (i)(z) are precisely the asymptotic formal

power series in 1/z associated to the non-perturbative corrections e−ti z.

In a similar way, the asymptotic series f (i)(z) will have singular directions with non-

trivial Stokes automorphisms that will involve the other expansions f (j)(z). In this way the

ambiguities in resumming separately one by one each asymptotic series f (i)(z) combines

5Despite all of the above series being only asymptotic and the transseries expansion being a formal

coding of the exact function, there is a precise, algorithmic way to compute numerically all the coefficients

f
(i)
n once we are given the exact function F (g) with arbitrary numerical precision. We thank Slava Rychkov

for discussions on this problem.
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together with the jump in the transseries parameters, and the transseries expansion F (z)

is an exact representation of the exact answer via Borel-Ecalle resummation

SθF (z) = σ
(+)
0 Sθ+f (0)(z) + σ

(+)
1 e−t1 zSθ+f (1)(z) + σ

(+)
2 e−t2 zSθ+f (2)(z) + · · ·

= σ
(−)
0 Sθ−f (0)(z) + σ

(−)
1 e−t1 zSθ−f (1)(z) + σ

(−)
2 e−t2 zSθ−f (2)(z) + · · · ,

(2.9)

where the complex numbers σ
(±)
i are the transseries parameters in the respective wedges

arg(z) > θ+ε, arg(z) < θ−ε. Even if we do not have at our disposal the full transseries, we

can still obtain a great deal of information simply by studying the discontinuity properties,

across a Stokes line, of the resummation of f (0)(z), or similarly the large orders behavior

of the perturbative coefficients f
(0)
n .

Let’s suppose that the only Stokes line for f (0)(z) is the positive real axis, θ = 0, then

by Cauchy theorem6 [28] we know that

f (0)(z) =
1

2πi

∮
dω

f (0)(ω)

ω − z
=

1

2πi

∫ ∞
0

dω
Disc0 f

(0)(ω)

ω − z
, (2.10)

where we dropped the contribution coming from infinity, and by expanding for z →∞

1

ω − z
= −

∞∑
n=0

ωn z−n−1 ,

we get

f (0)
n ∼ − 1

2πi

∫ ∞
0

dω ωn Disc0 f(ω) , (2.11)

where we schematically wrote f (0)(z) ∼
∑

n≥0 fnz
−n−1.

We can now use (2.8) to relate the large order coefficients f
(0)
n to the lower order

coefficients of the asymptotic expansion f (i)(z) ∼
∑

n≥0 f
(i)
n z−n−1 (we refer to the thorough

work of Aniceto, Schiappa and Vonk [41] for a more general discussion), then

f (0)
n ∼ 1

2πi

∫ ∞
0

dω ωn

[
A1e−t1 ω

(
f

(1)
0

ω
+
f

(1)
1

ω2
+ · · ·

)
+A2e−t2 ω

(
f

(2)
0

ω
+ · · ·

)
+ · · ·

]
,

(2.12)

which leads to

f (0)
n ∼A1

2πi

n!

(t1)n+1

(
f

(1)
0 + f

(1)
1

t1
n

+ f
(1)
2

t21
n(n− 1)

+ f
(1)
3

t31
n(n− 1)(n− 2)

+ · · ·
)

+
A2

2πi

n!

(t2)n+1

(
f

(2)
0 + f

(1)
1

t2
n

+ f
(2)
2

t21
n(n− 1)

+ · · ·
)

+ · · · . (2.13)

This beautiful result tells us that the large order coefficients of the perturbative expan-

sion do contain explicitly the lower order coefficients of the non-perturbative contributions

expansion (and vice versa)! Furthermore we want to stress that the large order behavior

6Note that generically we would get contributions coming from all the discontinuities across every singular

directions in the Borel plane.
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of the perturbative expansion can also be use to determine whether the problem at hand

is resurgent or not [42]. Had we forgotten to include some non-perturbative contribution

[43–45], or some transseries parameter (see Section 5), we would have found that the large

orders of the perturbative expansion do not satisfy (2.13). We can “experimentally” check

that, to obtain the correct asymptotic behavior for the perturbative coefficients fn, new

additional transseries parameters and/or new instanton types have to be added to our

original transseries ansatz!

3 Solving the BES equation

The starting point of our analysis is the BES equation [11]. In this section, we review

how to solve this equation at strong coupling. In particular, we would like to compute the

strong coupling expansion as high as possible. For this purpose, we follow the approach in

[22, 35] (see also [46, 47]).

The BES equation is an integral equation for a rapidity density of a twist-two operator

with large spin. It is derived from the asymptotic Bethe ansatz equations. The explicit

form of the BES equation is given by

σ(t) =
t

et − 1

[
K(2gt, 0)− 4g2

∫ ∞
0

dt′K(2gt, 2gt′)σ(t′)

]
. (3.1)

where the kernel K(t, t′) consists of two parts: the “main scattering” part and the “dressing

phase” part:
K(t, t′) = Km(t, t′) +Kd(t, t′),

Km(t, t′) = K0(t, t′) +K1(t, t′),

Kd(t, t′) = 8g2

∫ ∞
0

dt′′K1(t, 2gt′′)
t′′

et′′ − 1
K0(2gt′′, t′),

(3.2)

with

K0(t, t′) =
tJ1(t)J0(t′)− t′J0(t)J1(t′)

t2 − t′2
, K1(t, t′) =

t′J1(t)J0(t′)− tJ0(t)J1(t′)

t2 − t′2
. (3.3)

The unknown function σ(t) is the density to be solved. Once this function is known, the

cusp anomalous dimension is given by

Γcusp(g) = 8g2σ(0). (3.4)

Therefore our task is to solve the BES equation (3.1). We stress that the BES equation

is believed to be valid at any coupling. It smoothly interpolates between the weak cou-

pling regime and the strong coupling regime. At weak coupling, it is not hard to solve

(3.1) directly order by order in g2 [11],7 while to find the strong coupling solution is not

straightforward. A direct approach to solve the BES equation at strong coupling (and at

finite coupling numerically) is found in [18, 19]. Below, we review the method developed

in [22, 35]. This approach is indeed very powerful to find the strong coupling solution

systematically.

7However, it is more convenient to use a discrete matrix formulation in subsection 3.2 [18] in the sys-

tematic higher order computation.
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3.1 Strong coupling solution

To find the strong coupling solution, we first divide σ(t) into even/odd parity parts:

et − 1

t
σ(t) =

γ+(2gt) + γ−(2gt)

2gt
, γ±(−t) = ±γ±(t). (3.5)

Then the BES equation leads to the following equations:∫ ∞
0

dt

t

[
γ−(2gt)

1− e−t
+
γ+(2gt)

et − 1

]
J2n−1(2gt) =

1

2
δn1,∫ ∞

0

dt

t

[
γ+(2gt)

1− e−t
− γ−(2gt)

et − 1

]
J2n(2gt) = 0.

(3.6)

Next we introduce two functions Γ±(t) by

Γ̂(t) ≡ Γ+(t) + iΓ−(t) =

(
1 + i coth

t

4g

)
(γ+(t) + iγ−(t)). (3.7)

As was shown in [35], the equations (3.6) is rewritten as the form∫ ∞
0

dt [eiutΓ−(t)− e−iutΓ+(t)] = 2, (|u| < 1). (3.8)

The important point is that the solution Γ̂(t) must have an infinite number of zeros at

t = 4πig(m − 1/4) (m ∈ Z) and poles at t = 4πigm′ (m′ ∈ Z\{0}). This is a reflection

of the factor 1 + i coth t
4g in (3.7) and the entireness of σ(t). This analyticity condition

uniquely fix the solution of the equation (3.8). In general, the equation (3.8) alone does

not fix its solution uniquely. According to [35], a solution of (3.8) without an analyticity

condition is generically given by

Γ̂(it) = f0(t)V0(t) + f1(t)V1(t), (3.9)

where V0(t) and V1(t) are known functions, whose explicit forms are presented in ap-

pendix A (see (A.6)). The unknown functions f0(t) and f1(t) are fixed after requiring the

analyticity condition. The cusp anomalous dimension is then given by

Γcusp(g) = −2gΓ̂(0) = 2g(1− 2f1(0)), (3.10)

where we have used V0(0) = 1, V1(0) = 2 and the non-trivial equation (see [35])

f0(0) = −1. (3.11)

The condition that Γ̂(t) has the zeros at t = 4πig(m−1/4) (m ∈ Z) leads to a quantization

condition

f0(tm)V0(tm) + f1(tm)V1(tm) = 0, tm = 4πg

(
m− 1

4

)
. (3.12)

For later convenience, we rewrite it as

f0(4πgxm) + r(xm)f1(4πgxm) = 0, xm = m− 1

4
, (3.13)

– 9 –



Table 1. First few non-perturbative contributions present in r(xm) for different values of m ∈ Z.

−2 −1 m = 0 +1 +2

Λ0 Λ0 Λ0 Λ0 Λ0

Λ18 Λ10 Λ2 Λ6 Λ14

Λ36 Λ20 Λ4 Λ12 Λ28

where

r(x) =
V1(4πgx)

V0(4πgx)
. (3.14)

Note that this quantization condition is valid at arbitrary coupling. In [35], the strong

coupling solution of the quantization condition (3.13) was constructed. One important

remark is that the asymptotic behavior of r(x) at strong coupling is different for x > 0 and

x < 0 (and also for Re g > 0 and Re g < 0). This is clearly understood by looking at the

relation (A.9). It is also important to note that r(xm) has a non-perturbative correction

of order

rnp(xm) ∼ O(Λ|8m−2|), m ∈ Z. (3.15)

See (A.13) and (A.14) for full detail. Therefore, up to O(Λ4), only rnp(x0) contributes to

the quantization condition, while at O(Λ6), rnp(x1) also appears. In table 1, we show for

small values of m, the order in the non-perturbative scale Λ, for which r(xm) is going to

contribute.

We want to stress in here that the transseries expansion we construct will only be

valid for Re g > 0, simply because the transseries expansion for r(x) has been obtained in

this half plane, see equations (A.9). Even if the Borel-Ecalle resummation of the complete

transseries could give us an analytic continuation of the cusp anomalous dimension for

Re g < 0, this will not be the physical cusp anomaly for Re g < 0. While we know

from the weak coupling convergent expansion that Γcusp(g) = Γcusp(−g), the analytic

continuation of the transseries would break this symmetry! The correct way to proceed is

to obtain the transseries expansion for r(x) for Re g < 0 and construct from here the new

transseries in the left half plane. When we glue together the two Borel-Ecalle resummations

of the two transseries for Re g ≷ 0, we will obtain the physical cusp anomaly satisfying

Γcusp(g) = Γcusp(−g), and clearly at the gluing line, the imaginary direction, we will have

branch cuts, as expected from weak coupling results.8

Since r(xm) receives exponentially suppressed corrections in g → ∞, the functions

f0(t) and f1(t) also receive the non-perturbative corrections of the form e−2πg at strong

8It is already mentioned in [11, 18] that the Γcusp(g) has branch cuts along the imaginary axis starting

at g = ±i/4.
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coupling. They are thus given by transseries expansions

f0(t) = f
(0)
0 (t) +

Λ2

4πg
f

(1)
0 (t) +

(
Λ2

4πg

)2

f
(2)
0 (t) +O(Λ6),

f1(t) = f
(0)
1 (t) +

Λ2

4πg
f

(1)
1 (t) +

(
Λ2

4πg

)2

f
(2)
1 (t) +O(Λ6),

(3.16)

where the non-perturbative scale is given by (1.6). We want to compute the 1/g corrections

in f
(n)
j (t) (j = 0, 1). As was computed up to O(1/g2) in [35], the perturbative part takes

the following beautiful form

f
(0)
0 (4πgt) =

∞∑
`=0

1

(4πg)`

[
γ0(t)P

(0)
0,`

(
1

t

)
+ γ1(t)Q

(0)
0,`

(
1

t

)]
,

f
(0)
1 (4πgt) =

∞∑
`=0

1

(4πg)`

[
γ0(t)P

(0)
1,`

(
1

t

)
+ γ1(t)Q

(0)
1,`

(
1

t

)]
,

(3.17)

where

γ0(t) =
Γ(3

4)Γ(1− t)
Γ(3

4 − t)
, γ1(t) =

Γ(1
4)Γ(1 + t)

Γ(1
4 + t)

. (3.18)

A remarkable observation9 is that P
(0)
j,` (1/t) and Q

(0)
j,` (1/t) (j = 0, 1) are polynomials of 1/t

with degree `. One can check this observation by computing f
(0)
0 (t) and f

(0)
1 (t) order by

order, following [35]. Here we assume this observation in all orders in the 1/g expansion.

At the leading order: ` = 0, we have

P
(0)
0,0

(
1

t

)
= −1, Q

(0)
0,0

(
1

t

)
= P

(0)
1,0

(
1

t

)
= Q

(0)
1,0

(
1

t

)
= 0. (3.19)

The polynomials P
(0)
j,` (1/t) and Q

(0)
j,` (1/t) (j = 0, 1) are uniquely fixed by the following four

conditions

• The quantization condition (3.13).

• The analyticity condition (3.11).

• The function f1(4πgt) must be finite at t = 0 because the cusp anomalous dimension

(3.10) is a finite quantity.

• The polynomials Q
(0)
0,` (1/t), P

(0)
1,` (1/t) and Q

(0)
1,` (1/t) do not have constant terms, i.e.,

Q
(0)
0,` (0) = P

(0)
1,` (0) = Q

(0)
1,` (0) = 0.

Here the last condition is based on the observation in the low order computation. We do

not have a clear reason of this assumption. We indeed computed the polynomials P
(0)
j,` (1/t)

and Q
(0)
j,` (1/t) numerically order by order up to n = 180, starting with (3.19). Once these

9We thank Benjamin Basso for telling us this remarkable structure. Note that a similar property is also

found in a different approach in [47].
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functions are found, one can immediately compute the strong coupling expansion of the

cusp anomalous dimension by (3.10). We give the explicit results up to 1/g10 in appendix B.

Since the solution here is based on the above assumptions, we need to confirm its validity.

We have confirmed the strong coupling expansion of Γcusp(g) computed in this way is in

perfect agreement with the one computed in another way in [47] up to 1/g42.

In the similar manner, one can fix the non-perturbative corrections f
(n)
0 (t) and f

(n)
1 (t)

in principle. We observe that the leading and the next-to-leading corrections take the

following form:

f
(n)
0 (4πgt) =

∞∑
`=0

1

(4πg)`

[
γ̂0(t)P

(n)
0,`

(
1

t

)
+ γ̂1(t)Q

(n)
0,`

(
1

t

)]
,

f
(n)
1 (4πgt) =

∞∑
`=0

1

(4πg)`

[
γ̂0(t)P

(n)
1,`

(
1

t

)
+ γ̂1(t)Q

(n)
1,`

(
1

t

)]
,

(n = 1, 2), (3.20)

where

γ̂0(t) = γ0(t), γ̂1(t) =
Γ(5

4)Γ(1 + t)

Γ(5
4 + t)

=
γ1(t)

1 + 4t
. (3.21)

The functions P
(n)
j,` (1/t) and Q

(n)
j,` (1/t) (j = 0, 1;n = 1, 2) are again polynomials in 1/t with

degree `. For ` = 0 we have

P
(1)
0,0

(
1

t

)
=

1

2
,

P
(2)
0,0

(
1

t

)
= −1

4
,

Q
(1)
0,0

(
1

t

)
= −1

2
,

Q
(2)
0,0

(
1

t

)
=

1

4
,

P
(1)
1,0

(
1

t

)
= 0,

P
(2)
1,0

(
1

t

)
= 0,

Q
(1)
1,0

(
1

t

)
= 1,

Q
(2)
1,0

(
1

t

)
=

1

2
,

(3.22)

We indeed computed P
(n)
j,` (1/t) and Q

(n)
j,` (1/t) (n = 1, 2) up to ` = 180 numerically.10 These

solutions will be used to analyze the large order behavior of the cusp anomalous dimension

in section 5.

The correction at O(Λ6) is much more complicated. As mentioned before, at this order

the quantization condition (3.13) receives the new contribution from r(x1). This additional

non-perturbative contribution makes the solution more involved. In appendix C, we work

out the leading correction at O(Λ6) by following the original method in [35].

3.2 Numerical evaluation at finite coupling

Here we review how to evaluate the cusp anomalous dimension numerically at finite coupling

[18]. The basic idea is to reduce the problem from the integral equation to an infinite

dimensional linear system. The two functions γ±(t) in (3.5) admit the following Neumann

series:

γ−(t) = 2

∞∑
m=1

(2m− 1)γ2m−1J2m−1(t), γ+(t) = 2

∞∑
m=1

(2m)γ2mJ2m(t), (3.23)

10In the non-perturbative sectors, we need to relax the fourth condition above. We require only P
(n)
1,` (0) =

0 for n = 1, 2. We confirmed that this condition and the first three conditions above uniquely fix the solution.

– 12 –



Table 2. The numerical values of the cusp anomalous dimension.

g Γcusp(g)/(2g) g Γcusp(g)/(2g)

0.1 0.19385434324817514169 0.2 0.35843733036950590918

0.3 0.48610560959171757729 0.4 0.58210341218853482707

0.5 0.65393902847754809138 0.6 0.70804410773964657108

0.7 0.74930396158229752404 0.8 0.78126610325935190716

0.9 0.80645604710807850846 1.0 0.82665913262694175149

1.1 0.84313878800192894948 1.2 0.85679498059481188901

1.3 0.86827541056713620211 1.4 0.87805219572881873579

1.5 0.88647437750685446821 1.6 0.89380385613927175199

1.7 0.90024008980819058115 1.8 0.90593719988552639946

1.9 0.91101593465281368193 2.0 0.91557213314609428817

Plugging these expansions into the integral equations (3.6), one obtains an infinite number

of linear equations

γn +
∞∑
m=1

Knmγm =
1

2
δn1, n ≥ 1. (3.24)

where

Knm = 2m(−1)m(n+1)

∫ ∞
0

dt

t

Jn(2gt)Jm(2gt)

et − 1
. (3.25)

Therefore the coefficients γn is formally given by

γn =
1

2

(
1

1 +K

)
n1

(3.26)

The cusp anomalous dimension is finally given by

Γcusp(g) = 8g2γ1 = 4g2

(
1

1 +K

)
11

. (3.27)

Of course, it is hopeless to compute the inverse matrix (1 +K)−1 analytically at arbitrary

coupling, but in the practical computation it is sufficient to truncate K to a finite dimen-

sional matrix. The convergence is quite rapid as a cut-off of the matrix size grows. For

example, to get the value at g = 1 with 20-digit precision, it is sufficient to take the 30×30

truncated matrix. In table 2, we show the several numerical values of Γcusp(g)/(2g) for

1/10 ≤ g ≤ 2.

3.3 The mass gap in the O(6) sigma model

It is known that the cusp anomalous dimension at strong coupling is closely related to the

mass gap in the O(6) sigma model. This was first discussed by Alday and Maldacena in

the dual string consideration [36]. Then in [33–35], the relation was embedded into N = 4
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SYM. In particular, in [35], the mass gap mO(6) is exactly related to the solution to the

BES equation by

mO(6) =
16
√

2

π2

f1(−πg)

V0(−πg)
, (3.28)

where f1(t) is the same function appearing in the BES solution. This mass gap scales

non perturbatively as e−πg at strong coupling (see (A.12)). Remarkably, the leading non-

perturbative correction to the cusp anomalous dimension is completely captured by this

mass gap [35]:

Γcusp(g)

2g
=
∞∑
`=0

Γ
(0)
`

(2πg)`
− σ

8
√

2g
m2

O(6) +O(m4
O(6)). (3.29)

The mass gap itself also has the following transseries expansion

mO(6) =

√
2

Γ(5
4)

(2πg)1/4e−πg
[
m

(0)
O(6) −

Λ2

8πg
m

(1)
O(6) +

(
− Λ2

8πg

)2

m
(2)
O(6) +O(Λ6)

]
,

m
(n)
O(6) =

∞∑
`=0

m
(n)
`

(2πg)`
,

(3.30)

where only the very first few exact values of m
(0)
` and m

(1)
` are found in [35]. One important

consequence of (3.29) is the following. The “perturbative” coefficientsm
(0)
` are computed by

the perturbative BES solution f
(0)
1 (t) at t = −πg. Using the relation (3.29), the coefficients

Γ
(1)
` are fixed by m

(0)
` . More explicitly, we have

∞∑
`=0

Γ
(1)
`

(2πg)`
=

[ ∞∑
`=0

m
(0)
`

(2πg)`

]2

. (3.31)

We conclude that all the coefficients Γ
(1)
` can be predicted only from the perturbative

solution to the BES equation. As we will see in section 5, we find that a similar relation

also holds in the next-to-leading non-perturbative sector (see (5.34)).

4 A toy model

In [35], Basso and Korchemsky constructed an interesting toy model solution of the integral

equation (3.8). This toy model solution remarkably captures many features that the actual

cusp anomalous dimension has. Thus it is useful to understand Γcusp(g) at strong coupling

from this toy model, as we will see here in detail.11

4.1 Transseries solution

The solution is obtained by relaxing the analyticity conditions (3.12). The toy model

solution does not have any poles, but has only the zero at t = −πi g. This analyticity

11However, one should keep in mind that there are some significant differences between them. We will

comment on them in the next section.
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condition can be easily imposed directly in equation (3.9) and one finds

f
(toy)
0 (t) = −1,

f
(toy)
1 (t) = −c(toy)(g), c(toy)(g) = −V0(−πg)

V1(−πg)
.

(4.1)

Surprisingly, both f
(toy)
0 (t) and f

(toy)
1 (t) do not depend on t. The exact solution to the

BES equation thus takes the form

Γ̂(toy)(it) = −V0(t)− c(toy)(g)V1(t), (4.2)

where V0(t) and V1(t) are the same functions as before, and can be expressed in terms of

Whittaker functions (see (A.7)) .

From the above expression we can obtain the toy model cusp anomalous dimension

Γ(toy)
cusp (g) = −2gΓ̂(toy)(0) = 2g

[
1− 2

V0(−πg)

V1(−πg)

]
= 2g

[
1− 1√

2πg

M1/4,1/2(2πg)

M−1/4,0(2πg)

]
.

(4.3)

where we used the relation (A.7) to the Whittaker function of the first kind. Similarly to

the true cusp anomalous dimension, the small coupling expansion in the toy model also

has a finite radius of convergence |g| < 0.7966 . . . , while the strong coupling expansion is

only asymptotic as we will shortly prove.

Using the result (A.12) derived in the appendix we can rewrite the toy model cusp

anomaly

Γ
(toy)
cusp (g)

2g
= 1− α

S+F (1
4 ,

5
4 |α) + Λ2

+S0F (−1
4 ,

3
4 |−α)

S+F (1
4 ,

1
4 |α) + 1

4Λ2
+αS0F (3

4 ,
3
4 |−α)

, α =
1

2πg
, (4.4)

where F (a, b|z) is defined by the asymptotic series (A.1), and S± = S0± are the lateral

Borel resummations along the θ = 0 direction. The Borel resummation of F (a, b|z) is

defined by (A.2). Similarly, it is also possible to write it as

Γ
(toy)
cusp (g)

2g
= 1− α

S−F (1
4 ,

5
4 |α) + Λ2

−S0F (−1
4 ,

3
4 |−α)

S−F (1
4 ,

1
4 |α) + 1

4Λ2
−αS0F (3

4 ,
3
4 |−α)

, (4.5)

where Λ± are the non-perturbative scales

Λ2
± = σ±(2πg)1/2e−2πg, σ± = e∓3πi/4 Γ(3

4)

Γ(5
4)
. (4.6)

Note that the expressions (4.4) and (4.5) are equivalent, and both Borel resummation

procedures S± leads to the same result unambiguously thanks to the non-perturbative

parts Λ2
±.

We can now expand (4.4) or (4.5) at strong coupling (i.e. for α small with Reα > 0)

and obtain the transseries expansion for the toy model cusp anomaly

Γ
(toy)
cusp (g)

2g
=

{
C0(α)− αΛ2

+C2(α) + 1
4α

2Λ4
+C4(α) +O(Λ6

+) , 0 < argα < π
2 ,

C0(α)− αΛ2
−C2(α) + 1

4α
2Λ4
−C4(α) +O(Λ6

−) , −π
2 < argα < 0 ,

(4.7)
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where the perturbative expansion C0(α) is

C0(α) = 1− α
F (1

4 ,
5
4 |α)

F (1
4 ,

1
4 |α)

, (4.8)

while each function C2n(α) is given by

C2(α) =
1

F (1
4 ,

1
4 |α)2

, C4(α) =
F (3

4 ,
3
4 |−α)

F (1
4 ,

1
4 |α)3

, C2n(α) =

(
F (3

4 ,
3
4 |−α)

)n−1(
F (1

4 ,
1
4 |α)

)n+1 . (4.9)

To obtain these results, we used the Wronskian like relation (A.5). Given the series ex-

pansion (A.1), it is clear that each C2n(α), once expanded for small α, is given by an

asymptotic power series, non-Borel summable for α ∈ R+. Note however that F (3
4 ,

3
4 |−α)

is instead Borel summable for real and positive α while it becomes non-Borel summable12

for α ∈ R−.

Following the results derived in Section 2, the Borel-Ecalle resummation of the transseries

(4.7) is given by

Γ
(toy)
cusp (g)

2g
=

{
S+C0(α)− αΛ2

+S+C2(α) + 1
4α

2Λ4
+S+C4(α) + · · · , 0 < argα < π

2 ,

S−C0(α)− αΛ2
−S−C2(α) + 1

4α
2Λ4
−S−C4(α) + · · · , −π

2 < argα < 0 .

(4.10)

Despite the direction argα = 0 being a Stokes line for both C0 and all the C2n, the

resummation of the transseries expansion (4.10) is perfectly good and analytic in the entire

right half-plane −π/2 < argα < π/2. As we will show, the ambiguity in the resummation

prescription (S+−S−)C0 6= 0, and similarly (S+−S−)C2n 6= 0, is exactly balanced by the

jump in the transseries parameter σ+ ∼ e−3πi/4 → σ− ∼ e+3πi/4.

Despite the fact that the Borel-Ecalle resummation of the transseries (4.10) defines

an analytic continuation for Γ
(toy)
cusp (g) in the entire complex plane, minus the negative real

axis, nonetheless this is not the correct analytic continuation for Re g < 0. Similarly to

our previous discussion in Section 3, this transseries ansatz is only a solution to the toy

model quantization conditions in the right half plane Re g > 0, since we used the transseries

form (A.12) for V0 and V1 only valid in this half plane. We should first obtain the correct

transseries in the left half plane Re g < 0, and then perform its Borel-Ecalle resummation

to obtain the toy model cusp anomaly. In particular the correct analytic continuation for

Γ
(toy)
cusp (g) will not have a branch cut on the negative real axis similar to the true Γcusp, as

one can easily see from the weak coupling analysis.

Naively, to compute the discontinuity (S+−S−)C0, one expands (4.8) for small α, com-

putes its Borel transform, and then studies the analyticity properties of B[C0]. However,

it is much better to use the fact that S± are good resummation prescriptions, i.e.,

S+C0(α) = S+

(
1− α

F (1
4 ,

5
4 |α)

F (1
4 ,

1
4 |α)

)
= 1− α

S+F (1
4 ,

5
4 |α)

S+F (1
4 ,

1
4 |α)

. (4.11)

12This means that, while for C0 and C2 the only Stokes line is argα = 0, for higher C2n also argα = π

will be a Stokes line.
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One can indeed check this equality by performing the lateral Borel(-Padé) resummation

on both hand sides.

At this point we can make use of the trivial identity S+ = S− + (S+ − S−), together

with the known discontinuity (A.4) for F (a, b|α), to obtain

S+C0(α) = S−C0(α) + 4
∞∑
n=1

(
− iαΛ2

0

2
√

2

)n
S−C2n(α) , (4.12)

with Λ2
0 = e±3πi/4Λ2

±. The discontinuity of the resummation of the perturbative expansion

is precisely of the form (2.8), discussed in Section 2. Similar results can be derived for all

higher perturbative corrections to the non-perturbative terms Λ2n
± , all schematically of the

form

S+C2n(α) = S−C2n(α)− (n+ 1)
iαΛ2

0

2
√

2
S−C2(n+1)(α) +O(Λ4

0) (4.13)

We can now understand why the Borel-Ecalle resummation (4.10), despite looking discon-

tinuous for argα = 0, defines indeed an analytic function in the right half-plane: the change

in the transseries parameter in front of the C2 term is taking care of the non-perturbative

contribution of order Λ2
0 in the discontinuity (4.12) of C0. The jump of the C4 coefficients

balances the sum of the non-perturbative Λ4
0 term in the discontinuity of C0 together with

the non-perturbative contribution of order Λ2
0 coming from the discontinuity of C2 (4.13),

and so on.

Furthermore, from the discontinuity equation (4.12) for C0(α), we can use the result

(2.13) for the large order coefficients13 of the perturbative expansion to derive

C0, (n) ∼
2A

πi (1)n−1/2
Γ

(
n− 1

2

)(
1 +

C2, (1) × 1

n− 3
2

+
C2, (2) × 12

(n− 3
2)(n− 5

2)
+O(n−3)

)
+

2A2

πi (2)n−1
Γ (n− 1)

(
1 +

C4, (1) × 2

n− 2
+

C4, (2) × 22

(n− 2)(n− 3)
+O(n−3)

)
+

+
2A3

πi (3)n−3/2
Γ

(
n− 3

2

)(
1 +

C6, (1) × 3

n− 5
2

+O(n−2)

)
+ · · · ,

(4.14)

where C0, (n), C2, (n), ... are the n-th order perturbative coefficients of the small α expansion

of C0, C2, ..., while the Stokes constant A is simply given by

A =
−i Γ

(
3
4

)
2
√

2 Γ
(

5
4

) =
i Imσ+

2
=
−i Imσ−

2
, (4.15)

as one could have also deduce from the jump in the transseries parameter (see [39]).

As mentioned in Section 2, the large order behaviour (4.14) of the perturbative coeffi-

cients C0, (n) can be used to test the validity of our transseries expansion. From equation

(4.8), we can easily generate an arbitrary number of perturbative coefficients C0, (n), and

13Unlike the case in the previous section, there is a fractional exponent factor α−1/2 in Λ2
0. This factor

shifts the arguments of the Gamma function, but the essential argument does not change at all.
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check the leading “one instanton”14 behaviour C0, (n) ∼ AΓ(n − 1/2). We can proceed

by considering the first 1/n correction to the leading Γ(n − 1/2) term, this will give us

the first perturbative coefficient, C2, (1), of the one instanton sector, that can be checked

against the analytic value obtained from the expansion of (4.9). Higher and higher terms

C2, (2), C2, (3), ... can be obtained by simply looking at higher n−2, n−3, ... corrections.

We already know that the C2 expansion is also asymptotic, so the coefficients C2, (n)

will diverge as well. For this reason we can perform a Borel-Pade resummation of the

leading one instanton sector, 1Inst ∼ AΓ(n− 1/2)(1 +C2, (1)/(n− 1/2) + ...), and subtract

it from the perturbative coefficient C0, (n). In this way we can isolate the subleading large

order behavior (4.14) which is C0, (n) − 1Inst ∼ A2 Γ(n − 1)/2n. From this new set of

coefficients we can read the perturbative coefficients C4, (n) of the two-instantons sector,

repeat the Borel-Padé resummation and isolate the three-instantons sector and so on.15

We checked numerically, up to the four-instantons sector, that the large orders of

the perturbative series expansion do indeed contain all the non-perturbative information,

consistently with our one parameter transseries expansion (4.7).

4.2 The non-perturbative mass scale

In Section 3, we briefly discussed the relation between the non-perturbative scale of the

cusp anomalous dimension and the mass gap of O(6) sigma model [36]. A similar analysis

[35] can be carried out for the toy model as well. In the toy model the non-perturbative

mass is exactly given by

mtoy =
16
√

2

π2

1

V1(−πg)
. (4.16)

Using the results derived in the Appendix (A.12), we can rewrite the mass gap as

mtoy =
4

πΓ(5
4)
α−1/4e−

1
2α

1

S±F (1
4 ,

1
4 |α) + 1

4αΛ2
±S0F (3

4 ,
3
4 |−α)

. (4.17)

Note that in the toy model the mass gap takes a particularly simple transseries form,

we just need to expand equation (4.17) around Λ± = 0, and we obtain a one parameter

transseries. The only reason why we get infinitely many non-perturbative corrections in

mtoy is that we expand 1/V1(−πg), had we considered 1/mtoy ∼ V1(−πg) we would have

obtained a very simple two-terms transseries (see [39]).

As in (4.7), we expand the mass gap as

mtoy =
4

πΓ(5
4)
α−1/4e−

1
2α

[
mtoy,0(α)−

αΛ2
+

4
mtoy,1(α) +

α2Λ4
+

16
mtoy,2(α) +O(Λ6

+)

]
(4.18)

for 0 < argα < π
2 . For 0 < argα < π

2 , one replaces Λ+ → Λ−. The coefficient mtoy,n is

given by

mtoy,n(α) =
[F (3

4 ,
3
4 |−α)]n

[F (1
4 ,

1
4 |α)]n+1

, (n ≥ 0). (4.19)

14In this paper, we sometimes use the term “instanton” to count the non-perturbative order Λ2 for

notational simplicity. Keep in mind that this does not mean that such corrections are caused by instantons

in the O(6) sigma model. There is no instanton configuration in this model, and the Borel singularities

correspond to IR renormalons.
15We thank Marcel Vonk for useful discussions on this problem.
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It is easy to see that there are non-trivial relations between C2n(α) and mtoy,n,

mtoy,n(α)

mtoy,n−1(α)
=
mtoy,1(α)

mtoy,0(α)
=
F (3

4 ,
3
4 |−α)

F (1
4 ,

1
4 |α)

,

C2n(α) = mtoy,0(α)mtoy,n−1(α).

(4.20)

The latter relation with n = 1 is the same as the one in (3.31). In the toy model, the

similar relations to (3.31) hold for all the non-perturbative sectors. In the next section, we

also confirm that the similar relation hold for n = 2 in the true cusp anomalous dimension.

5 The cusp anomalous dimension at strong coupling

In this section, we study the strong coupling expansion of the physical cusp anomalous

dimension. We first see singularities of the Borel transforms. Then we analyze the large

order behavior of the perturbative expansion in detail. The result shows that the infor-

mation on the non-perturbative sectors are encoded in the perturbative sector. We next

perform the lateral Borel resummation, and compare it with numerical values of Γcusp(g)

computed directly from the BES equation.

5.1 Borel singularities

Let us first see the singularity structure of the Borel transform. The cusp anomalous

dimension has the transseries expansion (1.5). Using the method reviewed in section 3,

we have computed the numerical values of Γ
(n)
` (n = 0, 1, 2) up to ` = 180 with 200-digit

precision. A very first few values are in perfect agreement with the exact ones in [22, 35].

Some higher order corrections are presented in appendix B.

Since Γ
(n)
` grows as Γ(` − 1/2) in ` → ∞, it is natural to consider the following a bit

modified Borel transform

B̃[Γ(n)
cusp](ζ) :=

∞∑
`=1

Γ
(n)
`

Γ(`− 1
2)
ζ` (5.1)

Since we have only the finite number of coefficients Γ
(n)
` up to ` = 180, we need an ap-

proximation of B̃[Γ
(n)
cusp](ζ). A natural way is to replace it by its Padé approximant. In the

following, we use the diagonal Padé approximant of B̃[Γ
(n)
cusp](ζ) with order 90.

In figure 2, we show the Borel singularities of the Padé approximant for B̃[Γ
(n)
cusp](ζ)

(n = 0, 1, 2). The figure clearly shows that the Borel transforms B̃[Γ
(n)
cusp](ζ) for n = 0, 1

have the singularities at ζ = 1,−4, while B̃[Γ
(2)
cusp](ζ) has the singularities at ζ = ±1. Note

that in a Padé approximant, a condensation of poles indicates a branch cut of the original

function. Therefore it is very likely that B̃[Γ
(n)
cusp](ζ) for n = 0, 1 has two branch cuts

(−∞,−4) and (1,∞) while B̃[Γ
(2)
cusp](ζ) has branch cuts (−∞,−1) and (1,∞).

These singularity structures are very important to understand the form of the full

transseries, as emphasized in section 2. The large order behavior of Γ
(n)
` also heavily

depends on the Borel singularities.

Note that from figure 2 it is manifest that also the direction θ = π in the complex

Borel plane is a Stokes direction. Following the discussion of Section 2 it is clear that

– 19 –



-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-10

-8

-6

-4

-2

2

4

6

8

10

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-10

-8

-6

-4

-2

2

4

6

8

10

n = 0 n = 1

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-10

-8

-6

-4

-2

2

4

6

8

10

n = 2

Figure 2. We show the singularities of the Padé approximant for the Borel transform B̃[Γ
(n)
cusp](ζ)

(n = 0, 1, 2) in the complex Borel plane. It is obvious to see that the Borel transforms for n = 0, 1

have the singularities at ζ = 1,−4, while the Borel transform for n = 2 has the singularities at

ζ = ±1.

from the large order behavior of the perturbative coefficients we will see the presence of

these discontinuities. However by the point of view of the cusp anomalous dimension, this

additional Stokes line is not relevant. In fact as we have already reviewed in Section 3, the

transseries that we are studying, is only valid in the right half plane. It is not necessary to

add a transseries parameter to take into account the new singularity at ζ = −4, and the

Stokes line θ = π because it is outside of the regime in which the Borel-Ecalle resummation

of our transseries reproduces the physical cusp anomaly. Of course the large order behaviour

of the perturbative coefficients will know nonetheless of this additional singularity in the

negative axis of the Borel plane.

5.2 Large order behavior

We will study now the large order behavior of the perturbative coefficients. First of all,

as was observed in [22], the perturbative coefficients Γ
(0)
` grow factorially as Γ(`− 1/2) in

the large ` limit. As in section 2, the large order behavior of Γ
(0)
` has more information. It

contains the non-perturbative information. In fact, following the argument in section 2, it
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is expected that Γ
(0)
` behaves in the large ` limit as16

Γ
(0)
` = A1Γ

(
`− 1

2

)[
1 +

Γ
(1)
1

`− 3
2

+
Γ

(1)
2

(`− 3
2)(`− 5

2)
+ · · ·

]
+A2

Γ(`− 1)

2`−1

[
1 +

2Γ
(2)
1

`− 2
+

22Γ
(2)
2

(`− 2)(`− 3)
+ · · ·

]
+A3

Γ(`− 3
2)

3`−
3
2

[
1 + · · ·

]
+ · · · ,

`→∞. (5.2)

where the first two coefficients A1 and A2 are exactly the same as the toy model ones in

(4.14)-(4.15):

A1 =
2A

πi
= −0.3042971194498708318670259057666 . . . .

A2 =
2A2

πi
= 0.14545061420433549651130121616 . . . i.

(5.3)

As we will see later, the constant A3 is more subtle. Below we want to confirm the relation

(5.2) by using the numerical values of Γ
(0)
` , Γ

(1)
` and Γ

(2)
` computed from the BES solution.

We first estimate A1. Let us consider a sequence

a
(1)
` =

Γ
(0)
`

Γ(`− 1
2)
. (5.4)

This sequence must converge to A1 in ` → ∞. The naive evaluation of a
(1)
` at ` = 180

shows

a
(1)
180 ≈ −0.304049. (5.5)

This is indeed close to the exact value in (5.3), but the agreement is not so good because of

the sub-leading contribution. In fact, the sub-leading contribution is of order 1/` ∼ 5×10−3.

To improve the precision, we need to remove such corrections. This can be done by using

the Richardson extrapolation. Let us consider the n-th Richardson transform [48] of a

sequence f`,

Rn[f`] :=
n∑
k=0

(−1)k+n(`+ k)n

k!(n− k)!
f`+k. (5.6)

Assuming (5.2), the sequence a
(1)
` behaves as

a
(1)
` = A1[1 +O(`−1)], `→∞. (5.7)

The Richardson transform of a
(1)
` then behaves as

Rn[a
(1)
` ] = A1[1 +O(`−n−1)], `→∞. (5.8)

16As shown in figure 2, the Borel transform B̃[Γ
(0)
cusp](ζ) has the singularity at ζ = −4. This singularity

implies a contribution of order (−4)−` to the large order behavior. Therefore this contribution is important

to see Γ
(4)
` from the large order behavior.
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Figure 3. (Left) We show the convergence behavior of the original sequence a
(1)
` , its first and

fifth Richardson transforms by the blue, purple and red curves, respectively. The black dashed line

is the expected convergence value A1. The Richardson extrapolation accelerates the convergence.

(Right) The difference |1−Rn[a
(1)
180−n]/A1| is shown as a function of n. In this case, the Richardson

extrapolation is especially good for the range 20 . n . 60.

Therefore the convergence speed is improved. Note that to compute the n-th Richardson

transform of a
(1)
` we need the higher coefficients a

(1)
`+1, . . . , a

(1)
`+n. Thus if we have a

(1)
` up

to certain finite ` = `max, we can perform the n-th Richardson transform only up to

`′ = `max − n. It is a trade-off how we should choose n and `′.

In the left of figure 3, we sketch the convergence behavior of the Richardson extrapola-

tion for the sequence a
(1)
` . We plot the original a

(1)
` , its first and fifth Richardson transforms

up to ` = 20 by the blue, purple and red solid curves, respectively. It is clear to see that

the Richardson transform indeed accelerates the convergence. We also show, in the right

figure, how the Richardson transform Rn with fixed `max = 180 works as n grows. In the

current case, one should choose n in the range 20 . n . 60. In the following analysis, we

use the 30th Richardson transform. Applying the Richardson transform to the sequence

a
(1)
` , we get

R30[a
(1)
150] ≈ −0.304297119449870831867025905573, (5.9)

which is in agreement with (5.3) with 27-digit accuracy!

Once A1 is fixed, we can proceed to the next-to-leading coefficients Γ
(1)
1 . We consider

a sequence

b
(1)
` =

(
`− 3

2

)[
Γ

(0)
`

A1Γ(`− 1
2)
− 1

]
(5.10)

This should converge to Γ
(1)
1 in `→∞. After the Richardson transform again, we find

R30[b
(1)
150] ≈ −0.144860385419958982062924086. (5.11)

The exact value of Γ
(1)
1 is found in [35]:

Γ
(1)
1 =

3(1− 2 log 2)

8
= −0.144860385419958982062924091 . . . . (5.12)
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Table 3. The numerical estimation of Γ
(1)
` from the large order behavior (LOB) in the perturbative

expansion. We use Γ
(0)
` up to ` = 180 and the 30th Richardson extrapolation. We also show the

deviation from the true Γ
(1)
` .

` Estimation from LOB |1−R30[· · · ]/Γ(1)
` |

1 −0.1448603854199589820629240863 3.3× 10−26

2 −0.0938694159959333439731081 5.5× 10−23

3 −0.14973248501597359266824 5.3× 10−21

4 −0.402728449526514898734 2.2× 10−19

5 −1.4747555976090392157 5.9× 10−18

6 −6.86483498151787623 1.0× 10−16

7 −38.674657843660018 1.3× 10−15

8 −255.9115123079947 9.8× 10−15

9 −1945.413350672867 1.7× 10−14

10 −16710.570082722 9.3× 10−13

Both precisely coincide as expected. Pushing the same computation, we can systematically

confirm the relation (5.2) order by order. In table 3, we summarize the results estimated by

the Richardson extrapolation. The large order behavior indeed captures the information

on the leading non-perturbative sector.

Next, we want to test the second line in (5.2). To do so, we have to subtract the

contribution in the first line. This can be done by using the Borel resummation. We first

rewrite the first line in (5.2) as

h(1)(`) := 1 +
Γ

(1)
1

`− 3
2

+
Γ

(1)
2

(`− 3
2)(`− 5

2)
+ · · · = 1 +

∞∑
m=1

γ
(1)
m

`m
(5.13)

The important point is that the coefficient γ
(1)
m grows factorially, and thus h(1)(`) is a

formal divergent series. Furthermore, we observe that the Borel transform B[h(1)](ζ) has

a singularity at ζ = log 2. Thus h(1)(`) is non-Borel summable, and one has to use the

lateral Borel resummation. The ambiguity of the two lateral Borel resummations is roughly

estimated as

(S+ − S−)h(1)(`) ∼ i×O(2−`), (5.14)

where S± = S0± . In other words, the imaginary parts of S±h(1)(`) are of order O(2−`).

Now we consider a quantity

δΓ
(0)
` := Γ

(0)
` −A1Γ

(
`− 1

2

)
S+h

(1)(`). (5.15)

As mentioned above, since the imaginary parts of S±h(1)(`) behave asO(2−`), δΓ
(0)
` behaves

as i × O(2−`) in ` → ∞. This just corresponds to the contribution in the second line of
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Table 4. The numerical estimation of Γ
(2)
` from the large order behavior of Γ

(0)
` . We use Γ

(0)
` up

to ` = 180 and the 20th Richardson extrapolation.

` Estimation from LOB |1−R20[· · · ]/Γ(2)
` |

1 −0.7499999999999987 1.7× 10−15

2 0.845472324053663 7.0× 10−14

3 −2.4877562953846 8.8× 10−13

4 7.504881881284 7.2× 10−12

5 −37.76786450152 1.1× 10−11

6 186.98364073 8.6× 10−10

(5.2).17 Let us consider a sequence

a
(2)
` =

2`−1δΓ
(0)
`

Γ(`− 1)
. (5.16)

This should converge to A2. As before, using the Richardson extrapolation, we find

R20[a
(2)
160] ≈ 0.1454506142043354998i + 3.0× 10−20, (5.17)

whose imaginary part is in agreement with the exact A2 up to 17-digit accuracy. As in

the leading non-perturbative sector, one can estimate the coefficients Γ
(2)
` in (5.2). The

obtained values up to ` = 6 are shown in table 4.

Finally, let us proceed to the third line in (5.2). At this level, it is not easy to extract

the information with high precision by numerics. We again consider quantities

h(2)(`) := 1 +
2Γ

(2)
1

`− 2
+

22Γ
(2)
2

(`− 2)(`− 3)
+ · · · = 1 +

∞∑
m=1

γ
(2)
m

`m
(5.18)

and

δ2Γ
(0)
` := Γ

(0)
` −A1Γ

(
`− 1

2

)
S+h

(1)(`)−A2
Γ (`− 1)

2`−1
S+h

(2)(`). (5.19)

Defining two sequences18

a
(3),odd
` =

32`−1− 3
2

Γ(2`− 1− 3
2)
δ2Γ

(0)
2`−1, a

(3),even
` =

32`− 3
2

Γ(2`− 3
2)
δ2Γ

(0)
2` , (5.20)

we find
R8[a

(3),odd
90 ] ≈ 0.101563618725,

R8[a
(3),even
90 ] ≈ 0.101563618713,

(5.21)

17The relation (5.2) can be regarded as a “transseries” in the large ` expansion. The second line is

the leading “non-perturbative” correction in 1/`, whose “instanton action” is log 2. The ambiguity of the

lateral Borel resummations of the perturbative part (the first line) is almost canceled by the ambiguity in

the second line. In other words, we can guess the contribution in the second line from that in the first line.
18The reason of the separation of the sequence is purely technical. We observed that the Richardson

extrapolation works better for this rather than for the naive sequence.
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Unlike A1 and A2, these do not agree with the Stokes coefficient in the toy model:

2A3

πi
= 0.0695237641771486153 . . . . (5.22)

This discrepancy is explained as follows. As noted in section 3, in the quantization condition

(3.13) up to order Λ4, only the non-perturbative correction of r(xm) with m = 0 gives a

non-vanishing contribution. However, at the order Λ6, rnp(xm) with m = 1 also contributes

to the quantization condition. As we will see in appendix C, if taking into account this

contribution, we find the exact value of A3 as

A3 =
2A3

πi

(
1 +

8Γ4(5
4)

3
√

3Γ4(3
4)

)
= 0.101563618709385381 . . . , (5.23)

which is indeed very close to the numerical estimations (5.21) from the large order behavior!

This is precisely the expected value of the Stokes constant to reproduce the jump of the

two transseries parameter responsible for the Λ6 corrections, see the Appendix C, equation

(C.12). This result implies that at the order Λ10, the Stokes coefficient also receives a new

contribution from rnp(xm) with m = −1.

The reason for this different behavior that begins only at the three instantons level

O(Λ6) can be understood from the quantization condition. The quantization condition

(3.13) is a set of infinitely many linear equations in the undetermined functions f0(t) and

f1(t). The coefficients appearing in these equations are the known functions r(xm) and at

strong coupling they assume the transseries forms (A.15)-(A.16). If we were to turn off all

the non-perturbative corrections in all the r(xm), then our strong coupling perturbative

expansion f
(0)
0 (t), f

(0)
1 (t) in (3.16), would solve this infinite set of equations.

We can proceed to turn on the first non-perturbative correction in the quantization

condition (3.13). As shown in table 1, the first non-perturbative correction appears at

order O(Λ2) in r(x0). This means that a non-perturbative correction of the same order

has to be added to f (0)(t) and f (1)(t) and this correction has to be constructed entirely

from the particular expansion (A.15)-(A.16) combined with the perturbative expansions

f
(0)
0 (t), f

(0)
1 (t), as in [35]. The next non-perturbative correction is of order O(Λ4) and it is

once again coming from the transseries expansion of r(x0). A correction of the same order

will now be needed in f (0)(t) and f (1)(t) and this correction has to be constructed from

the order O(Λ4) of r(x0) combined with our perturbative expansions f
(0)
0 (t), f

(0)
1 (t), and

from the order O(Λ2) of r(x0) combined with the O(Λ2) just obtained for f
(0)
0 (t), f

(0)
1 (t).

From table 1, we see that at order O(Λ6) we will receive two contributions, see (A.15)-

(A.16), one from r(x0) and one from r(x1). The correction of this order to f (0)(t) and

f (1)(t) can still be obtained from the lower orders, but it stops being a one parameter

transseries and becomes a two parameter transseries, see Appendix C. Clearly, as we see

from table 1, at O(Λ10) the non-perturbative corrections to r(x1) will come into play and

we will need yet another transseries parameter and so on so forth.

The above large order behavior, as well as our analysis of the quantization condi-

tion equations, strongly indicates that the strong coupling expansion of the physical cusp

anomalous dimension is a multi-parameter transseries, while the expansion in the toy model
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is a one-parameter transseries. This is a big difference between the toy model and the true

cusp anomalous dimension.

Large order behavior of the mass gap. Let us turn to the large order behavior of

the mass gap coefficients m
(n)
` . Using the results derived in the Appendix C, we computed

the large order behaviors of the perturbative expansion m
(0)
O(6) in (3.30), as well as for the

coefficients of the first two instantons corrections m
(1)
O(6) and m

(2)
O(6).

As expected from the discussion in Section 2, the perturbative coefficients m
(0)
` behave

as

m
(0)
` ∼

A

2πi
Γ

(
`− 1

2

)(
1 +

m
(1)
1

`− 3
2

+O(`−2)

)
+
A2

2πi

Γ (`− 1)

2`−1

(
1 +

2m
(2)
1

`− 2
+O(`−2)

)

+
B

2πi

Γ
(
`− 1

2

)
3`−1/2

(
1 +O(`−1)

)
+ ... , (5.24)

where the Stokes constant A is precisely the one obtained in the toy model (4.15) or in the

cusp anomalous dimension.

The Stokes constant for the three instantons sector B is once again not consistent with

a one parameter transseries ansatz, i.e. it is not simply B 6= A3, see also the discussion at

the end of Section 5.2. At the three instantons level a new transseries parameter arise and,

from the correct multi parameter transseries form derived in the Appendix (C.13), we can

deduce

B = − iπ

8
√

3Γ(3
4)2

. (5.25)

For the large order coefficients in the first non-perturbative correction m
(1)
O(6) in (3.30),

we can easily recognize the presence of the perturbative coefficients as well as the higher

instantons one:

m
(1)
` ∼

C

2πi

Γ
(
`+ 1

2

)
(−1)`

(
1 +
−m(0)

1

`− 1
2

+O(`−2)

)
+

2A

2πi
Γ

(
`− 1

2

)(
1 +

m
(2)
1

`− 3/2
+O(`−2)

)

+
3A2

2πi

Γ (`− 1)

2`−1

(
1 +O(`−1)

)
+ ... , (5.26)

where the Stokes constant C is associated with the presence of a Stokes line in the θ = π

direction, with a characteristic alternating factor 1/(−2π)` in front of it, and it is given by

C =
2πi

Γ
(

3
4

)2 . (5.27)

The presence of this Stokes line is obvious since the one instanton sector will “see” the

perturbative sector with a relative action 2π × (−1), hence the alternating nature of the

coefficients. Note that this is precisely the same Stokes constant in the θ = π direction

that one can obtain from the toy model!
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5.3 Lateral Borel resummations and ambiguity cancellation

In this subsection, we perform the Borel resummation of the strong coupling expansion. As

emphasized in [22], the perturbative strong coupling expansion of Γcusp(g) is a non-Borel

summable asymptotic expansion. This is because that the Borel transform of Γ
(0)
cusp(g) has

the singularities on the positive real axis in the Borel plane, as shown in figure 2. One

has to avoid these singularities when performing the inverse Borel transform (or Borel

resummation). There is an ambiguity to choose such integration contours, and the lateral

Borel resummations are not real-valued any more. The imaginary part must be canceled by

the other contributions, i.e., the non-perturbative sectors, in the full transseries expansion

(1.5) because the cusp anomalous dimension is a real-valued quantity for g ∈ R. Here we

test this cancellation by explicitly performing the lateral Borel resummations of Γ
(n)
cusp(g)

for n = 0, 1, 2.

Let us consider the inverse Borel transform of (5.1). By using the well-known integral

representation of the gamma function:

Γ(z) =

∫ ∞
0

dζ e−ζζz−1, Re z > 0, (5.28)

it is easy to see that the inverse Borel transform is given by

S0Γ(n)
cusp(g) = 1 +

∫ ∞
0

dζ e−ζζ−3/2B̃[Γ(n)
cusp]

(
ζ

2πg

)
= 1 + (2πg)−1/2

∫ ∞
0

dζ e−2πgζζ−3/2B̃[Γ(n)
cusp](ζ).

(5.29)

where we have separated the ` = 0 term from the others to use the integral representation

(5.28). This resummation is, however, not well-defined because B[Γ
(n)
cusp](ζ) has singularities

on the positive real axis. Therefore we need to modify it as the lateral Borel resummations:

S±Γ(n)
cusp(g) = 1 + (2πg)−1/2

∫ ∞e±i0

0
dζ e−2πgζζ−3/2B̃[Γ(n)

cusp](ζ). (5.30)

These lateral Borel resummations are complex-valued quantities, and cause the disconti-

nuity (S+ − S−)Γ
(n)
cusp(g).

Now we perform the lateral Borel-Padé resummations at finite coupling. Let us see in

detail for g = 1/5 as an example. Using the formula (5.30), we find the following numerical

values
S±Γ(0)

cusp(1/5) ≈ 0.1252604∓ 0.2097335i,

S±Γ(1)
cusp(1/5) ≈ 0.8678150∓ 0.0811188i,

S±Γ(2)
cusp(1/5) ≈ 0.6406029∓ 0.0846409i.

(5.31)

These are complex numbers, and obviously the imaginary part in the perturbative part is

not negligible. More importantly, these resummations take the different values depending

on the integration contours. Therefore there is an ambiguity of the resummations. Plugging

these values into the transseries (1.5) and setting the parameter as σ = e∓3πi/4 [35] for S±,
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Table 5. The ambiguity cancellation in the lateral Borel resummations at g = 1/2. The total

imaginary part is indeed very close to zero due to the cancellation. The real part should be

compared with the directly evaluated values by the method in section 3.

Contributions Values

S±Γ
(0)
cusp 0.63182936∓ 0.02188690i

− Λ2
±

2πgS±Γ
(1)
cusp 0.02210593± 0.02166913i

Λ4
±

16π2g2
S±Γ

(2)
cusp 0.00000326± 0.00021822i

Sum 0.65393855± 0.00000044i

Direct Evaluation 0.65393903

Table 6. The ambiguity cancellation at g = 1.

Contributions Values

S±Γ
(0)
cusp 0.825965638690∓ 0.000693266968i

− Λ2
±

2πgS±Γ
(1)
cusp 0.000693493818± 0.000693040133i

Λ4
±

16π2g2
S±Γ

(2)
cusp 0.000000000111± 0.000000226842i

Sum 0.826659132619± 0.000000000007i

Direct Evaluation 0.826659132627

respectively, we finally get

S±Γ(0)
cusp −

Λ2
±

2πg
S±Γ(1)

cusp +
Λ4
±

16π2g2
S±Γ(2)

cusp

∣∣∣∣
g= 1

5

≈ (0.1252604∓ 0.2097335i) + (0.2303182± 0.1909411i) + (0.00249307± 0.01886876i)

≈ 0.3580716± 0.0000763i, (5.32)

where Λ2
± are defined by (4.6). The imaginary part becomes very small after taking into

account the non-perturbative corrections! Furthermore, the real part is close to the true

value directly evaluated from the BES equation in table 2. We also show the ambiguity can-

cellation for g = 1/2, 1, 2 in tables 5, 6 and 7. The real parts are in remarkable agreement

with the values in table 2. We conclude that the ambiguity of the lateral Borel resumma-

tions are precisely canceled by the perturbative and non-perturbative contributions and

that the finial results are unambiguous real values.

5.4 Novel relations

In this subsection, we observe quite novel relations between the cusp anomalous dimension

and the mass gap in the O(6) sigma model. So far, we do not have a derivation of these

relations from the BES equation. It would be important to prove them along the line [35].
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Table 7. The ambiguity cancellation at g = 2.

Contributions Values

S±Γ
(0)
cusp 0.915571204186344585360∓ 0.000000928959331963843i

− Λ2
±

2πgS±Γ
(1)
cusp 0.000000928959749702527± 0.000000928958914225168i

Λ4
±

16π2g2
S±Γ

(2)
cusp 0.000000000000000000282± 0.000000000000417738679i

Sum 0.915572133146094288169± 0.000000000000000000005i

Direct Evaluation 0.915572133146094288174

We first find that the strong coupling expansion of the mass gap (3.30) has the following

beautiful relation

m
(2)
O(6)

m
(1)
O(6)

=
m

(1)
O(6)

m
(0)
O(6)

= 1− 0.6051396146

2πg
+

0.8516809822

(2πg)2
− 2.271453077

(2πg)3
+ · · · . (5.33)

We checked this equality up to 1/g180 with sufficient numerical precision. Also, we find the

similar relation to (3.31):

∞∑
`=0

Γ
(2)
`

(2πg)`
=

[ ∞∑
`=0

m
(0)
`

(2πg)`

][ ∞∑
`=0

m
(1)
`

(2πg)`

]
. (5.34)

These relations suggest us the following guess:

m
(n)
O(6)

m
(n−1)
O(6)

?
=
m

(1)
O(6)

m
(0)
O(6)

,
∞∑
`=0

Γ
(n)
`

(2πg)`
?
=

[ ∞∑
`=0

m
(0)
`

(2πg)`

][ ∞∑
`=0

m
(n−1)
`

(2πg)`

]
. (5.35)

In the toy model in the previous section, we have already seen that the similar relations

hold for all n. However, in the physical case, this is probably not the case for n = 3.

A reason of this is very likely due to the contribution from rnp(x1).19 This contribution

should change the structure of the coefficients Γ
(3)
` , but the right hand side in (5.35) there is

no source of such a change. It would be interesting to check it in more detail by computing

the higher non-perturbative corrections from the BES equation.

6 Conclusions and future directions

The cusp anomalous dimension has a rich non-perturbative structure at strong coupling.

We can put it on the resurgent analysis, recently developed in many contexts. Solving

the BES equation at strong coupling systematically, we computed the perturbative and

non-perturbative corrections up to very high orders in the 1/g expansions. Using these

19In other words, if we turn off this correction by hand: rnp(x1) = 0, then the relations (5.35) seem to

work for n = 3. Of course, this does not give the true cusp anomalous dimension.

– 29 –



data, we showed that the large order behavior in the perturbative expansion has the non-

perturbative information, as expected. Moreover, the ambiguity of the Borel resumma-

tions in the perturbative sector is precisely canceled by the contributions from the non-

perturbative sectors. The final result is real-valued and in remarkable agreement with the

direct evaluation at finite (not so strong) coupling. We also find the unexpected relations

between the cusp anomalous dimension and the mass gap of the O(6) sigma model.

In this paper, we focused on the cusp anomalous dimension. Clearly, it would be

interesting to explore the strong coupling expansions for other examples. Closely related

examples are the generalized scaling function, proposed in [49], and the generalized cusp

anomalous dimension (or equivalently the quark-antiquark potential), studied in [50–54].

As studied in [33, 55–57], the strong coupling analysis of the generalized scaling function

is almost in parallel with the cusp anomalous dimension, and thus it is a good exercise to

see its resurgent aspect along the line in this paper. The analysis of the generalized cusp

anomalous dimension will be much more involved.

Another example is the eigenvalue of the adjoint BFKL operator. This eigenvalue plays

a very important role in scattering amplitudes in the so-called multi-Regge limit. Recently,

Basso, Caron-Huot and Sever proposed integral equations that compute the adjoint BFKL

eigenvalue at any coupling [58] (see also [59]). Since these equations are quite similar to

the BES equation, it seems to be possible to use the technique in section 3. It would be

interesting to ask whether the BFKL eigenvalue receives non-perturbative corrections at

strong coupling or not.

The strong coupling limit of short operators is also an important problem. In partic-

ular, the Konishi operator is a significant example. In [60, 61], it was observed from the

TBA analysis [62–65] that the conformal dimension of the Konishi operator has the strong

coupling expansion

∆K − 2 = 2
4
√
λ

(
1 +

1√
λ

+ · · ·
)
, λ→∞. (6.1)

The same result was also reproduced from the various worldsheet computations [66–69].

It would be important to clarify the analytic structure of the Konishi operator at strong

coupling. The Quantum Spectral Curve formulation [5, 6] will be helpful for this purpose.

See [70] for an interesting approach to the strong coupling Konishi dimension, based on

[71].

The generalization to the ABJM theory [13] is also interesting. The all-loop Bethe

ansatz equation in planar ABJM theory was conjectured by Gromov and Vieira in [72]. One

important consequence is that in the integrability approach, the ’t Hooft coupling always

appears through a non-trivial function h(λ), called the interpolating function. Then, it

turned out in [72] that the cusp anomalous dimension in ABJM theory is related to that

in N = 4 SYM by

ΓABJM
cusp (λ) =

1

2
ΓN=4

cusp (g = h(λ)). (6.2)

It was a long-standing open problem to determine h(λ). Surprisingly, Gromov and Sizov

recently proposed an exact formula of h(λ) [15]. According to their result, the interpolating
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function at strong coupling behaves as

h(λ) =

√
1

2

(
λ− 1

24

)
− log 2

2π
+O(e−2π

√
2λ), λ→∞. (6.3)

Now it is clear to see that ΓABJM
cusp (λ) receives two kinds of non-perturbative corrections at

strong coupling. One is just obtained by replacing g in ΓN=4
cusp (g) by h(λ):

O(e−2πh(λ)) ∼ O(e−π
√

2λ). (6.4)

The other is the correction20 that h(λ) itself receives, as in (6.3),

O(e−2π
√

2λ). (6.5)

It would be interesting to discuss physical origins of these two corrections in the effective

worldsheet theory on AdS4 × CP3 in the high spin limit. As discussed in [14], the latter

type correction is probably related to stringy worldsheet instantons, constructed in [75].
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A Special functions

Let us introduce some functions used in the main text. See appendix D in [35] in more

detail. We first consider the following series:

F (a, b|z) :=
∞∑
k=0

(a)k(b)k
(1)k

zk. (A.1)

where we used the Pochhammer symbol (x)n = Γ(x+ n)/Γ(x). This series is asymptotic.

Let us consider the following “Borel transform”:

B̂F (ζ) =

∞∑
k=0

(b)k
(1)k

ζk

k!
= (1− ζ)−b. (A.2)

This Borel transform has a branch cut along (1,∞) if b is a non-integer. Therefore for

z < 0, F (a, b|z) is Borel summable. Since the series is non-Borel summable for z > 0, one

20This non-perturbative correction is quite different from the first type correction (6.4) even though

the exponential factors are almost same. The strong coupling perturbative expansion of h(λ) in (6.3) is

a convergent series. Thus one does not need the Borel resummation. Nevertheless, h(λ) receives non-

perturbative corrections! This non-perturbative structure is essentially the same as that in the 1/2 BPS

Wilson loop [73], analyzed in [14, 74]. In fact, the idea in [15] is to relate the interpolating function to the

results in [14, 74].
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needs the lateral Borel resummations. One easily finds that the inverse Borel transform of

(A.2) is given by

S0±F (a, b|z) =
1

Γ(a)

∫ ∞e±i0

0
dζ e−ζζa−1(1− zζ)−b. (A.3)

A simple computation shows that the discontinuity of these lateral Borel resummations is

given by

(S0+ − S0−)F (a, b|z) = 2πi
z1−a−b

Γ(a)Γ(b)
e−1/zS0F (1− a, 1− b|−z), z > 0. (A.4)

Remarkably, the Borel resummations satisfy the following Wronskian-like relation [35]

S0±F

(
1

4
,
1

4

∣∣∣∣z)S0F

(
−1

4
,
3

4

∣∣∣∣−z)− z

4
S0±F

(
1

4
,
5

4

∣∣∣∣z)S0F

(
3

4
,
3

4

∣∣∣∣−z) = 1, (A.5)

where we assumed z > 0.

Next, let us define the functions Vn(x) and U±n (x) (n = 0, 1) by

Vn(x) :=

√
2

π

∫ 1

−1
du (1 + u)1/4−n(1− u)−1/4eux,

U±n (x) :=
1

2

∫ ∞
1

du (u± 1)−1/4(u∓ 1)1/4−ne−(u−1)x, (Rex > 0).

(A.6)

Note that the integral in Vn(x) is well-defined for all complex values of x, but the integrals

in U±n (x) are convergent only for Rex > 0. For Rex < 0, we need analytic continuations

of U±n (x). As mentioned in [35], the function Vn(x) is written in terms of the Whittaker

function of the first kind

Vn(x) =
1

2n
Γ(5

4 − n)

Γ(5
4)Γ(2− n)

(−2x)n/2−1M1/4−n/2,1/2−n/2(−2x). (A.7)

Also, the functions U±n (x) are related to the Whittaker function of the second kind:

U+
0 (x) =

1

2
Γ

(
5

4

)
x−1exW−1/4,1/2(2x),

U−0 (x) =
1

2
Γ

(
3

4

)
x−1exW1/4,1/2(2x),

U+
1 (x) =

1

2
Γ

(
1

4

)
(2x)−1/2exW1/4,0(2x),

U−1 (x) =
1

2
Γ

(
3

4

)
(2x)−1/2exW−1/4,0(2x).

(A.8)

These relations naturally give analytic continuations for Rex < 0. Note that these functions

have branch cuts on the negative axis. As shown in [35], the functions Vn(x) and U±n (x)

are related by

V0(x) =
2
√

2

π
e∓3πi/4[exU−0 (−x) + e−xU+

0 (x)],

V1(x) =
2
√

2

π
e∓3πi/4[exU−1 (−x)− e−xU+

1 (x)],

(A.9)

where the upper and lower signs correspond to Imx > 0 and Imx < 0, respectively. For

real x, one needs the iε-prescription on the right hand sides due to the branch cut of U±n (x).
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Now we rewrite U±n (x) in terms of the Borel resummation of F (a, b|z). As in [35], for

x > 0 we have

U+
0 (x) = (2x)−5/4Γ

(
5

4

)
S0F

(
1

4
,
5

4

∣∣∣− 1

2x

)
,

U−0 (x) = (2x)−3/4Γ

(
3

4

)
S0F

(
−1

4
,
3

4

∣∣∣− 1

2x

)
,

U+
1 (x) =

1

2
(2x)−1/4Γ

(
1

4

)
S0F

(
1

4
,
1

4

∣∣∣− 1

2x

)
,

U−1 (x) =
1

2
(2x)−3/4Γ

(
3

4

)
S0F

(
3

4
,
3

4

∣∣∣− 1

2x

)
.

(x > 0), (A.10)

As mentioned before, F (a, b|z) is Borel summable for z < 0. If the argument of U±n (x) is

negative, we need the iε-presciption. It just corresponds to the lateral Borel resummations

of F (a, b|z) for z > 0:

U+
0 (−x± iε) = e±3πi/4(2x)−5/4Γ

(
5

4

)
S0±F

(
1

4
,
5

4

∣∣∣ 1

2x

)
,

U−0 (−x± iε) = e∓3πi/4(2x)−3/4Γ

(
3

4

)
S0±F

(
−1

4
,
3

4

∣∣∣ 1

2x

)
,

U+
1 (−x± iε) = −1

2
e±3πi/4(2x)−1/4Γ

(
1

4

)
S0±F

(
1

4
,
1

4

∣∣∣ 1

2x

)
,

U−1 (−x± iε) =
1

2
e∓3πi/4(2x)−3/4Γ

(
3

4

)
S0±F

(
3

4
,
3

4

∣∣∣ 1

2x

)
.

(x > 0), (A.11)

Substituting these expressions into (A.9), one can express Vn(x) in terms of F (a, b|z). In

particular, one finds

V0(−πg) =
(2πg)−5/4eπg

Γ(3
4)

[
S0±F

(
1

4
,
5

4

∣∣∣ 1

2πg

)
+ Λ2

±S0F

(
−1

4
,
3

4

∣∣∣− 1

2πg

)]
,

V1(−πg) =
(2πg)−5/4eπg

2Γ(3
4)

[
8πg S0±F

(
1

4
,
1

4

∣∣∣ 1

2πg

)
+ Λ2

±S0F

(
3

4
,
3

4

∣∣∣− 1

2πg

)]
,

(A.12)

where the non-perturbative scales Λ± are defined by (1.6) with σ = σ± = e∓3πi/4, respec-

tively. Note that these expressions for upper and lower signs are equivalent because of the

discontinuity (A.4) of the lateral Borel resummations. In other words, the ambiguity of the

lateral Borel resummations is precisely canceled by the non-perturbative correction (the

second term in (A.12)).

It is useful to write down the expression (3.14) with x = xm = m− 1
4 at strong coupling.

As noted before, the strong coupling behavior is different for m ≥ 1 and m ≤ 0. For m ≥ 1,

we obtain

r(xm) =
1

2

F (3
4 ,

3
4 |

α
4m−1)− (−1)m4(4m− 1)

1
2

(
Γ( 5

4
)

Γ( 3
4

)

)4m

α2m−1Λ8m−2F (1
4 ,

1
4 |−

α
4m−1)

F (−1
4 ,

3
4 |

α
4m−1) + (−1)m(4m− 1)−

1
2

(
Γ( 5

4
)

Γ( 3
4

)

)4m

α2mΛ8m−2F (1
4 ,

5
4 |−

α
4m−1)

,

(A.13)
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where α = 1
2πg . Similarly, we find the expression for m ≤ 0,

r(xm) =
2(1− 4m)

α

×
F (1

4 ,
1
4 |

α
1−4m) + (−1)m 1

4(1− 4m)−
1
2

(
Γ( 5

4
)

Γ( 3
4

)

)−4m

α−2m+1Λ2−8mF (3
4 ,

3
4 |−

α
1−4m)

F (1
4 ,

5
4 |

α
1−4m) + (−1)m(1− 4m)

1
2

(
Γ( 5

4
)

Γ( 3
4

)

)−4m

α−2mΛ2−8mF (−1
4 ,

3
4 |−

α
1−4m)

,

(A.14)

It is obvious to see that the non-perturbative correction to r(xm) starts from O(Λ|8m−2|).

With the above expression (A.14) for r(xm) we can easily obtain its transseries expan-

sion. Let us assume that Reα > 0, then for m > 0 we can write

r(xm) =
1

2

F
(

3
4 ,

3
4 |

α
(4m−1)

)
F
(
−1

4 ,
3
4 |

α
(4m−1)

) + 2

∞∑
n=1

(−1)(m+1)n

(
Γ(5/4)

Γ(3/4)

)4mn

(4m− 1)1−n/2

Λ
2(4m−1)n
± α2mn−1

F
(

1
4 ,

5
4 | −

α
(4m−1)

)n−1

F
(
−1

4 ,
3
4 |

α
(4m−1)

)n+1 , (A.15)

where the choice on transseries parameter σ± depends on Imα > 0 or Imα < 0 (note that

for α = 1/(2πg) this corresponds to Im g < 0, or Im g > 0 respectively). Similarly for

−m ≤ 0, assuming always Reα > 0, we have

r(x−m) =
2(4m+ 1)

α

F
(

1
4 ,

1
4 |

α
(4m+1)

)
F
(

1
4 ,

5
4 |

α
(4m+1)

) + 2

∞∑
n=1

(−1)(m+1)n

(
Γ(5/4)

Γ(3/4)

)4mn

(4m+ 1)1+n/2

Λ
2(4m+1)n
± α2mn−1

F
(
−1

4 ,
3
4 | −

α
(4m+1)

)n−1

F
(
−1

4 ,
5
4 |

α
(4m+1)

)n+1 , (A.16)

where once again the choice of transseries parameter σ± inside Λ± is correlated with Imα >

0 or Imα < 0.

B Strong coupling expansions

Here we explicitly give the strong coupling expansion up to the next-to-leading non-

perturbative sector.21 The perturbative strong coupling expansion is

Γ(0)
cusp(g) = 1− 1.039720771

2πg
− 0.2289913985

(2πg)2
− 0.3648665524

(2πg)3
− 0.9405461014

(2πg)4

− 3.356917310

(2πg)5
− 15.29423354

(2πg)6
− 84.82236515

(2πg)7
− 554.5319782

(2πg)8

− 4176.215725

(2πg)9
− 35606.52529

(2πg)10
+O(g−11).

(B.1)

21More precise and higher order coefficients are available on request to the authors.
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These are, of course, in agreement with the result in [22]. The expansion around the leading

non-perturbative sector is also given by

Γ(1)
cusp(g) = 1− 0.1448603854

2πg
− 0.09386941600

(2πg)2
− 0.1497324850

(2πg)3
− 0.4027284495

(2πg)4

− 1.474755598

(2πg)5
− 6.864834982

(2πg)6
− 38.67465784

(2πg)7
− 255.9115123

(2πg)8

− 1945.413351

(2πg)9
− 16710.57008

(2πg)10
+O(g−11).

(B.2)

The expansion of Γ
(2)
cusp(g) is

Γ(2)
cusp(g) = 1− 0.7500000000

2πg
+

0.8454723241

(2πg)2
− 2.487756295

(2πg)3
+

7.504881881

(2πg)4

− 37.76786450

(2πg)5
+

186.9836409

(2πg)6
− 1324.269347

(2πg)7
+

9157.551684

(2πg)8

− 83418.23010

(2πg)9
+

741922.2110

(2πg)10
+O(g−11).

(B.3)

Similarly, the “perturbative” part of the mass gap in (3.30) is

m
(0)
O(6) = 1− 0.07243019271

2πg
− 0.04955777441

(2πg)2
− 0.07845572166

(2πg)3
− 0.2082747743

(2πg)4

− 0.7563512718

(2πg)5
− 3.500599444

(2πg)6
− 19.64470145

(2πg)7
− 129.6331369

(2πg)8

− 983.5017470

(2πg)9
− 8435.500952

(2πg)10
+O(g−11).

(B.4)

The expansions in the non-perturbative sectors are given by

m
(1)
O(6) = 1− 0.6775698073

2πg
+

0.8459535867

(2πg)2
− 2.381606844

(2πg)3
+

7.529420762

(2πg)4

− 36.65893377

(2πg)5
+

187.6790274

(2πg)6
− 1294.485118

(2πg)7
+

9189.267411

(2πg)8

− 81900.06954

(2πg)9
+

744213.7198

(2πg)10
+O(g−11).

(B.5)

and

m
(2)
O(6) = 1− 1.282709422

2πg
+

2.107658901

(2πg)2
− 5.742053268

(2πg)3
+

18.79808052

(2πg)4

− 85.81920322

(2πg)5
+

440.6817456

(2πg)6
− 2896.496146

(2πg)7
+

20598.28223

(2πg)8

− 177671.1890

(2πg)9
+

1.620648725× 106

(2πg)10
+O(g−11).

(B.6)

C Three instantons corrections

As we mentioned in the main text, the solution to the quantization condition (3.13), and

hence the cusp anomalous dimension, stop being a one parameter transseries at the order
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O(Λ6). To show this we analyzed the solution to (3.13) using the methods of [35]. As

shown in [35], we can rewrite (3.13) as

∑
n≥1

c+(n, g)
nU+

0 (4πng)r(xm) + U+
1 (4πng)xm

n− xm

+
∑
n≥1

c−(n, g)
nU−0 (4πng)r(xm) + U−1 (4πng)xm

n+ xm
= 1,

(C.1)

with m ∈ Z, where the undetermined functions f0(t) and f1(t) are written in terms of the

coefficients c±(n, g)

f0(t) = −1 +

∞∑
n=1

t

(
c+(n, g)

U+
1 (4πng)

4πng − t
+ c−(n, g)

U−1 (4πng)

4πng + t

)
, (C.2)

f1(t) =
∞∑
n=1

4πng

(
c+(n, g)

U+
0 (4πng)

4πng − t
+ c−(n, g)

U−1 (4πng)

4πng + t

)
. (C.3)

These coefficients can be found by using the transseries ansatz

c±(n, g) = (8πng)±1/4
∞∑
m=0

Λ2m
∞∑
k=0

c
(m,k)
± (n)

(4πg)k
, Λ ∼ O(g1/2e−2πg) , (C.4)

and solving order by order in 1/g and order by order in Λ the infinite set of equations

(C.1).

Then, proceeding in the same way as [35], we find the first few coefficients. In the

perturbative sector, the solutions are

c
(0,0)
+ (n) = a+(n) ≡

2Γ(n+ 1
4)

Γ2(1
4)Γ(n+ 1)

,

c
(0,1)
+ (n) = −a+(n)

(
3 log 2

4
+

3

32n

)
,

c
(0,0)
− (n) = a−(n) ≡

Γ(n+ 3
4)

2Γ2(3
4)Γ(n+ 1)

,

c
(0,1)
− (n) = a−(n)

(
3 log 2

4
+

5

32n

)
,

c
(0,2)
+ (n) = a+(n)

(
K

8
− 27 log2 2

32
− 27 log 2

128n
− 63

2048n2

)
,

c
(0,2)
− (n) = a−(n)

(
7K

8
+

45 log2 2

32
+

75 log 2

128n
+

225

2048n2

)
,

(C.5)

In the leading non-perturbative sector, we find

c
(1,0)
+ (n) = 0,

c
(1,1)
+ (n) = −1

2
a+(n),

c
(1,0)
− (n) = a−(n− 1),

c
(1,1)
− (n) = a−(n− 1)

(
1

4
− 3 log 2

4
+

1

32n

)
,

c
(1,2)
+ (n) = −a+(n)

(
−3

8
+

3 log 2

8
+

9

64n

)
,

c
(1,2)
− (n) = a−(n− 1)

(
−15

32
+

K

8
+

9 log 2

16
− 27 log2 2

32
+
−7 + 9 log 2

128n
+

25

2048n2

)
.

(C.6)
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At the next-to-leading order, we get

c
(2,0)
+ (n) = 0,

c
(2,1)
+ (n) = 0,

c
(2,2)
+ (n) =

1

4
a+(n),

c
(2,0)
− (n) = 0,

c
(2,1)
− (n) = −1

2
a−(n− 1),

c
(2,2)
− (n) = a−(n− 1)

(
1− 3 log 2

8
− 1

64n

)
.

(C.7)

Up to this order all of the above coefficients are perfectly consistent with a one pa-

rameter transseries expansion for the cusp anomalous dimension, essentially because up to

this order we could have truncated to the perturbative level all but the m = 0 equations

in (C.1). At the three instanton level though, the transseries expansion (A.15) for r(x1)

contains a Λ6 term.

c
(3,0)
+ (n) = 0,

c
(3,1)
+ (n) = 0,

c
(3,2)
+ (n) = −a+(n− 1)

(
4

Γ(5/4)4

√
3Γ(3/4)4

)
,

c
(3,0)
− (n) = 0,

c
(3,1)
− (n) = 0,

c
(3,2)
− (n) =

1

4
a−(n− 1).

(C.8)

Using all of these results, we get the following strong coupling expansion of Γcusp(g):

Γcusp(g)

2g
= Γ(0)

cusp(g)− Λ2

2πg
Γ(1)

cusp(g) +
Λ4

16π2g2
Γ(2)

cusp(g)− Λ6

128π3g3
Γ(3)

cusp(g) +O(Λ8), (C.9)

where

Γ(0)
cusp(g) = 1− 3 log 2

4πg
− K

16π2g2
+

(
−3 log 2

64π3
K− 27

2048π3

)
1

g3
+O(g−4),

Γ(1)
cusp(g) = 1 +

3(1− 2 log 2)

16πg
+

8K− 9(3− 4 log 2 + 4 log2 2)

512π2g2
+O(g−3),

Γ(2)
cusp(g) = 1− 3

8πg
+O(g−2),

Γ(3)
cusp(g) = 1− 16

Γ(5
4)4

3
√

3Γ(3
4)4

+O(g−1) .

(C.10)

These values are all consistent with the results presented in Appendix B.

Note that the leading order of Γ
(3)
cusp(g) is different from one, this means that the order

O(Λ6) should actually be rewritten as

Λ6

128π3g3
Γ(3)

cusp(g) =
σ3
± + σ̃±

128π3g3

(√
2πge−2πg

)3
, (C.11)

with the usual transseries parameter σ± = e∓3πi/4Γ(3
4)/Γ(5

4) and the new second transseries

parameter

σ̃± = −e∓3πi/4 16Γ(5
4)

3
√

3Γ(3
4)
. (C.12)

From the correct transseries expansion for the coefficients c±(n, g), we can easily obtain

the mass gap transseries expansion from equation (3.28). As it turns out also the mass gap
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is described by an transseries with infinitely many transseries parameters and at order Λ6

is given by

mO(6) =

√
2

Γ(5
4)

(2πg)1/4e−πg
[(

1 +
3− 6 log 2

32πg
+

16K − 63 + 198 log 2− 108(log 2)2

2048(πg)2
+O(g−3)

)
−

Λ2
±

8πg

(
1− 15− 6 log 2

32πg
+O(g−2)

)
+

Λ4
±

(8πg)2
(1 +O(g−1))

+
Λ6
±

(8πg)2

4
√

3

3
(1 +O(g−1)

]
. (C.13)

Note precisely how the Λ6 leading order is not the one that could be guessed from a one

parameter transseries ansatz!

Obviously also these values are all consistent with the results presented in Appendix

B.

References

[1] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,”

Adv. Theor. Math. Phys. 2, 231 (1998) [hep-th/9711200].

[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from noncritical

string theory,” Phys. Lett. B 428, 105 (1998) [hep-th/9802109].

[3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998)

[hep-th/9802150].

[4] N. Beisert, C. Ahn, L. F. Alday, Z. Bajnok, J. M. Drummond, L. Freyhult, N. Gromov and

R. A. Janik et al., “Review of AdS/CFT Integrability: An Overview,” Lett. Math. Phys. 99,

3 (2012) [arXiv:1012.3982 [hep-th]].

[5] N. Gromov, V. Kazakov, S. Leurent and D. Volin, “Quantum Spectral Curve for Planar

N = 4 Super-Yang-Mills Theory,” Phys. Rev. Lett. 112, no. 1, 011602 (2014)

[arXiv:1305.1939 [hep-th]].

[6] N. Gromov, V. Kazakov, S. Leurent and D. Volin, “Quantum spectral curve for arbitrary

state/operator in AdS5/CFT4,” arXiv:1405.4857 [hep-th].

[7] L. F. Alday and J. M. Maldacena, “Gluon scattering amplitudes at strong coupling,” JHEP

0706, 064 (2007) [arXiv:0705.0303 [hep-th]].

[8] J. M. Drummond, G. P. Korchemsky and E. Sokatchev, “Conformal properties of four-gluon

planar amplitudes and Wilson loops,” Nucl. Phys. B 795, 385 (2008) [arXiv:0707.0243

[hep-th]].

[9] A. Brandhuber, P. Heslop and G. Travaglini, “MHV amplitudes in N=4 super Yang-Mills

and Wilson loops,” Nucl. Phys. B 794, 231 (2008) [arXiv:0707.1153 [hep-th]].

[10] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, “Conformal Ward identities

for Wilson loops and a test of the duality with gluon amplitudes,” Nucl. Phys. B 826, 337

(2010) [arXiv:0712.1223 [hep-th]].

[11] N. Beisert, B. Eden and M. Staudacher, “Transcendentality and Crossing,” J. Stat. Mech.

0701, P01021 (2007) [hep-th/0610251].

– 38 –



[12] B. Eden and M. Staudacher, “Integrability and transcendentality,” J. Stat. Mech. 0611,

P11014 (2006) [hep-th/0603157].

[13] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N=6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810, 091 (2008)

[arXiv:0806.1218 [hep-th]].

[14] N. Drukker, M. Marino and P. Putrov, “From weak to strong coupling in ABJM theory,”

Commun. Math. Phys. 306, 511 (2011) [arXiv:1007.3837 [hep-th]].

[15] N. Gromov and G. Sizov, “Exact Slope and Interpolating Functions in N=6 Supersymmetric

Chern-Simons Theory,” Phys. Rev. Lett. 113, no. 12, 121601 (2014) [arXiv:1403.1894

[hep-th]].

[16] Z. Bern, M. Czakon, L. J. Dixon, D. A. Kosower and V. A. Smirnov, “The Four-Loop Planar

Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills

Theory,” Phys. Rev. D 75, 085010 (2007) [hep-th/0610248].

[17] F. Cachazo, M. Spradlin and A. Volovich, “Four-loop cusp anomalous dimension from

obstructions,” Phys. Rev. D 75, 105011 (2007) [hep-th/0612309].

[18] M. K. Benna, S. Benvenuti, I. R. Klebanov and A. Scardicchio, “A Test of the AdS/CFT

correspondence using high-spin operators,” Phys. Rev. Lett. 98, 131603 (2007)

[hep-th/0611135].

[19] L. F. Alday, G. Arutyunov, M. K. Benna, B. Eden and I. R. Klebanov, “On the Strong

Coupling Scaling Dimension of High Spin Operators,” JHEP 0704, 082 (2007)

[hep-th/0702028 [HEP-TH]].

[20] I. Kostov, D. Serban and D. Volin, “Strong coupling limit of Bethe ansatz equations,” Nucl.

Phys. B 789, 413 (2008) [hep-th/0703031 [HEP-TH]].

[21] M. Beccaria, G. F. De Angelis and V. Forini, “The Scaling function at strong coupling from

the quantum string Bethe equations,” JHEP 0704, 066 (2007) [hep-th/0703131].

[22] B. Basso, G. P. Korchemsky and J. Kotanski, “Cusp anomalous dimension in maximally

supersymmetric Yang-Mills theory at strong coupling,” Phys. Rev. Lett. 100, 091601 (2008)

[arXiv:0708.3933 [hep-th]].

[23] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “A Semiclassical limit of the gauge /

string correspondence,” Nucl. Phys. B 636, 99 (2002) [hep-th/0204051].

[24] M. Kruczenski, R. Roiban, A. Tirziu and A. A. Tseytlin, “Strong-coupling expansion of cusp

anomaly and gluon amplitudes from quantum open strings in AdS5 × S5,” Nucl. Phys. B

791, 93 (2008) [arXiv:0707.4254 [hep-th]].

[25] R. Roiban, A. Tirziu and A. A. Tseytlin, “Two-loop world-sheet corrections in AdS5 × S5

superstring,” JHEP 0707, 056 (2007) [arXiv:0704.3638 [hep-th]].

[26] R. Roiban and A. A. Tseytlin, “Strong-coupling expansion of cusp anomaly from quantum

superstring,” JHEP 0711, 016 (2007) [arXiv:0709.0681 [hep-th]].

[27] J. Ecalle, “ Les Fonctions Resurgentes,” vol. I - III. Publ. Math. Orsay, 1981.

[28] J. Zinn-Justin, “Perturbation Series at Large Orders in Quantum Mechanics and Field

Theories: Application to the Problem of Resummation,” Phys. Rept. 70 (1981) 109.

[29] A. Voros, “The Return of the Quartic Oscillator: The Complex WKB Method,” Ann. Inst.
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