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Abstract: We construct a UV completion of the relaxion in a warped extra dimension.

We identify the relaxion with the zero mode of the fifth component of a bulk gauge field

and show how hierarchically different decay constants for this field can be achieved by

different localizations of anomalous terms in the warped space. This framework may also

find applications for other axion-like fields. The cutoff of the relaxion model is identified

as the scale of the IR brane where the Higgs lives, which can be as high as 106 GeV, while

above this scale warping takes over in protecting the Higgs mass.
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1 Introduction

The traditional paradigms to approach the hierarchy problem of the Standard Model require

new physics close to the electroweak scale, attributing the smallness of the Higgs mass

to a symmetry protection (e.g. supersymmetry) or to the lowering of the cutoff of the

theory (e.g. technicolor). This class of solutions has been a guide to model building of

physics beyond the Standard Model for many years and one of the leading motivations

of searches for new physics at the LHC. An alternative possibility does not predict new

physics at the TeV scale, but instead requires multiple vacua with a large range of possible

values of the Higgs mass and a selection mechanism such that we end up in the vacuum

where the Higgs is light. Recently, a new dynamical selection mechanism was proposed,

the cosmological relaxation of the electroweak scale [1] (see also [2–11]). It relies on the

scanning of the Higgs mass parameter by a new field, the relaxion, and a back-reaction

mechanism that is triggered when the vacuum expectation value (VEV) of the Higgs has
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reached the electroweak scale, making the relaxion evolution stop.1 This is a radical change

of paradigm as it implies that the naturalness problem of the Standard Model ceases to be

a reason to expect new physics close to the TeV scale.

In what follows we review the relaxation mechanism for which an axion-like scalar φ

is introduced which couples to the Higgs doublet H via the potential

V (φ,H) ⊃ −
(
Λ2 − g′Λφ

)
H2 + λH4 + gΛ3φ + Λ4

f (H) cos

(
φ

f

)
. (1.1)

Here Λ is the cutoff which sets the Higgs mass parameter, f the decay constant of the

relaxion, λ the Higgs quartic coupling, g and g′ are small dimensionless couplings, and

Λf (H) is a scale which depends on the Higgs VEV. Assuming a classical time evolution

with slow-roll conditions, the second-last term in Eq. (1.1) causes the relaxion to move

downwards following its potential. The effective Higgs mass parameter in the φ background,

the first term in parenthesis in Eq. (1.1), then varies accordingly. The relaxion is assumed

to start with a VEV such that this mass parameter is initially positive. Due to the evolution

of the relaxion, the mass parameter then eventually turns tachyonic, triggering electroweak

symmetry breaking. In the presence of a Higgs VEV, the oscillatory barrier from the last

term grows, until its slope matches the slope of the linear term. For technically natural

parameters in the potential, this causes the relaxion to stop once the Higgs VEV has reached

the electroweak scale. There must be some mechanism to dissipate the kinetic energy of

the relaxion during its evolution such that the field does not overshoot the barriers. If the

dynamics happens during a period of inflation, Hubble friction can provide the dissipation

necessary to slow down the field [1]. As an alternative to inflation, one can also consider

friction due to particle production as proposed in Ref. [13] or finite temperature effects in

the early universe as in Ref. [14].

Note that the linear terms in φ are in conflict with the assumption that the relaxion

is a pseudo-Nambu-Goldstone boson as they explicitly break the axion shift symmetry [3].

This may be reconciled if the linear terms arise from a second oscillatory potential with a

period much larger than f . This is realized if the potential takes the form [15–17]:2

V (φ,H) ⊃ −Λ2H2 + λH4 + Λ4
F (H) cos

(
φ

F

)
+ Λ4

f (H) cos

(
φ

f

)
, (1.2)

where F � f is another decay constant and ΛF (H) another scale that depends on the Higgs

in such a way as to reproduce the second and fourth term in Eq. (1.1) after expanding in

φ/F . An interesting possibility to obtain this type of potential is the clockwork construction

which was first realized for axion-like fields in Refs. [15, 16] and generalized for applications

other than the relaxion in Ref. [25]. Further developments regarding the 5D continuum

limit of the clockwork can be found in Refs. [26–29]. Besides the clockwork, one can

1See also Nnaturalness [12], where instead of multiple vacua, many copies of the Standard Model are

considered to explain the smallness of the electroweak scale. The way reheating behaves is such that only

the copy with the smallest Higgs mass is efficiently reheated.
2See also Refs. [18–23] for similar earlier ideas in inflation model building. For the viability of the

relaxation mechanism in string theory in the context of axion monodromy, see Ref. [24].
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also generate a potential of the form in Eq. (1.2) in realizations inspired by dimensional

deconstruction [30, 31], as in Ref. [17].

In this work, we show how the required potential for the relaxation mechanism to

work can be naturally obtained by embedding the relaxion and Higgs into a warped extra

dimension. We consider a slice of AdS5 space which is bounded by two branes, as in the

Randall-Sundrum model [32]. However, in our setup the IR scale or warped-down AdS

scale is not of order TeV but can be much larger. We introduce a U(1) gauge field in the

bulk of the extra dimension and break the gauge symmetry on the two branes. The 5th

component A5 of the gauge field then gives rise to one massless scalar mode in 4D which

we identify with the relaxion. In order to generate a potential, we introduce anomalous

couplings of A5 to two non-abelian gauge groups. The wavefunction of the massless mode

from A5 is exponentially peaked towards the IR brane (see e.g. [33–35]). Depending on

where the anomalous terms are localized, this can yield a large hierarchy between the

decay constants for the couplings of the relaxion to the gauge groups. We assume that

the gauge groups confine at energies below the compactification scale. Instantons then

generate periodic potentials for the relaxion as in Eq. (1.2) with periods given by the decay

constants.3 Due to the warping, these periods can thus naturally be hierarchically different

as required. We embed the Higgs at or near the IR brane. Its mass parameter is then

naturally of order the IR scale which we identify with the cutoff of the relaxion theory.

The required Higgs-relaxion couplings can be obtained by introducing fermions on the

IR brane with higher-dimensional or Yukawa couplings to the Higgs. To summarize, the

warping does two things: Firstly, it generates the hierarchy between the decay constants F

and f in Eq. (1.2) and thereby explains the smallness of the couplings g and g′ in Eq. (1.1).

Secondly, it provides a UV completion4 for the relaxion. The relaxation mechanism protects

the Higgs up to the IR scale above which warping takes over.5

We find that for anomalous couplings localized on the UV brane, IR brane and in the

bulk, the decay constants are respectively of order M2
PL/ΛIR, MPL and ΛIR with MPL and

ΛIR being the Planck and IR scales. This gives three hierarchical combinations of decay

constants: i) F = M2
PL/ΛIR, f = ΛIR, ii) F = MPL, f = ΛIR or iii) F = M2

PL/ΛIR, f = MPL.

Generating a suitable barrier Λ4
f (H) cos(φ/f) for the relaxion requires some additional

structure. The reason is that this term generically contains a contribution which is inde-

pendent of the Higgs and which could stop the relaxion before the Higgs VEV has reached

3A potential for A5 is generated perturbatively if the underlying gauge field is coupled to charged bulk

states. In the non-abelian case (see e.g. [33]), this includes the gauge fields themselves due to the non-linear

interactions, while the abelian case requires charged scalars or fermions in the bulk (see e.g. [36]). Here

we consider a U(1) gauge field and do not add charged bulk states as we are interested in generating a

non-perturbative potential for A5.
4As a caveat, we should stress that the Randall-Sundrum model itself requires a UV completion. In

particular, near the IR brane gravity becomes strongly coupled at energies not far above the IR scale. Near

that brane, the UV completion therefore needs to kick in at correspondingly low scales. There are known

UV completions to the Randall-Sundrum model in string theory [37, 38].
5See [6, 10, 11] for how the relaxation mechanism can protect the Higgs up to some high supersymmetry-

breaking scale instead. See [39], on the other hand, for a warped model where an accidental form of

supersymmetry protects a (little) hierarchy between the IR scale and the electroweak scale.
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the electroweak scale. To avoid this problem, we consider two different options. One em-

ploys a construction from Ref. [1] for which new fermions are introduced which couple to the

Higgs. If the masses of these fermions are near the electroweak scale, the Higgs-independent

barrier can be sufficiently small. The drawback of this construction is a coincidence prob-

lem as it requires to introduce the fermions at a scale which is dynamically generated by

the relaxation mechanism and thus a priori determined by completely different parameters.

An interesting alternative is the so-called double-scanner mechanism of Ref. [2] (see also

[10]). To this end, one introduces another axion-like scalar which dynamically cancels off

the Higgs-independent barrier. We identify this axion-like scalar with the 5th component

of another U(1) gauge field in the bulk of the extra dimension. We then show how the

potential which is required for the double-scanner mechanism can be obtained. This con-

struction is largely independent of the embedding into warped space and can therefore

also be useful for other UV completions of the relaxion. For both options to generate the

barrier, we discuss the relevant theoretical and phenomenological constraints for successful

relaxation. The highest cutoff and IR scale consistent with these constraints in our warped

implementation of the relaxation mechanism is Λ = ΛIR . 106 GeV and is achieved for the

decay constants being F = M2
PL/ΛIR and f = ΛIR.

The plan of this work is as follows. In Sec. 2, we discuss the properties of the A5

and show how hierarchical decay constants can be obtained. In Sec. 3, we generate the

desired potential for the relaxation mechanism. We analyse the relevant constraints to

guarantee a successful relaxation of the electroweak scale in Sec. 4. In Sec. 5, we present

our implementation of the double-scanner mechanism and we conclude in Sec. 6. Additional

details are given in two appendices.

2 Hierarchical decay constants from warped space

We will now show how hierarchical decay constants can be obtained from warped space.

These will be used in later sections to generate the relaxion potential. We consider a slice

of AdS5 space with metric in conformal coordinates given by

ds2 = a2(z) (ηµνdx
µdxν − dz2) , (2.1)

where a(z) = (kz)−1 is the warp factor with k being the AdS curvature scale (see e.g. [40]

for a review). The slice is bounded by the UV brane at zUV = 1/k and the IR brane at

zIR = ekL/k. The length L of the extra dimension can be stabilized for example by means

of the Goldberger-Wise mechanism [41]. The effective 4D Planck scale for this space is

given by M2
PL 'M3

∗ /k, where M∗ is the 5D Planck scale. We will assume that the Planck

scale and the AdS scale are of the same order of magnitude (and will later often equate

them). For later convenience, let us also define the IR scale ΛIR ≡ k e−kL.

Let us consider a U(1) gauge boson in the bulk. Its action is given by

S5D ⊃
∫
d4x dz

√
g

(
− 1

4g2
5

FMNF
MN

)
, (2.2)
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where FMN is the U(1) field strength, g5 the 5D gauge coupling and
√
g = a5(z). In order

to eliminate the mixing between Aµ and A5, we add the gauge fixing term (see e.g. [33, 42])

S5D ⊃ −
∫
d4x dz

√
g

1

2g2
5ξ

[
gµν∂µAν −

g55ξ

a(z)
∂5(A5a(z))

]2

. (2.3)

The bulk equations of motion for the 4D component Aµ and the 5th component A5 then

read

ηµσηλν
(
∂σ Fµλ +

1

ξ
∂λ∂µAσ

)
+ a(z)−1∂5

(
a(z)ηµν∂5Aµ

)
= 0 (2.4)

ηµν∂µ∂ν A5 + ξ∂5

(
a(z)−1∂5

(
a(z)A5

))
= 0 . (2.5)

We are interested in obtaining a massless scalar mode from the bulk gauge boson.

To this end, we break the gauge symmetry on both branes by imposing Dirichlet bound-

ary conditions on Aµ. For consistency, this then requires to impose Neumann boundary

conditions for A5. Together the boundary conditions read

Aµ|UV,IR = 0 , ∂5

(
a(z)A5

)∣∣
UV,IR

= 0 . (2.6)

Alternatively we could break the gauge symmetry with Higgs fields on the two branes (see

e.g. [43, 44]). The above boundary conditions are then obtained in the limit of their VEVs

going to infinity. In unitary gauge, ξ →∞, the bulk equation of motion for A5 gives

∂5

(
a(z)−1∂5

(
a(z)A5

))
= 0 . (2.7)

Notice that this equation is consistent with the boundary conditions and there is thus one

massless mode from A5. Its other Kaluza-Klein modes are all eaten by Aµ. In particular,

there is no massless mode from Aµ, consistent with the fact that the gauge symmetry is

broken. As usual, the A5 massless mode can be parameterized as

A5(x, z) = h(z)φ(x) , (2.8)

where h(z) is its profile along the extra dimension. From Eqs. (2.6) and (2.7), we then

see that h(z) = Na(z)−1. Demanding canonically normalized kinetic terms for φ(x), the

normalization constant N of the wavefunction is determined by

N 2

g2
5

∫ zIR

zUV

dz

a(z)
= 1 . (2.9)

For kL � 1, this gives N ' g4

√
2kL e−kL, where we define the dimensionless coupling

g4 ≡ g5/
√
L. Altogether, the wavefunction of the massless mode then reads

h(z) ' g4

√
2kL e−kLkz . (2.10)

The wavefunction is thus peaked towards the IR brane (see Fig. 1 for a sketch of the

wavefunction profile in the extra dimension). Furthermore, the fact that N → 0 for zIR →
∞ shows that the A5 massless mode is indeed localized in the IR.
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Figure 1. Sketch of a slice of AdS5 space which is bounded by two branes. We identify the relaxion

with the 5th component of a U(1) gauge field in the bulk. Its wavefunction is then localized towards

the IR brane. The Higgs is localized on (or near) the IR brane. The UV brane corresponds to the

Planck scale. We draw the IR brane with a dashed contour as a reminder that the IR scale in our

model can be much larger than the usual TeV scale of the Randall-Sundrum model.

Performing a 5D gauge transformation, AM (x, z)→ AM (x, z)+∂Mα(x, z), we see that

the boundary conditions in Eq. (2.6) remain invariant only for the subset of transformations

α = B z2 + C (2.11)

with B and C being independent of x and z. The remaining symmetry in 4D is thus

global, again consistent with the fact that the gauge symmetry is broken. Under this

remnant symmetry, the massless mode transforms as

φ → φ +
2B

Nk
. (2.12)

At this point, the relaxion is thus an exact Nambu-Goldstone boson which non-linearly

realizes a remnant global U(1). By virtue of the 5D gauge invariance, no 5D local, higher-

dimensional operators can break this shift symmetry (see [45] for a detailed discussion). A

potential for the relaxion could be generated by non-local effects in the presence of bulk

states which are charged under the U(1) but we will assume such states to be absent from

the theory.6 Instead we will introduce anomalous couplings of the relaxion to confining non-

abelian gauge groups. A potential then arises from instantons, similar to what happens

for the axion in QCD. These anomalous couplings may be localized on the branes or in

the bulk. In what follows, we show that these possibilities, thanks to the warp factor,

can naturally explain the required hierarchy between the decay constants in the relaxion

potential.

2.1 Anomalous couplings from the bulk

Let us add a non-abelian gauge group in the bulk, whose field strength and coupling we

denote respectively as GNP and gc5. We choose boundary conditions for the gauge field such

6Alternatively, for example for bulk fermions charged under the U(1) it is sufficient if their masses are

somewhat larger than the AdS scale in which case any perturbative contribution to the potential is highly

suppressed (see e.g. [33, 46]).
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that the 4D gauge symmetry remains unbroken on the branes. Its tower of Kaluza-Klein

modes then contains one massless mode which is the 4D gauge boson. We next introduce

a Chern-Simons coupling of the U(1) gauge field to this gauge group. Including the kinetic

term, the action reads

S5D ⊃
∫
d4x dz

(
√
g
−1

2(gc5)2
Tr
[
GMNG

MN
]

+
cb

16π2
εMNPQRAMTr [GNPGQR]

)
,

(2.13)

where cb is a dimensionless constant and the normalization is chosen for later convenience.7

Under a U(1) gauge transformation AM (x, z) → AM (x, z) + ∂Mα(x, z), the action trans-

forms as

S5D → S5D −
∫
d4x dz α(x, z)

cb
16π2

εµνρσTr [GµνGρσ]
(
δ(z − zUV) − δ(z − zIR)

)
. (2.14)

The Chern-Simons term thus induces an anomaly for the U(1) symmetry on the branes.

This is not a problem, however, since the symmetry is only global on the branes and there

are thus no gauge anomalies.

In the 4D effective theory, this gives rise to an anomalous coupling for φ. Let us

restrict ourselves to the massless mode of the non-abelian gauge field, whose field strength

we denote as Gµν . Integrating over the extra dimension, Eq. (2.13) then in particular gives

S4D ⊃
∫
d4x

(
−1

2(gc4)2
Tr [GµνG

µν ] +
φ(x)

16π2fB
εµνρσTr [GµνGρσ]

)
, (2.15)

where gc4 = gc5/
√
L is the gauge coupling of the massless mode. The decay constant is given

by [42, 45]

fB ≡
[
cb

∫ zIR

zUV

dz h(z)

]−1

=
N
cbg

2
5

' 2k e−kL

cb g4

√
2kL

(2.16)

which is of order the IR scale ΛIR and thus warped-down. From Eqs. (2.12), (2.14) and

(2.15), we see that φ reproduces the anomaly under a transformation α = Bz2. In Ap-

pendix A, we briefly review how Chern-Simons terms can arise from charged bulk fermions.

As we also discuss there, any perturbative contribution from such a fermion to the potential

for A5 can be sufficiently suppressed. Nevertheless, in the remainder of this paper we will

never assume any charged bulk states and will instead include the Chern-Simons terms

directly into our effective 5D theory.

Note that Eq. (2.13) also yields couplings of φ to the higher Kaluza-Klein modes of

the non-abelian gauge field. As Eq. (2.15) for the massless mode, these couplings are

total derivatives (see e.g. Ref. [47]) and therefore do not contribute perturbatively to the

potential for φ. We will later assume that the non-abelian gauge group confines in order

to generate a non-perturbative potential for φ. But we will choose the confinement scale

below the IR scale and thus below the Kaluza-Klein masses. The Kaluza-Klein modes of

the non-abelian gauge group therefore do not contribute non-perturbatively to the potential

either.
7Note that a factor of 2 arises from the normalization Tr[T aT b] = 1

2
δa,b of the generators of the non-

abelian gauge group.
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2.2 Anomalous couplings from the branes

We now discuss how one can obtain hierarchical decay constants from localized anomalies.

To this end, we consider an anomalous coupling of A5 which is localized on the UV brane,

S5D ⊃
∫
d4x dz δ(z − zUV)

cUV

16π2

A5

k
εµνρσ Tr [GµνGρσ] , (2.17)

where cUV is a dimensionless constant and GMN is the field strength of a non-abelian gauge

field in the bulk (though it could equally well be restricted to the brane). Let us again

restrict ourselves to the massless mode of that gauge field, whose field strength we denote

as Gµν . Using the wavefunction of the massless mode of A5 from Eqs. (2.8) and (2.10),

this gives

S4D =

∫
d4x

1

16π2

φ(x)

fUV

εµνρσ Tr [GµνGρσ] (2.18)

with decay constant given by [42]

fUV ≡
k

cUV h(zUV)
' k ekL

cUV g4

√
2kL

(2.19)

or fUV ∼ M2
PL/ΛIR. We see that a warped-up decay constant, much larger than the cutoff,

appears naturally in this case. This large decay constant can be intuitively understood as

being of order the natural scale MPL on the UV brane times an inverse suppression factor

from the wavefunction overlap of A5 with the UV brane.

The coupling in Eq. (2.17) can, for example, be generated with chiral fermions η and ηc

localized on the UV brane which are respectively in the fundamental and anti-fundamental

representation of the non-abelian group and couple to A5 as

S5D ⊃
∫

d4x dz
√
−gUV δ(z − zUV)

(
η i /D η†+ ηc i /D ηc †−meiA5/kη ηc + h.c.

)
. (2.20)

Here gUV is the determinant of the induced metric on the UV brane, Dµ = ∂µ ± iGµ the

covariant derivative with plus (minus) corresponding to η (ηc), Gµ the gauge field of the

non-abelian group and m ∼ k is of order the UV scale. The coupling to A5 is invariant

under the remnant global symmetry under which A5 → A5 + 2Bz (cf. Eq. (2.11)) if the

fermions transform for example as η → e−2iB/k2η and ηc invariant. At the quantum level,

this shift symmetry is anomalous, such that after integrating-out the fermions, the triangle

anomaly leads to the coupling of Eq. (2.17).

Alternatively, we can consider an anomalous coupling of A5 localized on the IR brane,

S5D ⊃
∫
d4x dz δ(z − zIR)

cIR
16π2

A5

k
εµνρσTr [GµνGρσ] , (2.21)

with cIR a dimensionless constant. Such a coupling can, for example, arise from fermions

on the IR brane in analogy to what we considered for the UV brane. This then gives

S4D ⊃
∫
d4x

1

16π2

φ(x)

fIR
εµνρσTr [GµνGρσ] , (2.22)
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with decay constant given by [42]

fIR ≡
k

cIR h(zIR)
' k

cIR g4

√
2kL

(2.23)

or fIR ∼ MPL. An anomalous coupling on the IR brane thus leads to a decay constant of

order the Planck scale.

We conclude that a large hierarchy of decay constants is possible, depending on the

localization of the anomalous interactions in the warped space. This scenario allows for

three different hierarchical combinations of decay constants: i) F = M2
PL/ΛIR, f = ΛIR,

ii) F = MPL, f = ΛIR or iii) F = M2
PL/ΛIR, f = MPL. Note that as the ratios F/f are

proportional to the warp factor, the potential in Eq. (1.2) does not respect a discrete shift

symmetry since, in general, F/f is a non-integer number. This is a consequence of the

non-local nature of the residual symmetry transformation α = Bz2 +C in Eq. (2.11) which

explicitly depends on the localization. In the following, we will build an explicit model that

makes use of this toolkit to generate a phenomenologically viable potential in the form of

Eq. (1.2).

3 Generating the relaxion potential

3.1 General setup

Let us next discuss the relaxion parameters in more detail and how they can be understood

in terms of our UV model. Provided that electroweak symmetry remains unbroken in the

confinement phase transition which generates the periodic potentials in Eq. (1.2), ΛF,f (H)

both depend quadratically on the Higgs (plus generically higher even powers of the Higgs

which are, however, not important in the following).8 We can then parametrize

Λ4
F,f (H) = Λ4

F,f

(
1 +

H2

M2
F,f

)
, (3.1)

where ΛF,f and MF,f can be understood as the scales where the periodic terms and higher-

dimensional couplings to the Higgs are generated, respectively. The potential in Eq. (1.2)

then reads

V (φ,H) = −Λ2H2 +λH4 + Λ4
F

(
1 +

H2

M2
F

)
cos

(
φ

F

)
+ Λ4

f

(
1 +

H2

M2
f

)
cos

(
φ

f

)
. (3.2)

For simplicity, we have dropped terms which may be generated at higher loop-order. We

will discuss these terms later in Sec. 4. Assuming that φ is in the linear regime of the

low-frequency cosine, φ ∼ πF/2 mod 2π, we can expand it for φ − πF/2 . F . After the

8As proposed in [1], one can also use the QCD axion as the relaxion. The last term in Eq. (1.1) is

then the usual QCD axion potential which depends linearly on the Higgs (see e.g. [48]). However, barring

additional model building, this spoils the axion solution to the strong CP problem. See also [49, 50] for

further explorations of such a QCD relaxion.
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redefinition φ− πF/2→ φ, this gives the linear part of the relaxion potential in Eq. (1.1)

with the identifications

g =
Λ4
F

FΛ3
, g′ =

Λ4
F

FM2
FΛ

(3.3)

up to factors of order one.

The last term in Eq. (3.2) stops the relaxion once the Higgs VEV has reached the

electroweak scale. For this to work, we need to ensure that Mf . vEW, otherwise, the

Higgs-independent barrier proportional to cos(φ/f) would stop the relaxion already before

the Higgs VEV has obtained the right value. Note also that the Higgs-independent barrier

receives corrections from closing the Higgs loop in the Higgs-dependent one and will thus

generically be present. We discuss radiative corrections to the potential in more detail

in Sec. 4. But to get a sense of the scales involved, we already note here that radiative

stability of the potential demands that Λ2
f . 4π vEWMf and ΛF . 4πMF .

To obtain Mf . vEW requires that the higher-dimensional coupling of the Higgs to

the periodic potential is generated near the electroweak scale. In the next section, we

make use of a construction from Ref. [1] which introduces light fermions for this purpose.

The drawback of this scenario is of course a coincidence problem: one has to assume new

particles at a scale which is dynamically generated by the relaxation mechanism and is thus

determined by a priori completely unrelated parameters. One way around this problem is

the double-scanner mechanism of Ref. [2]. To this end, one introduces another axion-like

field which dynamically cancels off the Higgs-independent barrier in Eq. (3.2). This allows

the relaxation mechanism to work even for Mf � vEW.9 We discuss a UV completion of

this scenario in Sec. 5.

3.2 A warped model

We now build a simple explicit model that successfully generates the needed terms in the

Higgs-relaxion potential at a phenomenologically viable scale, making use of the results

of Sec. 2. We assume that the Higgs is localized on or near the IR brane, so that its

mass is warped down to the IR scale (see Fig. 1). We note that it may also be possible to

implement the relaxation mechanism in a model where the Higgs is instead localized on the

UV brane. As usual, the relaxion can only protect the Higgs up to some cutoff significantly

below the Planck scale. Such a model would therefore require a UV completion above this

cutoff on the UV brane. We leave a study of this possibility to future work. As we find

later, the highest IR scale that we can achieve in our implementation of the relaxation

mechanism (while still solving the hierarchy problem) is below the GUT scale. If the

remaining Standard Model fields are then also localized on the IR brane, higher-dimensional

operators violating baryon number lead to too fast proton decay [51]. In order to suppress

these operators, we assume that the Standard Model instead lives in the bulk. As usual,

the light quarks are localized towards the UV brane, while the top-bottom doublet and

the right-handed top live nearer to the IR brane. This has the added advantage that the

hierarchy of Yukawa couplings can then be generated from the warping too. The IR scale

9Another proposal for the relaxion that does not require new physics close to the electroweak scale is

the particle-production mechanism of Ref. [13].
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in our model can be high enough, on the other hand, to ensure that oblique corrections and

flavour- and CP -violating processes are sufficiently suppressed without imposing custodial

or flavour symmetries.

We identify the relaxion with the 5th component of a U(1) gauge field in the bulk. In

order to generate a potential for this field, we add two non-abelian gauge groups Gf and

GF . Generically these live in the bulk too, although in certain cases GF can be restricted

to the IR brane as we find later. We assume that these gauge groups confine at the scales

ΛGf and ΛGF , respectively. In order to ensure that confinement can be discussed using only

the zero-modes of the bulk gauge fields, we take ΛGf and ΛGF to be below the IR scale.

This can always be arranged by choosing the 5D gauge couplings and ranks of the gauge

groups appropriately (while it is automatic for gauge groups localized on the IR brane).

We assume anomalous couplings of the relaxion φ to the field strengths Gfµν and GFµν
of the massless 4D gauge fields corresponding to Gf and GF , respectively:

S4D ⊃
∫
d4x

φ(x)

16π2
εµνρσ

(
1

F
Tr
[
GFµνG

F
ρσ

]
+

1

f
Tr
[
GfµνG

f
ρσ

])
. (3.4)

As we have discussed in Sec. 2, these can arise from Chern-Simons couplings in the bulk

and/or from anomalous couplings of A5 on the branes. For now, we only assume that

F � f and postpone concrete choices for the decay constants to Sec. 4.

On the IR brane, we add a pair of chiral fermions χ and χc in the fundamental and

antifundamental representation of GF , respectively. These fermions transform under a

chiral symmetry which we assume to be broken only by a Dirac mass mχ. This allows for

the terms in the action

S5D ⊃
∫
d4x dz

√
−gIR δ(z − zIR)mχ

(
1 +

H2

M2
PL

)
χχc + h.c. , (3.5)

where gIR is the induced metric determinant on the IR brane. We have included a higher-

dimensional coupling to the Higgs which is generically present and which we expect to be

suppressed by a scale near the Planck scale. Note that we will use the symbol H for both

the SU(2)-doublet Higgs field, writing the singlet combination |H|2 as H2 for simplicity,

and its VEV. It will be clear from context which one is meant. For simplicity, we also

ignore any numerical prefactors for now and set k = MPL. Similarly, we assume that all

parameters are real. We will reinstate prefactors and phases later on. Performing the

integral over the extra dimension and canonically normalizing the fields gives

S4D ⊃
∫
d4x mχ

(
1 +

H2

Λ2
IR

)
χχc + h.c. , (3.6)

where we have redefined e−kLmχ → mχ, e−kLH → H, e−3kL/2χ → χ and similarly for

χc. Note in particular that mχ . ΛIR after the redefinition. Let us next perform the field

redefinition

χ → eiφ/Fχ , (3.7)

while χc is left invariant. Due to the non-trivial transformation of the path integral measure,

this chiral rotation removes the coupling of φ to Tr
[
GFµνG

F
ρσ

]
in Eq. (3.4) and transforms
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χ χc N N c L Lc

GF � �̄ – – – –

Gf – – � �̄ � �̄

SU(2)L – – – – � �

U(1)Y – – – – −1
2 +1

2

Table 1. Matter content on the IR brane with gauge representations for the model with a barrier

at the electroweak scale.

Eq. (3.6) to

S4D → S4D ⊃
∫
d4xmχ

(
1 +

H2

Λ2
IR

)
eiφ/Fχχc + h.c. . (3.8)

Ifmχ is below the confinement scale of GF (which in turn is below ΛIR), this term contributes

to the Higgs-relaxion potential after confinement. Parametrizing10 〈χχc〉 = Λ3
GF , this gives

V (φ,H) ⊃ mχ Λ3
GF

(
1 +

H2

Λ2
IR

)
cos

(
φ

F

)
. (3.9)

This has the same form as the potential with period F in Eq. (3.2), including the coupling

to the Higgs. We can then make the identifications

Λ4
F = mχ Λ3

GF , M2
F = Λ2

IR . (3.10)

Next we need to generate the potentials with smaller period f . To this end, we use

a construction from Ref. [1] and add fermions L and N on the IR brane with the same

Standard Model charges as the lepton doublet and the right-handed neutrino, respectively.

In addition, these fermions are in the fundamental representation of the gauge group Gf .

We also include fermions Lc and N c in the conjugate representations. Together they allow

for the terms in the action

S5D ⊃
∫
d4x dz

√
−gIR δ(z− zIR)

(
mL LL

c + mN NN
c + y HLN c + ỹ H†LcN

)
+ h.c. .

(3.11)

Notice that we have not included a higher-dimensional coupling to the Higgs. It could be

present but will be subdominant as we will see momentarily. Performing the integral over

the extra dimension and canonically normalizing the fields gives

S4D ⊃
∫
d4x

(
mL LL

c + mN NN
c + y HLN c + ỹ H†LcN

)
+ h.c. , (3.12)

where we have redefined e−kLmL → mL, e−kLH → H, e−3kL/2L→ L and similarly for mN ,

N and the conjugated fields. Note in particular that mL,mN . ΛIR after the redefinition.

10This is thus our definition of the scale ΛGF .
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Assuming that mN � mL and restricting to a region in field space where the Higgs VEV

satisfies yỹH2 � m2
L, we can integrate out L and Lc. This gives

S4D ⊃
∫
d4x

(
mN −

yỹ H2

mL

)
NN c + h.c. . (3.13)

We can then perform the chiral rotation

N → eiφ/fN , (3.14)

while N c is left invariant. This removes the coupling of φ to Tr
[
GfµνG

f
ρσ

]
in Eq. (3.4) and

transforms Eq. (3.13) to

S4D → S4D ⊃
∫
d4x

(
mN −

yỹ H2

mL

)
eiφ/f NN c + h.c. . (3.15)

Provided that mN is below the confinement scale of Gf , this term contributes to the Higgs-

relaxion potential after confinement. Parametrizing 〈NN c〉 = Λ3
Gf , this gives

V (φ,H) ⊃ mN Λ3
Gf

(
1 − yỹ H2

mNmL

)
cos

(
φ

f

)
. (3.16)

This has the form of the potential with period f in Eq. (3.2), including the coupling to the

Higgs. We can then make the identifications

Λ4
f = mN Λ3

Gf , M2
f =

mNmL

yỹ
. (3.17)

For sufficiently small mN and mL, this allows for Mf . vEW as required in a technically

natural way. Notice that if we had instead relied on the higher-dimensional operator in

Eq. (3.5) to generate the barrier, we would have obtained Mf ∼ ΛIR � vEW. We discuss

constraints on the parameters of this construction in more detail in Sec. 4. A summary of

the matter content on the IR brane is given in Table 1.

We next reinstate the numerical prefactors and the phases of the parameters which

we have ignored so far. Let us denote the prefactor of the Higgs coupling in Eq. (3.5) as

cχH . We absorb possible phases in the fermionic condensates 〈χχc〉 and 〈NN c〉 and any

(relaxion-independent) Θ-terms for GF and Gf into the mass parameters mχ and mN ,mL,

respectively. Redoing the derivation above then gives

V (φ,H) ⊃ 2|mχ|Λ3
GF

[
cos

(
φ

F
+ bχ

)
+ |cχH |

H2

Λ2
IR

cos

(
φ

F
+ bχH

)]
+ 2|mN |Λ3

Gf

[
cos

(
φ

f
+ bN

)
− |yỹ|H2

|mNmL|
cos

(
φ

f
+ bNH

)]
, (3.18)

where the complex phases are given by bχ = arg(mχ), bχH = arg(mχcχH), bN = arg(mN )

and bNH = arg(yỹ/mL). Note that this does generically not match the form of the potential

in Eq. (3.2). Nevertheless the relaxation mechanism can still work. Indeed expanding the

first two terms in the linear part of the cosines again gives the sliding term for the relaxion
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and its linear coupling to the Higgs. In order to ensure that these terms have the same

sign as required, we need to demand that bχ ∼ bχH . As before, the Higgs-independent

barrier in the third term should be too small to stop the relaxion by itself. It is then

negligible for the dynamics and the phase bN has no consequences. The phase bNH in the

Higgs-dependent barrier in the fourth term, on the other hand, slightly shifts the minimum

where the relaxion eventually stops but has no other consequences either.

To ensure that our calculation of the potentials is applicable, the masses of the fermion

pairs χ, χc and N,N c need to be below their respective condensation scales. This means

that the chiral symmetries under which these fermion pairs transform are only weakly

broken at the confinement scales. We then expect corresponding pseudo-Nambu-Goldstone

bosons in the spectrum of composite states. As we discuss in Appendix B, their contribution

to the potential factorizes from the remaining potential and they can be trivially integrated

out if the spectrum of fermions is doubled.

4 Conditions for successful relaxation

We now discuss various conditions that need to be fulfilled for the relaxation mechanism

to be viable. In Sec. 4.1, we derive general conditions on the parameters in the relaxion

potential in Eq. (3.2). In Sec. 4.2, we then discuss additional conditions that arise in our

warped model with a barrier at the electroweak scale.

4.1 General conditions

We begin our discussion of the evolution of the Higgs and relaxion with the Higgs mass-

squared being positive and of order Λ2. In order to allow the relaxion to subsequently turn

the Higgs mass tachyonic, its average VEV φ̃ during this stage of the evolution needs to

satisfy

cos
( φ̃
F

)
&

Λ2M2
F

Λ4
F

. (4.1)

Since the left-hand side is bounded by 1, this in particular implies the condition

Λ2
F & ΛMF . (4.2)

The relaxion stops rolling down its potential when the derivatives of the periodic

terms balance each other. We will find below that MF � vEW and the term proportional to

cos(φ/F ) is thus dominated by the Higgs-independent part. On the other hand, the term

proportional to cos(φ/f) needs to be dominated by the Higgs-dependent part as discussed

in Sec. 3. The relaxion then stops once the Higgs VEV becomes

H2 ≈ M2
f

f

F

Λ4
F

Λ4
f

, (4.3)

where we have set sin(φ̃/F ) ∼ 1. This is a good approximation as long as cos(φ̃/F ) is not

very close to its extrema. The parameters need to be chosen such that the combination

on the right-hand side gives the electroweak scale vEW. In the following, we will use this

relation to trade Λf for vEW.
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Notice that the Higgs-dependent barrier H2 cos(φ/f) in the potential contributes to

the Higgs mass. Imposing that this contribution be less than the electroweak scale gives

the constraint (see e.g. Ref. [52])11

ΛF . vEW

(
F

f

)1/4

, (4.4)

where we have used Eq. (4.3). Together with Eq. (4.2), this gives the strongest constraint

on the cutoff in our model as we discuss in Sec. 4.2. In order to ensure that the Higgs

mass is scanned with sufficient precision, we need to demand that the change of the Higgs-

dependent term proportional to cos(φ/F ) over one period of the barrier, δφ ∼ f , is less

than the electroweak scale. This gives the constraint ΛF . (MF vEW)1/2(F/f)1/4 which is

weaker than Eq. (4.4).

Furthermore, there are several requirements on the inflation sector for the relaxation

mechanism to be viable. If the relaxion is not the inflaton, its energy density should be

subdominant compared to the inflaton. The energy density in the minimum where the

relaxion eventually settles needs to be (close to) zero. This requires an additional constant

contribution that is added to the potential and chosen such that the energy density at

the minimum (nearly) vanishes. The tuning that is necessary to achieve this is just a

manifestation of the cosmological constant problem. The contribution of the relaxion to

the energy density relevant for inflation is then determined by how much it changes during

its evolution. Using Eq. (4.1) in the potential of Eq. (3.2) gives the condition

HI &
MFΛ

MPL

, (4.5)

where HI is the Hubble rate during inflation. In addition, to ensure that our classical

analysis of the field evolution is applicable, quantum fluctuations of the relaxion while it

roles down the potential should be sufficiently small. Over one Hubble time, the relaxion

changes classically by (δφ)class. ∼ H−2
I dV/dφ. Its quantum fluctuations, on the other hand,

are (δφ)quant. ∼ HI . This leads to the condition

HI .
Λ

4/3
F

F 1/3
. (4.6)

Combining the last two inequalities, we get

Λ2
F &

√
F

(
MF Λ

MPL

)3/2

. (4.7)

Finally, the number of e-folds of inflation must be sufficiently large to ensure that the

relaxion scans the required field range. Denoting the latter by ∆φ, this leads to the condi-

tion Ne(δφ)class. & ∆φ. Provided that the relaxion is in the linear part of cos(φ/F ), using

11This constraint can be slightly relaxed if one includes the barrier term in the scanning of the Higgs mass

[53]. One then still needs to impose that Λ2
f . 4πMfvEW to ensure that loop corrections to the potential

are small. This gives a similar condition as Eq. (4.4) but with an additional factor
√

4π on the right-hand

side.
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Eq. (4.1) this gives

Ne &
(
HIFMFΛ

Λ4
F

)2

. (4.8)

The resulting required number of e-folds can be very large. We will not specify the inflation

sector but will simply assume that it can be arranged to fulfill the conditions in Eqs. (4.5),

(4.6) and (4.8). Possible complications in achieving this are discussed e.g. in Ref. [9]. Note

also that the above conditions are somewhat alleviated if the effect of the time evolution

of the Hubble rate during inflation is taken into accout [4].

We also need to ensure that the potential is radiatively stable. The potential is an

effective theory with a cutoff determined by the confinement scales ΛGf and ΛGF of the

gauge groups that give rise to the periodic terms (assuming they are smaller than the

cutoffs of the theories that generate the H2-terms in the potential). In the region of the

potential where the Higgs mass parameter12

m2
H(φ) ≡

Λ4
F

M2
F

cos

(
φ

F

)
− Λ2 (4.9)

is smaller than these cutoffs, the Higgs can give important corrections to the potential.

From the one-loop effective potential, we find

V (φ,H) ⊃
Λ2
GFm

2
H(φ)

16π2
+
m4
H(φ)

16π2
log

(
m2
H(φ)

Λ2
GF

)
+

Λ4
fΛ2
Gf

16π2M2
f

cos

(
φ

f

)

+

[
Λ8
f

16π2M4
f

cos2

(
φ

f

)
+

Λ4
fm

2
H(φ)

8π2M2
f

cos

(
φ

f

)]
log

(
m2
H(φ)

Λ2
Gf

)
, (4.10)

where we have neglected some subdominant terms. In the opposite region m2
H(φ) � Λ2

Gf
or Λ2

GF , on the other hand, the corrections are strongly suppressed.13 This ensures that

the term proportional to m2
H(φ) cos(φ/f) gives only a small contribution to the Higgs-

independent barrier. In order to guarantee that the other term proportional to cos(φ/f) is

suppressed too, we require that

ΛGf . 4πMf . (4.11)

Provided that ΛF . 4πMF the first two terms in Eq. (4.10) give small corrections to the

sliding term for the relaxion and do not affect the dynamics. Finally if Λ2
f . 4πMfvEW,

the cos2(φ/f)-term is negligible compared to the Higgs-dependent barrier when the Higgs

reaches the electroweak scale. Using Eq. (4.3), this translates to the constraint

ΛF .
√

4π vEW

(
F

f

)1/4

. (4.12)

This is less stringent than Eq. (4.4).

12Note that the Higgs mass parameter has an additional contribution from the cos(φ/f)-term. Since it

is subdominant except in a small region of φ, we define Eq. (4.9) without this contribution.
13See the one-loop effective potential e.g. in Eq. (2.64) of Ref. [54] in the limit U ′′ � Λ2.
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4.2 Conditions on the warped model

The Higgs is localized on or near the IR brane in our warped model. Its mass parameter

is then naturally of order Λ2
IR. We therefore identify the cutoff of our relaxion model with

the IR scale:

Λ ∼ ΛIR . (4.13)

As we have discussed in Sec. 2, depending on where the anomalous couplings are

localized, the relaxion can have the decay constants fUV ≈M2
PL/ΛIR, fIR ≈MPL or fB ≈ ΛIR.

Since F � f is required, we are left with the three combinations

F = M2
PL/ΛIR, f = ΛIR

F = MPL, f = ΛIR

F = M2
PL/ΛIR, f = MPL .

(4.14)

Note that F = MPL marks the boundary between sub- and super-Planckian decay con-

stants. The former may be constrained by the weak gravity conjecture in theories of

quantum gravity [55] (see also [56–59]) and the latter may thus be preferred.14

From the conditions in Eqs. (4.2) and (4.4) and using that MF ≈ ΛIR, we obtain upper

bounds on the IR scale in our models. For the first combination in Eq. (4.14), this gives

ΛIR .
(
v2
EWMPL

)1/3 ≈ 4 · 104 TeV . (4.15)

Note that this is slightly lower than the maximal cutoff found in Ref. [1]. The reason

is that there the bound on the cutoff is partly determined by the requirement of a finite

viable window for the Hubble rate. In our warped model, the corresponding contraint in

Eq. (4.7) is always trivially satisfied as we discuss below. The dominant bound on the cutoff

instead involves the constraint in Eq. (4.2) that the H2 cos(φ/F )-term in the potential can

compensate for a Higgs mass near the cutoff. This difference arises because g is a free

parameter in the effective description of Ref. [1], whereas in our warped model g ∝ 1/F is

determined in terms of other parameters. For the second and third combination, we find

ΛIR . v
4/5
EW M

1/5
PL ≈ 300 TeV . (4.16)

We need to ensure that collider and flavour bounds on the KK modes in our warped

model are fulfilled. We have assumed that the Standard Model fields live in the bulk. The

dominant constraints then arise from CP -violation in K−K̄-mixing and the electric dipole

moment of the neutron. This requires [62, 63]:

ΛIR & 10 TeV . (4.17)

This also satisfies constraints from electroweak precision tests without imposing a custodial

symmetry [64, 65] and on the radion (for a typical stabilization mechanism).

14However, see e.g. Ref. [60, 61] for a discussion regarding some loopholes in the application of this

conjecture to effective field theories.
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Λ F ΛF MF f Λf Mf

ΛIR

M2
PL

ΛIR
ΛIR ΛIR ΛIR

Λ
3/2
IR

M
1/2
PL

vEW 10 TeV . ΛIR . 4 · 103 TeV

ΛIR MPL ΛIR ΛIR ΛIR

Λ
5/4
IR

M
1/4
PL

vEW 185 TeV . ΛIR . 300 TeV

ΛIR

M2
PL

ΛIR
ΛIR ΛIR MPL

Λ
5/4
IR

M
1/4
PL

vEW 10 TeV . ΛIR . 76 TeV

Table 2. Parameters in the potential in Eq. (3.2) in our warped models with an electroweak-scale

barrier for the three combinations of decay constants in Eq. (4.14). The ranges for the IR scale are

allowed by all phenomenological constraints considered in this section.

The potential leads to mixing between the relaxion and the Higgs. This further

constrains the IR scale. We use results from Ref. [52], where bounds on the parameter

Λ2
br = Λ2

fvEW/Mf controlling the mixing have been derived from several experiments (fifth

force, astrophysical and cosmological probes, beam dump, flavor, and collider searches). Us-

ing Eq. (4.3), this translates to limits on ΛF and thereby on ΛIR. For the case F = M2
PL/ΛIR

and f = ΛIR, the most stringent bound comes from the distortion of the diffuse extra-

galactic background light spectrum due to relaxion late decays. This gives the constraint

ΛIR . 4 · 103 TeV. For the combination F = M2
PL/ΛIR and f = MPL, the relevant bound is

due to fifth force experiments, resulting in ΛIR . 76 TeV. Furthermore, bounds from super-

nova 1987A restrict the IR scale for the case F = MPL and f = ΛIR to be ΛIR & 185 TeV.

However, as pointed out by Ref. [52], this supernova bound should be taken only as an

order-of-magnitude estimate since it is derived using the neutrino energy loss, about whose

treatment there is no consensus in the literature (see for instance Ref. [66, 67]). One should

therefore keep in mind that the lower bound on ΛIR for this case could change but a detailed

investigation is beyond the scope of this work. In Table 2, we summarize the parameters

of the Higgs-relaxion potential and the phenomenologically viable ranges for the IR scale

for the three combinations of decay constants.

We have discussed the confinement of Gf and GF in terms of only the massless modes

of the gauge fields in our extra-dimensional model. This is a good approximation provided

that the confinement scales are smaller than the KK mass scale:15

ΛGf ,ΛGF . ΛIR . (4.18)

Since ΛF . ΛGF and MF ∼ ΛIR according to Eq. (3.10), it then follows from Eq. (4.2) that

ΛF ∼ ΛIR is required for successful relaxation. This in turn means that mχ,ΛGF ∼ ΛIR.

Since the fermions χ, χc are localized on the IR brane, the former condition can be nat-

urally fulfilled. In order to discuss the latter condition, let us focus on GF = SU(N) for

definiteness. If we estimate the confinement scale as the scale where the 4D gauge coupling

15It may be possible to alleviate this condition by including some of the KK modes in the effective theory.
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diverges, we find (see e.g. Ref. [68])16

ΛGF
MPL

≈
(

ΛIR

MPL

) 24π2

11N(gc5)2k
, (4.19)

where gc5 is the 5D gauge coupling of GF . From this we see that the confinement scale of

ΛGF is close to the IR scale if 24π2/(11N(gc5)2k) ≈ 1. This can be achieved for a wide range

of values for gc5 and N but clearly requires a coincidence between two parameters which

are a priori not related. It may be possible to instead trigger the confinement of GF by

adding states on the IR brane and thereby achieve ΛGF ∼ ΛIR without such a coincidence.

We leave a detailed study of this question to future work.

We next consider constraints related to the fermions N,N c and L,Lc on the IR brane.

The last two terms in Eq. (3.12) break the chiral symmetry of N,N c, in addition to their

Dirac mass. Loop corrections then contribute to the Dirac mass (see Fig. 2), leading to the

constraint

mN &
yỹ mL

16π2
log(ΛIR/mL) . (4.20)

The Higgs-dependent barrier can only stop the relaxion if Mf . vEW. Using Eq. (3.17), the

loop contribution to mN then implies that

mL .
4π vEW√

log(ΛIR/mL)
. (4.21)

The electroweak doublets L,Lc can thus not be much heavier than the electroweak scale.

On the other hand, due to collider constraints on such particles, they cannot be much

lighter either. This limits their mass to a region near the electroweak scale. The question

why their mass should be near the scale that is dynamically generated via the relaxation

mechanism is the coincidence problem that we have mentioned in Sec. 3. This problem

does not appear in the double-scanner scenario that we discuss in Sec. 5.

Let us briefly pause to count parameters. The potential in Eq. (3.2) has 7 dimen-

sionful parameters. Of these, Λ, MF and ΛF are of order ΛIR, while Mf is of order vEW.

Furthermore, Λf is given as a function of the other parameters via Eq. (4.3). For the three

combinations of decay constants in Eq. (4.14), we can then express all parameters (up to

O(1) factors) uniquely in terms of ΛIR (plus MPL and vEW). The corresponding relations

are given in Table 2.

Additional loop corrections arise in the effective field theory at energies below ΛGF
and ΛGf as discussed in Sec. 4.1. Since Mf ∼ vEW, Eq. (4.12) gives a weaker condition on

ΛF than Eq. (4.4) which we have used in determining the maximal cutoff. On the other

hand, Eq. (4.11) gives an upper bound on the confinement scale of Gf . An additional

constraint arises from the requirement that the mass of the lightest fermion after diagonal-

izing Eq. (3.12) is smaller than the confinement scale (cf. the comment above Eq. (3.16)).

Together this gives ∣∣∣∣mN −
yỹ v2

EW

2mL

∣∣∣∣ . ΛGf . 4π vEW , (4.22)

16Brane-localized kinetic terms for the gauge field would give another factor multiplying one side of this

relation. This would change the required relation between gc5 and N accordingly.
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Figure 2. Loop correction to mN .

where we have used that the largest Higgs VEV of interest is the eletroweak scale (as the

relaxion stops before the Higgs VEV can grow even further). The confinement scale of Gf
can thus be very low provided that y, ỹ and mN are sufficiently small. This scale sets the

mass of the bound states. In order to ensure that these bound states do not contribute

to dark radiation during big bang nucleosynthesis, the confinement scale of Gf should be

larger than a few MeV:

ΛGf & O(few) ·MeV . (4.23)

From Eq. (4.3), it follows that such low ΛGf is only possible for the first combination in

Eq. (4.14) and for the IR scale near its lower bound in Eq. (4.17). If ΛGf is larger than this,

on the other hand, we need to ensure that the decay of composite states does not destroy

heavy elements during big bang nucleosynthesis. The resulting limits have been worked out

in Ref. [69]. For ΛGf = 10 MeV and mL = 500 GeV, it is found that y, ỹ & 0.15 is required.

This limit quickly becomes weaker for larger ΛGf or smaller mL. On the other hand, the

Yukawa couplings must not be too large in order to satisfy bounds on the invisible decay

width of the Higgs. The corresponding limit is y, ỹ . 0.1 for mL = 200 GeV and becomes

slightly less stringent for larger mL.

Given that the fermions χ, χc, L, Lc, N and N c are all localized on the IR brane, we

expect higher-dimensional terms in the action. These include

S4 ⊃
∫
d4x

(
cχχ

m2
χ

Λ4
IR

(χχc)2 + cNN
m2
N

Λ4
IR

(NN c)2 + cχN
mχmN

Λ4
IR

χχcNN c + h.c.

)
.

(4.24)

The coefficients cχχ, cNN and cχN could be estimated using naive dimensional analysis.

For simplicity, we assume them to be real. After confinement, this gives the additional

terms

V (φ,H) ⊃ cχχ
Λ8
F

Λ4
IR

cos

(
2φ

F

)
+ cNN

Λ8
f

Λ4
IR

cos

(
2φ

f

)
+ cχN

Λ4
FΛ4

f

Λ4
IR

cos

(
φ

F
+
φ

f

)
(4.25)

in the Higgs-relaxion potential. Note that higher-dimensional couplings involving LLc

either do not directly contribute to the potential as the pair LLc does not condense or the

contribution is very suppressed.17 The first term in Eq. (4.25) contributes to the sliding

term for the relaxion. But for cχχ . 1 as expected from naive dimensional analysis, this is

17A higher-dimensional coupling (χχc)†NNc would give a term proportional to cos(φ/F − φ/f) in the

potential.
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suppressed compared to the sliding term in Eq. (3.2) and can thus be neglected. The second

and third term, on the other hand, give additional contributions to the Higgs-independent

barrier for the relaxion. Again these are suppressed compared to the barrier in Eq. (3.2)

and can be neglected. Adding higher-dimensional couplings to the Higgs in Eq. (4.24) gives

terms which can similarly be neglected.

Finally, we check constraints related to inflation. Due to the temperature and quantum

fluctuations in de-Sitter space, we need to demand that the confinement scales of Gf and

GF are larger than the Hubble rate during inflation:

HI . ΛGf ,ΛGF . (4.26)

For both ΛGF ∼ ΛIR and ΛGf & Λf given by Eq. (4.3), this is less stringent than Eq. (4.6)

from requiring that quantum fluctuations of the relaxion are negligible for the dynamics.

Furthermore, for both choices of the decay constant F in Eq. (4.14), the condition for

having a finite viable window for the inflation scale in Eq. (4.7) is trivially fulfilled. For

both choices the upper limit on the inflation scale in Eq. (4.6) is also significantly smaller

than the IR scale. We will assume that the inflationary sector, which we do not specify

further, is located on the UV brane. Then HI � ΛIR guarantees that the effect of inflation

on the geometry of the extra dimension is negligible [70, 71]. Similarly, for a typical

stabilization mechanism it ensures that the extra dimension is safe from destabilization

during inflation. In order to ensure that the barrier for the relaxion is not removed during

reheating after inflation, we demand that the reheating temperature be below ΛGf . This

may require a relatively low reheating temperature. As follows from the discussion below

Eq. (4.23), it can still be sufficiently high to allow for big bang nucleosynthesis though.

Under certain conditions, the reheating temperature may also be higher than ΛGf [1] (see

also [72]).

5 Warping the double-scanner mechanism

5.1 A UV completion

As discussed in Sec. 3.1, the Higgs-dependent barrier in the relaxion potential needs to

dominate over the Higgs-independent one once the Higgs VEV has reached the electroweak

scale. This requires that Mf . vEW which in turn necessitates to introduce new particles

coupled to the Higgs near the electroweak scale. We now discuss an interesting alternative

presented in Ref. [2]. The idea is to have another axion-like scalar σ with couplings in the

potential

V (φ, σ,H) ⊃ gσΛ3σ + Λ4
f

(
1 − g̃σ

σ

Λ
+ g̃

φ

Λ
+

H2

M2
f

)
cos

(
φ

f

)
(5.1)

and arrange its evolution such that it cancels off the Higgs-independent barrier. Note that

we have also included a term φ cos(φ/f) in the potential which will be important. The

remaining terms involving the relaxion are as in Eq. (1.1). Similar to the relaxion, the

shift-symmetry breaking couplings gσ and g̃σ of the field σ are taken to be very small.
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Let us assume that σ begins its evolution at some initial value σ � (Λ + g̃φ)/g̃σ so

that the Higgs-independent term in brackets in Eq. (5.1) is unsuppressed. Provided that

gΛ3 . Λ4
f/f , the barrier term for the relaxion then dominates over its sliding term and the

relaxion is initially stuck in a local minimum. Meanwhile, the first term in Eq. (5.1) causes

σ to slide and it eventually reaches the value σ ' (Λ + g̃φ)/g̃σ. This removes the barrier

for the relaxion which can subsequently also slide down the potential. Both σ and φ then

roll down if they track each other according to the relation σ ' (Λ + g̃φ)/g̃σ. The resulting

growth of φ after a while causes the Higgs mass parameter to turn tachyonic and H begins

to grow too. Shortly afterwards, the Higgs-dependent barrier in Eq. (5.1) then becomes so

big that the relaxion stops again. Provided that σ can no longer cancel this barrier, the

relaxion remains stuck. This mechanism works for certain ranges of parameters which we

review below. It then allows the backreaction from the Higgs to stop the relaxion once its

VEV has reached the electroweak scale even if Mf � vEW.

We first present a construction to generate the required terms in the potential (see

also [10, 11]). This construction is, in fact, largely independent of the embedding into

warped space and can thus be used in other UV completions of the relaxion as well. It

is meant to serve as a proof of principle, and does not preclude the existence of simpler

or more complete models. Let us introduce an additional U(1) gauge symmetry in the

bulk. We identify the field σ with the 5th component of the gauge field after imposing

appropriate boundary conditions. In order to generate the sliding term in Eq. (5.1), we

add an anomalous coupling of σ to a non-abelian gauge group GFσ . Since σ should not

couple too strongly to the Higgs, we localize coupling and gauge sector on the UV brane,

using the construction in Sec. 2.2. We also introduce two chiral fermions ρ and ρc on the

UV brane, with a Dirac mass mρ and in respectively the fundamental and anti-fundamental

representation of GFσ . These fermions have no explicit coupling to σ. Such a coupling is

then generated if we perform a chiral rotation of ρ or ρc to remove the anomalous coupling

of σ to GFσ . If the gauge group confines at some scale ΛGFσ > mρ, this gives rise to the

potential

V (φ, σ,H) ⊃ 2|mρ|Λ3
GFσ cos

(
σ

Fσ
+ bρ

)
. (5.2)

Here Fσ � f is the decay constant resulting from the anomalous coupling and bρ = arg(mρ)

is the phase of the mass term. We again identify Λ = ΛIR. Expanding in σ around the

linear part of the trigonometric potential gives the sliding term in Eq. (5.1) with

gσ =
|mρ|Λ3

GFσ
Fσ Λ3

IR

(5.3)

up to factors of order one.

Generating the coupling of σ to the periodic potential for φ is somewhat more involved.

Notice that in Eq. (5.1), the periodic potential for φ appears with the same phase in the

last four terms (which for definiteness we have chosen as cos(φ/f)). Having the same phase

to a high precision in these a priori independent terms is in fact necessary for the double-

scanner mechanism to work. Let us assume that σ instead couples to sin(φ/f). Keeping
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the phases for the other periodic terms fixed, the barrier in Eq. (5.1) then reads

V (φ, σ,H) ⊃ Λ4
f

(
1 − g̃σ

σ

Λ
tan

(
φ

f

)
+ g̃

φ

Λ
+

H2

M2
f

)
cos

(
φ

f

)
. (5.4)

Even if σ can then initially cancel off the Higgs-independent terms (which depending on

the initial value for φ may require σ � Λ/g̃σ), this cancellation is generically irreversibly

spoiled once φ starts rolling. The same holds for a phase difference less than π, if the other

periodic terms have different phases or if the decay constants in the periodic terms differ

from each other (in all cases down to values which are determined by the small couplings

in the potential).

In order to ensure the required phase and period structure, we extend the gauge sym-

metry Gf in the bulk from Sec. 3.2 to the product group Gf1 ×Gf2 ×Gf3 ×Gf4 . In addition,

we impose discrete symmetries Z2 and Z′2 that interchange the groups as follows:

Gf1
Z2←→ Gf2

Z′2
xy xyZ′2
Gf3 ←→

Z2

Gf4 .

(5.5)

This in particular imposes that the underlying groups (e.g. SU(N)) are the same for

Gf1 ,Gf2 ,Gf3 and Gf4 . We then couple the 5D gauge field AM that gives rise to φ to the

gauge field strengths of these four groups via Chern-Simons terms as in Sec. 2.1. Further-

more, we impose that φ transforms as φ ↔ −φ under Z2, while it is even under Z′2. The

Chern-Simons terms then lead to the anomalous couplings

S4D ⊃
∫
d4x

1

16π2

φ

f
εµνρσ

(
Tr
[
Gf1µνG

f1
ρσ

]
− Tr

[
Gf2µνG

f2
ρσ

]
+ Tr

[
Gf3µνG

f3
ρσ

]
− Tr

[
Gf4µνG

f4
ρσ

])
,

(5.6)

where the decay constant f ∼ ΛIR is equal for all the gauge groups by virtue of the

symmetries. We also add anomalous couplings of σ to Gf3 and Gf4 on the UV brane,

using the construction in Sec. 2.2. We choose σ to be even under Z2. This gives

S4D ⊃
∫
d4x

σ

F̃σ
εµνρσ

(
Tr
[
Gf3µνG

f3
ρσ

]
+ Tr

[
Gf4µνG

f4
ρσ

])
, (5.7)

where the decay constant F̃σ � f is equal for the two gauge groups by virtue of the Z2.

We do not add corresponding couplings to Gf1 and Gf2 though. This explicitly breaks the

Z′2 on the UV brane.

On the IR brane, we next introduce four pairs of chiral fermions η1, η
c
1, η2, η

c
2, η3, η

c
3

and η4, η
c
4 in the fundamental and anti-fundamental representation of Gf1 , Gf2 , Gf3 and

Gf4 , respectively. The fermion pairs interchange under Z2 consistent with Eq. (5.5) but we

choose Z′2 to be explicitly broken on the IR brane too. Including Dirac masses for the pairs
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of chiral fermions and higher-dimensional couplings to the Higgs, this gives

S4D ⊃
∫
d4x

(
mη1 [η1η

c
1 + η2η

c
2]

(
1 + cη1

H2

Λ2
IR

)
+mη3 [η3η

c
3 + η4η

c
4]

(
1 + cη3

H2

Λ2
IR

)
+ h.c.

)
, (5.8)

where the fields are already canonically normalized and mη1 ,mη3 . ΛIR. The coefficients

cη1 and cη3 are a priori different from each other and could be of order 1 or be suppressed

by a loop factor. We can now perform the chiral rotations

η1 → e
iφ
f η1 η2 → e

−iφ
f η2

η3 → e
iφ
f

+i σ
F̃σ η3 η4 → e

−iφ
f

+i σ
F̃σ η4

(5.9)

while leaving ηc1, ηc2, ηc3 and ηc4 invariant. This moves φ and σ from Eqs. (5.6) and (5.7)

into Eq. (5.8). We assume that the gauge groups confine at energies below the IR scale.

By virtue of the Z2 which is unbroken everywhere, the confinement scales of Gf1 and

Gf2 are identical, as are those of Gf3 and Gf4 . The condensates then are pairwise equal,

〈η1η
c
1〉 = 〈η2η

c
2〉 = Λ3

Gf1
and 〈η3η

c
3〉 = 〈η4η

c
4〉 = Λ3

Gf3
. The resulting potential at low energies

reads

V (φ, σ,H) ⊃ 4|mη1 |Λ3
Gf1

cos

(
φ

f

)[
cos(bη1) + |cη1 | cos(dη1)

H2

Λ2
IR

]
+ 4|mη3 |Λ3

Gf3
cos

(
φ

f

)[
cos

(
σ

F̃σ
+ bη3

)
+ |cη3 | cos

(
σ

F̃σ
+ dη3

)
H2

Λ2
IR

]
, (5.10)

where bη1 = arg(mη1), dη1 = arg(mη1cη1), bη3 = arg(mη3) and dη3 = arg(mη3cη3) are given

by the complex phases of the parameters. We have kept track of the phases in order to show

that all terms are proportional to cos(φ/f) as required. This is guaranteed by the Z2 under

which φ→ −φ and the potential is invariant. Note, however, that we have tacitly assumed

that the fermionic condensates are real. As we have discussed at the end of Sec. 3.2 and in

Appendix B, these phases are pion-like fields and thus dynamical. Doubling the spectrum

in order to ensure that the potential for these pions factorizes from the remaining potential

then fixes their phases to the same value for all four condensates and leads to an additional

overall minus sign in Eq. (5.10).

On the other hand, the decay constants that appear in cos(φ/f) between the first and

second line of Eq. (5.10) are the same due to the Z′2 in the bulk. Note, however, that this

symmetry is broken on the UV brane by the couplings for σ in Eq. (5.7). Nevertheless we

expect that this does not affect the decay constants for φ in Eq. (5.10) by virtue of the

non-renomalization properties of anomalous couplings (see e.g. Ref. [73]). Also any such

effect would be strongly suppressed since F̃σ � f . We leave a detailed study of this for

future work. Furthermore, we have allowed for the masses mη1 and mη3 being different

which breaks the Z′2 also on the IR brane. This generically leads to a different running

of the gauge couplings of Gf1 and Gf2 compared to those of Gf3 and Gf4 and accordingly

different confinement scales ΛGf1 and ΛGf3 . However, it does not affect the decay constants
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χ χc η1 ηc1 η2 ηc2 η3 ηc3 η4 ηc4

GF � �̄ – – – – – – – –

Gf1 – – � �̄ – – – – – –

Gf2 – – – – � �̄ – – – –

Gf3 – – – – – – � �̄ – –

Gf4 – – – – – – – – � �̄

Table 3. Matter content on the IR brane with gauge representations for the double-scanner model.

for φ in Eq. (5.10) either as these are defined not involving the gauge couplings of the

underlying gauge groups (cf. Eqs. (2.15) and (2.16)). As follows from Eqs. (3.7) to (3.9),

it is precisely the decay constants defined in this way which determine the period of the

periodic potentials. These periods are thus not affected by the differing running of the

gauge couplings. Note also that the resulting difference between the confinement scales

can be made arbitrarily small for example by increasing the number of colours of the gauge

groups.

We can match with the potential in Eq. (5.1) after expanding both Eqs. (5.2) and (5.10)

in σ/F̃σ around regions where the corresponding trigonometric potentials are linear. Both

trigonometric potentials can be in the linear part simultaneously for example for Fσ ∼ F̃σ
and bρ − bη3 ∼ π. This also ensures that the right signs in the potential are obtained. In

addition to Eq. (5.3), we can then identify (the last one up to factors of order one)

Λ4
f = |mη1 |Λ3

Gf1
, Mf =

ΛIR√
|cη1 |

, g̃σ =
|mη3 |Λ3

Gf3
|mη1 |Λ3

Gf1

ΛIR

F̃σ
. (5.11)

Notice that Eq. (5.10) contains a term cos(φ/f) cos(σ/F̃σ)H2 which is not included in

Eq. (5.1). However, provided that |cη3 | is somewhat suppressed compared to |cη1 |, this

only gives a small correction to the Higgs-dependent barrier and therefore does not affect

the dynamics. Note that this would not be possible if mη3 and mη1 were equal which is

why we have allowed them to be unequal.

As in Sec. 3.2, we next introduce fermions χ and χc in the fundamental and anti-

fundamental representation of a non-abelian gauge symmetry GF to generate the sliding

term for the relaxion and its coupling to the Higgs. These fermions then also allow us to

generate the term φ cos(φ/f) in Eq. (5.1). To this end, we consider the higher-dimensional

operator

S4D ⊃
∫
d4x

(
cχη

mχmη1

Λ4
IR

χχc
(
η1η

c
1 + η2η

c
2

)
+ h.c.

)
(5.12)

which we expect to be present since the relevant fermions live on the IR brane. The fields

are already canonically normalized and mχ,mη1 . ΛIR. The coefficient cχη is again of order

1 or suppressed by a loop factor. Performing the chiral rotations in Eqs. (3.7) and (5.9),
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we find below the confinement scales

S4D ⊃
∫
d4x 4|cχη|

|mχ|Λ3
GF |mη1 |Λ3

Gf1
Λ4

IR

cos

(
φ

F
+ bχη

)
cos

(
φ

f

)
, (5.13)

where bχη = arg(cχηmχmη1). Expanding the trigonometric function of φ/F around its

linear part, we can identify

g̃ = |cχη|
|mχ|Λ3

GF
Λ3

IRF
(5.14)

up to factors of order one. A summary of the matter content on the IR brane is given in

Table 3.

5.2 Constraints

We have now generated all terms in the potential of Eq. (5.1) as well as the sliding term

and coupling to the Higgs of the relaxion. In order to see if the potential parameters in

Eqs. (5.3), (5.11) and (5.14) (plus Eqs. (3.3) and (3.10) for g and g′) can take on values which

allow the double-scanner mechanism to work, we next discuss various constraints. We again

need to ensure that the conditions discussed in Sec. 4.1 are fulfilled. In particular, the Higgs

VEV once the relaxion stops is given by Eq. (4.3). One difference between the potential

parameters for the electroweak-scale barrier and the double scanner is that Mf ∼ vEW in the

former and Mf ∼ ΛIR in the latter (cf. Eq. (5.11)). But in both scenarios, by construction

the Higgs-independent barrier plays no role and therefore only the combination Λ2
f/Mf is

relevant for the dynamics of the relaxion and Higgs. Using Eq. (4.3) to fix the Higgs VEV,

we can express this combination in terms of the decay constants and ΛF . Constraints

on these parameters therefore apply for both the electroweak-scale barrier and the double

scanner. We then conclude that the allowed ranges of IR scales for the three combinations of

decay constants in Eq. (4.14) are again given by Table 2. Note that Λf and Mf are different

from those given in the table but the combination Λ2
f/Mf and the other parameters in the

table agree for both scenarios. In particular, we again find that ΛF ∼ ΛGF ∼ mχ ∼ ΛIR is

required. On the other hand, from Eq. (4.3) we conclude that ΛGf1 & 10 MeV (where the

inequality is saturated for F ≈ M2
PL/ΛIR, f ≈ ΛIR and ΛIR ≈ 10 TeV). We therefore expect

that big bang nucleosynthesis is generically not affect by the composite states associated

with GF and Gf1 to Gf4 . Similarly, one can check that Eq. (4.26) is again fulfilled and that

inflation does not destabilize the extra dimension.

There are new conditions that are specific to the double-scanner mechanism: The fields

φ and σ track each other according to the relation σ ' (Λ + g̃φ)/g̃σ once the barrier is

sufficiently small provided that [2]

g g̃ & gσ g̃σ , (5.15)

where g is given by Eqs. (3.3) and (3.10). On the other hand, σ can no longer cancel the

barrier that the Higgs generates once it obtains a VEV if [2]

g
(
g̃ − g

2λ

)
. gσ g̃σ (5.16)
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with λ being the Higgs quartic coupling. Comparing Eqs. (3.3) and (5.14), we see that

g̃ ≈ |cχη|g. On the other hand, the couplings gσ and g̃σ can be a priori quite different.

Recall that the gauge group GFσ that gives rise to the sliding term for σ can be localized

on the UV brane. Nevertheless we should still demand that its confinement scale is below

the IR scale to ensure that the effective description for σ is valid at the energy scale

where the potential is generated. In addition, we need to impose that |mρ| . ΛGFσ . In

order to study one concrete example, let us consider the case F ≈ Fσ ≈ F̃σ (which is

automatic if the corresponding anomalous couplings all arise from the UV brane) and

|mη1 |Λ3
Gf1
≈ |mη3 |Λ3

Gf3
(corresponding to Z′2 being only weakly broken). This gives g̃σ ≈ g

and g & gσ. The conditions in Eqs. (5.15) and (5.16) then simplify to

|cχη| g & gσ ,

(
|cχη| −

1

2λ

)
. gσ . (5.17)

This can be fulfilled for a wide range of gσ if |cχη| . 1/(2λ). This example shows that the

conditions for the double-scanner mechanism to work can be easily satisfied.

Finally, let us consider loop corrections to the potential. The double-scanner mecha-

nism cannot remove barriers from terms like cos2(φ/f) [2]. Therefore these must be smaller

than the Higgs-dependent barrier when the Higgs reaches the electroweak scale. For loop

corrections from the Higgs, this translates to the condition Λ2
f . 4πMfvEW and in turn to

Eq. (4.12) which is fulfilled for the entire range of IR scales in Table 2. This is also not

affected by the additional terms in the potential involving σ. Furthermore, in addition to

Eq. (5.12) we expect higher-dimensional operators like

S4 ⊃
∫
d4x

(
cχχ

m2
χ

Λ4
IR

(χχc)2 + cη1η1
m2
η1

Λ4
IR

[
(η1η

c
1)2 + (η2η

c
2)2
]

+ cη1η2
m2
η1

Λ4
IR

η1η
c
1 η2η

c
2 + h.c.

)
(5.18)

and similar terms involving η3, η
c
3, η4, η

c
4 since the relevant fermions are all localized on the

IR brane. The coefficients are again of order 1 or suppressed by a loop factor and are

partly determined by the Z2. Assuming all parameters to be real for simplicity, below the

confinement scales this gives

V (φ,H) ⊃ 2 cχχ
Λ8
F

Λ4
IR

cos

(
2φ

F

)
+ 4 cη1η1

Λ8
f

Λ4
IR

cos

(
2φ

f

)
. (5.19)

The first term gives a correction to the sliding term for the relaxion which is negligible for

cχχ . 1. The second term, on the other hand, gives another type of barrier that cannot be

cancelled by the double-scanner mechanism. It is sufficiently suppressed compared to the

Higgs-dependent barrier provided that Λ2
f . vEWΛ2

IR/(Mf
√
cη1η1). This in turn leads to a

condition which for a typical cη1η1 is less stringent than Eq. (4.12) and which is therefore

again fulfilled for the entire range of IR scales in Table 2.

6 Conclusions

We have implemented the cosmological relaxation mechanism in a warped extra dimension.

The relaxion potential trades the hierarchy between the Planck and electroweak scale for
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a technically natural hierarchy of decay constants. Warped extra dimensions are then a

natural choice for its UV completion as they can generate a large hierarchy of scales purely

from geometry. In our construction, the relaxion is identified with the scalar component of

an abelian gauge field in the bulk, whose profile automatically has a small overlap with the

UV brane. The warping generates the hierarchy from the Planck scale down to the scale

of the IR brane, which is then identified with the cutoff Λ of the relaxion potential. From

there onwards, the Higgs mass is relaxed down to its physical value.

In Sec. 2, we have presented a model-building toolkit for generating anomalous cou-

plings of the relaxion to new, strong sectors. Depending on the localization of the anomalous

terms in the warped interval, hierarchically different decay constants for these couplings

may be obtained, including decay constants which are super-Planckian. A benchmark

model coupling the relaxion to the Higgs was constructed in Sec. 3. The sliding term is

coupled to the Higgs through a Dirac pair of SM singlet fermions that live on the IR brane

and condense by the same strong interactions responsible for generating it. The barrier

term is generated close to the electroweak scale, by the condensation of strongly interact-

ing vector-like fermions with the same quantum numbers as one generation of SM leptons.

These are also localized at the IR brane, and have masses near or below the weak scale,

but are a priori unrelated to it, leading to the well-known coincidence problem. In order

to avoid this and achieve a larger scale for the barrier term, a more elaborate construction

is required. In Sec. 5, we have presented a warped UV completion for one such scenario,

the double-scanner mechanism of Ref. [2].

The constraints for the model, both in general and those specific to the construction

of Sec. 3, were discussed thoroughly in Sec. 4, as well as the stability of the potential under

radiative corrections. The requirement of obtaining the correct Higgs VEV may be used to

fix the scale where the barrier term is generated in terms of the other parameters. Then,

we have found that the scale where the sliding and scanning terms are generated needs to

be of order the IR scale. Since the SM fields live in the bulk, standard flavor constraints

of Randall-Sundrum models push the minimum value of the IR scale to Λ & 10 TeV. The

maximum cutoff that we can achieve depends on the choice for the decay constants. We

have found that Λ . 4·106 GeV for F = M2
PL/Λ and f = Λ to ensure that all theoretical and

phenomenological constraints are fulfilled and Λ . 76 TeV when F = M2
PL/Λ and f = MPL.

For the combination F = MPL and f = Λ with at most Planckian decay constants, on the

other hand, the mixing between the relaxion and the Higgs gives strong constraints and

only the window 185 TeV . Λ . 300 TeV remains allowed.

In this work, we have focused on inflation to provide a friction term for the slow-roll

of the relaxion, but interesting alternatives such as the particle production mechanism

of Ref. [13] exist. It would be interesting to explore how such constructions may be im-

plemented in warped space. The framework that we have described naturally allows for

hierarchical decay constants for axion-like fields to be generated. As such it presents many

further opportunities for model building, not limited to relaxion models, such as appli-

cations to inflation or dark matter. Another interesting possibility for generating this

hierarchy is to consider a more general geometry with more than one AdS5 throat [74].
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A Chern-Simons terms from bulk fermions

In this appendix, we briefly review how charged bulk fermions can give rise to Chern-

Simons terms. We consider a bulk fermion Ψ which couples to both the non-abelian gauge

group and the U(1) from Sec. 2.1. The action reads

S5D ⊃
∫
d4xdz

√
g
(
Ψ̄i /DΨ + mΨΨ̄Ψ

)
, (A.1)

where the covariant derivative is DM = ∂M − iGM − iAM with GM being the non-abelian

gauge field (and AM the U(1) gauge field). In order to see that this gives the same anomaly

as a Chern-Simons term, we can perform a field redefinition [75, 76]

Ψ → exp

[
i

∫ z

z0

dz̃A5(x, z̃)

]
Ψ , (A.2)

where the constant z0 can be chosen according to convenience. However, the field redefini-

tion is anomalous on the branes18 and transforms the action into (see [77–80])

S5D → S5D +

∫
d4xdz

(∫ z

z0

dz̃A5(x, z̃)

)
εµνρσ

48π2
Tr [GµνGρσ]

(
αUVδ(z − zUV) + αIRδ(z − zIR)

)
.

(A.3)

The coefficients αUV and αIR depend on the boundary conditions on the two branes for the

left-handed component ΨL of the bulk fermion (which in turn fixes the boundary conditions

of the right-handed component ΨR). If ΨL is even (odd) on a given brane, α = 1(−1).

Let us first assume αUV = −αIR in which case Ψ does not have a massless mode. From

Eq. (A.3), we then get the anomalous coupling of φ in Eq. (2.15) with

cb =
αIR

4
. (A.4)

Notice that this is independent of z0. In the opposite case αUV = αIR, on the other hand,

cb depends on z0. But then Ψ has a massless mode which contributes to the anomaly

18We note that, e.g. for SU(N), there is an additional SU(N)3 anomaly. It can be canceled by adding

another bulk fermion, uncharged under U(1), with opposite boundary conditions from Ψ.
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and which cancels the dependence on z0. If the Chern-Simons term arises from such a

bulk fermion, any perturbative contribution to the potential for A5 can be sufficiently

suppressed by making the bulk mass of the fermion somewhat larger than the AdS scale

(see e.g. [33, 46]).

B Pion-like fields in the relaxion potential

In this appendix, we include the pion-like fields which arise from the condensing fermions on

the IR brane and which contribute to the potential. Let us focus on χ, χc for definiteness.

As usual, we can parametrize the pseudo-Nambu-Goldstone boson corresponding to the

breaking of the chiral symmetry of χ, χc by the σ-model field U = exp(iπχ/fχ) with a

decay constant of order fχ ∼ ΛGF . After confinement then 〈χχc〉 = Λ3
GFU . From Eq. (3.8),

this gives

V (φ,H) ⊃ mχ Λ3
GF

(
1 +

H2

Λ2
IR

)
cos

(
φ

F
+
πχ
fχ

)
, (B.1)

where for simplicity we again ignore phases and prefactors. Since F � fχ, generically

πχ settles into its minimum πmin
χ = fχπ − fχφ/F first after which the potential becomes

independent of φ. This problem is remedied for example by introducing another pair of

chiral fermions χ̃χ̃c with the same quantum numbers. Instead of Eq. (3.6) we then have

S4D ⊃
∫
d4x

(
1 +

H2

Λ2
IR

)
[mχ χχ

c + mχ̃ χ̃χ̃
c] + h.c. . (B.2)

Similar to the up and down quark in the Standard Model, the fermions transform under

an approximate SU(2)L × SU(2)R symmetry which is spontaneously broken to a diago-

nal SU(2)V by the condensates and explicitly but weakly broken by their masses. The

corresponding pseudo-Nambu-Goldstone bosons are parametrized as

U = eiΠχ/fχ with Πχ =

(
π0
χ

√
2π+

χ√
2π−χ −π0

χ

)
. (B.3)

We next perform the chiral rotation

χ → ei
φ
2F χ , χ̃ → ei

φ
2F χ̃ (B.4)

with χc and χ̃c left invariant to remove the coupling of φ to Tr
[
GFµνG

F
ρσ

]
in Eq. (3.4).

For this choice of chiral rotation, no kinetic mixing between the relaxion and the pions is

induced (see Ref. [81]). Choosing mχ = mχ̃ for simplicity, from Eq. (B.2) we get below the

confinement scale

V (φ,H) ⊃ mχ Λ3
GF

(
1 +

H2

Λ2
IR

)
cos

(
φ

2F

)
cos

(
πχ
fχ

)
, (B.5)

where πχ ≡
√

(π0
χ)2 + 2π+

χ π
−
χ . The potential for the pions and relaxion thus factorizes and

no longer vanishes once the pions settle into their minimum. This is similar to what happens

for the axion and the pion of the Standard Model, see Ref. [48]. For the generalization of

the potential to the case mχ 6= mχ̃, see also Ref. [48]. The potential after minimization

with respect to the pion then still leads to a nonvanishing potential for the relaxion but

the latter is no longer a simple cosine.
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