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b ICREA, Institució Catalana de Recerca i Estudis Avançats,
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Abstract

The perturbative effective potential calculated in Landau gauge suffers from in-

frared problems due to Goldstone boson loops. These divergences are spurious and can

be removed by a resummation procedure that amounts to a shift of the mass of soft

Goldstones. We prove this to all loops using an effective theory approach, providing a

compact recipe for the shift of the Goldstone mass that relies on the use of the method

of regions to split soft and hard Goldstone contributions.
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1 Introduction

The effective potential is widely used in many areas of particle physics and cosmology. Among

other applications, it is the central tool to study symmetry breaking in many contexts, phase

transitions at finite temperature [1], the slow-roll evolution of the inflaton field [2], etc. The

radiatively corrected potential [3] has been used to study the radiative breaking of symmetries

[4] (leading to dimensional transmutation) and it is as well an efficient way to calculate

radiative corrections to the Higgs mass in many beyond the Standard Model (BSM) scenarios

(see e.g. [5, 6]). In the context of the Standard Model (SM), the effective Higgs potential

describes the spontaneous breaking of the electroweak symmetry and the fate of the Standard

Model vacuum at late times [7, 8]. This SM potential has been known at two loops [9] since

the early nineties. The two-loop potential for a generic renormalizable quantum field theory

was obtained in [10] and the three-loop corrections have been obtained quite recently in a

tour-de-force calculation by Steve P. Martin in [11].

The SM effective potential was calculated in the above papers in Landau gauge using the

minimal subtraction scheme (MS) and dimensional regularization. This effective potential

suffers from infrared (IR) problems due to loops involving Goldstone bosons, which in this

scheme are massless close to the vacuum. More specifically, writing the tree-level potential as

V0(φ) = −1

2
m2φ2 +

1

4
λφ4 , (1)

where φ is the real part of the neutral component of the Higgs doublet, φ ≡
√

2 Re(H0), the

tree-level Goldstone mass is

G ≡ 1

φ

∂V0
∂φ

= −m2 + λφ2 . (2)

Let us write the radiatively corrected effective potential as

V = V0 + κV1 + κ2V2 + ... , (3)

where we have pulled out powers of κ = 1/(16π2) to indicate the loop-order of each correction.

This potential, as well as its derivatives, is IR divergent for G → 0. Calling X a generic

squared mass that does not vanish for G → 0 (like T = h2tφ
2/2 for the top quark), the IR

divergence of V first appears in V3 through terms of the form X2 logG, getting even worse at

higher orders, with Vn≥4 ⊃ Xn−1/Gn−3. The two-loop potential, V2, is IR finite but contains

terms ∼ XG logG that make V ′2 ≡ ∂V2/∂φ IR divergent. The Goldstone contribution to the

one-loop potential, V1, is of the form ∼ G2 logG and leads to a divergence in V ′′1 .

Such IR divergences cause trouble when they appear in V , as they would make it impossible

to give a physical meaning to the potential, or V ′, as the determination of the minimum of

the potential requires solving V ′ = 0, but are not problematic in higher field derivatives. For

instance, it is well known that the IR divergence in V ′′, used in calculating the Higgs mass

via the effective potential method, is harmless. The on-shell Higgs self-energy, that enters the

calculation of the physical pole Higgs mass, does not suffer from this divergence (see e.g. [12]),
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which only affects the self-energy at zero external momentum (the one V ′′ reproduces). From

now on, with an slight abuse of terminology, we will refer to the IR divergences of the potential

as those affecting V and V ′ only. As we show in this paper, after appropriate resummation

one ends up with a potential that has IR-finite V and V ′, but IR divergent higher derivatives.

We consider such resummed potential as IR-safe.

This Goldstone IR problem was first noticed in [13] and emphasized more recently in

[14]. Shortly afterwards, it was realized in [15] and [16] that this issue can be resolved

by resumming some self-energy contributions to the Goldstone propagator amounting to a

momentum-independent shift of the Goldstone mass1

G→ G = G+ ∆ . (4)

One way to determine the right mass-shift ∆ to be used in the resummation is constructive

and proceeds by calculating order by order in the perturbative expansion of the potential (or

the minimization equation V ′ = 0) what ∆ should be used to remove all infrared problematic

terms. One obtains an explicit perturbative result

∆ = κ∆1 + κ2∆2 + ... (5)

The fact that this procedure works at all is non-trivial, since for instance the one-loop self-

energy term κ∆1 used has to cancel different IR divergences in the potential at all orders

starting at two loops. This procedure was the one used in [11,15].

Although initially based on the same approach outlined above, [16] argued that there is

a definite prescription to calculate the needed ∆ by integrating out the heavy degrees of

freedom, in the spirit of an effective field theory approach. The self-energy diagrams that give

∆ involve only heavy fields (with masses that do not vanish as G → 0) or Goldstones (plus

photons and gluons) with large momentum. We denote these contributions to the Goldstone

self-energy as the hard part, and the method of regions [22, 23] can be used to make this

definition precise. In principle, these two approaches lead to the same ∆ up to terms that

are subleading in powers of G/X. The aim of the present paper is to prove to all orders in

perturbation theory that the potential IR issues are removed when ∆, the zero-momentum

hard-part of the Goldstone boson self-energy, is resummed.

The proof is presented in Sec. 2 and an explicit check in the SM at three-loop order is

performed in Sec. 3. The discussion of our results can be found in Sec. 4. Appendices A-C

review known results that we include to present a self-contained discussion. App. A deals

with the cubic coupling of the Goldstone bosons, App. B covers combinatoric issues in the

two-particle irreducible (2PI) effective action and App. C briefly describes the method of

regions. The remaining Appendices contain detailed results for the hard and soft splitting of

two-loop contributions to the effective potential using the method of regions. This splitting

1For later developments and applications of this resummation, see [17–19]. Besides resolving the IR

issues just mentioned, it has been shown [20] that this resummation also fixes a problem with residual gauge

dependence in radiatively generated vacua [21].
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is needed to calculate ∆ as will be explained in Sec. 2 and illustrated in Sec. 3. For this task,

an expansion in powers of G/X and (d− 4)/2 = ε is enough but we go beyond this and also

perform the splitting of two-loop vacuum integrals for general d and without expanding in G.

2 Proof of Resummation to All Orders

In this section, we provide a general proof of how to remove infrared divergences from the

effective potential by means of resummation. The statement we want to prove is the following:

IR problematic terms in the effective potential can be resummed by a shift of the Goldstone

mass, G → G = G + ∆. The shift ∆ is the zero-momentum limit of Goldstone self-energy

diagrams that contain only heavy particles and the hard momentum region of light degrees of

freedom. The split into soft and hard momenta is made precise by the method of regions.

Consider the whole set of vacuum 1-particle-irreducible (1PI) diagrams that contribute to

the effective potential in the usual perturbative expansion and focus on those that contain

Goldstone lines. Following [16], each Goldstone line/propagator can be split as being a Gs (a

soft Goldstone, carrying momentum p2 ∼ G) or a Gh (a hard Goldstone, carrying momentum

p2 ∼ X � G, where X represents some nonzero squared mass). We are after those Goldstone

contributions that cause IR problems so we are interested in diagrams containg Gs lines and

can consider Gh lines on the same footing as propagators of heavy fields.

After the previous soft/hard splitting one can classify any diagram by the number nG of Gs

lines it carries, see Figure 1. In this figure we use a dashed line for soft Goldstone propagators,

without distinguishing between the three of them (χi, i = 1, 2, 3). We also classify diagrams

according to the number nC of soft Goldstone cycles they contain. Two Gs lines are defined

to be on the same cycle if they necessarily carry the same momentum. Single Gs lines not

falling in the previous category are considered as cycles by themselves.

At nG = 0 we simply have no Goldstone IR divergences and we do not show any diagram.

At nG = 1 there is one single topology, with a Gs line as a handle attached to a blob that

represents any tangle of lines with hard or heavy propagators only.2 Using the method of

regions we know that attaching a Gs handle to a blob pays the price of a GLG factor, so these

diagrams contribute a term to the potential that scales as GLG. For notational simplicity we

use the shorthand notation LG ≡ log(G/Q2), with Q the MS renormalization scale. To see

how this comes about, let us write the contribution of the nG = nC = 1 diagram as

∝
∫
p

1

G− p2
Π(p) , (6)

where Π(p) represents the contribution from the blob and∫
p

≡ µ2ε

∫
ddp

(2π)di
, (7)

2There are no other topologies for nG = 1: for instance, a single Gs line between two blobs is not 1PI.
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n   = 1G

n   = 2G

n   = 3G

n   = 4G

n   = 1C n   = 2C n   = 3C n   = 4C

Figure 1: Vacuum diagrams classified according to the number of soft Goldstone (dashed)

lines nG (up to nG = 4) and number of Goldstone cycles nC. Blobs represent any subdiagram

not involving soft Goldstones, photons or gluons. Different shapes of these blobs are used to

distinguish the number of Goldstone lines they have attached.

with d = 4− 2ε and Q2 = 4πe−γEµ2. For a soft Goldstone, the method of regions instructs us

to leave the Goldstone propagators unexpanded but expand Π(p) in powers of p2/X. As the

blob contains only heavy particles or heavy momentum lines this soft-momentum expansion

takes the form Π(p) = Π(0) +O(p2/X), and the integral (6) gives (after renormalization)

κG(LG − 1) Π(0) +O(G2/X) , (8)

confirming the GLG scaling mentioned above.

Diagrams with nC = 1 and increasing values of nG simply correspond to the addition of

heavy blobs in the Gs line of the nG = nC = 1 diagram. This full series of nC = 1 diagrams

is taken care of by the usual resummation of the mass in a Goldstone ring and are resummed

into a term ∼ G2LG [15,16]. From our re-organization of the perturbative expansion it is also

clear that the Goldstone shift in this resummation is precisely of the form (4) with ∆ given

by hard contributions only and defined at zero momentum. The resummed diagram, with the
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n   = 1G

n   = 2G

n   = 3G

n   = 4G

n   = 1C n   = 2C n   = 3C n   = 4C

Figure 2: Vacuum diagrams after resummation of soft Goldstone propagators, indicated by

continuous lines. As in Fig. 1, blobs represent any subdiagram not involving soft Goldstones,

photons or gluons.

corrected Goldstone propagator (soft and with mass G) is represented by a continuous line

and shown as the nG = nC = 1 diagram in Fig. 2.

At nG = nC = 2 we have a blob with two Gs handles, and this gives G2L2
G contributions

to the potential, which cause no divergence in V or V ′, so they are IR safe.3 Again, inserting

blobs in the Gs lines gives higher nG diagrams without changing nC and all of them are

resummed into the nG = nC = 2 diagram of Fig. 2, with exactly the same shift ∆ of the

Goldstone mass, so that the resummed diagram, see Fig. 2, scales as G2L2
G

.

The case nC = 3 is more interesting as there is more than one topology to deal with. As

in previous cases, series of higher nG diagrams can be resummed and one ends up with the

three resummed diagrams shown in Fig. 2. One can have three Gs loops and this diagram

scales as (GLG)3. As the potential has dimension of mass to the fourth power, the G3 factor

is compensated by the negative dimension of the vertex, which has to scale as 1/X (as it

3This result concerning the IR divergence holds irrespective of whether the two Goldstone lines are attached

in a planar diagram (as shown) or in a non-planar way (diagram not shown, for simplicity).
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should, being a six-legged vertex).

At nC = 3 we also have the diagram with two cubic blobs exchanging 3 Gs lines. To

see how this scales with G, we can estimate from the method of regions that the two-loop

integrals with three soft Goldstones can give a factor ∼ GL2
G

. If the cubic vertex were of

order
√
X we would end up with a contribution to the potential of order XGL2

G
that would

cause IR divergences. Clearly, the scaling of the n-legged Gs vertex is relevant for the success

of the resummation program, and we discuss it next.

We are interested in particular in the small-momentum expansion of the Gs vertices. For

our reorganized perturbative expansion, by construction, only heavy species and hard light

ones (Goldstones, photons and gluons) contribute to these vertices. The zero-momentum val-

ues of the Gs vertices can be obtained from derivatives of the effective potential by exploiting

the constraints that gauge invariance imposes on such field derivatives [24]. Let us write the

Higgs doublet as

H =
1√
2

(
χ1 + iχ2

h+ φ+ iχ3

)
, (9)

where the χi fields are the three Goldstones, taken as real fields (alternatively we have χ0 = χ3

and χ± = (χ1 ± iχ2)/
√

2). The effective potential in Landau gauge has a global SU(2)

symmetry so that it can only be a function of the invariant |H|2 (even after including radiative

corrections). The simplest way to deal with the constraints imposed by gauge invariance on

the different scalar interactions is then to consider the SM effective potential as a function of

|H|2 =
1

2
(h+ φ)2 +

1

2
χ2 , with χ2 =

3∑
i=1

χ2
i . (10)

The (zero-momentum) Goldstone interactions can then be obtained by expanding the poten-

tial in powers of χ2 around the background value φ. We can write

− Lχ,p2=0 ≡
∞∑
n=1

1

n! 2n
λχ,2nχ

2n =
∞∑
n=1

1

n!

[
∂nV (|H|2)

(∂χ2)n

]
h=0,χ=0

χ2n . (11)

Noting further that ∂V/∂χ2 = (∂V/∂φ)/(2φ), we arrive at

λχ,2n =

(
1

φ

∂

∂φ

)n
V (φ) . (12)

Notice that this implies that vertices with an odd number of Goldstone legs, and the cubic

vertex in particular, vanish. We provide an alternative and more general proof that the cubic

vertex vanishes in Appendix A.

As a cross-check of (12), for the tree-level potential in Eq. (1) one gets

G = λ
(0)
χ,2 =

1

φ

∂V0
∂φ

= −m2 + λφ2 ,

λ
(0)
χ,4 =

1

φ

∂λχ,2
∂φ

= 2λ ,
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λ
(0)
χ,2n = 0 (forn ≥ 3) . (13)

The radiative corrections to these tree-level results follow directly from using the radiatively

corrected effective potential, and all λχ,2n become nonzero, although it continues to be true

that vertices with an odd number of Goldstone legs vanish.

Before proceeding with the calculation of soft-Goldstone vertices, notice that the blobs in

Figs. 1 and 2 can contain additional pieces besides those obtained from the effective potential

via the relation (12). The reason is that (12) only contains contributions that are 1PI, while

the blobs that appear from heavy particles can also contain one-particle-reducible (1PR) con-

tributions. As a simple example, consider a contribution to the vertex in the nG = nC = 2

diagram of Fig. 2 from a T -channel exchange of a Higgs. However, our proof is only based on

the mass scaling of Goldstone vertices, which is not changed by these contributions. More-

over, such 1PR contributions cannot be present at zero-momentum for the quadratic and cubic

Goldstone couplings as they would require the exchange of a heavy or hard particle with the

same quantum numbers as the Goldstones. The only candidates available are derivatively

coupled longitudinal gauge bosons, but the derivative introduces a momentum dependence

that goes to zero with the external momentum. For odd Goldstone vertices, also 1PR contri-

butions can only involve exchanges of derivatively coupled gauge bosons as the exchange of a

Higgs would require a coupling between an odd number of Goldstones and a Higgs and this

also vanishes at zero momentum, as is obvious from the previous discussion.

In our particular setting, as only hard propagators contribute now to the vertices, one

needs to use the radiatively corrected potential with only hard particles in the loops when

using (12). We will call such potential Vhard. Starting from the lowest dimension Gs vertex,

we get4

G = λχ,2 =
1

φ

∂Vhard
∂φ

= G+ ∆ , (14)

which gives a concrete calculational definition of the shift ∆. Generically, we expect that ∆

scales as X. As Vhard also contains hard-Goldstones, G can also appear in ∆. The method of

regions instructs us to expand the propagators of hard Goldstones in powers of G/p2 and so,

G can only appear in the mass scaling of these vertices with positive powers:

∆ ∼ X +O(G) . (15)

Such G dependence is absent in ∆1 and the one in ∆2 is only relevant to resum IR divergences

at four-loop order.

For the cubic vertex (or any odd vertex) we obtain zero at vanishing external momentum,

so that the only possible contributions to this vertex will be proportional to the external

momentum.5 As the external legs are soft Goldstones, this provides only additional positive

4In our procedure, the fact that all Goldstone bosons χi receive the same mass shift (so that all of them

are massless at the true vacuum) is built in from the start. Putting back indices we would write ∆ij = ∆δij .
5Notice that out of H and DµH one can now build operators that give rise to such couplings, e.g.

c ∂µ|H|2(H†DµH) + H.c., where c is a complex constant (with mass dimension −2).
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powers of G and we conclude that

λχ,3 ∼
√
G . (16)

Therefore, the nG = nC = 3 resummed diagram of Fig. 2 with two cubic vertices also scales

as G2L2
G

and is IR safe.

Let us consider next the quartic coupling λχ,4. This is dimensionless and radiative correc-

tions to it can only depend on other dimensionless couplings, ratios X/Y of heavy squared

masses or positive powers of G/X. The nG = nC = 3 diagram with two such quartic couplings

in Fig. 2 therefore scales like G2L3
G

and is also IR safe.

After these concrete examples of resummed diagrams we are ready for the generalization

to arbitrary topologies. Let us call γ(P, V, L) an arbitrary resummed diagram with a number

P of Goldstone propagators, a total number V =
∑

n(V2n+2 + V2n+1) of vertices (with V2n+i
the number of vertices with 2n+ i legs, with n ≥ 1) and a number L of loops. These numbers

are related by the identity

P − V = L− 1 . (17)

Let us calculate how such a generic diagram scales with G. Each loop integral brings a power

G2, each Goldstone propagator a power 1/G. The Goldstone vertices scale as

λχ,2n+2 ∼ X1−n [1 +O(G/X)
]
,

λχ,2n+1 ∼ G
1/2
X1−n [1 +O(G/X)

]
. (18)

We therefore find the scaling6

γ(P, V, L) ∼ G2L−P+
∑
n V2n+1/2XV−

∑
n n(V2n+2+V2n+1)(LG)L

= G2L−PX2V−P (LG)L
(
G

X

)∑
n V2n+1/2

, (19)

where the last equality follows from the relation P =
∑

n [(n+ 1)V2n+2 + (n+ 1/2)V2n+1].

Notice that, using (17), it can be checked that (19) has the right [mass]4 dimension. In fact,

using (17) we can eliminate L and write the simple expression:

γ(P, V, L) ∼ G2(LG)L
(
G

X

)P−2V+
∑
n V2n+1/2

. (20)

As the vertices involved in the resummed diagrams always have more than 2 legs (n ≥ 1),

one can derive the inequality

P − 2V +
1

2

∑
n

V2n+1 =
∑
n

(n− 1) (V2n+2 + V2n+1) ≥ 0 , (21)

and this implies that (20) is IR safe for G→ 0.

6The dependence on LG always comes from integration over the loops of soft Goldstones as hard Golstones

inside vertices give analytic contributions. In (20) we write LG raised to the highest possible power from an

L-loop diagram but it should be understood that lower powers also appear.
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It is transparent that the following result follows directly from the scaling of the Gold-

stone couplings, which is dictated by symmetry and dimensional analysis as is customary in

effective theory (EFT) approaches, in this case an effective theory for soft Goldstones. The

renormalizable two point function is sensitive to heavy scales and one gets the scaling (15).

A global SU(2) symmetry protects the cubic coupling, that scales as in (16) and higher order

operators are suppressed by the heavy scale X as given in (18). The only physical mass in

the EFT is the mass of the Goldstone, G. Any IR problem had to result from interaction

vertices that come with a coupling with X raised to a positive mass dimension, but this,

which was only possible for the cubic coupling does not happen. In the previous discussion

we have ignored the presence of photons and gluons, that should also be taken into account

in the effective theory and also contribute to the soft potential besides the diagrams in Figs. 1

and 2. However, dimensional analysis shows again that these contributions cannot generate

Goldstone IR divergences either.

Let us close this section with some comments on the proof we have given, before we

present the explicit three-loop check of our approach in the following section. First, many

resummation schemes suffer from over-counting problems. This is most transparent in the

2PI effective action that contains one additional term that compensates for contributions that

are over-counted in the resummation. Our prescription does not suffer from over-counting,

essentially because we do not resum the contributions from soft Goldstone bosons in the

self-energy. Details on the over-counting problem are given in Appendix B.

Second, the diagrams in Figs. 1 and 2 might suggest that we resum the full momentum-

dependent hard part of the self-energy. While the leading term (the mass renormalization)

and the next-to-leading term (the wavefunction renormalization) in a momentum expansion

can be easily resummed, resumming the full expression would be technically very demanding.

However, notice that re-expanding the propagators in any subleading terms will not lead to

IR issues and hence resumming the leading p2 = 0 contribution is in fact sufficient to resolve

the IR problems.

3 Cross Check of Resummation at Three Loops

In this section we check that our prescription for resumming soft-Goldstone contributions

works to make safe the SM potential at the three-loop level (as calculated in [11]). We also

compare our result with the resummation procedure performed at the same loop level in [11].

As explained in the previous sections, one key ingredient for the resummation is the definition

of the shift of the Goldstone mass, G→ G = G+ ∆, with ∆ defined by Eq. (14).

The perturbative expansion of ∆ starts at one loop, as in (5). The hard part of the one-

loop potential, V1,hard, includes contributions from all massive particles except the Goldstone

bosons (that is, the contribution of hard Goldstones vanishes), while the soft part, V1,soft,

just comes from Goldstone loops. The contribution of each massive species to the one-loop
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potential is

δαV1 =
1

4
NαX

2
α (LXα − Cα) , (22)

where for each particle species α, Xα = M2
α(φ) is the field-dependent squared mass, Nα counts

the number of degrees of freedom (taken negative for fermions) and Cα is a constant equal to

3/2 for scalars or fermions and equal to 5/6 for gauge bosons. One then obtains [15,16]

∆1 =
1

φ

∂V1,hard
∂φ

= −6h2tA(T ) + 3λA(H) +
1

2
g2[3A(W ) + 2W ] +

1

2
g2Z [3A(Z) + 2Z] , (23)

where we use g2Z = g2 + g′2 and

T =
1

2
h2tφ

2 , H = −m2 + 3λφ2 , W =
1

4
g2φ2 , Z =

1

4
g2Zφ

2 , (24)

are the (squared) masses of the top quark, the Higgs boson, and the W and Z gauge bosons,

respectively, that is Xα = {T,H,W,Z}. The (renormalized) one-loop function A is defined

as

A(X) = X(LX − 1) . (25)

At two loops, finding ∆2 requires obtaining the hard piece of the two-loop effective po-

tential. This task is readily performed by using the method of regions to split the Goldstone

bosons into soft and hard ones. Looking at the explicit expression of the SM two loop po-

tential as given in [9,10] we see that the (nontrivial) two-loop functions containing Goldstone

contributions are of the following types:

I(G, 0, 0) , I(G,G, 0) , I(G,G,X) , I(G,X, 0) , I(G,X,X) , I(G,X, Y ) , (26)

where X, Y represent any other massive particle and I(m2
1,m

2
2,m

2
3) is the (renormalized) two-

loop function to which all two-loop functions can be reduced. It corresponds to the setting-sun

diagram with three scalar propagators with the indicated masses and a precise definition can

be found in the Appendix E. Here we follow the notation of [10], where explicit expressions

for I can also be found.

By using the method of regions, as detailed in Appendices F-H, one can split the integrals

in (26) as

I(G, 0, 0) = I(Gs, 0, 0) + I(Gh, 0, 0) ,

I(G,G, 0) = I(Gs, Gs, 0) + 2I(Gs, Gh, 0) + I(Gh, Gh, 0) ,

I(G,G,X) = I(Gs, Gs, X) + 2I(Gs, Gh, X) + I(Gh, Gh, X) ,

I(G,X, 0) = I(Gs, X, 0) + I(Gh, X, 0) ,

I(G,X,X) = I(Gs, X,X) + I(Gh, X,X) ,

I(G,X, Y ) = I(Gs, X, Y ) + I(Gh, X, Y ) , (27)

where Gs (Gh) denote a soft (hard) Goldstone. Explicit expressions for these split integrals

are given in Appendices F-H, both for general dimension d = 4 − 2ε and in an expansion in

powers of G and 1/ε. The last form is all that is needed for our purposes.
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The Goldstone contribution to the hard part of the two-loop potential V2,hard is given by the

I functions involving only Gh, as above, while the soft part, V2,soft, comes from contributions

containing Gs. The two-loop shift of the Goldstone mass is then calculated as

∆2 =
1

φ

∂V2,hard
∂φ

. (28)

To check that the shift ∆ defined in this way resums the IR divergent pieces of the three-

loop potential it is enough to calculate ∆ up to two-loop order and order O(G0). The result

of our calculation for ∆2 is given in Appendix I. In order to show explicitly that this indeed

works, we proceed as follows. We use the full three-loop Standard Model effective potential

of [11]. The soft parts of the effective potential, which are those that contain the IR divergent

terms, take the following form. At one-loop, one has

V1,soft = G2(a1LG + b1) , (29)

with

a1 =
3

4
, b1 = −9

8
. (30)

At two loops, we find that, in an expansion in powers of G/X, the soft part of the potential

can be written as:

V2,soft = 2∆1G [a1(LG + 1/2) + b1] +G2(a2L
2
G + b2LG + c2) +O(G3/X) , (31)

with

a2 =
9

8
(2λ− e2) , (32)

b2 =
3

8

{
4h2t (3LT − 1)− 2

(
g2Z − 3e2

)
LZ − 4g2LW +

8g4

g′2
(LZ − LW ) + 8g2 − 11g4

g2Z

+
5g2Z
2
− 16λ− 2g2

(g2LW − 8λLH)

(g2 − 8λ)
− g2Z

(g2ZLZ − 8λLH)

(g2Z − 8λ)

}
, (33)

where e = gg′/gZ . Finally, at three-loop order we find that the soft potential can be expressed

as

V3,soft = 2G
[
a2∆1(L

2
G + LG) + (b2∆1 + a1∆2)(LG + 1/2) + c2∆1 + b1∆2

]
+ ∆2

1 [a1(LG + 3/2) + b1] +O(G2) . (34)

From the formulas above it is obvious that the soft potential

Vsoft = κV1,soft + κ2V2,soft + κ3V3,soft + ... (35)

has IR divergences (and V ′soft as well). It is straightforward to check that the resummed

potential

VR,soft ≡ κG2(a1LG + b1) + κ2G2
[
a2(LG)2 + b2LG + c2

]
(36)
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with G = G + ∆, reproduces the unresummed one upon expansion in powers of ∆/G but is

IR safe.

Finally, we can also compare our two-loop result for ∆ in (14) with the shift ∆̂ used

in [11, 15] for resummation and obtained using a different procedure (basically examining

order by order the IR divergences of the minimization condition for the Higgs potential to

identify the shift required to resum them). To make contact with the result for ∆̂ as given

in [11,15] we need to expand the Higgs contribution to our ∆1, given in (23), in powers of G

(using H = 2λφ2 +G)

∆1(H) = ∆1(2λφ
2) +G∂∆1/∂H +O(G2) , (37)

and then perform the substitution G → G + ∆. Identifying order by order the different

contributions to ∆ and ∆̂ we find that agreement up to two loops requires the relations

∆̂1 = ∆1(2λφ
2) ,

∆̂2 = ∆2 + ∆1∂∆1/∂H , (38)

which are indeed satisfied.

4 Summary and Discussion

We have shown that the IR divergences of the Landau gauge effective potential from Goldstone

bosons can be removed by resumming zero-momentum self-energy diagrams of soft Goldstone

boson lines. The appropriate self-energy is given by the hard contributions, meaning either

contributions from heavy particles or contributions from light particles with hard momentum.

The split into hard and soft modes is implemented and made precise by the method of regions.

We provided a diagrammatic proof to all orders and also an explicit check using the effective

potential in the SM at three-loop order.

As a guideline, we follow the principles of an effective action in the Wilsonian sense, where

only the soft momentum contributions of the light particles are relevant at low energies,

completing the analysis started in [16]. Our proof provides an explicit prescription for which

contributions to the Goldstone boson self-energy have to be resummed to resolve the IR

issues. This puts in firmer ground the procedure used in earlier work [11,15] to perform this

resummation. For example, in these papers it is argued that terms of order GLG should

not be resummed which agrees with our findings. However, there are terms for which it is

a priori unclear if they have to be resummed or not. For instance, there are terms of order

G in the hard part as well as the soft part of the Goldstone self-energy and according to our

arguments, which provide a rationale to distinguish these terms, only the former have to be

resummed. Ultimately, the reason why this approach to resummation works and clarifies the

picture is due to symmetry and dimensional analysis, the usual ingredients for the ‘magic’ of

effective theory approaches.
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Finally, let us mention that the Goldstone boson catastrophe is not the only application

of the methods presented here. Most theories with several scales and light scalars suffer from

the hierarchy problem. This means that all scalars have self-energy contributions of order of

the heavy scale and they have to be absorbed by the tree level mass to obtain a light scalar.

In the MS scheme, the tree level mass of the light boson and its self-energy are then of the

same order and techniques along the lines presented in this work have to be used to save or

improve the convergence of perturbation theory.

Acknowledgments

J.R.E. thanks LPTHE, Paris for hospitality and Johannes Braathen and Mark D. Good-

sell for discussions that triggered this work and for participating in its early stages. T.K.

acknowledges support by the German Science Foundation (DFG) within the Collaborative

Research Center (SFB) 676 Particles, Strings and the Early Universe. The work of J.R.E.

has been partly supported by the ERC grant 669668 – NEO-NAT – ERC-AdG-2014, the

Spanish Ministry MINECO under grants 2016-78022-P and FPA2014-55613-P, the Severo

Ochoa excellence program of MINECO (grant SEV-2016-0588) and by the Generalitat grant

2014-SGR-1450.

A The Cubic Goldstone Coupling

In this Appendix we give a more general proof for the vanishing of the cubic Goldstone

coupling at zero external momentum, following [19,24].

We consider the effective potential in Landau gauge and denote all scalar fields collectively

as φi. When the electroweak symmetry is spontaneously broken, a global symmetry arises

for the Goldstone bosons. That means that there are M transformations φi → φ̄i = φi + εmi
(m ∈ [1,M ]) that leave the effective potential invariant, V (φi) = V (φ̄i).

This implies

εmi
∂V

∂φi
= 0 , (39)

and also the first derivative of this relation

∂εmi
∂φj

∂V

∂φi
+ εmi

∂2V

∂φi∂φj
= 0 . (40)

The interpretation of the last equation is that in the vacuum (where ∂V/∂φi = 0) there are M

linear combinations in scalar fields that are massless Goldstone bosons, χm with 〈χm|φi〉 = εmi .

The subsequent derivative of this equation reads

∂εmi
∂φj∂φk

∂V

∂φi
+
∂εmi
∂φk

∂2V

∂φi∂φj
+
∂εmi
∂φj

∂2V

∂φi∂φk
+ εmi

∂3V

∂φi∂φj∂φk
= 0 . (41)
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Figure 3: Closing the external legs of this self-energy diagram leads to an enhanced (four-fold)

symmetry. This upsets the naive counting in the 2PI formalism and leads to the over-counting

problem.

Contracting this relation with the vectors εmi one finds

εmi ε
n
j ε
o
k

∂3V

∂φi∂φj∂φk
= 0 (in vacuum) . (42)

In conclusion, the cubic Goldstone couplings are of the order p2/X and G/X where X is

some hard mass scale and p denotes the scale of external momenta. Hence, the cubic coupling

cannot give rise to IR issues in the EFT.

B The Over-Counting Problem

In this Appendix we discuss the combinatorics behind the resummation in the two-particle-

irreducible (2PI) effective action, and in particular the over-counting problem. The original

proof was given using functional methods [25]. Here we will use the more diagrammatic proof

used in [26,27]. We use Euclidean signature in this section following [27].

Imagine that the full self-energy of a field was known. In this case, the self-energy can

be added to the propagator and subtracted again as a counter term. Diagrams that are two-

particle-reducible (2PR) contain a self-energy subdiagram and belong to a set of diagrams

that is ultimately canceled by the additional diagram generated by the counterterm.

One might argue that also 2PI diagrams can be obtained by closing the two legs of a

self-energy diagram. However, if a vacuum diagram is obtained this way, this cancellation is

eventually incomplete. This is due to the fact that the generated vacuum diagram can have

an enhanced symmetry (see Fig. 3). This is then compensated by the second term in the 2PI

relation

Veff =
1

2
Tr logD−1 − 1

2
Tr ΠD + Φ . (43)

The combinatorics behind this resummation can be understood [26,27] by introducing the

concept of a cycle.7 A cycle denotes a chain of propagators (with the same momentum) with

7This deviates from the definition used in [27] where a cycle contains at least two propagators with common

momentum and at least one self-energy insertion.
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2PR self-energy insertions. Notice that by our definition, all propagators are part of a cycle.

Using the definitions

nC : number of cycles in the diagram

nS : number of skeleton diagrams obtained by removing self-energies

nL : number of lines in cycles

one finds for the logarithmic contribution to the effective potential the relation

1

2
Tr log (1 +D0 Π) =

∑
γ

nC(γ)w(γ) , (44)

where w(γ) denotes the value of the vacuum diagram γ. Likewise, for the second contribution

to the effective action one finds the relation

− 1

2
Tr ΠD =

∑
γ

nL(γ)w(γ) . (45)

Finally, the 2PI piece is

Φ =
∑
γ

nS(γ)w(γ) . (46)

The resummation formula is then based on the relation

nC − nL + nS = 1 . (47)

Ultimately, the proof on the resummation of Goldstone bosons is based on only resumming

the hard part of the self-energy of the soft Goldstone bosons. Hence, only diagrams with

nc = 1 are resummed into the logarithmic Coleman-Weinberg contribution. All contributions

to 1
2
Tr ΠD then cancel against the corresponding contributions in Φ thanks to nL = nS. This

leaves only terms with nC > 1 in Φ. In other words: since the self-energies that are resummed

do no contain any soft Goldstone boson lines, closing the external legs will not enhance the

symmetry of the diagram. Hence, no over-counting problem arises in our resummation.

C Method of Regions

To split the Goldstone self-energy contributions into a hard and a soft part, we apply the

method of regions [22]. Since the Goldstone self-energy can be obtained by taking derivatives

of the effective potential as in (14) we perform the splitting into hard and soft parts directly

in the effective potential contributions.

Consider then a vacuum diagram with different mass scales. In general, we will have light

particles (including the Goldstone, gluons and photons) and heavy particles (everything else)

G� Λ� X = {W,Z,H, T . . . } , (48)
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with W = g2φ2/4, Z = (g2+g′2)φ2/4, H = −m2+3λφ2 and T = h2tφ
2/2. Next, all momentum

integrations are split into soft, p2 � Λ, and hard, p2 � Λ, regions, leading to∫
M

I(p2) ddp =

∫
S

I(p2) ddp+

∫
H

I(p2) ddp . (49)

In the soft regions, the integrand I(p2) can be expanded in momentum over the large masses,

p2/X, while in the hard regions the integrals can be expanded in G/p2. We denote these

expansions as IS(p2) and IH(p2):∫
M

I(p2) ddp =

∫
S

IS(p2) ddp+

∫
H

IH(p2) ddp . (50)

After the expansion, both integration regions can be extended to the full Minkowski space,

yielding∫
M

I(p2) ddp =

∫
M

IS(p2) ddp+

∫
M

IH(p2) ddp−
∫
H

IS(p2) ddp−
∫
S

IH(p2) ddp . (51)

At first sight, this formula seems to lead to some over-counting, but the dimensional regu-

larization actually takes care of this. The added regions actually allow in all our cases for a

double expansion.

−
∫
H

IS(p2) ddp−
∫
S

IH(p2) ddp = −
∫
H

IS,H(p2) ddp−
∫
S

IH,S(p2) ddp . (52)

As long as these two expansions commute, the added regions can be combined into an integral

over all space that vanishes in dimensional regularization

−
∫
H

IS(p2) ddp−
∫
S

IH(p2) ddp = −
∫
M

IS,H(p2) ddp = 0 , (53)

due to the fact that the double expansion will lead to scaleless monomials in the momentum p2.

In summary, the method of regions implies∫
M

I(p2) ddp =

∫
M

IS(p2) ddp+

∫
M

IH(p2) ddp , (54)

and its generalization to multiple momentum integrals.

D Splitting of B(X,G; 0)

Among the basis integrals that appear in calculating the hard/soft split of the two loop

potential, there appears the one-loop integral with two propagators of different mass. The

splitting of the one-loop integral [with the integration defined as in (7)]

B(X,G; p2) = κ−1
∫
q

1

(G− q2)[X − (q + p)2]
, (55)
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at zero external momentum is straightforward and gives

B(X,Gs; 0) =
A(G)

X −G
, B(X,Gh; 0) = − A(X)

X −G
, (56)

with

A(Z) = κ−1
∫
p

1

Z − p2
= Z

[
Z

4πµ2

]−ε
Γ(−1 + ε) = Z

[
−1

ε
+ LZ − 1 +O(ε)

]
, (57)

with LZ ≡ log(Z/Q2) and Q2 ≡ 4πµ2e−γE . Obviously, the sum of the split parts reproduces

the full result:

B(X,G; 0) = B(X,Gs; 0) + B(X,Gh; 0) . (58)

After subtracting divergences, the renormalized version of this split reads

B(X,Gs; 0) =
A(G)

X −G
, B(X,Gh; 0) = − A(X)

X −G
, (59)

with A(Z) = Z(LZ − 1), where we distinguish renormalized functions by using normal fonts.

E Splitting of I(G,G,X)

A basis integral that appears repeatedly in two-loop vacuum contributions is

I(X, Y, Z) = κ−2
∫
p

∫
q

1

(X − q2)(Y − p2)[Z − (p+ q)2]
, (60)

and in this Appendix and the following ones we perform the splitting of this integral when it

contains Goldstone propagators.

The splitting of I(G,G,X) into I(Gs, Gs, X), I(Gs, Gh, X) and I(Gh, Gh, X) can be ob-

tained in a direct way by using the method of regions to expand the propagators and trun-

cating the resulting power series at the desired order in G. Some of the resulting momentum

integrals are straightforward and others can be evaluated with the help of automated tools

like FIRE [28]. Working up to O(G2), one obtains the compact expressions

I(Gh, Gh, X) = I(0, 0, X)

[
1− 2(d− 3)

G

X
+ 2(d− 3)(d− 5)

G2

X2

]
+O(G3) , (61)

I(Gs, Gh, X) = − 1

X
A(G)A(X)

(
1 +

4

d

G

X

)
+O(G3) , (62)

I(Gs, Gs, X) =
1

X
[A(G)]2 +O(G3) . (63)

Note the factor A(G) in I(Gs, Gh, X), I(Gs, Gs, X), which is a common feature of all I-

functions involving Gs, as we will see.
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It is convenient to define renormalized versions of the previous results by subtracting

subdivergences, as done e.g. in [9, 29]. Using normal (bold) fonts for the renormalized (un-

renormalized) functions, as in [29], we have

I(X, Y, Z) = lim
ε→0

[
I(X, Y, Z)− I

(1)
div(X, Y, Z)− I

(2)
div(X, Y, Z)

]
, (64)

where I
(1)
div(X, Y, Z) are the one-loop subdivergences and I

(2)
div(X, Y, Z) are the two-loop ones.

For the current case we have

I
(1)
div(Gh, Gh, X) =

1

ε

(
1− 2G

X
− 2G2

X2

)
A(X) +O(G3) , (65)

I
(2)
div(Gh, Gh, X) =

(
X

2
− G2

X

)(
1

ε2
− 1

ε

)
−G

(
1

ε2
+

1

ε

)
+O(G3) , (66)

I
(1)
div(Gs, Gh, X) =

1

ε

[
A(G) +

G

X
A(X)

](
1 +

G

X

)
+O(G3) , (67)

I
(2)
div(Gs, Gh, X) =

G

ε2
+
G2

X

(
1

ε2
− 1

2ε

)
+O(G3) , (68)

I
(1)
div(Gs, Gs, X) = −2GA(G)

ε X
+O(G3) , (69)

I
(2)
div(Gs, Gs, X) = − G2

ε2X
+O(G3) (70)

We then get

I(Gh, Gh, X) =

(
1− 2G

X
− 2G2

X2

)
I(0, 0, X) + 4G

(
LX −

3

2
− G

X

)
+O(G3) , (71)

I(Gs, Gh, X) = − 1

X
A(G)A(X) +

G2

2X

(
3LX + 3LG − 2LXLG −

9

2

)
+O(G3) , (72)

I(Gs, Gs, X) =
1

X
[A(G)]2 +O(G3) , (73)

where

A(Z) ≡ Z(LZ − 1). (74)

is the renormalized version of A(Z), and

I(0, 0, X) = X

(
−5

2
− π2

6
+ 2LX −

1

2
L2
X

)
. (75)

For the particular case X = 0, the previous discussion simply reduces to I(Gs, Gs, 0) =

I(G,G, 0). Similarly, one has I(Gs, 0, 0) = I(G, 0, 0).

Working to all orders in G, the splitting of the two-loop basis integral I(G,G,X) gives

I(Gs, Gs, X) =
[A(G)]2

X
2F1

(
1,

3

2
− ε; 3− 2ε;

4G

X

)
,
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I(Gs, Gh, X) = −A(G)A(X)

X
2F1

(
1,

1

2
; 2− ε; 4G

X

)
,

I(Gh, Gh, X) = −2
√
X(X − 4G)

[
X(X − 4G)

(4πµ2)2

]−ε
π csc(πε)Γ(2ε− 2) . (76)

It is straightforward to check analytically that one has

I(G,G,X) = I(Gs, Gs, X) + 2 I(Gs, Gh, X) + I(Gh, Gh, X) . (77)

To prove this, let us use as starting point the expression for I(G,G,X), valid for generic

d = 4− 2ε, as derived in [9] in terms of the incomplete beta function:

I(G,G,X) = −Γ(ε)Γ(ε− 1)4−1+ε
√
X(X − 4G)

[
X(X − 4G)

(4πµ2)2

]−ε
×
{

2β

(
1− 4G

X
;−1

2
+ ε, 1− ε

)
− β

(
X(X − 4G)

(X − 2G)2
;−1

2
+ ε, 1− ε

)}
.(78)

One then rewrites this expression in terms of hypergeometric functions using B(z; p, q) =

(zp/p) 2F1(p, 1− q; p+ 1; z). Next, the resulting hypergeometric functions can be transformed

using the quadratic transformation

2F1

(
a, a+

1

2
; c; z

)
=

(
1 +
√

1− z
2

)−2a
2F1

(
2a, 2a− c+ 1; c,

1−
√

1− z
1 +
√

1− z

)
, (79)

as given by [30] [formula (15.3.19)] , and the identity

2F1(a, b; c; z) = (1− z)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1− z)

+
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b; a+ b− c+ 1; 1− z) , (80)

[formula (15.3.6) of [30]]. In this way one is able to recast (78) as a sum of three terms that

correspond precisely to the split terms of (77) given in (76). As a cross-check, one can show

that the expansion of the full results of Eqs. (76) in powers of ε and G reproduces the previous

expanded results of Eqs. (61-63).

As a final side comment, note that the split functions given in Eq. (76) have poles at lower

dimensions, corresponding to poles in ε = 1, 2 which are closely related to each other in such

a way that the leading divergence cancels in their sum, Eq. (77). As an example, for d = 2

(or ε = 1) one has

I(Gs, Gs, X) = −I(Gs, Gh, X) = I(Gh, Gh, X) =
µ4[Γ(ε− 1)]2

κ
√
X(X − 4G)

+O
(

1

ε− 1

)
. (81)

This fact is generic and holds for other splittings we derive in the next subsections.
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F Splitting of I(G,X, 0)

The splitting of I(G,X, 0) into I(Gs, X, 0) and I(Gh, X, 0), up to O(G2), gives

I(Gh, X, 0) = I(0, 0, X)

[
1− (d− 3)

G

X
+ (d− 3)(d− 4)

G2

2X2

]
+O(G3) , (82)

I(Gs, X, 0) = − 1

X
A(G)A(X)

[
1− (d− 4)

d

G

X

]
+O(G3) . (83)

Note again the factor A(G) in I(Gs, X, 0), as anticipated.

As for the previous case, the renormalized functions are defined by Eq. (64) with

I
(1)
div(Gh, X, 0) =

1

ε

(
1− G

X

)
A(X) +O(G3) , (84)

I
(2)
div(Gh, X, 0) =

1

2ε2
(X −G)− 1

2ε
(X +G) +

G2

2εX
+O(G3) , (85)

I
(1)
div(Gs, X, 0) =

1

ε

[
A(G) +

G

X
A(X)

]
+O(G3) , (86)

I
(2)
div(Gs, X, 0) =

G

ε2
− G2

2εX
+O(G3) . (87)

We then get

I(Gh, X, 0) =

(
1− G

X

)
I(0, 0, X) + 2G

(
1− G

2X

)
LX − 3G+

G2

2X
+O(G3) , (88)

I(Gs, X, 0) = − 1

X
A(G)A(X) +

G2

4X
(2LG + 2LX − 5) +O(G3) . (89)

Working to all orders in G, the splitting of I(G,X, 0) gives

I(Gs, X, 0) = −A(G)A(X)

X
2F1

(
1, ε; 2− ε; G

X

)
, (90)

I(Gh, X, 0) = −2(X −G)

[
X −G
4πµ2

]−2ε
π csc(πε)Γ(2ε− 2) . (91)

As a cross-check, one can show that the expansion of these full results in powers of ε and G

reproduces the previous expanded results of Eqs. (82,83). It is also straightforward to check

that

I(G,X, 0) = I(Gs, X, 0) + I(Gh, X, 0) . (92)

In order to do so, one can start from the general expression as derived in [9] in terms of the

incomplete beta function:

I(G,X, 0) = − 1

41−ε (X −G)

[
X −G
4π2µ2

]−2ε
Γ(ε− 1)Γ(ε) β

(
(X −G)2

(X +G)2
;−1

2
+ ε, 1− ε

)
= X

[
X

4π2µ2

]−2ε
Γ(ε− 1)Γ(ε)

(1− 2ε)
2F1

(
−1 + 2ε, ε; 2ε; 1− G

X

)
. (93)

rewritten in the last line in terms of the hypergeometric function and then using (80) to

reduce the expression to agree with (92).
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G Splitting of I(G,X,X)

As for previous cases, the O(G2) splitting of I(G,X,X) into I(Gs, X,X) and I(Gh, X,X) can

be obtained in a direct way and one gets

I(Gh, X,X) = I(0, X,X)

[
1 +

(d− 3)

2(d− 5)

G

X
+

(d− 3)(d− 4)

4(d− 5)(d− 7)

G2

X2

]
+O(G2) , (94)

I(Gs, X,X) = −A(G)A′(X)

[
1− (d− 4)

12

G

X

]
+O(G3) , (95)

where A′(X) ≡ dA(X)/dX = (d−2)A(X)/(2X). Note again the factor A(G) in I(Gs, X,X),

as anticipated.

As for previous cases, the renormalized functions are defined by Eq. (64) with

I
(1)
div(Gh, X,X) =

1

ε
[2A(X)−GA′(X)] +O(G3) , (96)

I
(2)
div(Gh, X,X) =

1

2ε2
(2X −G)− 1

2ε
(2X +G) +

G2

6εX
+O(G3) , (97)

I
(1)
div(Gs, X,X) =

1

ε
[A(G) +GA′(X)] +O(G3) , (98)

I
(2)
div(Gs, X,X) =

G

ε2
− G2

6εX
+O(G3) . (99)

We then get the renormalized results

I(Gh, X,X) =

(
1− G

2X

)
I(0, X,X) +G (3LX − 1)− G2

3X

(
LX +

5

6

)
+O(G3) ,(100)

I(Gs, X,X) = −A(G)A′(X) +
G2

6X
(LG + LX − 1) +O(G3) , (101)

where

I(0, X,X) = X(−5 + 4LX − L2
X) . (102)

The splitting of I(G,X,X) to all orders in G gives

I(Gs, X,X) = −A(G)A′(X) 2F1

(
1, ε;

3

2
;
G

4X

)
, (103)

I(Gh, X,X) = −A(X)A′(X)

(1− 2ε)
2F1

(
1,−1 + 2ε;

1

2
+ ε;

G

4X

)
. (104)

It is straightforward to check that

I(G,X,X) = I(Gs, X,X) + I(Gh, X,X) . (105)

Again, one can take as starting point the general expression for I(G,X,X) as obtained in [9]

I(G,X,X) = −2
√
G(4X −G)

[
G(4X −G)

(4π2µ2)2

]−ε
πΓ(2ε− 2)
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+
1

2

[
X

4π2µ2

]−ε
Γ(ε)Γ(ε− 1)

{
2G

[
G

4π2µ2

]−ε
2F1

(
1, ε;

3

2
;
G

4X

)

+(2X −G)

[
X

4π2µ2

]−ε
2F1

(
1, ε;

3

2
;
(2X −G)2

4X2

)}
(106)

and reduce it to a suitable form transforming the hypergeometric functions involved, using in

particular the quadratic transformation [given by [31], eq. (27) of page 118]

4
√
πΓ(a+ b− 1/2)

Γ(a− 1/2)Γ(b− 1/2)

√
z 2F1

(
a, b;

3

2
; z

)
= (107)

2F1

(
2a− 1, 2b− 1; a+ b− 1

2
,
1 +
√
z

2

)
− 2F1

(
2a− 1, 2b− 1; a+ b− 1

2
,
1−
√
z

2

)
.

H Splitting of I(G,X, Y )

The splitting of I(G,X, Y ) into I(Gs, X, Y ) and I(Gh, X, Y ), up to O(G2), gives

I(Gh, X, Y ) = I(0, X, Y )

{
1− (d− 3)

G(X + Y )

(X − Y )2

+ (d− 3)
[
(d− 4)(X2 + Y 2) + 2(d− 6)XY

] G2

2(X − Y )4

}
+ (d− 2)G

[
−1 + (d− 5)

G(X + Y )

2(X − Y )2

]
A(X)A(Y )

(X − Y )2
+O(G3), (108)

I(Gs, X, Y ) = −A(G)
A(X)−A(Y )

X − Y
+

GA(G)

(X − Y )3

{
XA(Y )− YA(X)

+
(d− 4)

d
[XA(X)− YA(Y )]

}
+O(G3) . (109)

Note again the factor A(G) in I(Gs, X, Y ), as expected.

As for previous cases, the renormalized functions are defined by Eq. (64) with

I
(1)
div(Gh, X, Y ) =

1

ε
A(X)

[
1− G

X − Y
− G2Y

(X − Y )3

]
+

1

ε
A(Y )

[
1 +

G

X − Y
+

G2X

(X − Y )3

]
+O(G3) , (110)

I
(2)
div(Gh, X, Y ) =

1

2ε2
(X + Y −G)− 1

2ε
(X + Y +G) +

1

2ε

G2(X + Y )

(X − Y )2
+O(G3) , (111)

I
(1)
div(Gs, X, Y ) =

1

ε

[
A(G) +G

A(X)−A(Y )

X − Y

]
− G2 [XA(Y )− YA(X)]

ε(X − Y )3
+O(G3),(112)

I
(2)
div(Gs, X, Y ) =

G

ε2
− G2(X + Y )

2ε(X − Y )2
+O(G3) . (113)
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We then get the renormalized results

I(Gh, X, Y ) =

[
1− G(X + Y )

(X − Y )2
− 2G2XY

(X − Y )4

]
I(0, X, Y )

− G

(X − Y )2
{

(X + Y )2 − 2 [XA(X) + Y A(Y )− A(X)A(Y )]
}

− G2

2(X − Y )4

{
(X + Y )3 + 2(X − Y ) [XA(X)− Y A(Y )]

+ 2(X + Y )A(X)A(Y )− 4XY [A(X) + A(Y )]
}

+O(G3) , (114)

I(Gs, X, Y ) = −A(G)
A(X)− A(Y )

X − Y
+

GA(G)

(X − Y )3
[XA(Y )− Y A(X)]

+
G2

4(X − Y )3
[
(2LX + 2LG − 5)X2 − (2LY + 2LG − 5)Y 2

]
+O(G3) ,(115)

with

I(0, X, Y ) =
1

4
(X + Y )

[
(LX − LY )2 − 10

]
− 1

2
[XLX(LX − 4) + Y LY (LY − 4)]

+
1

2
(X − Y ) [Li2(1−X/Y )− Li2(1− Y/X)] . (116)

Working to all orders in G, the splitting of I(G,X, Y ) gives

I(Gs, X, Y ) = A(G)

[
Y

4πµ2

]−ε
×
∞∑
n=0

(
G

Y

)n
Γ(n+ 1)Γ(n+ ε)

Γ(2n+ 2)
2F1

(
n+ 1, n+ ε; 2n+ 2; 1− X

Y

)
, (117)

I(Gh, X, Y ) = −A(Y )

[
Y

4πµ2

]−ε
×
∞∑
n=0

(
G

Y

)n
Γ(n+ ε)Γ(n− 1 + 2ε)

Γ(2n+ 2ε)
2F1

(
n+ ε, n− 1 + 2ε; 2n+ 2ε; 1− X

Y

)
,

(118)

and it can be readily checked that these expressions reproduce I(Gs, X,X) and I(Gh, X,X) in

the limit Y → X. Notice also that these expressions are symmetric in X, Y as can be verified

by making use of the Pfaff transformation 2F1(a, b; c; z) = (1− z)−b 2F1(c− a, b; c; z/(z− 1)).

One can also show that the sum of split parts reproduces the full result

I(G,X, Y ) = I(Gs, X, Y ) + I(Gh, X, Y ) . (119)

As before, take as starting point the expression for I(G,X, Y ) as derived in [9], which can be

rewritten as:

I(G,X, Y ) = −1

2
Γ(ε)Γ(ε− 1)

{
aGXY

[
aGXY
4πµ2

]−2ε
β

(
4a2GXY

(X + Y −G)2
;−1

2
+ ε, 1− ε

)
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−(G+X − Y )

[
GX

(4πµ2)2

]−ε
2F1

(
1, ε;

3

2
;
(G+X − Y )2

4GX

)
−(G+ Y −X)

[
GY

(4πµ2)2

]−ε
2F1

(
1, ε;

3

2
;
(G+ Y −X)2

4GX

)}
, (120)

with

a2GXY ≡
1

4

[
(X − Y )2 +G2 − 2G(X + Y )

]
. (121)

In fact, the term of Eq. (120) corresponding to the incomplete beta function gives I(Gh, X, Y )

and the last two terms give I(Gs, X, Y ). To show how I(Gh, X, Y ) is reproduced, rewrite the

incomplete beta function in terms of a hypergeometric function as done after Eq. (78) and

use on it the quadratic transformation of Eq. (79). After a Pfaffian transformation one gets

I(Gh, X, Y ) =
√
XY

[√
XY

4πµ2

]−2ε
Γ(ε)Γ(ε− 1)

(1− 2ε)
2F1

(
1, 2ε− 1;

1

2
+ ε;

(
√
X −

√
Y )2 −G

−4
√
XY

)
,

(122)

One can then show that this agrees with the series in Eq. (118) by expanding the hyperge-

ometric function above in powers of G and comparing terms of order Gn making use of the

identity (46) in [31] (p.120)

2F1(α, β; 2β;x) = (1− x)−α/2 2F1

(
α, 2β − α; β +

1

2
;
(1−

√
1− x)2

−4
√

1− x

)
. (123)

Finally the expression

I(Gs, X, Y ) =
1

2
Γ(ε)Γ(ε− 1)

{
(G+X − Y )

[
GX

(4πµ2)2

]−ε
2F1

(
1, ε;

3

2
;
(G+X − Y )2

4GX

)

+(G+ Y −X)

[
GY

(4πµ2)2

]−ε
2F1

(
1, ε;

3

2
;
(G+ Y −X)2

4GY

)}
, (124)

can be shown to reproduce I(Gs, X,X) in Eq. (103) when X = Y and by expanding in powers

of G/X, G/Y and 1 − X/Y it is not difficult to reproduce the infinite series expression we

obtained in Eq. (118).

The expansion of I(Gh, X, Y ) in ε is

I(Gh, X, Y ) =
1

2
(X + Y −G)

{
− 1

ε2
+

1

ε
(LX + LY − 3− z ln r)

+z

[(
LX + LY − 3 + 2 ln(1− r)− 1

2
ln r

)
ln r − π2

3
+ 2Li2(r)

]
−1

2

[
(LX + LY − 3)2 + 5 +

π2

3

]}
+O(ε) , (125)

where we have used

z ≡ 2aGXY
X + Y −G

, r ≡ 1− z
1 + z

. (126)
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To derive the previous expression we first transformed the hypergeometric function in (122)

using identity (40) in [31], p.120,

2F1

(
α, β;

α + β + 1

2
; z

)
=
(√

1− z +
√
−z
)−2α

2F1

(
α,
α + β

2
;α + β;

4
√
z(z − 1)

(
√

1− z +
√
−z)2

)
,

(127)

and then performed the ε-expansion

2F1(1, ε; 2ε;x) =
1

2(1− x)

{
2− x+ xε ln(1− x) + xε2

[
1

2
ln2(1− x) + 2Li2(x)

]
+O(ε3)

}
,

(128)

using the techniques of [32]. Expanding further in G we arrive at

I(Gh, X, Y ) =
1

2

{
− 1

ε2
(X + Y −G)

+
1

ε

[
X(2LX − 3) + Y (2LY − 3)−G

(
2
XLX − Y LY

X − Y
− 1

)]
−1

2
(X + Y )

[
(LX + LY − 3)2 + 5 +

π2

3

]
+
G

2

[
(LX + LY + 1)2 + 5 +

π2

3

]
+

(
X − Y −GX + Y

X − Y

)[
ln
X

Y

[
3− 3LY + LX

2
− 2 ln

(
1− X

Y

)]
+
π2

3

−2Li2

(
X

Y

)]
+ 2G

(
X + Y

X − Y
ln
X

Y
− LX − LY − 1

)}
+O(ε) +O(G2),

(129)

We also get the following ε expansion

2F1

(
1, ε;

3

2
;x

)
= 1 + 2ε

(
1−
√

1− x√
x

θ

)
+ 2ε2

{
2 +

√
1− x√
x

[(ln(4− 4x)− 2) θ − Cl2(π − 2θ)]

}
+O(ε3),(130)

with θ = arcsin
√
x and Cl2 is the Clausen function.

I Result for ∆2

In this appendix we present the two-loop result for the shift of the Goldstone mass (used in

resumming IR divergences) calculated from (28) to order O(G0):

∆2 =
3λ(g2 + g2Z)3

2g4Z
I(0,W, Z)− 6λ2I(0, 0, H)− 15λ2I(H,H,H)− 12y2t λI(0, 0, T )

+
3

2
g2
[

(2g4 + 8g′2g2 + 5g′4)λ

g4Z
− 6g2

]
I(0, 0,W )− 3

(
g2 − 2y2t

) (
y2t + g2

)
I(0,W, T )
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+
1

12

[
18(g2 − 2g′2)λg2

g2Z
− 63g4 − 6g′2g2 − 103g′4

]
I(0, 0, Z)

+
1

8g2Z
(4g2 − g2Z)

(
12g4 + 20g2Zg

2 + g4Z
)
I(W,W,Z) +

9

2

(
3y2t − 4λ

)
y2t I(H,T, T )

+
1

12

[
−9g4 + 6g′2g2 − 17g′4 +

2 (9g4 + 66g′2g2 − 7g′4) y2t
g2Z

]
I(Z, T, T )

+
1

3
y2t

[
6
(
8g23 − 6y2t + 3λ

)
− 27g2Z − 26g′2 + 64

g′4

g2Z

]
A(T )

+
1

48

[
−444g2λ+ 132g′2λ− 32A(T ) (9g4 − 6g′2g2 + 17g′4)

g2Zφ
2

+
1

g2Z

[
317g6 + 221g′2g4 + 647g′4g2 + 455g′6 − 4

(
63g4 + 30g′2g2 + 95g′4

)
y2t
]]
A(Z)

+

{
1

24
g2
[
605g2 − 252y2t + 39g′2 − 288g4 + 12(13g2 + 7g′2)λ

g2Z

]
+

12 (y2t − g2)
φ2

A(T )

+
1

g4Zφ
2

[
15g6 + 5g′2g4 − 11g′4g2 − g′6 + 6

(
8g4 + 8g′2g2 + g′4

)
λ
]
A(Z)

}
A(W )

+
3

2
A(H)

[
−7y4t + 22λ2 + 6y2t

(
λ− 2A(T )

φ2

)]
+
A(W )2

2φ2

(
48
g4

g2Z
+ g2Z − 34g2

)
+

A(T )2

3g2Zφ
2

[
9g2Z

(
5y2t + 32g23 + 2λ

)
+ 9g4 + g′2

(
90g2 + 17g′2

)]
+

9A(H)2λ

2φ2

+

{
−y2t

[
1

48

(
310g4 − 320g2g2Z + 91g4Z

)
+ 18λ2 +

y2t
6

(
64
g4

g2Z
− 77g2 − 5g2Z − 36λ

)
− 24g23y

2
t − 9y4t

]
+

3

8
(λ+ 8g2)

g6

g2Z
+

1

192

(
872g6 − 496g4g2Z + 718g2g4Z − 497g6Z

)
+

λ

16

[
92g4 + 12g2g2Z + 7g4Z + 32(2g2 + g2Z)λ− 960λ2

]}
φ2

+

{
3

2
λ(g2 + 8λ)I(0,W,H) +

1

16

(
3g6

g2 − 2λ
− 30g4 + 88λg2 − 224λ2

)
I(W,W,H)

+
1

4(g2 − 2λ)φ2

[
9g8φ4

8
− 3g6φ2

4
[2A(W ) + A(H)] + 2

(
9g4 − 31λg2 + 32λ2

)
A(W )A(H)

−
(
7g4 − 36λg2 + 56λ2

)
A(W )2

]
+
g2

8
(27g2 − 28λ)A(H) +

1

2
[g → gZ ,W → Z]

}
. (131)
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