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We discuss the Schwinger mechanism in the presence of an additional uniformly oriented, weak
super Gaussian of integer order 4N + 2. Using the worldline approach, we determine the relevant
critical points to compute the leading order exponential factor analytically. Already for N = 2, we
find a much stronger dynamical enhancement compared to a weak contribution of Sauter type. For
higher orders, specifically for N →∞, we approach the Lorentzian case. Although such backgrounds
significantly differ in Minkowski spacetime, the found coincidence applies due to identical reflection
points in the instanton plane. We also treat the background in perturbation theory and show
that the order parameter N determines whether the weak contribution behaves perturbatively or
nonperturbatively.

I. INTRODUCTION

The tunnelling of matter-antimatter pairs from the
quantum vacuum in a background gauge field is an im-
portant nonperturbative prediction in quantum field the-
ory [1]. For charged particles1 with mass m the rate in
the weakly coupled regime is exponentially suppressed
below the critical field strength ES = m2. Due to the ex-
tremely large value, this so-called Schwinger mechanism
still could not yet be seen in the laboratory. Recently,
there has also been made progress in investigating this
mechanism in analogous condensed matter systems re-
vealing interesting similarities between nonlinear quan-
tum field theory and nonequilibrium condensed matter
systems [2–7].

Temporal inhomogeneities can trigger an enormous en-
hancement of the tunnelling rate [8–10]. For instance,
one may consider a background composed of a strong,
locally static part superimposed with an additional weak
but rapid alteration [11, 12]. Such composite back-
grounds give rise to certain critical points [11, 13, 14]
which act as reflectors in the instanton plane resulting in
a drastic dynamical enhancement.

Generally, the microscopic details of the weak de-
pendence can be very decisive. However, even alter-
ations with a substantially distinct analytic structure in
Minkowski space can lead to the same rate if the asso-
ciated critical points in the instanton plane perfectly co-
incide [14]. Recently, such an intriguing coincidence for
the leading order exponential factor has been observed
between a weak Lorentzian and a super Gaussian of in-
teger order 4N + 2 in the limit N →∞ [14, 15].

The purpose of this work is to support this insight by
explicit analytic nonperturbative as well as perturbative
computations. We will primarily work within the world-
line formalism in quantum field theory [16, 17].

∗ ibrahim.akal@desy.de
1 The charge has been absorbed into the field strength. Through-

out this paper we use natural units c = 1 and ~ = 1.

II. NONPERTURBATIVE APPROACH

The general form for the tunnelling probability is

P = 1− e−2Γ (1)

where the rate, Γ, is determined by the imaginary part
of the Euler-Heisenberg effective action [18]. Due to sim-
plifications, we focus on spin zero particles. Further-
more, we restrict ourselves to the adiabatic, nonperturba-
tive regime and neglect contributions from the dynamical
gauge field. The rate is of the form

Γ = Qe−W0 . (2)

The stationary action W0 in the exponent is obtained
after evaluating the worldline action

W = ma+ i

∮
du ẋ · A(xµ) (3)

on the periodic instanton path [19] determined by

mẍµ = iaFµν ẋν . (4)

Since the exponential factor in Γ is the dominant quan-
tity [20, 21] for the present study, we set the quantum
fluctuation prefactor Q to unity. The kinematic invari-
ant obeys the relation a2 = ẋ2 due to the anti-symmetry
of the field tensor Fµν . We consider a purely electric
background which is a uniformly oriented superposition
described by

EEE(t) = E (f + εg) x̂3 (5)

where ε� 1 and

f(t) = 1, g(t) = e−(ωt)4N+2

, N ∈ N. (6)

In Fig. 1 the function g is depicted for variousN including
the Sauter and Lorentzian cases.
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FIG. 1. Comparison of function g plotted versus t. The
numbers in the legend correspond to the integer N in (6).
The pink curve corresponds to a modified Sauter pulse with
frequency shift ω → ωπ/2 leading to the same W0 as the
Lorentzian (blue). For N → ∞ we approach the usual rect-
angular potential barrier.

After the rotation in the complex plane (t → ix4), we
arrive at

A3(x4) = −iE(F + εG), (7)

where

F (x4) = x4,

G(x4) = − 1

ω

(ωx4)E 4N+1
4N+2

(−(ωx4)4N+2)

4N + 2
.

(8)

Here, En denotes the exponential integral function. In-
serting the vector potential (7) into the instanton equa-
tions (4), we find the following coupled system of differ-
ential equations

ẍ4 = +
aE

m

[
F ′ + εG′

]
ẋ3,

ẍ3 = −aE
m

[
F ′ + εG′

]
ẋ4.

(9)

The prime denotes the derivative with respect to x4.
For conventional reasons, we introduce the dimensionless
combined Keldysh parameter [11]

γ =
mω

E
. (10)

The idea is to compute such points for which the strong
contribution can be taken as negligible compared to the
additional weak term. Afterwards, we can use these as
effective reflection points in the instanton plane. This
allows to find a sufficiently accurate expression for the
stationary worldline action, for further details see [14].

Interestingly, an appropriate modification of the back-
ground shape can lead to time scale reductions in driven
quantum systems, see e.g. [22]. Therefore, one may think
about analogies related to such reflection points placed
on the Euclidean time axis.
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FIG. 2. Comparison of ξ = −Z/(αD) versus N (starting with
N = 1) for various ε given in the plot legend. With increasing
N the dependence on ε gets suppressed. For N → ∞ we
approach the Lorentzian case, i.e. δ = ξγ̌ → 0 (since ξ → 0)
and γ̌ → 1.

Proceeding in this way, we end up with the following
stationary worldline action

W0 '
ES

E

{
π γ < γ̌

2x̌4

√
1− x̌2

4 + 2arcsin(x̌4) γ ≥ γ̌
, (11)

where

x̌4 =
γ̌ + δ

γ + δ
, γ̌ = (ln(1/ε))

1
4N+2 , δ = − γ̌

α

Z

D
. (12)

In order to compute the remaining quantities α,Z and D
in (12), we Taylor expand the associated transcendental
function in ξ < 1, where δ ≡ ξγ̌, see App. A in [14], and
truncate the resulting series after the second order which
leads to the following expressions

D := 2ε(2N + 1)(2αΩ2 + 4αNΩ2 + 4NΩ1 + 3Ω1),

Z := 2αΩ1ε+ 4αNΩ1ε+ 4N + Ωε+ 2 +
[
(ε(2αΩ1 + Ω) + 4N(αΩ1ε+ 1) + 2)2

− 4αε(2N + 1)(4N + Ωε+ 2)(2α(2N + 1)Ω2 + (4N + 3)Ω1)
]1/2

,

Ω := E 4N+1
4N+2

(−α), Ω1 := E 4N+1
4N+2−1(−α), Ω2 := E 4N+1

4N+2−2(−α), α := γ̌4N+2.

(13)

We begin with the correction δ, which we expect to vanish for increasing N , here expressed as N ↑. The parameter
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ξ is plotted versus N in Fig. 2, where the field strength
ratio ε varies between different values as given in the plot
legend. For N = 1 the points clearly differ. However, as
soon as N ↑, they rapidly merge together and converge
to zero. Thus, the ε dependence becomes strongly sup-
pressed and we find ξ → 0, cf. Fig. 2. Remarkably,
such an ε independence applies usually for Sauter-like
pulses which have a distinct pole structure in the instan-
ton plane, cf. e.g. [13]. Super Gaussians do not share
such properties, even for very large N , which is therefore
an interesting coincidence in itself. We will come back to
this point later on.
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FIG. 3. Stationary worldline action W0 in units of [ES/E].
The integer values in the legend correspond to the order pa-
rameter N in (6).

The nonperturbative prediction for the stationary world-
line action in (11) is plotted in Fig. 3 versus γ, again
for different N as listed in the plot legend, including the
Sauter (red solid) and Lorentzian (blue solid) case. The
dashed curves depict the predictions for the super Gaus-
sian case. Starting withN = 2 (green), which already lies
below the red solid curve, we find that as soon as N ↑ the
curves converge to the blue solid one. For N = 3000 (ma-
genta) both results are visually indistinguishable. Fur-
thermore, the critical threshold2, which can be approx-
imated3 by γ̌ for large N quite accurately, converges to
γ = 1. Hence, for N → ∞, corresponding to the usual
rectangular potential barrier, we approach the blue solid

2 The critical threshold is assumed to be determined by the critical
point where both the strong and the weak part start to contribute
equally, see [14].

3 For this particular type of fields the ∆ correction introduced in
[14] is negligible small, in particular for N � 1.

curve as we have also seen in direct numerical compu-
tations4. The numerically found threshold matches with
our prediction γ̌. We conclude that for order parameters

N ∈ N>1 (14)

the corresponding curves forW0 lie within the throat-like
region bounded by the red (Sauter) and blue (Lorentzian)
one, cf. Fig. 3.

III. PERTURBATIVE EXPANSION

For weak Sauter-like pulses the first order contribution
in perturbation theory respective ε turns out to be suf-
ficient to reproduce the leading order exponential factor
in P. Since the super Gaussian in the limit N →∞ be-
haves as the Lorentzian, it is reasonable to expect such
a coincidence on perturbative level as well. The order-
by-order contributions in ε can be obtained on basis of
the Fourier transform g̃, see e.g. [23]. The Lorentzian in
Fourier space reads

g̃($) =
$

ω
K1

($
ω

)
(15)

with K1 being the first-order modified Bessel function
of the second kind. For super Gaussians of the form
(6), the representation in Fourier space is much more
difficult to obtain. However, for the present discussion we
may follow a slightly different approach. We construct
the super Gaussian (SG4N+2), mainly in the (almost)
rectangular potential barrier limit, i.e. N � 1, which
is the interesting case here, via the convolution of an
ordinary Gaussian,

Gσg =̂ e−(t/σg)2 , (16)

with the standard rectangular function,

Rσr =̂ rect

(
t

2σr

)
. (17)

Thus, in order to compute g̃, we proceed according to the
following prescription

SG4N+2 S̃G4N+2

1
Cσg,σr

(
Gσg ⊗ Rσr

)
1

C̃σg,σr

(
G̃σg × R̃σr

)
FT

'

FT

'

4 The accuracy of the analytical prediction in (11) increases as
soon as N ↑. A similar behaviour applies for ε ↓ with moderate
N as discussed in [14] for N = {0, 1}.
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where ⊗ denotes the convolution product and

Cσg,σr , C̃σg,σr are some normalisation factors. Identify-
ing

N ↔ 1/κ,

σr ↔ 1/ω,
(18)

with κ := σg/σr, we finally write

g̃($) =
ω

$
sin
($
ω

)
exp

(
−κ

2$2

4ω2

)
(19)

imposing the condition κ� 1.

A. First order in ε

Following the discussion in [23], the general expression
after perturbing the interaction Hamiltonian in the Furry
picture gives

P = V3

∫
dp3

(2π)3

∣∣∣∣. . .+ ε

∫
d$

2π
g̃ Πppp + . . .

∣∣∣∣2 . (20)

For simplifications we assume ppp = 0 which is reasonable,
since the spectrum for backgrounds considered here is
symmetrically peaked around the origin. Then the ma-
trix element at O(ε) takes the form

Π0($) = e
ES
E

([
$
2m

√
1−( $

2m )
2
+arcsin( $

2m )
]
−π2

)
(21)

which, not surprisingly, becomes unsuppressed for $ =
2m. In order to perform a saddle point approximation to
the $ integral in (20), we assume $ � ω such that for
the Lorentzian this results in

g̃ ' exp
(
−$
ω

)
. (22)

The corresponding saddle point is

$sp = 2m
√

1− 1/γ2 (23)

leading to the previously introduced threshold γ ≥ 1.
For γ = 1 the contribution g̃($sp) is maximal where the
exponential Π0($sp) approaches its minimum. Setting
x := $/ω, we find the following integral solution∫ ∞

0

dx xK1(x) =
π

2
(24)

where the integrand follows from (15). Note that the
approximate expression (22) obeys∫ ∞

0

dx exp(−x) =
2

π

∫ ∞
0

dx xK1(x). (25)

For the super Gaussian the interesting limit we want
to focus on is κ → 0. In this case we cannot write an
exponential expression for g̃ assuming $ � ω. However,
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FIG. 4. Saddle point condition (26) evaluated in $sp for
different ratios E/ES plotted versus γ. The vertical dashed
line is placed at the critical threshold γ = 1.

according to the findings in Sec. II we set $ = $sp,
see (23), and check whether this solves the saddle point
condition

∂(g̃ Π0)
∣∣
κ→0

= 0 (26)

where ∂ ≡ ∂/∂$. It turns out that for the nonperturba-
tive weak field regime, i.e. E/ES � 1 and ω � m, the
condition (26) is fulfilled, cf. Fig. 4. For E/ES = 10−2

and γ & 2 the curve becomes increasingly oscillating un-
til it settles down at ' 0.15. Such a breakdown is rea-
sonable, since according to 2E/ES = ω/m the gray solid
curve with ω/m > 2×10−2 almost approaches the Comp-
ton scale. An approximate validity condition for $sp can
be therefore given as

γE/ES . 10−2 (27)

which is obviously satisfied for E/ES = 10−4 (red,
dashed) and E/ES = 10−6 (blue, dotted) depicted in
Fig. 4.

Now, applying again the previous definition x to (19),
we obtain in the relevant limit the same integral solution
as in the Lorentzian case, cf. Eq. (24),∫ ∞

0

dx
sin(x)

x
e−κ

2x2/4 → π

2
. (28)

For large x the integrand oscillates around the function
in Eq. (15), but asymptotically converges to zero. There-
fore, since $sp works for any ω, at least for ω � m, we
may conclude that the threshold at γ = 1 applies for
the super Gaussian in the limit N →∞ as well. This is
exactly what we have found in our previous nonperturba-
tive approach, see Sec. II, which has been also confirmed
in direct numerical computations. Note that, as soon as
κ is taken to be sufficiently large, the latter coincidence
will not apply anymore.

For completeness, let us briefly discuss the Sauter case
for which we find

g̃($) =
$

ω
csch

(π
2

$

ω

)
. (29)

Again, for $ � ω we can write an approximate expres-
sion as

g̃ ' exp
(
−π

2

$

ω

)
(30)
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leading to the known critical threshold γ ≥ π/2. Re-
markably, integrating the function (29) leads to∫ ∞

0

dx xcsch
(π

2
x
)

= 1 (31)

which equals to (24) divided by π/2. We can again relate
the approximate integrand to the exact one via∫ ∞

0

dx exp
(
−π

2
x
)

=
2

π

∫ ∞
0

dx xcsch
(π

2
x
)

(32)

which is analogous to the relation in (25) obtained in the
weak Lorentzian case.

The findings above suggest that the integral∫ ∞
0

dx g̃(ωx) (33)

seems to incorporate useful information about the impact
of the additional weak dependence. Namely, if (33) co-
incides for two different setups, such as a Lorentzian and
a super Gaussian with N → ∞ or a Sauter pulse with
frequency shift ω → ωπ/2 [14], respectively, see Fig. 1,
the stationary action W0 turns out to be equal as well.

This is an interesting observation, since although such
backgrounds crucially differ in Minkowski space, one ob-
tains the same tunnelling exponential. On the other
hand, we may take these insights as a strong evidence
that such a dynamical enhancement is mainly determined
by the (effective) reflection points in the instanton plane
which, in contrast, do perfectly agree.

B. Higher orders in ε

For higher order contributions we rely on the general
expansion

P ' P0 + εP1 + ε2P2 +O(ε3). (34)

The zeroth order term stems again only from the strong
background dependence. The functions PN can be ob-
tained on basis of the N photon master formula in a static
background, see e.g. [17]. Performing a saddle point
approximation with respect to the proper and worldline
time, see Eq. (5.5) in [23], the leading order contribution
reads

PN '
∫
d$1 g̃($1) . . .

∫
d$N g̃($N)

× exp

(
2m2

E

[
Σ
√

1− Σ2 + arcsin(Σ)− π

2

]) (35)

where 0 < Σ < 1 is defined as

Σ :=
1

2m

J∑
i=1

$i, (36)

and ∑
l∈{1,...,J,...,N}

$l = 2mΣ +

N∑
j=J+1

$j = 0 (37)

applies due to energy conservation. Note that the expo-
nential in (35) is of the same form as in (21). Without
loss of generality let us assume 2mΣ � ω. So for the
Lorentzian we use again the approximate expression (22)
and compute the $l integrals via (37). Carrying out a
saddle point approximation with respect to Σ results in

PN ' exp

(
−4m2

E

Σsp

γ

)
× exp

(
2m2

E

[
Σsp

√
1− Σ2

sp + arcsin(Σsp)− π

2

]) (38)

where Σsp =
√

1− 1/γ2.
For the super Gaussian in the rectangular potential

barrier limit, i.e. κ → 0, the situation is not much dif-
ferent. First, we solve the $l integrals using condition
(37). The prefactor in front of the exponential in (35)
takes the form∏

i

ω

$i
sin
($i

ω

)∏
j

ω

$j
sin
($j

ω

)
(39)

with

$i =
2mΣ

J − 1
, i ∈ {2, . . . , J},

$j =
−2mΣ

N− J − 1
, j ∈ {J + 1, . . . ,N− 1}.

(40)

In case of 2mΣ� ω, we may use again the approximate
form in Eq. (22), since in the relevant regime it leads
to the correct leading order contribution as we have seen
before, see Fig. 4. The prefactors (39) in (35) reduce then
to an exponential that yields the following expression

PN ' exp

(
−4mΣ

ω

)
× exp

(
2m2

E

[
Σ
√

1− Σ2 + arcsin(Σ)− π

2

])
.

(41)

Rescaling 2mΣ → Σ subsequently, the saddle point is
simply given by Σsp = $sp/(2m). This is the same ex-
ponential factor as in (38) which remains unchanged for
any N ≥ 1. We conclude that similar as in the Sauter-like
cases, the first order contribution in ε will be sufficient
to approach the nonperturbative result. This is radically
different from the ordinary Gaussian, i.e. N = 0, which
behaves nonperturbatively, since higher orders in ε turn
out to be necessarily relevant [23].

IV. CONCLUSION

We have discussed the Schwinger mechanism in the
presence of an additional, uniformly oriented super Gaus-
sian of integer order 4N+2. Using the worldline approach
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we have treated the resulting background nonperturba-
tively and showed that already forN = 2 a much stronger
dynamical enhancement applies in comparison to a weak
contribution of Sauter type. More interestingly, we have
shown that taking the limit N →∞, which corresponds
to the usual rectangular potential barrier, results in the
same leading order exponential factor as one finds for the
bell shaped Lorentzian. Although both setups are highly
distinct in Minkowski space, the found coincidence ap-
plies due to identical (effective) reflection points in the
instanton plane which turn out to be the main regulator
in this dynamical mechanism.

In addition, we have studied the impact of the weak
super Gaussian in perturbation theory and found that in
the limit N → ∞ it shares the same higher order be-
haviour as Sauter-like pulses. We have argued that the

leading order contribution in ε already approaches the
nonperturbative result although a distinct pole structure,
as one finds in the latter cases, is not present. Our re-
sults clearly demonstrate that tunnelling in such complex
backgrounds can lead to nontrivial physics. Namely, the
fact whether the superimposed weak super Gaussian be-
haves perturbatively or nonperturbatively depends on its
microscopic details determined by the order parameter
N .
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