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Abstract

Supersymmetry breaking close to the scale of grand unification can explain cosmic inflation.

As we demonstrate in this paper, this can be achieved in strongly coupled supersymmetric gauge

theories, such that the energy scales of inflation and supersymmmetry breaking are generated

dynamically. As a consequence, both scales are related to each other and exponentially suppressed

compared to the Planck scale. As an example, we consider a dynamical model in which gauging

a global flavor symmetry in the supersymmetry-breaking sector gives rise to a Fayet-Iliopoulos

D term. This results in successful D-term hybrid inflation in agreement with all theoretical and

phenomenological constraints. The gauged flavor symmetry can be identified with U(1)B−L, where

B and L denote baryon and lepton number, respectively. In the end, we arrive at a consistent

cosmological scenario that provides a unified picture of high-scale supersymmetry breaking, viable

D-term hybrid inflation, spontaneous B−L breaking at the scale of grand unification, baryogenesis

via leptogenesis, and standard model neutrino masses due to the type-I seesaw mechanism.
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1 Introduction: GUT-scale SUSY breaking as the origin of inflation

Supersymmetry (SUSY) is an elegant and well-motivated extension of the standard model (SM). In

recent years, the experimental data collected at the Large Hadron Collider (LHC) has, however, put

increasing pressure on conventional SUSY scenarios with superpartner masses around the electroweak

scale. No evidence for supersymmetric particles has been found thus far; see, e.g., the recent SUSY

searches by the LHC experiments ATLAS [1] and CMS [2]. Therefore, if supersymmetry exists in

nature, the superpartners of the SM particles (sparticles) must have masses of at least O (1) TeV,

if not much higher. The idea of heavy sparticles is also corroborated by the measured value of the

Higgs boson mass [3, 4]. In the Minimal Supersymmetric Standard Model (MSSM), a 125 GeV Higgs

boson [5] can only be explained by means of large radiative corrections [6–10]. This points towards a

large SUSY-breaking mass splitting between the top quark and its scalar partners, the stop squarks.
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If realized around the electroweak scale, supersymmetry provides a natural solution to the large

hierarchy problem in the standard model. For decades, this observation has reinforced the paradigm of

low-scale supersymmetry that would be testable in collider experiments. In the present experimental

situation, the null results at the LHC, however, bring about the little hierarchy problem. Sparticles

with masses of at least O (1) TeV can only be reconciled with the O (100) GeV value of the electroweak

scale at the cost of fine-tuning. One is therefore led to adopt one of two possible attitudes. Either one

gives up on supersymmetry as a well-motivated extension of the standard model, or one challenges the

concept of naturaleness and accepts a certain degree of fine-tuning. In this paper, we shall take the

latter approach. Our understanding of naturaleness may be flawed and, for some reason or another,

not apply to the physics of the electroweak scale. Moreover, dismissing supersymmetry altogether

would do injustice to supersymmetry’s other merits. One must not forget that, irrespective of its

relation to the electroweak scale, supersymmetry also (i) provides a natural particle candidate for

dark matter, (ii) facilitates the unification of the SM gauge coupling constants at a high energy scale,

and (iii) sets the stage for the ultraviolet (UV) completion of the standard model in string theory.

In fact, supersymmetry broken at a high scale [11–13] has received significant interest in recent

years. Many authors have proposed models of high-scale SUSY breaking and its mediation to the

visible sector, including scenarios such as universal high-scale supersymmetry [14], split supersymme-

try [15–17], mini-split supersymmetry [18], minimal split supersymmetry [19], spread supersymme-

try [20, 21], and pure gravity mediation [22–24] (see also [25]). Another intriguing feature of these

models is that a high SUSY-breaking scale implies a very heavy gravitino. The gravitino, thus, decays

very fast in the early Universe, which solves the cosmological gravitino problem [26–29]. In addition,

large sfermion masses help reduce the tension with constraints on the SUSY parameter space from

flavor-changing neutral currents and CP violation [30]. For these reasons, we consider supersymmetry

broken at a high energy scale to be a leading candidate for new physics beyond the standard model.

In this paper, we will take the idea of high-scale SUSY breaking to the extreme and consider

SUSY-breaking scales ΛSUSY as large as the scale of gauge coupling unification in typical grand unified

theories (GUTs), ΛSUSY ∼ ΛGUT ∼ 1016 GeV. Electroweak naturalness is then certainly lost. But at

the same time, another intrigiung possibility emerges which is out of reach in low-scale supersymmetry.

If ΛSUSY is large enough, cosmic inflation in the early Universe [31–34] can be driven by the vacuum

energy density associated with the spontaneous breaking of supersymmetry, 〈V 〉 ⊃ Λ4
SUSY. This

represents a remarkable connection between particle physics and cosmology. Inflation is a pillar of

the cosmological standard model. Not only does inflation explain the large degree of homogeneity

and isotropy of our Universe on cosmological scales, it is also the origin of the primordial fluctuations

that eventually seed structure formation on galactic scales (see, e.g., [35,36] for reviews on inflation).

At present, there is, however, no consensus on how to make contact between inflation and particle

physics. Against this background, the unification of inflation with the dynamics of spontaneous SUSY

breaking provides an elegant and economical embedding of inflation into a microscopic theory.

The interplay between inflation and SUSY breaking has been studied from different angles in the

past (see, e.g., [37–39]). The first unified model that illustrates how inflation and SUSY breaking in

the visible sector may originate from the same dynamics has been presented in [40]. In this model,
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supersymmetry is broken dynamically by the nonperturbative dynamics in a strongly coupled super-

symmetric gauge theory. Dynamical SUSY breaking (DSB) first occurs in the hidden sector and is then

mediated to the MSSM. More recently, a number of related models has been constructed in [41–43].1

All these models have in common that the energy scales of inflation and SUSY breaking end up being

related to the dynamical scale Λdyn of the strong dynamics. The scale Λdyn is generated via dimen-

sional transmutation, analogously to the scale of quantum chromodynamics (QCD) in the standard

model. That is, at energies around Λdyn, the gauge coupling constant in the hidden sector formally

diverges. The unified models in [40–43] therefore do not require any dimensionful input parameters

to explain the origin of the energy scales of inflation and SUSY breaking. The generation of Λdyn is,

in particular, a nonperturbative effect in the infrared (IR). This explains the exponential hierarchy

between ΛSUSY and Λinf on the one hand and the Planck scale MPl on the other hand. Meanwhile,

several perturbative models of inflation and SUSY breaking have recently been discussed in the lit-

erature [50–52]. These models also draw a unified picture of inflation and SUSY breaking. But in

contrast to strongly coupled models, they depend on dimensionful input parameters which need to be

put in by hand. They, thus, fail to provide a dynamical explanation for the separation of scales.

In this paper, we shall revisit our model in [42], which gives rise to a viable scenario of D-term

hybrid inflation (DHI) [53, 54] in the context of high-scale SUSY breaking.2 Hybrid inflation [59, 60]

is an interesting scenario on general grounds, as it establishes another connection between particle

physics and cosmology. In hybrid inflation, the inflationary era ends in a rapid second-order phase

transition, the so-called waterfall transition, which can be identified with the spontaneous breaking

of a local gauge symmetry in models of grand unification. As shown in [42], this symmetry can be

chosen to correspond to U(1)B−L, where B and L denote baryon and lepton number, respectively.

Inflation therefore ends in what is referred to as the B−L phase transition [61–68]. That is, the end

of inflation coincides with the spontaneous breaking of B−L in the visible sector. This can be used to

generate L-violating Majorana masses for a number of sterile right-handed neutrinos. These neutrinos

then lead to baryogenesis via leptogenesis [69] and generate the SM neutrino masses via the seesaw

mechanism [70–74]. The model in [42], thus, provides a consistent picture of particle physics and early

Universe cosmology. It unifies the dynamics of inflation, high-scale SUSY breaking, and spontaneous

B−L breaking. Remarkably enough, all of these phenomena occur at energies close to the GUT scale.

The discussion in [42] mostly focused on model building aspects. We gave a brief summary of

our model construction and only touched upon phenomenology. The purpose of the present paper is

therefore threefold. We will (i) review the construction of our model in more detail, including many

aspects that were left out in [42] (see Sec. 2). We will (ii) perform a more comprehensive scan of

parameter space (see Sec. 3). In particular, we will identify new regimes of successful inflation that

were overlooked in [42]. And finally, we will (iii) provide a much broader phenomenological discussion,

1Besides, there is a more general class of models, sometimes referred to as dynamical inflation, where inflation is a

consequence of dynamical SUSY breaking in a hidden sector. In these models, the breaking of supersymmetry during

inflation is, however, not responsible for the breaking of supersymmetry in the MSSM at low energies (see, e.g., [44–49]).
2This model has recently been employed in a supersymmetric realization of the relaxion mechanism [55]. For other

models of hybrid inflation and high-scale SUSY breaking, see [56,57]. For more recent work on D-term inflation, see [58].
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including the implications of our model for the MSSM particle spectrum, the B−L phase transition,

dark matter, and cosmic strings (see Sec. 4). In the last section of this paper, we will conclude

and give an outlook on how our main observation — the fact that SUSY breaking close to the GUT

scale might be the key to a unified picture of particle physics and cosmology — could lead to a new

understanding of SUSY’s role in nature (see Sec. 5). In the appendix, as a supplement to Secs. 2

and 3, we collect various technical formulas that help to translate between the Einstein-frame and

Jordan-frame formulations of supergravity (SUGRA) (see Appendix A). This also includes a detailed

comparison of our Jordan/Einstein-frame expressions for the inflationary slow-roll parameters.

2 Model: Strong dynamics and gauged B−L in the Jordan frame

We begin by reviewing the model constructed in [42]. This will also allow us to introduce our notation

and conventions. The starting point of our analysis is the idea to build a viable SUGRA model of

hybrid inflation that ends in the spontaneous breaking of B−L, i.e., in the B−L phase transition.

2.1 Preliminary remarks on hybrid inflation in supergravity

In the absence of supersymmetry, hybrid inflation is incompatible with the statistical properties of

the temperature fluctuations in the cosmic microwave background (CMB). Nonsupersymmetric hybrid

inflation predicts the primordial scalar CMB power spectrum to be blue-tilted, i.e., it predicts a scalar

spectral index ns greater than one [59,60]. This needs to be compared with the recent measurement by

the PLANCK collaboration, nobs
s = 0.9677±0.0060 [75]. Nonsupersymmetric hybrid inflation is, thus,

ruled out with a statistical significance of more than 5σ. This conclusion serves as an independent

motivation to introduce supersymmetry, in addition to supersymmetry’s other advantages (see Sec. 1).

In supersymmetry, hybrid inflation is understood to be a consequence of (temporary) spontaneous

SUSY breaking, which can be accomplished either by a nonvanishing F term [76,77] or D term [53,54].

In the following, we will outline both scenarios and explain why we will eventually focus on D-term

inflation. In both cases, the scalar inflaton σ is contained in a chiral multiplet S that transforms as a

singlet under all gauge symmetries. S couples to charged chiral multiplets in the superpotential Winf ,

Winf ⊇ κS ΦΦ̄ , (1)

where κ is a dimensionless Yukawa coupling. Φ and Φ̄ denote the so-called waterfall fields, which

transform in conjugate representations of a gauge group G. We shall identify G with U(1)B−L and

assign B−L charges +q and −q to Φ and Φ̄. This sets the stage for the B−L phase transition at the

end of inflation. Any self-interaction of S can be forbidden by invoking R symmetry. If we assign R

charges such that
[
S
]
R

= 2 and
[
ΦΦ̄
]
R

= 0, terms such as S2 and S3 are not allowed. The Yukawa

coupling in Eq. (1) does not suffice to break supersymmetry. This is, however, necessary to obtain a

nonvanishing vacuum energy density that can drive inflation. In F-term hybrid inflation (FHI), one

therefore equips S with an F term, |FS | = µ2
S . Supersymmetry is then broken à la O’Raifeartaigh [78]

during inflation. In D-term inflation, one assumes instead a nonzero Fayet-Iliopoulos (FI) D term in the
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D-term scalar potential VD. This breaks supersymmetry during inflation via the FI mechanism [79].

F-term and D-term inflation are then characterized by the following expressions for Winf and VD,

FHI: Winf = κS ΦΦ̄ + µ2
S S , VD =

g2

2

[
q
(
|φ|2 −

∣∣φ̄∣∣2)]2
, (2)

DHI: Winf = κS ΦΦ̄ , VD =
g2

2

[
q0 ξ − q

(
|φ|2 −

∣∣φ̄∣∣2)]2
.

The gauge coupling constant g belongs to the gauge group G. In our case, g consequently denotes the

B−L gauge coupling. The gauge charge q0 is factored out of the FI parameter ξ for later convenience.

In both F-term and D-term inflation, the field S parametrizes a completely flat direction in the

scalar potential, at least at tree level and in global supersymmetry. This explains why it is natural

to identify S with the chiral inflaton field. At large field values of S, the Yukawa coupling in Eq. (1)

induces large S-dependent masses for the waterfall fields. Φ and Φ̄ can therefore be integrated out,

which results in a logarithmic effective potential for S. This singles out the origin in field space,

S = 0, as the unique vacuum in the quantum theory. Inflation is, thus, characterized by the slow-roll

motion of S from large field values towards the origin in field space. The SUSY-breaking parameters

µS (FHI) and ξ (DHI) induce a mass splitting between the scalar components of Φ and Φ̄. Below

a certain critical value of the inflaton field, this results in two (FHI) or one (DHI) scalar waterfall

field(s) becoming unstable. This triggers the B−L phase transition. Inflation ends and the system

approaches a ground state in which B−L is spontaneously broken and supersymmetry restored. As we

will discuss in Sec. 4.2, this can be used to generate Majorana masses for the right-handed neutrinos

Ni in the seesaw extension of the MSSM. All we have to do is to choose appropriate gauge charges and

introduce Yukawa couplings between Φ and three generations of sterile neutrinos, W ⊃ 1
2 hij ΦNiNj .

Hybrid inflation is sensitive to gravitational corrections in supergravity [80, 81]. In the case of

F-term inflation, spontaneous R breaking leads, in particular, to a SUGRA term in the F-term scalar

potential VF that is linear in the complex inflaton field s ⊂ S [39, 82–85]. To see this, recall that R

symmetry breaking can be accounted for by introducing a constant term in the superpotential, w ⊂W .

This term ultimately sets the gravitino mass m3/2 in the low-energy vacuum, w ∝ m3/2M
2
Pl (where

MPl denotes the reduced Planck mass, MPl ' 2.44× 1018 GeV). In F-term inflation, the inflaton field

itself possesses a nonzero F term, |FS | = µ2. This F term couples to w in the SUGRA scalar potential,

VF ⊃
µ2
S w
∗

M2
Pl

(
Kss∗Ks∗ − 3 s

)
+ h.c. . (3)

Here, K denotes the Kähler potential, Ks∗ stands for the derivative of K w.r.t. s∗, and Kss∗ is the

ss∗ entry in the inverse of the Kähler metric. For a canonical Kähler potential, K ⊃ S†S, one obtains

VF ⊃ −
2µ2

S w
∗

M2
Pl

s+ h.c. . (4)

This tadpole term breaks the rotational invariance in the complex inflaton plane and, hence, compli-

cates the analysis of the inflationary dynamics significantly. In fact, the term in Eq. (3) renders F-term

inflation a two-field model [85], which needs to be treated with special care. Depending on the size of

m3/2, the tadpole term potentially spoils slow-roll inflation. In addition, it generates a false vacuum

at large field values, which limits the set of viable initial conditions for inflation in phase space.
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For these reasons, we will restrict ourselves to D-term inflation in this paper. A dynamical realiza-

tion of F-term inflation that avoids the tadpole problem can be found in [41]. The model in [41] also

establishes a connection between inflation and dynamical SUSY breaking around the scale of grand

unification. In [41], there is, however, no U(1) symmetry that could be identified with U(1)B−L.

Moreover, inflation does not end in a phase transition in the waterfall sector. Together, these features

of [41] eliminate the possibility to unify inflation with the dynamics of the B−L phase transition. A

dynamical model of F-term inflation that ends in the B−L phase transition will be presented elsewhere.

2.2 Ingredients for a unified model of D-term inflation

The absence of the linear tadpole term in D-term inflation tends to make SUGRA corrections more

manageable. In particular, the issue of initial conditions appears more favorable compared to F-term

inflation (however, see also Sec. 3.4). Nonetheless, D-term inflation still faces a number of challenges.

In this section, we will discuss these challenges one by one and outline how they are respectively met

in our model. This serves the purpose to explain the bigger physical picture behind our specific setup.

In Sec. 2.3, we will then become more explicit and present the details of our construction.

Dynamical generation of the FI term in the strongly coupled SUSY-breaking sector

First of all, the origin of the FI term and its embedding into supergravity are subtle issues that

have been the subject of a long debate in the literature. At this point, it is important to distinguish

between genuine FI terms and effective FI terms. The former refer to field-independent FI parameters

ξa that parametrize constant shifts in the auxiliary Da components of Abelian vector multiplets Va.

The latter denote field-dependent FI parameters ξa that depend on the vacuum expectation values

(VEVs) of dynamical scalar modulus fields ψi. Genuine FI terms, ξa = const, are FI terms in the

original sense. That is, they preserve the underlying gauge symmetry and are compatible with massless

vector multiplets. By contrast, in the case of effective FI terms, ξa = ξa (〈ψi〉), the underlying gauge

symmetry is always spontaneously broken by the modulus VEVs 〈ψi〉. Effective FI terms are therefore

FI terms only in a slightly more general sense. The embedding of genuine FI terms into supergravity

always requires an exact global continuous symmetry [86,87]. This is problematic from the viewpoint

of quantum gravity. As can be shown on very general grounds, quantum gravity is likely to violate any

global symmetry [88]. Coupling genuinely constant FI terms to gravity, thus, appears to be impossible.

Effective FI terms promise to offer a possible way out of this problem. Effective FI terms are frequently

encountered in string theory [89,90], where they arise in consequence of the Green-Schwarz mechanism

of anomaly cancellation [91]. However, such constructions typically suffer from the presence of a shift-

symmetric modulus field [92]. This modulus field needs to be adequately stabilized [93]. Otherwise,

it will absorb the effective FI term in its VEV or cause a cosmological modulus problem [94,95].

To avoid all of the problems listed above, we will assume that the FI term responsible for inflation

is dynamically generated in the strongly coupled SUSY-breaking sector. That is, we will not resort

to string theory, but work in the context of field theory. To be precise, we will employ the dynamical

mechanism devised in [96]. A dynamical FI term generated via this mechanism is automatically an
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effective field-dependent FI term that is controlled by the VEVs of moduli in the hidden sector,

ξ =
〈
ψ̄ψ̄∗

〉
−
〈
ψψ∗

〉
∼ Λ2

dyn . (5)

Here, ψ and ψ̄ belong to chiral multiplets Ψ and Ψ̄ that carry B−L charges +q0 and −q0, respectively.

This ansatz complies with our philosophy outlined in the introduction (see Sec. 1). Being a dynamically

generated quantity, the FI parameter ξ does not need to be added by hand. Instead, it is related to the

dynamical scale Λdyn in the hidden sector which is generated via dimensional transmutation. Let us

identify the UV embedding scale of our theory with the Planck scale, ΛUV = MPl. The renormalization

group (RG) running of the hidden-sector gauge coupling ghid then results in the following relation,

Λdyn = MPl exp

[
− 1

bhid

8π2

g2
hid (MPl)

]
, (6)

where bhid is the coefficient of the hidden-sector RG beta function. This relation explains why Λdyn

and, hence, ξ end up being exponentially suppressed compared to the Planck scale (which is the only

available mass scale in our setup). The advantage of our approach is that it comes with a built-

in mechanism for modulus stabilization. As usual, the generation of ξ results in a shift-symmetric

modulus field. In our case, this will be a linear combination of Ψ and Ψ̄ (see Sec. 2.3). However, as

the FI parameter ξ is generated in the SUSY-breaking sector, the shift-symmetric modulus couples

to degrees of freedom (DOFs) involved in the dynamical breaking of supersymmetry. The F term of

the SUSY-breaking Polonyi field therefore induces a mass for the modulus field. This stabilizes all

dangerous directions in field space and prevents us from running into any modulus problem.

Spontaneous B−L breaking in the hidden sector before the end of inflation

The anticipated B−L phase transition at the end of D-term inflation is accompanied by the production

of topological defects in the form of cosmic strings [97,98] (for reviews on cosmic strings, see [99,100]).

Such cosmic strings can leave an imprint in the CMB temperature anisotropies, the spectrum of

gravitational waves (GWs), and in the diffuse gamma-ray background (DGRB). Cosmic string decays

can also affect outcome of big bang nucleosynthesis (BBN). However, no signs of cosmic strings have

been detected thus far. Recent upper limits on the properties of cosmic strings can be found in [101,102]

(CMB), [103–105] (GWs), and [106] (DGRB and BBN). These bounds allow to put severe constraints

on the parameter space of hybrid inflation [107,108]. In fact, the minimal scenario of D-term inflation

is already ruled out by the nonobservation of cosmic strings [109]. A possible way out of this problem

is to consider scenarios in which B−L is spontaneously broken, in one way or another, already during

inflation. Cosmic strings then form at early times and are sufficiently diluted before the end of inflation.

Fortunately, the dynamical generation of ξ in the hidden sector (see Eq. (5)) provides the ideal

starting point for implementing this solution to the cosmic string problem. The modulus VEVs
〈
ψ
〉

and
〈
ψ̄
〉

spontaneously break B−L in the hidden sector already during inflation. Therefore, to prevent

the formation of cosmic strings in the waterfall sector at the end of inflation, all we have to do is to

communicate the breaking of B−L in the hidden sector to the waterfall fields. This is readily done

by adding marginal couplings between the two sectors in the superpotential or Kähler potential that

are otherwise irrelevant for the dynamics of inflation [55]. We will come back to this issue in Sec. 4.4.
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Sequestered sectors in Jordan-frame supergravity

A notorious problem of any model of D-term inflation is that additional charged scalar fields, other

than the waterfall fields Φ and Φ̄, threaten to destabilize the FI term during inflation. Without any

additional physical assumption, there is no reason why Φ and Φ̄ should be the only fields charged

under the U(1) symmetry whose FI term drives inflation. In general, one should rather expect a

whole set of N charged pairs,
{

Φi, Φ̄i

}
, with the inflaton only coupling to a subset of M such pairs,

W ⊃
N∑
i=1

κi S ΦiΦ̄i , κi

6= 0 ; ∀i ≤M

= 0 ; ∀i > M
. (7)

In this case, there are N −M pairs that are not sufficiently stabilized by an inflaton-induced mass

during inflation. At the same time, these fields also enter into the D-term scalar potential, where they

threaten to absorb the FI parameter ξ in their VEVs. In our scenario based on U(1)B−L, the role of

these dangerous scalar directions is played by the scalar partners of the MSSM quarks and leptons.

The squarks q̃i and sleptons ˜̀
i are also charged under B−L, but do not couple to the inflation field.

Accounting for the presence of these fields, the D-term scalar potential needs to be rewritten as follows,

VD =
g2

2

[
q0 ξ − q

(∣∣φ∣∣2 − ∣∣φ̄∣∣2)−∑
i

qqi

(∣∣q̃i∣∣2 − ∣∣˜̄qi∣∣2)−∑
i

q`i

(∣∣˜̀
i

∣∣2 − ∣∣ ˜̀̄i∣∣2)]2

. (8)

The squarks and sleptons therefore acquire D-term-induced masses proportional tomD = g |q0ξ|1/2. As

evident from the sign relations in Eq. (8), half of these masses end up being tachyonic (see also [110]).

This renders the corresponding directions in field space tachyonically unstable. The inflationary

trajectory, thus, decays into a vacuum in which B−L is broken by nonvanishing sfermion VEVs.

To avoid this problem, one needs to stabilize the MSSM sfermions by means of additional mass

contributions during inflation. Here, the simplest solution is to make use of the soft scalar masses

induced by the spontaneous breaking of supersymmetry in the hidden sector. Let us assume that these

soft masses are all more or less close to a common value m0. Then, to stabilize the MSSM sfermions

during inflation, we must require that m0 � mD. This is, however, too strong a condition if SUSY

breaking is communicated to the visible sector only via ordinary gravity mediation in the Einstein

frame (for a review on gravity mediation, see [111]). In gravity mediation, we expect the soft scalar

masses to be of the order of the gravitino mass, m0 ∼ m3/2. This soft mass is universal such that also

the waterfall fields obtain soft masses of O
(
m3/2

)
. As a consequence, the stabilization of the MSSM

sfermions also stabilizes the waterfall fields. This is an unwanted but unavoidable side effect. In such

a scenario, the waterfall fields would never become unstable and inflation would never end.

A possible solution to this problem is to presume a separation of scales of the following form,

m3/2 � mD � m0 . (9)

In this case, the MSSM sfermions remain stabilized at all times, while the waterfall fields can become

unstable at the end of inflation. Parametrically large soft sfermion masses can, e.g., be achieved by

adding a direct coupling between the visible and the hidden sector in the Kähler potential,

K ⊃ aij
M2
∗
Q†iQjX

†X . (10)
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Here, Qi and X stand for a generic MSSM matter field and the SUSY-breaking Polonyi field, re-

spectively. M∗ denotes the mass scale at which the effective operator in Eq. (10) is generated. The

constants aij are dimensionless Wilson coefficients that are expected to be of O (1). Any speculations

regarding the underlying UV physics are left for future work. In this paper, we will content ourselves

with the observation that Eq. (10) results in soft masses that can be parametrically large compared

to m3/2. Provided that the cut-off scale is sufficiently below the Planck scale, M∗ �MPl , one finds

m0 ∼
MPl

M∗
m3/2 � m3/2 . (11)

Now, however, we need a conspiracy among certain parameters. Successful inflation is only possible

as long as the parameters g, q0, ξ, m3/2, and M∗ conspire in order to satisfy the following relation,

Einstein frame: 1� mD

m3/2
� MPl

M∗
. (12)

We do not see any compelling argument why this relation should be automatically fulfilled. For this

reason, we will go one step further and solve the MSSM sfermion problem in a more elegant way.

Let us assume that the canonical description of hybrid inflation in supergravity corresponds to an

embedding into a (specific) Jordan frame rather than an embedding into the Einstein frame [112,113].

At this point, recall that every Jordan-frame formulation of supergravity is characterized by a specific

choice for the so-called frame function Ω. The frame function is an arbitrary function of the complex

scalar fields in the theory, Ω = Ω (φi, φ
∗
ı̄ ). For given Ω, the metric tensor in the Jordan frame, gJµν , is

related to the metric tensor in the Einstein tensor, gµν , via the following Weyl rescaling,

gJµν = C2 gµν , C =

(
−

3M2
Pl

Ω

)1/2

, (13)

Here, C denotes what we will refer to as the conformal factor. We emphasize that the Weyl trans-

formation in Eq. (13) does not change the physical predictions of the theory. The physical content

of the Jordan frame is equivalant to the physical content of the Einstein frame, even at the quantum

level [114, 115]. In what follows, we will simply assume that the SUGRA embedding of hybrid infla-

tion is most conveniently described in the Jordan frame. More details on the conversion between the

Einstein-frame and Jordan-frame formulations of supergravity can be found in Appendix A.

Given the freedom in defining the frame function Ω, there is, in principle, an infinite number of

possible Jordan frames. In the following, we will, however, focus on one particular choice which stands

out for several reasons. In this frame, the frame function Ω is determined by the Kähler potential K,

Ω = −3M2
Pl exp

[
− K

3M2
Pl

]
. (14)

This relation is understood to hold in superspace, such that the frame function Ω becomes a function of

chiral multiplets, Ω = Ω
(
Φi,Φ

†
ı̄

)
. This choice for Ω is motivated by the curved superspace approach to

old minimal supergravity in the Einstein frame [116,117]. In this derivation of the SUGRA action, the

function Ω as defined in Eq. (14) is identified as the generalized kinetic energy on curved superspace.

Meanwhile, Ω is also a meaningful quantity in the derivation of the Einstein-frame action based on
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local superconformal symmetry [118,119]. In this approach to old minimal supergravity, the function Ω

is identified as the prefactor of the kinetic term of the chiral compensator superfield. For our purposes,

the advantage of the choice in Eq. (14) is that it sets the stage for canonically normalized kinetic terms

for the complex scalar fields in the Jordan frame. Indeed, to obtain canonically normalized kinetic

terms, the defining relation in Eq. (14) needs to be combined with the following ansatz for Ω [112],

Ω = −3M2
Pl + F , F = δı̄j Φ†ı̄Φj + [J (Φi) + h.c.] , (15)

Here, we have introduced F as the kinetic function of the chiral matter fields. The additional −3M2
Pl

in Ω accounts for the kinetic term of the gravitational DOFs. J is an arbitrary holomorphic function.

We mention in passing that the relations in Eqs. (14) and (15) also provide the basis for a class of

SUGRA models known as canonical superconformal supergravity (CSS) models [113]. In these models,

the pure supergravity part of the total action is invariant under local Poincaré transformations as

usual. At the same time, the matter and gauge sectors of the theory can be made invariant under

a local superconformal symmetry by setting the holomorphic function J to zero. This larger set of

symmetry transformations renders CSS models particularly simple. In the Jordan frame, one obtains

canonical kinetic terms for all fields. Moreover, one finds that the Jordan-frame scalar potential

coincides with the scalar potential in global supersymmetry. In our scenario, we will, however, break

the superconformal symmetry via the holomorphic function J to a large degree (see Eq. (27) below).

For this reason, one should not regard our model to be of the CSS type. A model of D-term inflation

based on the idea of superconformal symmetry has been constructed in [120]. This model employs a

constant FI term that does not depend on the inflaton field value in the Einstein frame. Our model

will by contrast involve an effective FI term that does not depend on the inflaton field value in the

Jordan frame (see Sec. 2.5). In [120], the dynamics of inflation are moreover described by a two-field

model, whereas we will only deal with a single inflaton field. Interestingly enough, the model in [120]

reproduces the predictions of Starobinsky inflation [31] in the limit of large inflaton field values [121].

Together with Eq. (14), the ansatz in Eq. (15) results in the following Kähler potential,

K = −3M2
Pl ln

[
1− F

3M2
Pl

]
. (16)

This is an important result. If we choose the kinetic function F or, equivalently, the holomorphic

function J appropriately, this Kähler potential can be readily used to sequester the different sectors of

our model. In fact, Eq. (16) turns into a Kähler potential of the sequestering type [122] if the function

F can be split into separate (canonical) contributions from the hidden, visible, and inflation sector,

K = −3M2
Pl ln

[
1− Fhid + Fvis + Finf

3M2
Pl

]
. (17)

Kähler potentials of this form have been derived in the context of extra dimensions [122] as well as

in strongly coupled conformal field theories (CFTs) [123–126]. They are also similar to the Kähler

potential in models of no-scale supergravity [127–129] that can be derived from string theory [130].3 If

3In no-scale supergravity, the kinetic term of the gravitational DOFs depends on a dynamical modulus field T . This

is accounted for by replacing the 1 inside the logarithm in Eq. (17) by a field-dependent quantity: 1→
(
T + T †

)
/MPl.
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the various sectors do not couple to each other in the superpotential, the Kähler potential in Eq. (17)

leads to vanishing soft scalar masses at tree level in all sectors expect for the hidden sector.

The possibility to sequester different sectors is a crucial property of Eq. (16) which we will use to

solve the MSSM sfermion problem. Altogether, we will choose the function F in our model as follows,

F → Ftot = Fhid + Fvis + Finf +
aij
M2
∗
Q†iQjX

†X . (18)

From now on, we will refer to the total kinetic function as Ftot and reserve the symbol F for the

kinetic function of the inflaton field S (see further below). We will also assume that the holomorphic

function J in Eq. (15) is a function of S only. That is, the kinetic functions Fhid, Fvis, and Finf are

supposed to consist of standard canonical terms for all fields except for S. The kinetic function Ftot as

defined in Eq. (18) combines two important features. (i) It leads to a sequestering between the visible

sector and the inflaton sector. The waterfall fields consequently obtain no soft masses at tree level.

This is necessary to be able to trigger the B−L phase transition at the end of inflation, irrespective of

the size of the gravitino mass. (ii) The MSSM sfermions are stabilized thanks to higher-dimensional

operators in Ftot that couple the visible sector to the SUSY-breaking sector. At this point, we stick to

the mechanism that we already discussed in the case of the Einstein frame (see Eq. (10)). Together,

these two features allow us to realize successful inflation and solve the MSSM sfermion problem.

Our solution of the MSSM sfermion problem in the Jordan frame is conceptually different from the

solution in the Einstein frame discussed around Eq. (12). Now, as the waterfall fields do not acquire

a soft mass at tree level, the requirement in Eq. (12) turns into the following two conditions,

Jordan frame: 0� mD

m3/2
� MPl

M∗
. (19)

The first inequality is a consequence of our decision to work in a Jordan frame with canonical kinetic

terms. It is trivially fulfilled. We are, thus, left with only one sensible physical condition, M∗ �
m3/2MPl/mD. To satisfy this condition, we no longer have to rely on a conspiracy among different

parameter values. Instead, we simply have to deal with an upper bound on the scale M∗ which derives

from the requirement that all dangerous scalar directions in field space must be sufficiently stabilized

during inflation. We therefore manage to solve the MSSM sfermion problem in B−L D-term inflation

by means of model-building decisions rather than by resorting to a specific part of parameter space.

In the following, we will remain agnostic as to the UV origin of Ftot in Eq. (18). We settle for the

observation that, apart from additional Planck-suppressed interactions, Eq. (18) can be motivated by

demanding canonically normalized kinetic terms in the (standard) Jordan frame. This is the reason

why we will formulate parts of our analysis in the language of Jordan-frame supergravity. Beyond

that, it might be possible to embed our model into extra dimensions, strongly coupled CFTs, no-scale

supergravity and/or string theory. But such a task is beyond the scope of this paper and left for future

work. For our purposes, the formalism of Jordan-frame supergravity simply provides a convenient

technical framework. We shall not speculate about the underlying physics at higher energies.
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Shift symmetry in the direction of the inflaton field

Working in the Jordan frame not only helps to protect the waterfall fields against large soft masses.

In ordinary gravity mediation in the Einstein frame, also the inflaton acquires a soft mass of the order

of the gravitino mass. This results in the notorious eta problem in supergravity [76,131]. To see this,

recall that the gravitino mass is related to the F term of the SUSY-breaking Polonyi field as follows,

m3/2 =
〈|FX |〉√

3MPl

. (20)

At the same time, the Hubble rate during D-term inflation is controlled by the size of the FI term,

Hinf =
〈VD〉1/2√

3MPl

=
〈D〉√
6MPl

=
gq0ξ√
6MPl

. (21)

General arguments in supergravity indicate that D terms are always accompanied by an F term which

is at least as large or even larger [132, 133]. In our case, we intend to dynamically generate the FI

term in conjunction with the Polonyi F term in the SUSY-breaking sector. On general grounds, we,

thus, expect that 〈|FX |〉 & 〈D〉. Therefore, if the inflaton indeed obtained a soft mass of O
(
m3/2

)
,

we would immediately encounter a eta problem, i.e., a slow-roll parameter η much larger than one,

η = M2
Pl

V ′′

V
∼
(
m3/2

Hinf

)2

� 1 , (22)

where V ′′ denotes the second derivative of the scalar potential w.r.t. the inflaton field. This serves as

an additional motivation for our specific Jordan frame. There, the soft mass of the inflaton vanishes

(at least as long as F = S†S and J = 0), which renders the most dangerous contribution to η zero.

This is, however, not the end of the story. To fully solve the eta problem, we need to work a bit

harder. In the Jordan frame, the complex scalars are nonminimally coupled to the Ricci scalar RJ via

the frame function Ω. This follows from the Jordan-frame equivalent of the Einstein-Hilbert action,

S ⊃ 1

2

∫
d4x
√
−gJ

(
−Ωtot

3

)
RJ =

1

2

∫
d4x
√
−gJ

(
M2

Pl −
Ftot

3

)
RJ , (23)

which contains the nonminimal term −Ftot/3RJ . This coupling yields additional mass contributions

for the scalar fields. Consider, e.g., the canonical terms in the total kinetic function, Ftot ⊃ δı̄j Φ†ı̄Φj ,

S ⊃ −
∫
d4x
√
−gJ

∑
i

ζiRJ |φi|2 , ζi = ζ =
1

6
. (24)

which describes the special case of a set of conformally coupled scalars. Each complex scalar with a

canonical term in the kinetic function Ftot therefore acquires a universal gravity-induced mass mR,

m2
R = ζRJ = 2H2

J , (25)

where HJ denotes the Hubble parameter in the Jordan frame and where we used the relation between

Ricci scalar and Hubble parameter in exact de Sitter space, RJ = 12H2
J . This gravitational mass

correction spoils slow-roll inflation as long as it is not sufficiently suppressed. That is, an inflaton

kinetic function that only consists of a canonical term, F = S†S, results in too large an η parameter,

η ∼
m2
R

3H2
J

=
2

3
. (26)
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Thus, to fully solve the eta problem, we have to make use of the holomorphic function J in Eq. (15).

The freedom in defining J allows us to realize an approximate shift symmetry in the direction of the

inflaton field. Such a shift symmetry is a common tool in SUGRA models of inflation, as it allows

to suppress the most dangerous SUGRA contributions to the inflaton potential [134]. In our case, an

approximate shift symmetry is realized for the following kinetic function of the inflaton field,

F = S†S + [J (S) + h.c.] , J (S) = −1

2
(1− 2χ)S2 . (27)

Here, χ is a positive shift-symmetry-breaking parameter which we will assume to be small, 0 < χ� 1.

To see that Eq. (27) indeed features a shift symmetry, it is convenient to rewrite F as follows,

F =
1

2
χ
(
S† + S

)2
− 1

2
(1− χ)

(
S† − S

)2
= χσ2 + (1− χ) τ2 , S =

1√
2

(σ + iτ) . (28)

This form of F illustrates that, for χ� 1, the kinetic function is approximately invariant under shifts

in σ, i.e., the real scalar part of the inflaton field S. Conversely, χ values close to one, 1−χ� 1, lead

to an approximate shift symmetry in τ , i.e., the imaginary scalar component of S. In the following,

we will focus w.l.o.g. on the first of these two cases. In passing, we also mention that the trivial case

χ = χCSS = 1/2 (which renders the holomorphic function J vanishing) corresponds to an inflaton

field that is conformally coupled to the Ricci scalar. This choice for the parameter χ would allow to

construct a SUGRA model that is invariant under local superconformal symmetry (see the discussion

below Eq. (15)). However, as argued above, we would then fail to solve the eta problem (see Eq. (26)).

For this reason, we need to break the superconformal symmetry. In fact, by choosing χ � χCSS, we

break the superconformal symmetry in a maximal sense in favor of an approximate shift symmetry.

Given the kinetic function in Eq. (28), it is straightforward to solve the eta problem. In consequence

of the approximate shift symmetry, all contributions to the inflaton mass mσ end up being suppressed

by χ. This follows from an explicit computation of mσ in the Einstein frame (see Eq. (116) in Sec. 2.5),

m2
σ ≈ 2χ

[
m2
R − (1− 2χ)m2

3/2

]
. (29)

As expected, mσ reduces to mR in the limit χ→ 1/2. On the other hand, if χ is chosen small enough,

mσ becomes suppressed, so that the slow-roll parameter η remains sufficiently small during inflation.4

Explicit breaking of the shift symmetry

An exact shift symmetry is out of reach in our model, as the Yukawa coupling in the superpotential,

Winf = κS ΦΦ̄, breaks any inflaton (or waterfall field) shift symmetry explicitly. Therefore, while χ

may be zero at tree level, a nonvanishing value of the shift-symmetry-breaking parameter χ is always

generated via radiative corrections. To see this, let us consider the one-particle-irreducible (1PI)

effective action in global supersymmetry. The superpotential does not receive any quantum corrections

4Imposing an approximate shift symmetry in the direction of the inflaton field would also allow to solve the eta

problem in the Einstein frame. There, the inflaton mass also vanishes in the limit of an exact shift symmetry. From this

perspective, our solution to the eta problem does actually not serve as an additional motivation to work in the Jordan

frame. However, our arguments regarding the MSSM sfermion problem remain unchanged. This problem is best solved

in the Jordan frame (see the discussion around Eq. (19)). We will therefore continue to work in the Jordan frame.
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in consequence of the SUSY nonrenormalization theorem [135]. The renormalization of the Kähler

potential is, however, nontrivial and results in a one-loop effective Kähler potential K1` [136–139].

Along the inflationary trajectory, Φ = Φ̄ = 0, a calculation in the MS renormalization scheme yields

K1` = 2χ1`

[
1− 1

2
ln

(
κ2S†S

µ̄2

)]
S†S , χ1` =

κ2

16π2
, (30)

where µ̄ denotes the MS renormalization scale. Note that this result for K1` corresponds to a wave-

function renormalization of the inflaton field S. Next, let us embed the effective Kähler potential in

Eq. (30) into supergravity. In the Einstein frame, the relevant quantity is the total Kähler potential

Ktot, which simply follows from adding K1` to the tree-level Kähler potential, Ktot = Ktree +K1`. In

the Jordan frame, we are by contrast interested in the total frame function, Ωtot = Ωtree + Ω1`. One

can show that the one-loop correction to the tree-level frame function is related to K1` as follows,

Ω1` = Ωtree

(
exp

[
− K1`

3M2
Pl

]
− 1

)
= K1` +O

(
M−2

Pl

)
. (31)

Here, the higher-order terms correspond to Planck-suppressed radiative corrections which are negli-

gibly small. Together, Eqs. (28), (30), and (31) allow us to determine the effective χ parameter that

is induced by the breaking of shift symmetry in the superpotential. Along the direction of the real

inflaton component, τ = 0, we obtain the following one-loop kinetic function for the inflaton field,

F1` ' K1`
τ=0−→ 1

2
χeff

(
S† + S

)2
, χeff = χ1`

[
1− 1

2
ln

(
κ2S†S

µ̄2

)]
∼ χ1` . (32)

In the absence of any tree-level contribution, the shift-symmetry-breaking parameter χ is therefore

expected to be of the order of κ2/
(
16π2

)
. This is an important result which was overlooked in [42].

There, we simply varied χ as a free parameter for fixed κ. Of course, this is a valid procedure, given the

fact that χ can very well receive further tree-level contributions (or further radiative corrections from

inflaton couplings to extra heavy states). In this case, χ is simply the sum of various contributions,

χ = χtree + χ1`, which can take any arbitrary value. But the case χ = χ1` — which we had neglected

thus far — is special, as it corresponds to a scenario with minimal field content and number of free

parameters. We will study this scenario in more detail in Sec. 3.3. This will represent one of the main

results of this paper and a significant step forward beyond our analysis in [42]. In particular, we will

find that χ = χ1` leads to inflation in new parts of parameter space that we had dismissed before.

Finally, we point out that the fact that we are unable to realize an exact shift symmetry is rather

a virtue than a shortcoming of our model. A slightly broken shift symmetry allows us to get a handle

on the scalar spectral index ns which we would otherwise lack in the case of an exact shift symmetry.

The prediction for ns in standard D-term inflation in global supersymmetry roughly corresponds to

ns = 1 + 2 η − 6 ε ' 1 + 2 η & 1− 1

Ne
' 0.98 , (33)

where Ne denotes the number of e-folds between the end of inflation and the time tCMB when the

CMB pivot scale, kCMB = 0.05 Mpc−1, exists the Hubble horizon during inflation. The prediction in

Eq. (33) exceeds the current best-fit value, nobs
s = 0.9677±0.0060 [75], by at least 2σ. This puts some

phenomenological pressure on the simplest version of D-term inflation. To improve on the predicted
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value of ns, various SUGRA models have been proposed in the literature [120,121,140–143]. However,

in our scenario, no extra effort is needed to enhance the absolute value of the slow-roll parameter η

and, thus, reproduce the best-fit value for ns. The inflaton mass in Eq. (29) approximately results in

η ∼ −2χ

3

(
m3/2

HJ

)2

. (34)

Therefore, to realize ns values around ns ' 0.96, all we have to do is to choose χ small enough,

ns ' 0.96 ⇒ η ∼ −0.02 ⇒ χ ∼ 0.03

(
HJ

m3/2

)2

. (35)

In this sense, the approximate shift symmetry in the kinetic function of the inflaton field automatically

provides a possibility to achieve a scalar spectral index consistent with the observational data.

Three physical assumptions to solve five problems of D-term inflation

So far, we have mainly outlined the ingredients of our construction in physical and less technical terms.

We hope that this part of our discussion will be accessible also to readers without a strong background

in SUGRA model building. A more technical description of our model will be given in the next three

sections (see Secs. 2.3, 2.4, and 2.5). Readers less interested in the technical aspects of our model and

more interested in its phenomenological implications may directly skip to Sec. 3.

Before entering the technical part of our discussion, let summarize our insights up to this point.

On the one hand, we showed that D-term inflation faces a number of challenges. We discussed the

following five problems: (i) The generation of the FI term in the D-term scalar potential and its

embedding into supergravity, (ii) the production of dangerous cosmic strings at the end of inflation,

(iii) the stabilization of dangerous MSSM sfermion directions in the scalar potential during and after

inflation, (iv) the eta problem in supergravity, and (v) the tension between the lower bound on ns in

D-term inflation and the current best-fit value. On the other hand, we argued that all of these five

problems can be solved if one makes the following three assumptions: (i) The FI term is dynamically

generated in the hidden SUSY-breaking sector. (ii) The canonical description of D-term inflation

in supergravity corresponds to the embedding into the (standard) Jordan frame with canonically

normalized kinetic terms for all scalar fields. (iii) The kinetic function of the inflaton field exhibts a

slightly broken shift symmetry. Our model therefore turns out to be a viable SUGRA realization of

B−L D-term inflation that is consistent with all theoretical and phenomenological constraints.

2.3 SUSY-breaking dynamics in the hidden sector

In the previous section, we summarized our physical ideas how to realize a viable SUGRA model of

D-term inflation that (i) unifies the dynamics of supersymmetry breaking and inflation and that (ii)

ends in the B−L phase transition at energies around the GUT scale. In the following, we will show

how these ideas can be implemented into a specific model of dynamical SUSY breaking: the Izawa-

Yanagida-Intriligator-Thomas (IYIT) model [144,145], which represents the simplest vector-like model

of dynamical SUSY breaking. Despite this choice, we believe that our general ideas extend beyond
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our specific model. In future work, it would be interesting to study alternative DSB models and assess

which other models might give rise to unified dynamics of supersymmetry breaking and inflation.

IYIT sector at high and low energies

We begin by reviewing the IYIT model. In its most general form, the IYIT model corresponds to a

strongly coupled supersymmmetric Sp(N) gauge theory.5 At high energies, its charged matter content

consists of Nf = N + 1 vector-like pairs of quark flavors, where each quark field Ψi transforms in the

fundamental representation of Sp(N). The theory becomes confining at energies around the dynamical

scale Λdyn which is generated via dimensional transmutation. Below Λdyn, the dynamical DOFs in

the IYIT sector corrrespond to a set of Nf (2Nf − 1) gauge-invariant composite meson fields Mij ,

Mij '
1

ηΛdyn
〈ΨiΨj〉 , η ∼ 4π , i, j = 1, 2, · · · , 2Nf , (36)

where Mji = −Mij and where η denotes a numerical factor of O (4π) that follows from naive di-

mensional analysis (NDA) [146–149]. In turns out to be useful to absorb the NDA factor η in the

dynamical scale Λdyn. In the following, we will therefore work with the reduced dynamical scale Λ,

Λ =
Λdyn

η
∼

Λdyn

4π
. (37)

At low energies, the scalar meson VEVs parametrize a moduli space of degenerate supersymmetric

vacua. This moduli space is subject to a constraint equation, which, in the classical limit, corresponds

to the requirement that the Pfaffian of the antisymmetric meson matrix Mij must vanish, Pf (Mij) = 0.

This constraint, however, becomes deformed in the quantum theory. There, it reads [150]

Pf (Mij) ' ΛNf . (38)

To break supersymmetry in the IYIT sector, one needs to lift the flat directions in moduli space.

This is readily achieved by coupling the IYIT quarks Ψi to a set of Nf (2Nf − 1) singlet fields Zij ,

At high energies: Whid =
1

2
λij Zij ΨiΨj , (39)

where λij = −λji are dimensionless coupling constants. At high energies, these couplings are nothing

but ordinary Yukawa couplings which do not affect the vacuum structure of the theory. At low energies,

the terms in Eq. (39), however, turn into mass terms for the meson and singlet fields Mij and Zij ,

At low energies: Whid '
1

2
λijΛZijMij . (40)

These mass terms single out the origin in field space as the true supersymmetric ground state. The

quantum mechanically deformed moduli constraint in Eq. (38), however, prevents the system from

reaching the origin in field space. This breaks supersymmetry. The theory is forced to settle in

a vacuum away from the origin, 〈Mij〉 6= 0, where some of the singlet F-term conditions, FZij = 0,

cannot be satisfied. Supersymmetry is, hence, broken à la O’Raifeartaigh by nonvanishing F terms [78].

5In our notation, the compact symplectic group Sp(N) is identical to the unitary group over the quaternions, U(N,H).

Here, N denotes the dimension of the quaternonic vector space HN that Sp(N) acts on in its fundamental representation.
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In the following, we shall focus on the minimal N = 1 realization of the IYIT model, for simplicity.

In this case, the Sp(1) gauge dynamics are equivalent to those of an SU(2) theory, Sp(1) ∼= SU(2),

and we have to deal with four quark fields Ψi and six singlet fields Zij at high energies. This translates

into six meson fields Mij (and six singlet fields Zij) at low energies. As we will see shortly, it turns

out to be convenient to label the fields in the low-energy theory in a suggestive manner. To do so, we

first note that Eq. (39) exhibts a global U(1)A flavor symmetry that corresponds to an axial quark

phase rotation. The U(1)A charges of the two quark flavors at high energies can be chosen as follows,

[Ψ1]A = [Ψ2]A = +
q0

2
, [Ψ3]A = [Ψ4]A = −q0

2
. (41)

This normalization ensures that the charged meson fields at low energies carry U(1)A charges ±q0,

[M12]A = +q0 , [M34]A = −q0 , [M13]A = [M14]A = [M23]A = [M24]A = 0 , (42)

and similarly for the Zij . In the second step, we relabel all fields according to their U(1)A charges,

M12 →M+ , M34 →M− , M13 →M1
0 , M14 →M2

0 , M23 →M3
0 , M24 →M4

0 , (43)

Z12 → Z− , Z34 → Z+ , Z13 → Z1
0 , Z14 → Z2

0 , Z23 → Z3
0 , Z24 → Z4

0 .

In this notation, the low-energy superpotential in Eq. (40) takes the following form,

Whid ' Λ
(
λ+M+Z− + λ−M−Z+ + λ1

0M
1
0Z

1
0 + λ2

0M
2
0Z

2
0 + λ3

0M
3
0Z

3
0 + λ4

0M
4
0Z

4
0

)
, (44)

where we also relabled the λij . Meanhwile, the constraint in Eq. (38) can now be written as follows,

Pf (Mij) = M+M− −M1
0M

4
0 +M2

0M
3
0 ' Λ2 . (45)

Together, Eqs. (44) and (45) allow to explicitly calculate the VEVs in the SUSY-breaking vacuum.

As it turns out, the location of the true ground state in meson field space depends on the hierarchy

among three geometric means of Yukawa couplings, λ = (λ+λ−)1/2, λ14
0 =

(
λ1

0λ
4
0

)1/2
, λ23

0 =
(
λ2

0λ
3
0

)1/2
,

λ < min
{
λ14

0 , λ
23
0

}
⇒ 〈M+M−〉 ' Λ2 ,

〈
M1

0M
4
0

〉
= 0 ,

〈
M2

0M
3
0

〉
= 0 , (46)

λ14
0 < min

{
λ, λ23

0

}
⇒ 〈M+M−〉 = 0 ,

〈
M1

0M
4
0

〉
' Λ2 ,

〈
M2

0M
3
0

〉
= 0 ,

λ23
0 < min

{
λ, λ14

0

}
⇒ 〈M+M−〉 = 0 ,

〈
M1

0M
4
0

〉
= 0 ,

〈
M2

0M
3
0

〉
' Λ2 .

We will assume that the first of these three cases is realized, λ < min
{
λ14

0 , λ
23
0

}
. In this case, it is

the charged meson fields that obtain a nonzero VEV, 〈M+M−〉 ' Λ2. This case is special in the sense

that the global U(1)A flavor symmetry becomes spontaneously broken at low energies. In the two

other cases, the flavor symmetry remains unbroken even in the SUSY-breaking vacuum.

Properties of the low-energy vacuum

Let us now discuss the properties of the U(1)A-breaking vacuum in a bit more detail. In this vacuum,

all neutral fields are stabilized by their supersymmetric masses in Eq. (44). The relevant terms in the

superpotential and Pfaffian constraint are therefore only those involving charged fields,

Whid ' Λ (λ+M+Z− + λ−M−Z+) , Pf (Mij) = M+M− ' Λ2 . (47)
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The constraint is most easily accounted for by adding a Lagrange multiplier term to the superpotential,

Whid ' Λ (λ+M+Z− + λ−M−Z+) + λT T
(
M+M− − Λ2

)
, (48)

where the field T represents the actual Lagrange multiplier. The physical nature of the field T depends

on strong-coupling effects in the Kähler potential. If it acquires a nonperturbative kinetic term from

the strong gauge dynamics, T becomes physical. On the other hand, if no kinetic term is generated,

T is merely an auxiliary field that remains unphysical. Unfortunately, it is unknown which of these

cases is realized, as the Kähler potential for T in the strong-coupling regime is uncalculable. At any

rate, the difference between the two cases is mostly irrelevant for our purposes. All effects in the case

of a physical Lagrange multiplier field T are suppressed by powers of λ/ (4π) [151]. Thus, as long as

we stay in the perturbative regime, λ� 4π, our results will not be affected by the physical status of

the field T . In the following, we will therefore assume that T remains unphysical, for simplicity. In

practice, this means that we will take the limit λT → ∞ wherever possible. For discussions of the

IYIT model based on the assumption of a physical Lagrange multiplier field T , see, e.g., [41, 152].

Given the superpotential in Eq. (48) (and taking the limit λT →∞ at the end of the calculation),

one can easily show that the vacuum energy density is minimized for the following meson VEVs,

〈M±〉 =
λ

λ±
Λ . (49)

These meson VEVs induce SUSY-breaking F terms for the singlet fields Z±. To determine the total

F-term SUSY breaking scale µ, it is useful to transform the fields M± and Z± to a new basis,(
A

M

)
=

1

fA

(
〈M+〉 − 〈M−〉
〈M−〉 〈M+〉

)(
M+

M−

)
,

(
X

Y

)
=

1√
2

(
1 1

1 −1

)(
Z+

Z−

)
, (50)

where we introduced fA to denote the total energy scale of spontaneous U(1)A breaking,

fA =
(〈
M2

+

〉
+
〈
M2
−
〉)1/2

=

(
λ+

λ−
+
λ−
λ+

)1/2

Λ . (51)

In the new field basis, the fields M and T share a supersymmetric Dirac mass term, mMT = λT fA,

that formally diverges in the limit λT → ∞. This allows us to identify M as the meson field that

becomes eliminated by the Pfaffian constraint. The remaining meson DOFs are then described by

the orthogonal linear combination, i.e., by the field A. Note that that this automatically implies that

the field A plays the role of the chiral Goldstone multiplet of spontaneous U(1)A breaking. From this

perspective, the energy scale fA may also be regarded as the Goldstone decay constant. To obtain

the superpotential describing the low-energy dynamics of A, X, and Y , we procede as follows: (i) We

perform the field rotation in Eq. (50), (ii) shift the meson fields A and M by their nonvanishing VEVs,

A→ 1

fA

(〈
M2

+

〉
−
〈
M2
−
〉)

+A , M → 2

fA
〈M+〉 〈M−〉+M , (52)

and (iii) integrate out the heavy fields M and T . This results in the following superpotential,

Whid ' µ2X −mF Y A+
1

2
λXXA

2 . (53)

19



Here, µ denotes the total F-term SUSY breaking scale,

µ =
[(
λ2

+

〈
M2

+

〉
+ λ2

−
〈
M2
−
〉)

Λ2
]1/4

= 21/4λ1/2Λ . (54)

By construction, the singlet field X is the only field with a nonzero F term, 〈|FX |〉 = µ2. It can

therefore be identified with the SUSY-breaking Polonyi field. The orthogonal field Y shares a Dirac

mass term with the U(1)A Goldstone field A which is given in terms of the mass scales µ and fA,

mF =
µ2

fA
= ρ λΛ , ρ =

[
1

2

(
rλ +

1

rλ

)]−1/2

, rλ =
λ+

λ−
. (55)

Here, ρ measures the degeneracy between λ+ and λ−. For λ+ → λ−, the parameter ρ approaches one,

ρ→ 1. For λ+ � λ− or λ+ � λ−, it goes to zero, ρ→ 0. In the following, we will assume that both

λ+ and λ− are sufficiently small, so that we always stay in the perturbative regime. For definiteness,

let us require that both couplings are always at least half an order of magnitude smaller than 4π.

λ± < λpert = 4 ' 10−1/24π . (56)

This translates into a lower bound on the hierarchy parameter ρ in dependence of λ = (λ+λ−)1/2,

λ± < λpert ⇒ ρ > ρpert =

[
1

2

(
rpert +

1

rpert

)]−1/2

, rpert =
λ+λ−
λ2

pert

. (57)

Moreover, to simplify our analysis, we will replace ρ by its expectation value ρ̄ in the following. We

compute ρ̄ by averaging ρ over all possible values of λ±, varying both couplings on a linear scale,

ρ̄ =
1

λ2
pert

∫ λpert

0

∫ λpert

0
ρ dλ+dλ− ' 0.80 . (58)

Note that this result is independent of the concrete value of λpert. With ρ fixed at this value, the

perturbativity constraint in Eq. (57) turns into an upper bound on the Yukawa coupling λ,

λ± < λpert , ρ = ρ̄ ⇒ λ <
[
1−

(
1− ρ̄4

)1/2]1/2 λpert

ρ̄
' 0.60λpert ' 2.41 . (59)

This yields in turn an upper bound on the F-term-induced mass in the superpotential, mF . 1.94 Λ.

The lesson from this analysis is the following: From now on, we will work with ρ ' 0.80 and λ . 2.41.

The Yukawa couplings λ± are then guaranteed to assume “typical values” (in the sense of the average

in Eq. (58)) which are, at the same time, consistent with the requirement of perturbativity, λ < λpert.

Similar to the mass mF , also the Yukawa coupling λX in Eq. (53) is given in terms of µ and fA,

λX =

(
µ

fA

)2

=

(
mF

µ

)2

=
ρ2λ√

2
. (60)

This Yukawa coupling between the Polonyi field X and the Goldstone field A is is a direct consequence

of the T M+M− term in Eq. (48). Similar couplings also exist between X and the neutral meson fields.

This is shown explicitly in Appendix A of [152] (see also [151]). Together, these Yukawa couplings

result in an effective Polonyi mass m1` at the one-loop level. An explicit calculation yields [152]

m1` = c1` λ
2Λ , c1` =

(
2 ln 2− 1

32π2
neff
M

)1/2

. (61)
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Here, neff
M denotes the effective number of meson loops contributing to the Polonyi mass. Let us assume

that all neutral mesons share the same Yukawa coupling, λ1,2,3,4
0 ≡ λ0. In this case, neff

M can be brought

into the following compact form (the full expression is complicated and can be found in [152]),

neff
M = ρ6 + 4 `0 , (62)

where `0 = ` (λ/λ0) is a loop function that can be approximated by a simple quadratic power law,

` (x) =
1

2 ln 2− 1

[
1

2

(
1 +

1

x2

)2

ln
(
1 + x2

)
− 1

2

(
1− 1

x2

)2

ln
(
1− x2

)
− 1

x2

]
≈ x2 . (63)

In the following, we will set λ0 = 4π to account for the presence of heavy composite states with

masses around the dynamical scale, mheavy = λ0 Λ ∼ Λdyn. Just like in QCD, such heavy resonances

are expected to appear in the spectrum. Our perturbative language, however, does not suffice to

capture their dynamics at low energies. For this reason, we will instead follow an effective approach

and mimic the effect of additional heavy states by means of a particular choice for λ0. For a Yukawa

coupling λ of O(1), the one-loop coefficient c1` in Eq. (61) is then roughly given by c1` ' 0.02. In

global supersymmetry, the Polonyi field X correspond to a tree-level flat direction (see Eq. (53)). The

loop-induced Polonyi mass m1` is therefore crucial to stabilize the SUSY-breaking vacuum against

gravitational corrections in supergravity [151]. We will discuss this issue in more detail in Sec. 2.4.

Dynamical generation of an effective FI term

The IYIT model can also be used to dynamically generate an effective FI term. This was pointed out

for the first time in [96]. In this paper, we will make use of this mechanism to generate the effective

FI term required for B−L D-term inflation. All we have to do now is to promote the global U(1)A

flavor symmetry in the IYIT superpotential (see Eq. (48)) to a local U(1)B−L gauge symmetry. The

B−L gauge interactions then result in the following D-term scalar potential in the IYIT sector,

VD =
g2q2

0

2

(
|m+|2 − |m−|2 + |z+|2 − |z−|2

)2
. (64)

Here and in the following, lower-case characters (m+±, z±, etc.) denote the complex scalar components

of the corresponding chiral multiplets (M±, Z±, etc.). The charged mesons M± acquire nonzero VEVs

as a result of the dynamical breaking of supersymmetry (see Eq. (49)). These VEVs spontaneously

break B−L which leads to the following effective FI term,

ξ =
〈
M2
−
〉
−
〈
M2

+

〉
. (65)

This FI parameter is exactly of the form that we anticipated in Eq. (5) in Sec. 2.2. In particular, we

now see that, in our dynamical model, the role of the moduli Ψ and Ψ̄ is played by the mesons M±.

To evaluate the expression in Eq. (65), it is, in principle, necessary to account for the backreaction

of the D-term scalar potential in Eq. (64) on the meson VEVs in Eq. (49). In the following, we will,

however, restrict ourselves to the weakly gauged limit, |gq0| . λ, where this backreaction is negligible.

In this case, we can simply continue to work with our results in Eq. (49), such that Eq. (65) turns into

ξ =

(
λ+

λ−
− λ−
λ+

)
Λ2 =

2
(
1− ρ4

)1/2
ρ2

Λ2 . (66)
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Here, we assumed w.l.o.g. that λ+ > λ− such that the FI parameter is always positive, ξ > 0. Once

we set the parameter ρ to its expectation value, ρ̄ ' 0.80, we obtain the following simple relation,

ξ1/2 ' 0.88 fA ' 1.54 Λ . (67)

In Sec. 2.5, we will use this result as a key ingredient in our construction of the inflaton potential.

However, before we are able to do so, we need to make sure that the FI parameter ξ is not “eaten up”

by the charged singlet fields Z± in the IYIT sector. To this end, let us rewrite Eq. (64) as follows,

VD =
g2q2

0

2
(ξ − xy∗ − x∗y)2 , (68)

where we integrated out the meson fields and replaced the fields Z± by the Polonyi field X and the

stabilizer field Y . From Eq. (68), it is evident that ξ results in a mass mixing between X and Y ,

∆m2
xy = −g2q2

0 ξ . (69)

At the same time, X obtains an effective mass m1` at the one-loop level, while Y acquires a tree-level

mass mF from the superpotential. Taken as a whole, this results in the following two mass eigenvalues,

(
m±xy

)2
=
m2
F +m2

1`

2
±

[(
m2
F −m2

1`

2

)2

+ ∆m4
xy

]1/2

. (70)

In the limit of vanishing mass mixing, ∆mxy → 0, these mass eigenvalues reduce to m1` and mF ,

respectively. For too large mass mixing, the eigenvalue m−xy can, however, become tachyonic. In this

case, one singlet mass eigenstate becomes unstable and absorbs ξ in its VEV. To prevent this from

happening, the absolute value of ∆mxy needs to be smaller than the geometric mean of m1` and mF ,

m−xy > 0 ⇒ |∆mxy| < (m1`mF )1/2 . (71)

This requirement translates into an upper bound on the gauge coupling constant g,

g < gmax =
1

|q0|

(c1`

2

)1/2 (ρλ)3/2

(1− ρ4)1/4
. (72)

For ρ = ρ̄ and λ � λpert, we hence obtain |gmax q0| ' 7.8 × 10−2 λ3/2. In Fig. 1, we plot the upper

bound on |gq0| as a function of λ and ρ. This figure illustrates that the stability condition in Eq. (72)

is always stronger than the mere requirement of a weak gauge coupling, |gq0| . λ. The constraint in

Eq. (72) is therefore a sufficient condition to justify our analysis in the weakly gauged limit.

Modulus stabilization and mass spectrum at low energies

The dynamically generated FI term in Eq. (65) is an effective FI term that depends on the VEVs of

the meson fields M±. As shown in [92], such FI terms are typically accompanied by a shift-symmetric

modulus field (see Sec. 2.2). Our dynamical model is no exception to this statement. In our case,

the role of the modulus field is played by the B−L Goldstone multiplet A which contains all meson

DOFs after imposing the Pfaffian constraint in Eq. (47). The field A is a chiral multiplet. It, hence,
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Figure 1: Bounds on the gauge coupling g (left panel) and the Yukawa coupling λ (right panel). The upper bound

on g ensures that the IYIT singlets X and Y do not absorb ξ in their VEVs (see Eq. (72)). Similarly, the lower bound

on λ guarantees that the VEV the Polonyi field is located in the quadratic part of the effective potential (see Eq. (102)).

Both bounds need to be satisfied to sufficiently stabilize the SUSY-breaking vacuum in the IYIT sector. In both plots,

the solid red line indicates where in parameter space the perturbativity constraint in Eq. (57) becomes violated.

consists of a real scalar c, a real pseudoscalar ϕ, and a Weyl fermion ã. In analogy to supersymmetric

models of the QCD axion, these particles may also be referred to as the saxion c, axion ϕ, and axino ã

(see, e.g., [152]). In our model, the pseudoscalar ϕ corresponds to the Goldstone boson of spontaneous

B−L breaking. It remains massless and exhibits a derivative coupling to the B−L vector boson Aµ.

To see this, we have to apply the field transformation in Eq. (50) to the kinetic terms of the scalar

meson fields. The kinetic part of the Lagrangian then ends up containing the following terms,

−Lkin ⊃
1

4
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ) +

1

2
(∂µϕ+mVAµ) (∂µϕ+mVA

µ) . (73)

Note that this is nothing but the Stückelberg Lagrangian of an Abelian gauge field with mass mV ,

mV =
√

2 gq0 fA . (74)

In view of Eq. (73), the Goldstone boson ϕ can also be regarded as the Stückelberg field of spontaneous

B−L breaking. This is consistent with the fact that the B−L Higgs multiplet — represented by the

meson field M — decouples once we insist on the Pfaffian constraint in Eq. (47) being satisfied exactly.

After spontaneous B−L breaking, the pseudoscalar ϕ parametrizes the longitudinal polarization

state of the massive B−L vector boson Aµ. It is “eaten up” by Aµ and does not cause any further

problems. At the same time, the real scalar cmay become problematic, as it threatens to destabilize the

FI parameter ξ. This is the notorious modulus problem in the presence of an effective FI term [92]. In

our model, this problem is, however, absent. The scalar c and the fermion ã are automatically stabilized

by the F-term-induced mass mF in the superpotential (see Eq. (53)). To make this statement more

precise, let us now review the mass spectrum in the IYIT sector at low energies (see also [96,152]).
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The relevant superfields at low energies are the Polonyi field X = (x, x̃), the stabilizer field Y =

(y, ỹ), the Goldstone field A = (a, ã), and the vector field V = (λ,Aµ). Here, x, y, and a are complex

scalars. The complex scalar a contains the Goldstone boson and its scalar partner, a = 2−1/2 (c+ iϕ).

The fields x̃, ỹ, ã, and λ are Weyl fermions, where λ denotes the B−L gaugino. Aµ is the B−L vector

boson. To determine the mass spectrum for these fields, we work in the weakly gauged limit where

∆mxy in Eq. (69) is negligible. A standard calculation in global supersymmetry then yields

m2
x = m2

1` , m2
y = m2

F , m2
c = 2m2

F +m2
V , mϕ = 0 , (75)

m2
x̃ = 0 , m2

ỹ = m2
F +m2

V , m2
ã = m2

F +m2
V , mλ = 0 .

Here, the indices refer to the respective mass eigenstates which are not necessarily identical to the

corresponding “flavor” eigenstates (see, e.g., ỹ, ã, and λ). As expected, we find that the Goldstone

boson ϕ remains massless, mϕ = 0. Similarly, also the fermionic component of the Polonyi field

X remains massless, mx̃ = 0. This is because x̃ corresponds to the goldstino field of spontaneous

supersymmetry breaking. It is absorbed by the gravitino field in supergravity. Finally, also the B−L
gaugino λ remains massless (however, see also Eq. (77)). This has the following reason. The original

Weyl fermion λ shares a Dirac mass with the axino, L ⊃ imV λ ã. One would, thus, think that λ

ends up forming a Dirac fermion with the axino, i.e., the fermionic component of the B−L Goldstone

multiplet. The axino, however, also shares a Dirac mass with the fermionic component of the stabilizer

field, L ⊃ mF ã ỹ, that is parametrically larger, mF � mV , in the weakly gauged limit. ỹ therefore

“steals” the axino from the gaugino, so that the gaugino no longer has a mass partner to form a Dirac

fermion. In more technical terms, this goes back to the fact that the diagonalization of two Dirac

masses for three Weyl fermions necessarily results in one massive Dirac fermion and one massless Weyl

fermion. For our purposes, the most important lesson from Eq. (75) is that the superpartners of the

Goldstone boson, the saxion c and the axino ã, are indeed stabilized. Both fields obtain masses from

the gauge sector6 as well as from the F-term-induced mass in the superpotential. This solves the

modulus problem and assures us that ξ is a viable input for the construction of our inflation model.

Up to now, our discussion only dealt with the properties of the IYIT model in global supersymme-

try. The next important step is to embed the IYIT model into supergravity. As discussed in Sec. 2.2,

we especially intend to work in Jordan-frame supergravity with canonically normalized kinetic terms.

However, before going into any details, let us briefly discuss the implications of supergravity for the

low-energy mass spectrum. On general grounds, we essentially expect two effects: (i) In supergravity,

R symmetry is broken to ensure the vanishing of the cosmological constant (CC) in the true vacuum.

The order parameter of R symmetry breaking is the gravitino mass m3/2. We therefore expect that

supergravity leads to corrections to the various mass eigenvalues of O
(
m3/2

)
. This should, in partic-

ular, also hold true if all other sectors are sequestered from the hidden SUSY-breaking sector. (ii) As

a consequence of R symmetry breaking, the Polonyi field X acquires a nonzero VEV that is typically

6This follows from the super-Higgs mechanism. In consequence of spontaneous B−L breaking, the massless vector

multiplet V (one Weyl fermion, one massless vector boson) absorbs an entire chiral multiplet (one complex scalar, one

Weyl fermion), so that it eventually contains the DOFs of a massive vector multiplet (one real scalar, one Dirac fermion,

one massive vector boson). In the absence of supersymmetry breaking, all these DOFs would have a common mass mV .
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parametrically larger than the gravitino mass, 〈X〉 ∝ m3/2/
(
c2

1`λ
3
)

(see Sec. 2.4). This induces an

effective Majorana mass for the Goldstone multiplet A in the superpotential (see Eq. (53)),

mA = λX 〈X〉 . (76)

The Majorana mass mA breaks some of the mass degeneracies in Eq. (75) and helps to make sure

that the B−L gaugino λ acquires a nonzero mass after all. To illustrate the effect of nonzero mA, we

compute the fermion masses in the limit of vanishing gravitino mass, m3/2 → 0, and small Majorana

mass, mA � mF . This exercise leads to the following mass eigenvalues (in the Jordan frame),

mλ '
2mVmF

m2
F +m2

V

mV sin θ , m2
ã,ỹ ' m2

F +m2
V ± (mA −mλ)

(
m2
F +m2

V

)1/2
, (77)

and again mx̃ = 0. Now, the vector boson mass mV also receives contributions from the Polonyi VEV,

mV → mV =
√

2 gq0 vA , vA =
(
f2
A +

〈
X2
〉)1/2

, (78)

where we parametrize the two contributions from fA and 〈X〉 to vA in terms of a mixing angle θ,

cos θ =
fA
vA

, sin θ =
〈X〉
vA

. (79)

Eq. (77) demonstrates that, for 〈X〉 6= 0, the gaugino λ indeed obtains a nonvanishing mass. Moreover,

we recognize that the Dirac fermion (ỹ, ã) splits into two nondegenerate Majorana fermions. Making

the same assumptions as before, we also compute the scalar masses for a nonvanishing Polonyi VEV,

m2
y− =

1

2

(
A−B1/2

)
, m2

y+
= m2

F +m2
A , m2

c =
1

2

(
A+B1/2

)
, (80)

where

A = 3m2
F +m2

A +m2
V , (81)

B = m4
F +m4

A +m4
V + 6m2

Am
2
F + 2m2

V

[(
m2
F +m2

A

)
cos (2θ)− 2mAmF sin (2θ)

]
,

and mx = m1` and mϕ = 0. For a dominant F-term-induced mass, mA,mV � mF , this simplifies to

m2
y− ' m

2
F −m2

A , m2
y+

= m2
F +m2

A , m2
c ' 2m2

F + 2m2
A +m2

V . (82)

We, thus, find that the Majorana mass mA breaks the degeneracy among the two real scalar compo-

nents of Y and shifts the saxion mass to even larger values. This concludes our analysis of the IYIT

mass spectrum. We will now discuss the embedding into Jordan-frame supergravity in more detail.

2.4 Effective Polonyi model and embedding into supergravity

In global supersymmetry, the Polonyi field X is stabilized at the origin in field space, 〈X〉 = 0, by its

one-loop effective mass m1` (see Eq. (61)). Gravitational corrections in supergravity, however, threaten

to destabilize this vacuum solution. We shall now explain why this is a serious problem. At field values
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larger than some critical value, |x| & xc, the one-loop effective potential for the complex Polonyi field

x changes from a quadratic to a logarithmic behavior (see, e.g., [41] for an explicit calculation),

V1` (x) '

m2
1` |x|

2 ; |x| � xc

V 0
1` ln |x/xc| ; |x| � xc

, V 0
1` ∼

m4
F

16π2
. (83)

Here, V 0
1` denotes the height of the logarithmic plateau at large field values. The critical field value xc

is reached once the Polonyi field induces effective masses for the quarks in the IYIT sector of O (Λdyn).

The Yukawa interactions of the Polonyi field with the IYIT quarks follow from Eqs. (39) and (50),

Whid ⊃
X√

2
(λ+Ψ1Ψ2 + λ−Ψ3Ψ4) . (84)

This allows us to estimate xc. For definiteness, we will work with xc =
√

2 Λdyn/λ in the following.

At |x| & xc, the IYIT quarks decouple perturbatively, which gives rise to the logarithmic corrections

in Eq. (83). Dangerous SUGRA corrections can shift the Polonyi VEV from the origin in field space

towards the logarithmic plateau at large field values. Once this happens, the Polonyi field is no longer

stabilized and the system settles in a completely different vacuum at field values of O (MPl). In the

following, we will illustrate where in parameter space this unwanted conclusion can be avoided. This

will, in particular, provide us with a useful lower bound on the Yukawa coupling λ (see Eq. (102)).

For the purposes of this section, it will suffice if we exclusively focus on the Polonyi field X and

integrate out the heavier fields A and Y . The low-energy superpotential in Eq. (53) then turns into

Whid = µ2X + w . (85)

Here, w denotes a constant contribution to the superpotential that we added by hand. w is meaningless

in global supersymmetry. In supergravity, it accounts for the fact that R symmetry must be broken

to ensure a vanishing CC in the true vacuum. In the presence of the constant w, Eq. (85) is nothing

but the superpotential of the standard Polonyi model of spontaneous supersymmetry breaking [153].

In this sense, the IYIT model can be regarded as a UV completion of the Polonyi model that offers a

dynamical explanation for the origin of the SUSY-breaking scale µ. This is expected as the IYIT model

is, after all, just a dynamical realization of spontaneous supersymmetry breaking à la O’Raifeartaigh.

The IYIT model does not explain the UV origin of the constant w. In this paper, we will not speculate

about this issue any further. That is, we do not have anything new to say about the CC problem.

Eq. (85) needs to be supplemented by the following Kähler potential (see Eqs. (16) and (28)),

Ktot ⊃ −3M2
Pl ln

[
1− Fhid + Finf

3M2
Pl

]
, Fhid = X†X , Finf = F , (86)

where we set all terms to zero that are irrelevant for the present discussion. The functions in Eq. (85)

and (86) allow us to calculate the total SUGRA potential for the Polonyi field in the Jordan frame,

V J
hid (x) = µ4 + V J

1` (x)−
∣∣3w + 2µ2x

∣∣2
(1− f) 3M2

Pl

+m2
R |x|

2 . (87)

Here, the second term on the right-hand side, i.e., the Jordan-frame one-loop effective potential V J
1`,

is equivalent to the global-SUSY expression V1` in Eq. (83). The third term on the right-hand side
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corresponds to a tree-level SUGRA correction in the Jordan frame, while the last term represents the

gravity-induced mass discussed around Eq. (25). The function f in Eq. (87) is defined as follows,

f =
1

3M2
Pl

(F − FSFS†) , (88)

which may be regarded as a dimensionless measure for the amount of superconformal symmetry

breaking in the kinetic function of the inflaton field. In the following, we will refer to f as the reduced

kinetic function of the inflaton field. Given our choice for F in Eq. (28), the function f evaluates to

f =
1− 2χ

3M2
Pl

[
χσ2 − (1− χ) τ2

]
. (89)

As expected, this expression vanishes for χ→ χCSS = 1/2. The imaginary component of the complex

inflaton field will be stabilized during inflation, τ = 0. During inflation, we therefore have to deal with

f = (1− 2χ) z , z =
χσ2

3M2
Pl

. (90)

The constant w controls the value of the CC. To ensure that inflation ends in a Minkowski vacuum

with vanishing CC, we need to impose the following two conditions after inflation, i.e., for f = 0,

V J
hid (x) = 0 ,

d

dx
V J

hid (x) = 0 for f = 0 , x = 〈X〉 , w = w0 . (91)

These two conditions can be solved for the two unknows 〈X〉 and w0. Let us focus on w0 for now,7

w0 =

(
1− 4

3k

)1/2 µ2MPl√
3

. (92)

Here, k is a convenient measure for the relative importance of the SUGRA corrections in Eq. (87),

k =
m2

1` +m2
R

µ4/M2
Pl

. (93)

The definition of k is chosen such that it mimics the effect of a higher-dimensional operator in Fhid,

Fhid ⊃ X†X −
k

(2!)2

(
X†X

)2
M2

Pl

, (94)

that induces a mass correction ∆m2
k = m2

1` + m2
R in the SUGRA potential. Large values of k, thus,

indicate that the Polonyi field is strongly stabilized by its one-loop effective mass, ∆m2
k � m2

3/2.

Given the result for the constant w0 in Eq. (92), we can go one step back and determine the

time-dependent Polonyi VEV during inflation. To do so, we just need to solve one equation,

d

dx
V J

hid (x) = 0 for f 6= 0 , x = 〈X〉 , w = w0 . (95)

Assuming that 〈X〉 is located in the quadratic part of the potential, Eq. (95) has the following solution,

〈X〉 =
(k − 4/3)1/2

[(1− f) k − 4/3] k1/2

2MPl√
3
. (96)

7The Kähler potential in Eq. (86) turns the usual eK/M
2
Pl term in the SUGRA potential into a simple rational

function (see Appendix A). Our Jordan-frame formulation of supergravity therefore allows us to solve the two conditions

in Eq. (91) in a closed form. Note that this is not possible for the Polonyi model in standard Einstein-frame supergravity.
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Indeed, in the limit of a large one-loop effective mass, k � 1, the Polonyi field remains stabilized close

to the origin, 〈X〉 �MPl. For f = 0, Eq. (96) turns into the solution of Eq. (91). Both the constant

w0 and the Polonyi VEV 〈X〉 break R symmetry. This is because both the superpotential W as well

as the IYIT singlets Z± carry R charge 2. We can therefore use our results in Eqs. (92) and (96) to

determine the order parameter of R symmetry breaking, i.e., the gravitino mass in the Jordan frame,

m3/2 =
〈W 〉
M2

Pl

=
µ2 〈X〉+ w0

M2
Pl

=

(
1− 4

3k

)1/2 (1− f) k + 2/3

(1− f) k − 4/3

µ2

√
3MPl

. (97)

This result allows us to write the total mass of the Polonyi field in the Jordan frame, mJ
x , as follows,

(
mJ
x

)2
=

[
1− 4

3 (1− f) k

] (
m2

1` +m2
R

)
=

3 k

(1− f) (k − 4/3)

[(1− f) k − 4/3]3

[(1− f) k + 2/3]2
m2

3/2 . (98)

In the following, we will restrict ourselves to the large-k limit. This is justified because k is typically

at least of O (10) in the part of parameter space that we are interested in (see Eqs. (54) and (61)),

k ≈
m2

1`

µ4/M2
Pl

=
1

2

(
c1` λMPl

Λ

)2

' 47

(
c1`

0.02

)2(λ
1

)2(5× 1015 GeV

Λ

)2

. (99)

In the large-k limit, the Polonyi VEV in Eq. (96) can be approximately written as follows,

〈X〉 ≈
2
√

3m2
3/2

(1− f) (mJ
x)2 MPl ≈

2
√

2

1− f
m3/2

c2
1`λ

3
, (100)

confirming that 〈X〉 is parametrically enhanced compared to the gravitino mass, 〈X〉 ∝ m3/2/
(
c2

1`λ
3
)
.

For large values of k, also the relations between w0, µ, and m3/2 become significantly simpler,

k � 1 ⇒ w0 ≈
µ2MPl√

3
≈ m3/2M

2
Pl . (101)

In the remainder of this paper, we will restrict ourselves to working with these approximate expressions.

We derived the result in Eq. (100) under the assumption that the leading term in the one-loop

effective potential is an effective mass term, V J
1` = m2

1` |x|
2 + O

(
x4
)
. The derivation of Eq. (100) is

therefore only self-consistent and valid as long as 〈X〉 . xc (see Eq. (83)). This implies a lower bound

on the Yukawa coupling λ that depends on the energy scale Λ as well as on the hierarchy parameter

ρ. We plot this lower bound λmin as a function of Λ and ρ in the right panel of Fig. 1. The exact

numerical result shown in this figure is well approximated by the following analytical expression,

λmin ' min

 16π
√

2√
3 (2 ln 2− 1) ρ6

Λ

MPl
,

[
4π
√

2λ2
0√

3 (2 ln 2− 1)

Λ

MPl

]1/3
 . (102)

λmin is sensitive to ρ at large values of ρ where neff
M in Eq. (62) is dominated by ρ rather than the

neutral meson contribution 4 `0. At small ρ values, where neff
M ≈ 4 `0, the ρ dependence disappears.

In addition to the lower bound λmin, we also require that λ must remain perturbative, λ < λpert = 4.

In the following, we will eliminate λ from our analysis and set it to the following value, for simplicity,

λ̄ = (λminλpert)
1/2 . (103)
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That is, we fix λ just at the central value of the allowed range of values, λmin < λ < λpert. Together

with our choice for the hierarchy parameter, ρ = ρ̄ ' 0.80, this removes all dimensionless parameters

from the IYIT sector, so that the only remaining free parameter is the scale Λ. We then obtain for λ̄,

λ̄ ' 1.78

(
Λ

5× 1015 GeV

)1/2

. (104)

At the same time, λ must not be larger than λ ' 2.41, since otherwise λ+ or λ− will exceed λpert (see

Eq. (59)). This results in an upper bound on the dynamical scale, Λ . 1016 GeV. The relation in

Eq. (104) enables us to express all mass scales in the IYIT sector in terms of Λ. For λ = λ̄ and ρ = ρ̄

and making use of Eqs. (54), (55), and (97), we find (in addition to the relations in Eq. (67))

µ ' 7.94× 1015 GeV

(
Λ

5× 1015 GeV

)5/4

, (105)

mF ' 7.15× 1015 GeV

(
Λ

5× 1015 GeV

)3/2

,

m3/2 ' 1.51× 1013 GeV

(
Λ

5× 1015 GeV

)5/2

.

The relations in Eqs. (67) and (105) are the main result of this chapter. They demonstrate how the

dynamical breaking of supersymmetry in the IYIT sector generates all mass scales relevant for our

model via dimensional transmutation. Our model, thus, does not require any hard dimensionful input

parameters. Moreover, Eq. (105) illustrates that supersymmetry breaking close to the GUT scale

results in a large gravitino mass. As expected, our model therefore predicts a very heavy sparticle

spectrum (see Sec. 4.1). Eqs. (67) and (105) now set the stage for our model of D-term inflation.

2.5 Scalar potential in the inflaton sector

We now have all ingredients at our disposal to construct our inflationary model. In a first step, we add

the usual superpotential of D-term inflation (see Eq. (2)) to the Polonyi superpotential in Eq. (85),

Wtot ⊃ κS ΦΦ̄ + µ2X + w0 . (106)

The inflaton S as well as the waterfall fields Φ and Φ̄ belong to a separate sector that is sequestered

from the IYIT sector. The relevant Kähler potential is of the following form (see Eqs. (16) and (28)),

Ktot ⊃ −3M2
Pl ln

[
1− Fhid + Finf

3M2
Pl

]
, Fhid = X†X , Finf = F + Φ†Φ + Φ̄†Φ̄ . (107)

The waterfall fields Φ and Φ̄ carry B−L charges +q and −q, respectively. They, thus, appear in the

D-term scalar potential, together with the dynamically generated FI parameter ξ (see Eq. (65)),

V J
D =

g2

2

[
q0 ξ − q

(
|φ|2 −

∣∣φ̄∣∣2)]2
. (108)

V J
D denotes the D-term scalar potential in the Jordan frame which is identical to the D-term scalar

potential in global supersymmetry, V 0
D. In addition, the total tree-level scalar potential V J

tree also

receives an F-term contribution V J
F which can be computed by making use of Eqs. (106) and (107),

V J
F = V 0

F + ∆V J
F . (109)
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Here, the first contribution, V 0
F , denotes the usual F-term scalar potential in global supersymmetry,

V 0
F = µ4 +m2

eff

(
|φ|2 +

∣∣φ̄∣∣2)+ κ2 |φ|2
∣∣φ̄∣∣2 , (110)

while the second term, ∆V J
F , corresponds to the tree-level SUGRA correction in the Jordan frame,

∆V J
F = − µ4

1− f
+
(
δm2

eff

)∗
φφ̄+ δm2

eff φ
∗φ̄∗ + δκ2 |φ|2

∣∣φ̄∣∣2 . (111)

For more details on the computation of ∆V J
F , see Appendix A. In Eqs. (110) and (111), we introduced

the masses squared m2
eff and δm2

eff as well as the quartic coupling δκ2. These are defined as follows,

m2
eff = κ2 |s|2 , δm2

eff = −1− 2χ

1− f
m3/2 κs , δκ2 = −(1− 2χ)2

1− f
κ2 |s|2

3M2
Pl

. (112)

Note that all three parameters are field-dependent. The real mass parameter m2
eff denotes the effective

inflaton-dependent mass that stabilizes the waterfall fields during inflation. The complex mass param-

eter δm2
eff is a bilinear mass that originates from the interference between the supersymmetric mass

of the waterfall fields in the superpotential, κ 〈S〉, and the gravitino mass m3/2. This so-called B term

is, hence, a consequence of R symmetry breaking in the superpotential. It is only generated for the

scalar waterfall fields and not for the corresponding fermions, which is why it breaks supersymmetry.

Just like the usual A terms in models of broken supersymmetry, the B term results in a soft breaking

of supersymmetry. The coupling δκ2 will be irrelevant for our puposes as it constitutes just a small

correction to κ2, i.e., the quartic coupling of the waterfall fields in global supersymmetry.

During inflation, the waterfall fields are stabilized at their origin,
〈
φ
〉

=
〈
φ̄
〉

= 0. Along the

inflationary trajectory, the tree-level scalar potential in the Jordan frame therefore reads as follows,

V J
tree =

1

2
D2

0 −
f

1− f
F 2

0 , D0 = gq0ξ , F0 = µ2 . (113)

Here, D2
0/2 denotes the contribution to the vacuum energy density from the D-term scalar potential.

The large F-term contribution, V 0
F ⊃ +F 2

0 , is cancelled by the contribution from R symmetry breaking

that is contained in the SUGRA correction to the scalar potential, ∆V J
F ⊃ −F 2

0 . This explains why the

vacuum energy density during inflation is dominated by the D-term contribution in our model. During

the B−L phase transition at the end of inflation, the D term is absorbed by the VEV of one of the

waterfall fields. In the true vacuum after inflation, all contributions to the CC therefore approximately

cancel. In the next section, we will perform a standard slow-roll analysis of our inflationary model.

This is most easily done in terms of the usual slow-roll parameters in the Einstein frame. To compute

these parameters, we need to convert the potential in Eq. (113) from the Jordan frame to the Einstein

frame. This is achieved by rescaling V J
tree by the fourth power of the conformal factor C (see Eq. (13)),

Vtree = C4 V J
tree =

(
−

3M2
Pl

Ω

)2 [
1

2
D2

0 −
f

1− f
F 2

0

]
. (114)

On the inflationary trajectory, this can be rewritten as a function of the parameter z (see Eq. (90)),

Vtree =
1

(1− z)2

[
1

2
D2

0 −
(1− 2χ) z

1− (1− 2χ) z
F 2

0

]
, z =

χσ2

3M2
Pl

. (115)
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The second derivative of Vtree w.r.t. the field σ provides us with the mass parameter m2
σ (see Eq. (29)),

m2
σ = 2χ

[
D2

0

3M2
Pl

− (1− 2χ)
F 2

0

3M2
Pl

]
,

D2
0

3M2
Pl

≈ m2
R ,

F 2
0

3M2
Pl

≈ m2
3/2 . (116)

As anticipated, mσ is suppressed by the shift-symmetry-breaking parameter χ. By appropriately

chosing χ, we will therefore be able to adjust the scalar spectral index ns so that it matches the

observed best-fit value. We also note that the mass parameter mσ is not a physical mass eigenvalue

in the actual sense. This is because the scalar inflaton field σ is not properly normalized. The mass

of the canonically normalized inflaton field σ̂ is instead given in terms of the slow-roll parameter η in

the Einstein frame, m2
σ̂ = 3 ηH2 ∼ m2

σ (see Sec. 3.2). Moreover, mσ is just a tree-level parameter,

whereas the scalar potential also receives important contributions at the one-loop level.

The radiative corrections are encoded in the one-loop effective Coleman-Weinberg potential [154],

V J
1` =

Q4
J

64π2
STr

[
M4

J

Q4
J

(
ln
M2

J

Q2
J

− C
)]

, C =
3

2
. (117)

Here, STr [·] stands for the supertrace over a (matrix-valued) function of the total tree-level mass

matrix squaredM2
J in the Jordan frame. We evaluate V J

1` in the MS renormalization scheme and only

consider contributions from scalars and fermions. This fixes the numerical constant C in Eq. (117) to

C = 3/2 (see, e.g., [155]). The energy scale QJ denotes the MS renormalization scale. To determine

the radiative corrections to the inflaton potential, it is sufficient to focus on the inflaton-dependent

masses in the waterfall sector. From Eqs. (24), (108), (110), and (111), we find for the scalar fields,

V J
tree ⊃

1

2


φ∗

φ̄∗

φ

φ̄


T 

m2
φ 0 0 δm2

eff

0 m2
φ̄

δm2
eff 0

0
(
δm2

eff

)∗
m2
φ 0(

δm2
eff

)∗
0 0 m2

φ̄




φ

φ̄

φ∗

φ̄∗

 , m2
φ,φ̄ = m2

eff +m2
R ∓ q m2

D . (118)

where the mass parameters m2
D, m2

R, m2
eff , and δm2

eff are respectively defined below Eq. (8) as well in

Eqs. (25) and (112). In addition to these tree-level masses, the scalar waterfall fields also obtain gauge-

mediated masses at the loop level. This is because supersymmetry breaking in the IYIT sector results

in a mass splitting among the components of the massive B−L vector multiplet (see Eq. (75)) [156].

Including these one-loop masses into Eq. (117) would result in a two-loop contribution to the effective

potential. For this reason, we will ignore the effect of gauge-mediated supersymmetry breaking (GMSB)

for now. We will come back to this issue in Sec. 4.1. In the next step, we diagonalize the mass matrix in

Eq. (118). This results in two complex mass eigenstates φ± with inflaton-dependent mass eigenvalues,

m2
± = m2

eff +m2
R ±

(
1 + δ4

)1/2
q m2

D , δ4 =
|δmeff |4

q2m4
D

. (119)

Here, δ is related to the rotation angle βφφ̄ that diagonalizes the scalar mass matrix, δ2 = tan
(
2βφφ̄

)
.

We note that the parameter δ depends on the inflaton field value, which makes it a time-dependent

quantity. For this reason, the mass eigenstates φ± do not coincide with the charge eigenstates φ, φ̄

during inflation. The mass parameters m2
R, m2

D, and δm2
eff in Eq. (119) arise from various effects in
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the scalar sector of our model: the conformal coupling to the Ricci scalar in Eq. (24), the D-term

scalar potential in Eq. (108), and the soft B term in Eq. (111). None of these effects is relevant for

the fermions in the waterfall sector. The two Weyl fermions in Φ and Φ̄ simply from a Dirac fermion

φ̃ with Jordan-frame mass mφ̃ = meff . No further SUGRA corrections arise in the Jordan frame [112].

We are now ready to evaluate V J
1` in Eq. (117). Our final result can be written as follows,

V J
1` =

Q4
J

16π2
L (x, α) , L (x, α) =

1

4
STr

[
M4

J

Q4
J

(
ln
M2

J

Q2
J

− 3

2

)]
, (120)

where L is a one-loop function that takes the same form in the Jordan frame as in the Einstein frame,

L (x, α) =
1

2

∑
±

(x± 1)2

[
ln (x± 1)− 3

2

]
− (x− α)2

[
ln (x− α)− 3

2

]
, (121)

and where the variable x, the parameter α, and the renormalization scale QJ are introduced such that

x =
m2

eff +m2
R

Q2
J

, α =
m2
R

Q2
J

, Q2
J =

(
1 + δ4

)1/2
q m2

D . (122)

All of these quantities depend on the inflaton field value by virtue of the parameters m2
eff , m2

R, and δ.

In the following, we will, however, neglect the field dependence of m2
R and approximate it instead by

the constant expression in Eq. (116). The fact that QJ is field-dependent does not pose any problem

for our model. Recall that one usually encounters a field-independent renormalization scale QJ in the

Jordan frame and a field-dependent renormalization scale Q = CQJ in the Einstein frame — or vice

versa. In our model, the renormalization scale is, by contrast, field-dependent in both frames. This

is a priori a perfectly valid choice. Independent of whether QJ is field-dependent or not, we merely

have to make sure that our final results are not overly sensitive to our particular choice for QJ . This

is a requirement that we will have to check a posteriori as part of our slow-roll analysis (see Sec. 3).

The main field dependence of Eq. (120) is encoded in x which may also be written as follows,

x =
m2

+ +m2
−

m2
+ −m2

−
=

2m2
eff

m2
+ −m2

−
+ α . (123)

x = 1 therefore corresponds to the critical point along the inflationary trajectory at which m− vanishes,

x = 1 ⇔ σ = σc ⇔ m− = 0 . (124)

At this point in field space, the mass eigenstate φ− becomes tachyonically unstable which triggers the

B−L waterfall transition. We also note that Eq. (123) illustrates the physical meaning of α. The

parameter α represents a shift in the field variable x compared to the situation in global supersymmetry

where one simply has x0 = 2m2
eff/
(
m2

+ −m2
−
)
. As evident from Eq. (122), this shift results from the

fact that the watefall scalars obtain a gravity-induced mass mR, while the waterfall fermion does not.

To convert Eq. (120) into the one-loop effective Coleman-Weinberg potential in the Einstein frame,

we need to multiply again by C4, just like in the case of the tree-level scalar potential (see Eq. (114)),

V1` = C4 V J
1` =

Q4

16π2
L (x, α) , Q = CQJ . (125)
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The Weyl transformation from the Jordan frame to the Einstein frame therefore corresponds to noth-

ing but a rescaling of the Q4
J factor in Eq. (120). The loop function L remains unchanged. This is

consistent with the fact that the Weyl transformation in Eq. (13) only affects dimensionful parameters.

A mass scale mJ in the Jordan frame is, e.g., mapped onto m = CmJ in the Einstein frame. Dimen-

sionless ratios of mass parameters, thus, remain invariant under the Weyl transformation [114,115]. In

passing, we also mention that the effective scalar potential V1` in Eq. (125) cannot be derived from the

effective Kähler potential K1` in Eq. (30). The reason for this is that, in D-term inflation, the effective

Kähler potential K1` can enter into the total scalar potential only via the D-term scalar potential,

Ktot → Ktot +K1` ⇒ VD ⊃ −gq D0

(
φ
∂

∂φ
K1` − φ̄

∂

∂φ̄
K1`

)
. (126)

This, however, only constitutes a contribution to the one-loop effective potential for the waterfall fields

which we are not interested in. The one-loop effective potential for the inflaton field in Eq. (125) has

a different origin. This can be explicitly seen in the superspace formulation of global supersymmetry.

There, Eq. (125) does not follow from the effective potential for the chiral mulitplets S, Φ, and Φ̄, i.e.,

from the effective Kähler potential K1`, but from the effective potential for the auxiliary D component

of the vector field V [136]. This quantity is less often discussed in the literature. Alternatively,

Eq. (125) can also be derived in a superspace language that applies to models of softly broken global

supersymmetry [139]. In this approach, one first integrates out the heavy vector multiplet V such

that supersymmetry is softly (and explicitly) broken in the effective theory at low energies. Then, one

calculates the radiative corrections to the soft SUSY-breaking terms in the Lagrangian. This allows

one to recover Eq. (125) as the one-loop renormalization of the so-called soft Kähler potential K̃. In an

explicit calculation, we convince ourselves that Eq. (125) indeed satisfies the relation V1` = −K̃1`. It

is interesting to note that this result differs from the situation in F-term inflation. There, the effective

Kähler potential directly contributes to the effective inflaton potential via the F-term scalar potential.

The total inflaton potential follows from the combination of our results in Eqs. (114) and (125),

V =
V J

(1− z)2 , V J =

[
1

2
+
(
1 + δ4

) g2q2

16π2
L (x, α)

]
D2

0 −
(1− 2χ) z

1− (1− 2χ) z
F 2

0 (127)

The individual parameters and functions appearing in this potential can be found in the following

equations: z in Eq. (90), D0 and F0 in Eq. (113), δ in Eq. (119), and L in Eq. (121). The potential

in Eq. (127) is one of the main results in this paper and the starting point of our phenomenological

study of the inflationary dynamics (see Sec. 3). In conclusion, let us summarize the main differences

between Eq. (127) and the inflaton potential of ordinary D-term inflation in global supersymmetry,

V0 =

[
1

2
+
g2q2

16π2
L (x0, 0)

]
D2

0 , x0 =
m2

eff

q m2
D

. (128)

Compared to this potential, our total inflaton potential V receives four different SUGRA corrections:

(i) The total potential is rescaled by C4 to account for the transition from the Jordan frame to the

Einstein frame. (ii) The approximate shift symmetry in the inflaton kinetic function in combination

with F-term SUSY breaking in the IYIT sector results in a small contribution from the F-term scalar
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potential. (iii) The soft B term mass δm2
eff modifies the prefactor of the one-loop effective potential

as well as the definition of the field variable x. (iv) The gravity-induced mass mR gives rise to the

parameter α. All of these effects vanish in the global-SUSY limit, such that V → V0. The main claim

of our paper is that the SUGRA corrections in Eq. (127) are instrumental in realizing a viable scenario

of D-term inflation that is in agreement with all theoretical and phenomenological constraints.

3 Phenomenology: A viable scenario of D-term hybrid inflation

In the previous section, we introduced a supergravity embedding of the IYIT model of dynamical

supersymmetry breaking with the following properties: (i) by promoting a U(1) flavour symmetry of

the DSB model to the gauged U(1)B−L symmetry, we connect the scales of supersymmetry and B−L
breaking and simultaneously generate an effective FI term for the U(1)B−L symmetry. We demon-

strated that all mass scales, including the FI term, the B−L breaking scale and the supersymmetry

breaking scale, are all set by the dynamical scale Λ, see Eqs. (67) and (105). (ii) The effective FI term

generates a D-term scalar potential which can be used to implement DHI. Besides the usual one-loop

contribution from integrating out the waterfall fields in the limit MPl → ∞, our construction entails

several (calculable) supergravity corrections. The final result for the one-loop effective scalar potential

is given in Eq. (127). (iii) The requirement of perturbativity and the necessity to stabilize the Polonyi

field leads to constraints on the parameters of the DSB model, see Fig. 1.

In this section we turn to the phenomenology of the resulting DHI model, outlined in Sec. 2.1.

This will essentially fix the only remaining free parameter of our DSB sector, the dynamical scale

Λ. After briefly reviewing the standard picture in global supersymmetry, we proceed to an analytical

study of the parameter space, highlighting the most important effects of the different contributions to

the scalar potential calculated in the previous section. We then present a full numerical study of the

relevant parameter space, supplemented by a discussion on the initial conditions in different parts of

the parameter space.

3.1 D-term inflation in global SUSY

The key ingredients of globally supersymmetric DHI are the superpotential and D-term potential

given in Eq. (2). The waterfall fields Φ, Φ̄ obtain masses which depend on the scalar component

s of the chiral multiplet S, which stabilize them for values of the inflaton field above the critical

value |sglob
c |2 = g2qq0ξ/κ

2. These field-dependent masses result in a Coleman-Weinberg one-loop

contribution to the effective potential of the inflaton, so that the scalar potential for the inflaton

above the critical field value is given by Eq. (128). At the critical field value (corresponding to x0 = 1)

one of the waterfall fields acquires a nonvanishing vacuum expectation value, absorbing the FI term

ξ.

Identifying the inflaton field as the radial component of s, ϕ = |s|/
√

2, its classical evolution during

inflation is described by the slow-roll equation,

V (ϕ)ϕ′(N) = V ′(ϕ) , (129)
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where N = −
∫
Hdt counts the number of remaining e-folds N to the end of inflation (with N = 0

at the end of inflation). This is an accurate description of the inflationary dynamics as long as the

slow-roll parameters,

ε(ϕ) =
M2

Pl

2

(
V ′(ϕ)

V (ϕ)

)2

, η(ϕ) = M2
Pl

V ′′(ϕ)

V (ϕ)
, (130)

are much smaller than one. The CMB observables, describing the statistical properties of vacuum

quantum fluctuation during inflation, can be expressed in terms of these variables as

As =
V

24π2εM4
Pl

, ns = 1− 6 ε+ 2 η , r = 16 ε , (131)

evaluated at N∗ ' 55 e-folds before the end of inflation.

DHI ends at the critical field value ϕc or even earlier, when the second slow-roll parameter η

becomes large, ϕ2
η = (g2q2M2

Pl)/(16π2), depending on the size of ϕη/ϕc. For ϕη/ϕc � 1, i.e., if the

slow-roll condition is violated before the critical point, the value of ϕ at N∗ e-folds before the end

of inflation is given by ϕ2
∗ ' (g2q2N∗M

2
Pl)/(4π

2). The amplitude of the scalar spectrum is mainly

controlled by the FI parameter, As ' (q2
0N∗ξ

2)/(3q2M4
Pl), and its spectral index, governed by the

second slow-roll parameter η, is obtained as ns ' 1− 1/N∗ ' 0.98 in the limit of gq � 4π. For values

of ξ around the GUT scale, this yields the correct scalar amplitude, albeit with a somewhat too large

spectral index, disfavoured by about 2σ by the current data [75].

On the other hand, if the slow-roll conditions are satisfied all the way up to the critical field

value, we find ϕ∗ ' ϕc. The small value of the inflaton coupling κ in this region of parameter space

implies that the field excursion during N∗ ' 55 e-folds of inflation is typically small compared to

the field value at the endpoint of inflation ϕc. The observed value of the scalar amplitude fixes

Aobs
s = As = (4π2q3

0ξ
3)/(3q2κ2M6

Pl), enabling lower values of ξ for smaller values of κ. The spectral

index in this region is found to be ns ' 1, excluded at more than 5σ by the PLANCK data [75].

Despite its simplicity and obvious connection to particle physics, this model has several major

short-comings, as discussed in Sec. 2.2. These are connected to the origin of the FI mass scale

in supergravity, the stability of scalar fields during inflation, gravitational corrections to the inflaton

trajectory in supergravity, and phenomenological constraints from CMB observations. In the following,

we demonstrate how all these shortcomings can simultaneously be overcome in our setup.

3.2 Analytical description of the inflationary phase

Inflationary dynamics in SUGRA

In the following we implement DHI with the dynamically generated FI term of Sec. 2.3, supplemented

by the assumption of an approximate shift symmetry in the direction of the inflaton field. As discussed

in Section 2.2, this shift symmetry is broken by one-loop effects in the scalar potential and Kähler

potential. The interplay of these two small contributions will enable us to identify regions in parameter

space which comply with all experimental constraints.8

8This includes the nonobservation of cosmic strings, as will be demonstrated in Sec. 4.4.
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The dynamics of inflation is determined by the scalar potential (127), which contains all relevant

supergravity and one-loop contributions. Our choice of kinetic function F (see Eq. (28)) with χ� 1

ensures that σ, the real part of the complex scalar s, plays the role of the inflation. The supergravity

version of Eq. (129) in the Einstein frame reads

Kss∗(σ)V (σ)σ′(N) = V ′(σ) . (132)

where V = C4 V J is the Einstein-frame scalar potential and Kss∗ = ∂2K/(∂s∂s∗) is the prefactor

of the kinetic term for the inflaton. The initial condition (i.e., the end of inflation) is given by

σ(N = 0) = max(σc, ση). This enables us to evaluate the (Einstein-frame) slow-roll parameters ε(σ̂)

and η(σ̂) and hence the CMB observables at N∗ = 55 e-folds before the end of inflation. Evaluating

the slow-roll parameters requires derivatives of the scalar potential with respect to the canonical

normalized field σ̂, which we perform by exploiting ∂σ̂/∂σ =
√
Kss∗ , as follows from the canonically

normalization of the kinetic terms in the Einstein frame,

1

2
Kss∗∂µσ∂µσ '

1

2
C4(1− f)∂µσ∂

µσ =
1

2
∂µσ̂∂

µσ̂ . (133)

For convenience, we recall here a few key quantities (evaluated along the inflationary trajectory)

introduced earlier (see Eqs. (13), (15), (28) and (90))

C2 = −
3M2

Pl

Ω
, Ω = −3M2

Pl + F , F = χσ2 , f = (1− 2χ) z , z =
χσ2

3M2
Pl

. (134)

For more details on translating between the Einstein and Jordan frame, see App. A.

The results of the numerical analysis are shown in Fig. 2. Before discussing them in detail, we will

give an analytical analysis of the parameter space in the vicinity of the globally supersymmetric limit.

This will prove instructive for interpreting the numerical results.

Slow-roll parameters

The slow-roll parameters in the Einstein frame can be expressed in terms of derivatives of the scalar

potential and of the kinetic function in the Jordan frame as (see Appendix A.4),

ε =
1

N 2

(
ε

1/2
J − 2 ξ

1/2
J

)2
, (135)

η =
1

N 2

(
ηJ + 12 ξJ − 8 (εJ ξJ)1/2 − 2 ζJ − 2ν1/2

(
ε

1/2
J − 2ξ

1/2
J

))
, (136)

with N ≡ K1/2

s†s
= C2(1− f)1/2 and

εJ ≡
M2

Pl

2

(
V J
σ

V J

)2

, ηJ ≡M2
Pl

V J
σσ

V J
, (137)

ξ
1/2
J ≡ MPl√

2

Ωσ

Ω
, ζJ ≡M2

Pl

Ωσσ

Ω
, ν ≡

M2
Pl

2

(
Nσ
N

)2

.

These expressions are equivalent to those found in Appendix A of Ref. [157]. In the following, we will

use Eqs. (135) and (136) to analyze the inflationary predictions, since this format enables us to nicely

disentangle the different contributions in various parts of the parameter space.
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With the definitions above, simplified expressions for the Jordan-frame slow-roll parameters εJ

and ηJ can be obtained by approximating the Coleman-Weinberg one-loop potential for x � 1 and

α� 1 as

V J
1` =

Q4
J

16π2

[
lnx+O (αx)

]
. (138)

with x, α and QJ given in Eq. (122). As in the globally supersymmetric case, x = 1 denotes the

critical point. Eq. (138) is a good approximation as long as 1� x� 1/α, which will hold in most of

the parameter regime of interest. We then find

εJ '
(
MPl

σ/
√

2

)2 [(
1 + δ4

ε

) q2g2

16π2

D2
0

V J
− f

(1− f)2

F 2
0

V J

]2

, (139)

ηJ ' −
(
MPl

σ/
√

2

)2 [(
1− δ4

η

) q2g2

16π2

D2
0

V J
+
f (1 + 3f)

(1− f)3

F 2
0

V J

]
, (140)

with f given in Eq. (90) and

δε ≡
(

lnx+
1

2

)1/4

δ , δη ≡
(

lnx+
1

2
+

2 + δ4

1 + δ4

)1/4

δ , (141)

where δ was introduced in Eq. (119) and F0 and D0 denote the F- and D-term contributions from

global supersymmetry, respectively. For both εJ and ηJ , the term proportional to D2
0 stems from the

Coleman-Weinberg one-loop potential whereas the term proportional to F 2
0 is a supergravity effect,

induced by the noncanonical terms in the Kähler potential. Moreover, we note that the Coleman-

Weinberg term splits into the expression familiar from global supersymmetry (indicated by the “1” in

the parenthesis) and the supergravity contribution to the waterfall field sector, parametrized by δ4
ε,η.

Note that, as in global supersymmetry, εJ is suppressed compared to ηJ .

Eqs. (139) and (140) illustrate the main effect of the F-term SUGRA corrections in our model.

For f � 1 and V J ' D2
0/2, the second term in Eq. (140) yields

∆ηJ ' −
4

3
(1− 2χ)χ

F 2
0

D2
0

, (142)

indicating that the supergravity contributions from the tree-level F-term scalar potential can induce the

desired lowering of the spectral index (∆η ∼ −0.01) compared to the result of global supersymmetry if

χ ' 7.5×10−3D2
0/F

2
0 .9 This small value of χ indicates the presence of an approximate shift symmetry.

Turning to the effects of a small, positive value for χ on the first slow-roll parameter, see Eq. (139),

we note that positive χ will lead to a decrease in ε. The one-loop and SUGRA contributions may

even cancel each other, indicating the presence of a hilltop or a saddle point in the scalar potential.

We will come back to the consequences of such a scenario below.

The explicit expressions for the remaining auxiliary Jordan-frame slow-roll parameters are

ξ
1/2
J = −

(
MPl

σ/
√

2

)
z

1− z
, ζJ = −

(
MPl

σ/
√

2

)2 z

1− z
, ν1/2 =

(
MPl

σ/
√

2

)
(1 + 2χ− f) z

2 (1− z) (1− f)
(143)

9For χ = 1/2, we have ∆ηJ = 0, which corresponds to the absence of a m2
3/2 term for the inflaton field due to the

sequestering Kähler potential. One might thus expect a second solution, χ = 1/2 − |δχ| with |δχ| � 1, to produce

∆η ∼ −0.01. However in this case the corresponding gravity-induced mass for the inflaton, see Eq. (144), is too large.
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Here ζJ captures the gravity-induced mass of the inflaton and emphasizes once more the need for

an approximate shift symmetry (χ � 1) for the inflaton field: for χ ' 1/2, the inflaton picks up a

gravity-induced mass just as all the other scalars do,

χ ' 1

2
⇒ m2

σ ' m2
R . (144)

with m2
R ' D2

0/(3M
2
Pl). This implies a contribution to the slow-roll parameter η of ∆ηζ ' 2/3 (see

Eq. (26)) and, hence, leads to an η problem. A pure canonical term in the inflaton kinetic function,

F ' S†S, is therefore not viable in our model. The approximate shift symmetry resolves the problem,

suppressing this contribution as ∆ηζ ' 4χ/3. Of course, Eq. (142) and (144) directly correspond to

the second and first term of Eq. (116), respectively. Due to F0 > D0, the contribution from Eq. (142)

will always dominate for χ� 1.

Inserting these results into Eqs. (135) and (136), we find to leading order (z � 1, D0/F0 � 1):

ε '
(
MPl

σ/
√

2

)2 [(
1 + δ4

ε

) q2g2

16π2

D2
0

V J
− f F

2
0

V J

]2

, (145)

η ' −
(
MPl

σ/
√

2

)2 [(
1− δ4

η

) q2g2

16π2

D2
0

V J
+ f

F 2
0

V J

]
. (146)

Viable parameter space

Starting from Eqs. (145) and (146) and the results of D-term hybrid inflation in global supersymmetry,

we can analytically assess the viable parameter space in the vicinity of the globally supersymmetric

results. Comparing the global SUSY DHI results with the observed value for ns, we conclude that the

supergravity contributions must enhance |η| by (at least) an O(1) factor. At the same time, requiring

V ′(σ̂) > 0 implies an upper bound on these contributions (see Eq. (145)):

(
1− δ4

η

) q2g2

16π2

D2
0

V J
. f

F 2
0

V J
<
(
1 + δ4

ε

) q2g2

16π2

D2
0

V J
, (147)

for σ = σ∗. This implies a lower bound on δ (governing both the size of δε and δη). At the same time,

δη yields a positive contribution to η and a too large value will lead to an enhancement of the spectral

index ns. Together this implies δ ∼ O(0.1 · · · 1), where to leading order δ4 ' κ2σ2m2
3/2/(2q

2
0q

2g4ξ2).

We can estimate δ by exploiting the analytical results for σ∗ in globally supersymmetric D-term hybrid

inflation, see Sec. 3.1. In addition, we note that the requirement that the tree-level supergravity term

contributes ∆η ∼ −0.01 implies

−∆η ' 2χ

3

(
m3/2

HJ

)2

' 0.01 → χ ' 10−4
( g

0.1

)2
(

1015 GeV√
ξ

)
. (148)

where we have inserted the relations (67) and (105).

In the regime of large κ (and taking for simplicity |q| ∼ |q0| ∼ 1), the constraints on δ thus roughly

fix the parameter combination κ2
√
ξ/g2. Using Eq. (148) we immediately see that the correct spectral

index can be obtained for

χ ' 3.5× 10−4

(
0.1

δ4

)( κ

0.1

)2
(
N∗
55

)
. (149)
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The amplitude of the scalar power spectrum As is mainly dependent on ξ, see Sec. 3.1. This essentially

fixes ξ ' 10−5M2
Pl, and determines the preferred range of the gauge coupling, e.g. g ∼ 0.1 for κ = 0.1.

Note that this constraint can be circumvented if one allows inflation to begin very close to the hilltop

of the scalar potential, ε∗ ' 0, which can be obtained by tuning the contributions in Eq. (145). From

Eq. (131) we see that in this case, we can in principle arbitrarily lower ξ. However, this corresponds

to a very tuned situation and we will not focus on this regime of the parameter space.

In the regime of small κ we note from the expressions of the globally supersymmetric limit that

σ∗ ' σc and ns ' 1. This indicates that (i) the leading order term in the expansion of VCW in

1/x becomes a poor approximation and (ii) to obtain the correct spectral index, we must rely nearly

exclusively on the supergravity terms in η. As a result of the first point, the lower bound on δ in

fact becomes irrelevant when using the full expression for the one-loop potential. We are thus left

with ξ3/2/g2 . 8.5× 10−3M3
Pl/2 δ

4. Imposing the observed value for As and approximating σ∗ by the

corresponding expression in globally supersymmetric DHI, this yields

ξ ' 5.5× 10−6M2
Pl

( κ

10−3

)2/3
. (150)

Inserting this into Eq. (148), we find

χ ' 0.1 g2
( κ

10−3

)−1/3
. (151)

Both Eq. (149) and Eq. (151) point to small values of χ, i.e., an approximate shift symmetry. For

κ = 0.1, Eq. (149) indicates a value of χ which is larger than obtained only by integrating out the

waterfall fields, χ1` ' κ2/(16π2) = 6 × 10−5 (κ/0.1)2, see Eq. (30). On the other hand, for smaller

values of κ, the symmetry breaking induced by the waterfall fields can be sufficient to generate the

correct spectral index for accordingly small values of the gauge coupling g, see Eq. (151). We will

confirm these results with a dedicated numerical analysis below.

3.3 Scan of the parameter space and numerical results

In this section we present our results for a numerical scan of the parameter space, focusing on the

regions identified analytically in the previous section. Starting from the full scalar potential (127)

and the equation of motion (132), we determine the slow-roll parameters (130) and consequently the

inflationary observables (131) at N∗ = 55 e-folds before the end of inflation. Fixing the charges

|q0| = 1 and |q| = 2, we for each parameter point in the (κ, g, χ, ξ) plane (i) determine the end-point

of inflation, (ii) solve the slow-roll equation of motion and (iii) determine for fixed (κ, g, χ) the value

of ξ which reproduces the observed amplitude of the scalar power spectrum. We also explicitly check

that our results are not sensitive to the precise choice of the renormalization scale QJ .

Our results are depicted in Fig. 2, for κ = 0.1 (left panel) and κ = 10−3 (right panel), as well as

in Fig. 3 where we have imposed the additional relation χ = χ1` = κ2/(16π2), see Eq. (30). In all

figures, the green band indicates the region of parameter space in accordance with all constraints. In

the parameter space of interest, we find values for the tensor-to-scalar ratio r of O(10−6 · · · 10−4), far

below the current bounds. The numerical results for the inflationary observables agree excellently with
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Figure 2: CMB observables and viable parameter space for two representative, fixed values of the superpotential coupling,

κ = 0.1 and κ = 0.001. The red boundaries show constraints enforcing perturbativity (ρ > ρpert, see Eq. (57)), the

stabilization of the Polonyi field (g < gmax, see Eq. (72)) and limiting the amount of fine-tuning in the model parameters

(quantified by ∂As/∂ ln Λ, see discussion below Eq. (149)), blue lines indicate contour lines for the dynamical scale Λ

which reproduce the observed amplitude of the scalar spectrum. The green band indicates values of the spectral index

in agreement at 95% CL with the current data, ns = 0.9677± 0.006 [75].

results obtained from our analytical expressions for the slow-roll parameters, Eq. (145) and Eq. (146),

as well as with our estimates for the shift-symmetry-breaking parameter χ in Eqs. (149) and (151).

This underlines that although our numerical analysis takes into account all contributions to the scalar

potential, the most relevant contribution to lower the spectral index is the shift-symmetry-suppressed

soft mass for the inflaton, leading to Eq. (142).

Our choices for the coupling κ are designed to cover the relevant aspects of the parameter space,

while focusing on particularly interesting benchmark points. Responsible for explicit shift symmetry

breaking in the superpotential, we expect κ . 1. In the left panel of Fig. 2, we consider κ = 0.1.

This enables us to reproduce the observed CMB observables (in particular ns) with loop and SUGRA

contributions of comparable size, leading to χ ∼ 10−4. In global-SUSY DHI the parameter space

splits into two regimes, characterized by the size of |ση/σc| and consequently by different parameter

dependencies of s∗, see Sec. 3.1. The value of κ = 0.1 falls into the regime of ση � σc. In the right

panel of Fig. 2 we turn to the opposite regime, ση � σc. To reproduce the observed spectral index, we

here need to require the SUGRA contributions to clearly dominate over the one-loop contributions.

Note that for even smaller values of κ, the critical value σc can take super-Planckian values, enabling

a phase of ‘sub-critical hybrid inflation’ after the inflation field has passed σc [158,159].

In Fig. 3 we impose χ = χ1` = κ2/(16π2) (Eq. (30)), thus reducing the parameter space of our

model by one dimension. Interestingly and nontrivially, we find solutions which obey all constraints

if κ ∼ g = O(10−3). Hence the minimal model setup with shift symmetry breaking only through the

coupling of the waterfall fields in the superpotential can reproduce the observed CMB observables,
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Figure 3: CMB observables and viable parameter space for shift symmetry breaking exclusively through the superpo-

tential coupling of the waterfall fields, χ = χ1` = κ2/(16π2). Color code as in Fig. 2.

thereby essentially determining all model parameters: the superpotential coupling κ, the gauge cou-

pling g and the mass scale Λ. The value of the gauge coupling g is small compared to the expectation in

GUTs, but interestingly, the relation κ ∼ g is precisely the relation predicted in N = 2 supersymmetric

hybrid inflation [160].

3.4 Initial conditions

In the viable parameter space, inflation occurs either near a hilltop (i.e., a local maximum in the

scalar potential) or near an inflection point, depending on the exact values of χ and g. In Fig. 4

we depict these two possibilities (for κ = 0.1), together with the decomposition of the total scalar

potential into its dominant components. The solid line shows the full scalar potential, the dashed lines

with label (i) indicate the following components: (1) leading-order term in the Coleman-Weinberg

potential in the global-SUSY limit, (2) supplemented with the leading supergravity terms to the

inflaton F-term potential and to the waterfall mass spectrum and (3) in addition supplemented with

the next-to-leading order term in the expansion of the Coleman-Weinberg potential (see Eq. (138)),

V J,NLO
1` = Q4

J/(8π
2)αx ln(x). The latter term becomes relevant as x(σ) increases to x ∼ 1/α. The

remaining discrepancy to the full scalar potential (in the left panel) is mainly due to the σ-dependence

of the D-term potential in the Einstein frame, induced by the conformal factor.

Implementing inflation in the left panel of Fig. 4 requires some fine-tuning in the initial conditions,

to ensure the correct vacuum is reached. However, we point out two further observations: (i) in all

the parameter space of interest, we find H∗/(2π) ≪ (σmax − σ∗), i.e., if (by accepting some tuning),

the initial conditions are in the desired regime, they are at least stable against quantum fluctuations.

(ii) lowering the B−L gauge coupling g, the energy level of the false minimum is raised compared to
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Figure 4: Contributions to the scalar potential (for κ = 0.1). The total scalar potential is shown in solid black, the

dashed curves mark the following contributions: (1) global-SUSY one-loop potential, (2) + leading SUGRA effects, (3)

+ gravity-induced effects in the one-loop potential. For details see text. The parameter values are chosen as g = 0.13,

χ = 3.5× 10−4, ξ = 10−5M2
Pl (left panel) and g = 0.05, χ = 2.8× 10−4, ξ = 6.3× 10−6M2

Pl (right panel).

V (σ∗). An interesting (albeit fine-tuned) situation arises if the vacuum energy density of the false

minimum lies just a tiny bit above V (σ∗), allowing for a phase of eternal inflation, followed by N∗

e-folds of inflation arising once the inflaton field tunnels through the potential barrier.

On the other hand, in the right panel of Fig. 4 inflation can start at large field values, avoiding an

initial condition problem. There is however some degree of tuning required in the model parameters

to ensure this shape of the potential. For κ = 0.1, this becomes particularly relevant for small values

of g, when large SUGRA contributions to the slow-roll parameters need to be carefully balanced. This

results in the ‘fine-tuning’ constraint on the parameter space in Fig. 2. An overview of these different

regions in parameter space in given in Fig. 5 for the cases of κ = 0.1 and χ = κ2/(16π2), in both cases

focusing on the region of parameter space which reproduces the correct CMB observables.

Note that for very large field values, σ2 ∼ 3M2
Pl/χ ∼ 104M2

Pl, both the conformal factor C and the

F-term potential exhibit a pole (see Eqs. (149) and (114)):

Ω = 0 → (σ∞C )2 ' 1

χ
(3M2

Pl) , f = 1 → (σ∞F )2 =
3M2

Pl

χ(1− 2χ)
. (152)

After canonical normalization of the inflaton field, the pole in the conformal factor will be pushed to

infinity. The pole in the F-Term potential is always at larger field values and is hence never reached.10

However, for χ � 1, σ∞F approaches σ∞C and the F-term potential begins to dominate the tree-level

potential already for σ < σ∞C . This can generate a false, negative valued vacuum at large field values.

In the regions of parameter space where the inflaton field reaches values of order MPl, this can impact

the vacuum structure. However at these large field values, σ � MPl, higher order operators may

significantly modify the scalar potential.

For κ = 10−3, we find that inflation typically occurs in a small field region in the vicinity of a

hilltop, accompanied by a false, often negative-valued vacuum at large field values. The amplitude of

this vacuum is lifted as g and χ are decreased, until at values of g . 5 × 10−4 inflation occurs close

10The pole in the conformal factor implies that in the field space of the canonically normalized field σ̂, the scalar

potential asymptotes to lim
σ̂→∞

V (σ̂) = V (σ∞C ) and is thus always bounded from below.
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Figure 5: Initial conditions for κ = 0.1 (left panel) and χ = κ2/(16π2) (right panel). The three different possibilities

for the structure of the scalar potential are (i) inflection point inflation (black ‘+-symbol, situation as in the right panel

of Fig. 4), (ii) hilltop inflation with a local minimum at σ � σ∗ (white ‘x’-symbol, situation as in left panel of Fig. 4)

and (iii) hilltop inflation without a local minimum (red ‘o’-symbol). This last situation arises due to the effect described

below Eq. (152), and requires tuning the initial conditions. As in Figs. 2 and 3, the green band indicates that the scalar

spectral index lies within the 2σ band.

to an inflection point. The shape of the potential is well described by the D-term potential, C4D2
0/2,

supplemented by the full globally supersymmetric one-loop potential (not truncated at O(1/x)) and

the leading order SUGRA contribution from the F-term potential.

4 Discussion: Particle spectrum and cosmology after inflation

During inflation, supersymmetry is broken through F- and D-term contributions. After inflation, when

the D-term is absorbed into the VEV of the waterfall field, only F-term supersymmetry breaking re-

mains. This is communicated to the particles of the MSSM through (i) higher dimensional terms in

the Kähler potential (Planck-scale-mediated supersymmetry breaking, PMSB) (ii) anomaly-mediated

supersymmetry breaking (AMSB) and (iii) couplings to the B−L multiplet which receives a super-

symmetry breaking mass splitting at tree level (gauge-mediated supersymmetry breaking, GMSB), see

e.g. [161] for an overview. While PMSB will play a crucial role for the SM squarks and sleptons and

for the mass parameters of the Higgs sector, the standard model gauginos will only receive a loop

suppressed AMSB contribution. At low energies, the particle spectrum thus resembles the results

obtained in pure gravity mediation (PGM) [19,22–24],11 with the overall scale of the spectrum deter-

mined by the inflationary observables (which determine the value of the FI-parameter ξ), see Eqs. (67)

and (105). In this section, we discuss the mass spectrum of our model during and after inflation, and

discuss consequences for early universe cosmology, including reheating, leptogenesis, dark matter and

11See also Ref. [110] for a related discussion.
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the production of topological defects.

4.1 Particle spectrum

Stabilization of squarks and sleptons during and after inflation

The total scalar mass of an MSSM matter field Qi with gauge charge qi is given by

m2
0,i = C2

[
−qim2

D − aii ∆m2
0 + q2

im
2
gm +m2

R

]
, (153)

where the first term denotes the D-term induced mass present only during inflation, the second term

is a tree-level supergravity contribution induced by higher-dimensional operators in the Kähler po-

tential, the third term is the gauge-mediated SUSY breaking contribution and the fourth term is the

gravity-induced mass (present only during inflation). Assuming that the MSSM sector couples to the

supersymmetry breaking sector via higher-dimensional operators in the Jordan frame (see Eq. (18)),

Ω ⊃ X†X +Q†iQi +
aii
M2
∗
Q†iQiX

†X +O
(
M−4
∗
)
, (154)

yields

V J
F ⊃ −aii

µ4

M2
∗
|q̃i|2 = −3 aii

m2
3/2M

2
Pl

M2
∗
|q̃i|2 , (155)

and hence ∆m2
0 = 3m2

3/2M
2
Pl/M

2
∗ . The quantities mD and mR have been introduced in Eqs. (8) and

Eq. (25), respectively. mgm denotes the mass contribution obtained through gauge mediation, with

the dominant (one-loop) effect arising due to the mass splitting within the B−L gauge multiplet [156]

m2
gm '

g2

32π2
m2
V ln

(
m2
cm

6
V

m8
ã

)
, (156)

with mV , mc and mã given in section 2.3. This contribution is clearly sub dominant compared to the

tree-level D-term contribution during inflation. The stabilization of the MSSM scalars during inflation

(m2
0,i � H2) requires aii < 0 and

|aii|∆m2
0 � qim

2
D − q2

im
2
gm −H2

J ' qim2
D (157)

which for |qi| ' |q0| ' |aii| ' 1 implies

M∗ �
√

3m3/2MP

mD
∼ 5× 1016 GeV

(
0.1

g

)
, (158)

a value close to the dynamical scale Λ.

After the end of inflation, only the second and third term in Eq. (153) remain, leading to very

heavy MSSM squarks and sleptons,

m0,i ' (−aii)1/2 ∆m0 > 1014 GeV
( g

0.1

)( √
ξ

1015 GeV

)
. (159)
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MSSM gauginos

Similar to the squarks and sleptons of the previous subsection, the µ and B parameters of the MSSM

receive tree-level supergravity contributions. Consequently, the heavy Higgs scalars and the higgsinos

obtain masses of O(m3/2). For the MSSM gauginos on the other hand tree-level supergravity contri-

butions are strongly suppressed (since our supersymmetry breaking field X is not a total singlet of the

SM) [19,22–24]. The dominant contributions are thus obtained at one loop trough anomaly mediation

and (in the case of binos and winos) through higgsino threshold effects. As detailed in Ref. [24] in

the context of PGM, these are generically both of the same order (∼ g2
am3/2/(16π2)), where ga is the

respective SM gauge coupling. Depending on the size of the higgsino threshold effects, either the wino

or the bino can take the place of the lightest neutral MSSM particle12 – and hence of the dark matter

candidate. In the following we will focus on the case where the higgsino threshold contributions do

not dominated over the AMSB contribution, rendering the wino the lightest supersymmetric particle

(LSP). The motivation for this is two-fold. Firstly, this is the more likely scenario in PGM [24]. Sec-

ondly, due to its smaller annihilation cross section, a thermal bino LSP population with mb̃ & 300 GeV

leads to the overproduction of dark matter [162,163]. In combination with the bounds set by CMS [2]

and ATLAS [1], this excludes a thermal bino as a viable dark matter candidate.

A particularly interesting situation arises if the two contributions to the wino mass are tuned to

very similar values, leading to a cancellation of these two terms and hence to a wino mass which

can be arranged to be much lighter than its generic mass scale m3/2/(16π2). For example, in the

notation of Ref. [24] this is achieved for −µH ' −2B ' m3/2 (for tanβ = vu/vd ' 1). Such a fine

tuning might be justified from the anthropological requirement of dark matter, see Sec. 4.3. Additional

contributions to the gaugino masses may arise from threshold and anomaly-mediated corrections from

heavy vector matter multiplets charged under SU(2)L and/or threshold corrections from the F terms

of flat directions in KSVZ-type axion models [164]. In this case, these contributions would also play

a role in tuning the wino mass.

Particles beyond the MSSM

The masses of all remaining degrees of freedom are set by the dynamical scale Λ, effectively decoupling

these particles from low energy physics. The B−L gauge multiplet features a tree-level mass splitting

due to its direct coupling to the supersymmetry breaking sector, as discussed towards the end of

Sec. 2.3. All degrees of freedom of the gauge multiplet obtain large masses of order mF or mV , except

for the B−L gaugino whose mass is suppressed by 〈X〉/vA. We note that as for the MSSM gauginos,

the latter will obtain an additional loop-suppressed AMSB mass.

Turning to the supersymmetry breaking sector, the only degree of freedom which is present in the

low-energy effective theory of the IYIT model is the pseudomodulus X, which acts as the Polonyi field

of SUSY breaking, see Sec. 2.4. The dominant mass contribution after the end of inflation arises from

its one-loop effective potential,

mX ' 0.02λ2Λ ∼ 1014 GeV . (160)

12Due to their larger gauge coupling at low energy scales, the gluinos are typically significantly heavier.
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The masses of the scalar fields of the inflation sector can be obtained from the scalar potential in

Eq. (127). For q/(q0ξ) > 0 the field φ obtains a VEV of 〈|φ|2〉 = q0/q ξ after the end of inflation.13 In

this vacuum, the masses of the scalar degrees of freedom are given as

mφ = ms = 1014 GeV

(
q0

q

)1/2 ( κ

0.1

)( √
ξ

1015 GeV

)
, (161)

m|φ| = 1014 GeV (q0 q)
1/2
( g

0.1

)( √
ξ

1015 GeV

)
, (162)

where m|φ| denotes the mass of the radial degree of freedom of φ in the true vacuum. The fermionic

degrees contained in S and Φ̄ form a Dirac spinor with a mass term Wφ̄s = κ〈φ〉. If the IYIT sector is

fully sequestered from the inflaton sector, the angular degree of freedom of φ and the fermion φ̃ remain

massless. The reason for this is that although B−L is spontaneously broken by 〈m±〉 6= 0, there is

a remaining accidental global U(1) symmetry in the superpotential, associated with φ 7→ exp(iα)φ,

φ̄ 7→ exp(−iα)φ̄. This global symmetry is spontaneously broken at the end of inflation, when φ

acquires a VEV. The angular degree of freedom of φ is the Goldstone boson of this spontaneously

broken symmetry. In the true vacuum after the end of inflation D-term supersymmetry breaking is

absent, and assuming a full sequestering between the IYIT sector and the inflation sector, the F-term

supersymmetry breaking contained in the IYIT sector is not communicated to the Φ multiplet. The

fermionic degree φ̃ is consequently massless, too. The spontaneous breaking of an U(1) symmetry

at the end of inflation would lead to the formation of cosmic strings (see Sec. 4.4), in contradiction

with observations. The discussion above however immediately reveals how to resolve this issue: if

we drop the assumption of a complete sequestering between the IYIT and the inflaton sector, both

B−L breaking and supersymmetry breaking can be communicated to the Φ multiplet, rendering all

its degrees of freedom massive. In Sec. 4.4 we will achieve this be introducing higher dimensional

operators in the Kähler potential coupling Φ to Z− and/or M−. These operators will come with small

coefficients (respecting the level of sequestering necessary prevent the waterfall fields from obtaining

too large masses) and will explicitly break the global U(1) symmetry (in agreement with general

arguments that no exact global symmetries should exist in any theory of quantum gravity [88]). As

we will see below, this leads to masses for the angular degree of freedom of φ and for φ̃ of the order

of the Hubble parameter.

Note that this situation is crucially different than in standard DHI, where the VEV of the waterfall

field φ spontaneously breaks a local U(1) symmetry at the end of inflation, triggering the super-

Higgs-mechanism: the angular degree of freedom is ‘eaten’ by the U(1) gauge boson, providing the

longitudinal degree of freedom for the massive vector field while φ̃ forms a Dirac fermion with the

U(1) gaugino. In our case however, the U(1)B−L multiplet is already massive, having absorbed the

corresponding degrees of freedom from the meson multiplets.

4.2 The cosmology of a B−L phase transition

D-term hybrid inflation ends in a phase transition in which the waterfall field φ, charged under

B−L, obtains a vacuum expectation value. Assigning B−L charge q = −2 to Φ, it can couple to

13If q and q0ξ have opposite signs, the roles of φ and φ̄ are inverted.
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the right-handed neutrinos Ni (which carry B−L charge +1) in the seesaw extension of the MSSM,

W ⊃ hij/2ΦNiNj . In fact, when gauging B−L, the introduction of three right-handed neutrinos is the

simplest way to ensure anomaly cancellation. Once the waterfall field φ obtains a VEV, this generates

the Majorana mass matrix for the right-handed neutrinos, Mij = hij〈φ〉.
A very similar cosmological phase transition was studied in the case of F-term hybrid inflation in

Refs. [61–63,67]. It was shown that this phase transition can set the initial conditions for the hot early

universe: With the energy initially stored in oscillations of the waterfall field (as well as in degrees

of freedom created in tachyonic preheating), this energy is transferred to the thermal bath through

the decay into right-handed neutrinos (which obtain their mass from the coupling to B−L breaking

waterfall field). In the course of this process, both thermal and nonthermal processes generate a lepton

asymmetry, which, after conversion into a baryon asymmetry through sphaleron processes, can explain

the baryon asymmetry observed today. Using a coupled set of Boltzmann equations, Refs. [61–63,67]

provide a time-resolved picture of the entire reheating and leptogenesis process.

We expect this overall picture to hold also in our model. There are however a few differences

in the details of the phase transition. Contrary to [61–63, 67], in the DHI model presented here (i)

B−L is broken already during inflation, (ii) there is a tree-level mass splitting in the B−L multiplet,

(iii) supersymmetry is broken in the true vacuum with m3/2 ∼ 1012 · · · 1013 GeV (iv) there is an

additional chiral multiplet in the waterfall sector14, which in the in the analysis of [63] plays the role

of the B−L Goldstone multiplet and (v) we allow here for smaller values of the B−L gauge coupling.

Consequently, no (local) cosmic strings are formed at the end of inflation, the B−L multiplet is not

produced in tachyonic preheating and the gravitino is too heavy to be a dark matter candidate as

in [63]. Hence while we expect the same sequence of events as in [61–63, 67], leading to successful

leptogenesis for a mass of the lightest right-handed neutrino above about 1010 GeV and a reheating

temperature of about TRH & 108 GeV, the above mentioned differences require a detailed study to

verify these expectations. This is beyond the scope of the current paper.

4.3 Particle candidates for dark matter

The high reheating temperature expected in our model (see above) implies an abundant production

of gravitinos [165]. Since these gravitinos are very heavy, their decay temperature

T3/2 ' 1.5× 108 GeV

(
g∗(TRH)

80

)−1/4 ( m3/2

1012 GeV

)3/2

, (163)

is much larger than the temperature of BBN (∼ MeV). The gravitinos will thus decay into MSSM

gauginos (the lightest particles in our MSSM spectrum) before the onset of BBN, a well known

solution to the classical gravitino problem [27, 166, 167]. If one of the gauginos (in our setup the

wino, see Sec. 4.1) is sufficiently light, so that its freeze-out temperature, Tf ∼ mw̃/28, is lower

than the gravitino decay temperature T3/2, then its relic abundance will be set by the usual thermal

14The light degrees of freedom in the additional chiral multiplet in the waterfall sector have a decay rate into right-

handed neutrinos of Γ ' h2/(4π)H2 = O(GeV) for typical values of the Yukawa coupling of h ' 10−5. They thus decay

into the SM thermal bath before the onset of BBN and do not create any cosmological problems.
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freeze-out contribution.15 This occurs for mw̃ . 4× 109 GeV (m3/2/(1012 GeV))3/2, with the correct

relic density obtained for mw̃ ' 2.7 TeV [170, 171]. This value is much smaller than the generic

gaugino mass scale m3/2/(16π2), but may be achieved by fine tuning the anomaly mediation and

higgsino threshold corrections (see Sec. 4.1). Without such fine tuning, the strongly enhanced LSP

abundance would lead to an overclosure of the Universe. Such a fine tuning may therefore be justified

by anthropological arguments. Alternatively, one can take the gauginos to be at their natural scale

m3/2/(16π2) and invoke R-parity breaking to ensure a sufficiently fast decay of the LSP into the SM

degrees of freedom [172]. In this case, the question of the nature of dark matter candidate remains

open and may be addressed e.g. by the QCD axion.

4.4 Topological defects

In standard DHI, the angular degree of freedom of the waterfall field φ is massless, protected by the

U(1) gauge symmetry of DHI. Consequently, cosmic strings are formed at the end of standard DHI.

This is known as the cosmic string problem of DHI, since the nonobservation of cosmic strings in the

CMB [101], together with constraints on the spectral index, essentially exclude the entire parameter

space. The setup we propose here is crucially different. The U(1)B−L symmetry is already broken

during inflation by the meson VEVs 〈m±〉 6= 0, and no local cosmic strings are formed at the end of

inflation. The angular degree of φ merely exhibits an accidental global symmetry which is not expected

to be exact, see Sec. 4.1. We can express this by adding higher dimensional operators16 in the Kähler

potential of the type MPlK ⊃ εKZZZ
2
−Φ, εKMMM

2
−Φ, εKMZM−Z−Φ, all supplemented by their complex

conjugate. Here the parameters εKIJ are expected to be exponentially small, respecting the sequestering

between the inflation and the IYIT sector. By means of a Kähler transformation these holomorphic

terms can be equivalently considered as terms in the superpotential, W ⊃ W0 ε
K
ZZ Z

2
−Φ/M3

Pl, etc.

Taking into account the vacuum expectation values for the scalar and auxiliary (F-term) components

in Z±,M±, Φ̄,Φ and S, this leads to linear terms in the scalar potential for the waterfall fields.

Schematically,

V = V0 − c (φ+ φ∗) + m̃2 |φ|2 +
λ̃

4
|φ|4 , (164)

with λ̃ = 2g2q2 denoting the self-coupling of the waterfall field, m̃2 its (inflaton-dependent mass) and

c ∼ εKIJΛ3m3/2/MPl determined by the higher dimensional operators mentioned above.

To study cosmic string formation,17 we consider the system close to the end of inflation, just when

Eq. (164) develops a local maximum. At this point, the local minimum of the potential is given by

|φ| = 2(c/λ̃)1/3. The phase of the local minimum is set by the phase of c and we will take it to be

zero in the following. The mass of the canonically normalized radial degree of freedom α in this local

15On the other hand, if Tf > T3/2 the LSP abundance will be dominated by the nonthermal contribution from gravitino

decay. The gravitino abundance in turn receives contributions from thermal production, production from the decay of

the Polonyi field and production through oscillations of a field in the inflaton sector [165]. In particular the thermal

production [168] and the decay of φ to two gravitinos through a supergravity coupling present when 〈Kφ〉 ' 〈φ〉 6= 0 [169]

yield large gravitino abundances and thus overclose the universe for the the large LSP masses consistent with Tf > T3/2.
16Here we have assumed q0 = −1. Similar terms (involving also the inflaton field) can be written down for q0 = −2.
17We thank the authors of Ref. [55] for very helpful discussions on this point.
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minimum is given by m2
α = 1

2(c2λ̃)1/3.

To avoid the production of cosmic strings, we require that quantum fluctuations of the angular

degree of freedom (see e.g. [173]) cannot overcome the barrier at α/(
√

2〈φ〉) = π, i.e.,

〈δa2〉 =
H

3mα

(
H

2π

)2

� 2〈φ〉2π2 . (165)

This leads to

c1/3 � 0.05 λ̃1/6H , (166)

In this paper, we will consider

c̃ ≡ c/H3 & 1 , (167)

safely satisfying Eq. (166) but also ensuring that the fluctuations in the radial direction are small

compared to the position of the local minimum and that the decay rate of angular component α in

the true vacuum is not significantly smaller than the decay rate of the radial component. For the

couplings in the Kähler and/or superpotential, this implies

εKIJ &

(
H

Λ

)3

∼
(
gΛ

MPl

)3

∼ g3 10−9 , W0 ε
K
IJ/M

3
Pl ∼ εKIJ

(
m3/2

MPl

)
∼ g3 10−16 , (168)

in good agreement with our sequestering ansatz.

However, scenarios with a richer phenomenology are possible. For example, imagine that a term

such as K ⊃ ΦZ−Z−/MPl is forbidden by an additional discrete symmetry, which in turn is explicitly

broken by Planck suppressed operators of even higher dimension. If this explicit breaking is of a

suitable size, unstable domain walls will form [174–176]. A similar situation has been discussed for

the QCD axion [177,178], see also [179–181]. The decaying domain walls will emit energy in the form

of gravitational waves. The resulting gravitational wave spectrum depends mainly on two parameters,

the tension σ of the domain walls an their annihilation temperature Tann. For the high energy scales

present in our model, the resulting stochastic gravitational wave background might be within the

sensitivity reach of upcoming advanced LIGO runs [182,183], depending on the details of the discrete

symmetry (breaking).

5 Conclusions: A unified model of the early Universe

In this paper, we constructed a phenomenologically viable SUGRA model of hybrid inflation in which

reheating proceeds via the B−L phase transition. We focused on the case of D-term inflation to avoid

the notorious complications associated with the inflaton tadpole term in F-term inflation (see Eq. (3)).

This tadpole term turns F-term inflation into a two-field model, potentially spoils the slow-roll motion

of the inflaton field, and creates a false vacuum at large field values. D-term inflation does, by contrast,

not involve any inflaton tadpole term, which prevents one from running into these problems.

The first part of our paper contains the details of our model-building effort (see Sec. 2). To meet

all theoretical and phenomenological constraints, our model combines the following three features:

(i) The vacuum energy driving D-term inflation is provided by a Fayet-Iliopoulos (FI) D term.

We assume that this D term is dynamically generated in the hidden SUSY-breaking sector [96].
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Our construction involves two steps. First, we suppose that SUSY breaking in the hidden sector is

accomplished by the dynamics of a strongly coupled supersymmetric gauge theory. To be specific, we

employ the Izawa-Yanagida-Intriligator-Thomas (IYIT) model [144,145], which represents the simplest

vector-like model of dynamical SUSY breaking. Thanks to the strong interactions in the IYIT sector,

our model does not require any hard dimensionful input scales. All mass scales (including the SUSY

breaking scale itself) turn out to be related to the dynamical scale in the IYIT sector, Λdyn. The

dynamical scale Λdyn is in turn generated via the quantum effect of dimensional transmutation, just

like the confinement scale of QCD. The second step in our construction consists in promoting a

global axial U(1)A flavor symmetry in the IYIT sector to a weakly gauged local U(1)B−L symmetry.

The SUSY-breaking dynamics in the IYIT sector then result in an effective FI parameter ξ that is

determined by the vacuum expectation values of certain moduli in the effective theory at low energies.

Our dynamically generated FI term has a number of interesting properties. (1) Being an effective

field-dependent FI parameter, it can be consistently coupled to supergravity. In this sense, it dif-

fers from genuinely constant FI parameters whose coupling to supergravity always requires an exact

global continuous symmetry. (2) The generation of field-dependent FI parameters typically results in

dangerous flat directions in the scalar potential. In our case, all moduli are, however, automatically

stabilized by a large mass term in the superpotential that is induced by the SUSY-breaking F term.

(3) The generation of effective FI parameters is always accompanied by the spontaneous breaking of

the underlying Abelian gauge symmetry. This is also the case in our model where the generation of ξ

spontaneously breaks B−L in the IYIT sector. We use this fact to our advantage and communicate

the breaking of B−L to the visible sector via marginal couplings in the superpotential. This allows us

to prevent the formation of dangerous cosmic strings during the B−L phase transition at the end of

inflation. (4) The magnitude of the FI parameter and, hence, the energy scale of inflation are related

to the SUSY breaking scale. This unifies the dynamics of inflation and SUSY breaking. The energy

scales of both phenomena derive from the dynamical scale, Λdyn = e−Sinst/bhidMPl, which is generated

via nonperturbative dynamics in the infrared.18 This explains the exponential hierarchy between the

energy scales of inflation and SUSY breaking on the one hand and the Planck scale on the other hand.

(ii) We assume that the natural SUGRA description of our model corresponds to an embedding

into the standard Jordan frame with canonically normalized kinetic terms for all complex scalar fields.

From the Einstein-frame perspective, this corresponds to a noncanonical Kähler geometry based on

a Kähler potential of the sequestering type. This sequestering structure allows us to control the soft

masses in the visible MSSM sector independently of the corresponding soft masses in the inflation

sector. In fact, thanks to our choice of the Kähler potential, the inflation sector sequesters from the

IYIT sector such that none of the fields in the inflation sector obtains a large soft mass. This is a

crucial requirement for a successful B−L phase transition. Otherwise, i.e., without sequestering, large

soft masses in the inflation sector would keep the waterfall fields stabilized at the origin and, thus,

remove the tachyonic instability in the scalar potential. At the same time, we introduce a higher-

dimensional coupling between the visible MSSM sector and the IYIT sector in the Kähler potential

18Here, Sinst = 8π2/g2
hid denotes the nonperturbative instanton action in the IYIT sector (see Eq. (6)). ghid and bhid

stand for the gauge coupling constant and the beta function coefficient of the IYIT gauge group, respectively.
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to stabilize all MSSM sfermions during and after inflation. Again, this is an important ingredient of

our model. Without any extra stabilization mechanism, the MSSM sfermions would destabilize the

FI term in the D-term scalar potential and inflation would prematurely end in the wrong vacuum.

For the purposes of this paper, we do not specify the high-energy origin of the additional coupling

between the visible MSSM sector and the IYIT sector in the Kähler potential. However, it would be

interesting to study different scenarios for the possible origin of these operators in future work.

We caution that one should not attribute too much meaning to our choice to work in Jordan-frame

supergravity. The formulation of our model in the language of Jordan-frame supergravity should rather

be regarded as a placeholder for a hypothetical completion of our model at high energies. Possible

candidates for an ultraviolet completion of our model that feature an appropriate Kähler geometry

include models of extra dimensions, strongly coupled conformal field theories, no-scale supergravity,

and string theory. Again, any further speculations into this direction are left for future work.

(iii) Our third and final assumption consists in an approximate shift symmetry in the direction

of the inflaton field in the Kähler potential. Such an approximate shift symmetry is a popular tool

in many SUGRA models of inflation. As usual, it helps us to suppress dangerously large SUGRA

corrections to the inflaton mass and, hence, solve the SUGRA eta problem. In our case, the most

dangerous such correction, m2
R = RJ/6, stems from the nonminimal coupling between the inflaton field

to the Ricci scalar in the Jordan frame, RJ . This effect can be completely suppressed by an exact shift

symmetry — which is, however, not feasible in our model, since the superpotential of D-term inflation

inherently breaks any shift symmetry. But this is not a problem. As we are able to show, also an

approximate shift symmetry manages to adequately suppress all dangerous SUGRA corrections. On

top of that, we can use the fact that the inflaton shift symmetry must be slightly broken to adjust

our prediction for the scalar spectral index ns. The amount of shift symmetry breaking in the Kähler

potential is quantified by a parameter χ. By choosing this additional parameter appropriately, we can

reach agreement between our prediction for ns and the current best-fit value reported by PLANCK.

Here, an interesting special case arises if χ is zero at tree level and only radiatively generated because

of the shift-symmetry-breaking Yukawa coupling in the superpotential, χ = χ1` = κ2/
(
16π2

)
. We are

able to demonstrate that even this minimal scenario allows to successfully reproduce the CMB data.

In this case, the constraints As ' Aobs
s and ns ' nobs

s fix all free parameters of our model (see Fig. 3),

Λ ∼ 3× 1015 GeV , κ ∼ 10−3 , g ∼ 10−3 , χ1` ∼ 10−8 . (169)

In summary, we conclude that the above three assumptions allow us to solve five problems of

B−L D-term inflation: (i) Our FI term can be consistently coupled to supergravity; (ii) we avoid the

formation of cosmic strings at the end of inflation; (iii) all MSSM sfermions are sufficiently stabilized

during and after inflation; (iv) we do not encounter any SUGRA eta problem; and (v) our prediction

for ns is in agreement with the PLANCK data. This is a highly nontrivial success of our model.

A further outcome of our model is a unified picture of the early Universe (see Secs. 3 and 4).

Provided that we include the right couplings in the superpotential, the B−L phase transition at the

end of inflation generates large Majorana masses for a number of right-handed neutrinos. This sets the

stage for baryogenesis via leptogenesis as well as for the generation of small standard model neutrino
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masses via the seesaw mechanism. In the end, our model therefore unifies the scales of dynamical SUSY

breaking, inflation, and spontaneous B−L breaking. All of these scales derive from the dynamical

scale Λdyn = 4πΛ in the IYIT sector. We also find that, in order to reproduce the amplitude of the

scalar power spectrum, the reduced dynamical scale Λ must take a value close to the GUT scale,

ΛSUSY ∼ Λinf ∼ ΛB−L ∼ Λ ∼ 5× 1015 GeV ∼ ΛGUT . (170)

This is another highly nontrivial result of our analysis. Before confronting our model with the exper-

imental CMB data, we did not need to make any assumption about the numerical value of Λ. All of

the above scales only become fixed once we require that our model yields the correct value for the

scalar spectral amplitude. This leads to the interesting physical question which scale in Eq. (170)

actually corresponds to a fundamental scale and which scale is only a derived quantity. Is there,

e.g., an anthropic reason for the observed scalar spectral amplitude which then determines the SUSY

breaking scale? Or is the SUSY breaking scale rather determined by the scale of R symmetry breaking

in the superpotential and the requirement of a nearly vanishing cosmological constant? Or should one

instead regard the GUT scale as the most fundamental scale which then fixes all other scales? All of

these questions are beyond the scope of this work. But we feel that our model provides an interesting

starting point for further studies in this direction. An important task would especially be to embed

our model into a full-fledged GUT scenario that explains the occurrence of the GUT scale in Eq. (170).

A central prediction of our model is that supersymmetry is broken at a high energy scale. The

naturalness of the electroweak scale is therefore lost. This sacrifice is, however, compensated for by

the unification of the dynamics of SUSY breaking and inflation. One of our key messages therefore is

that pushing the SUSY breaking scale to very high values is not necessarily just a loss. A high SUSY

breaking scale also represents an opportunity for novel ideas such as those presented in this paper. In

the end, supersymmetry might play a different role in nature than previously expected. Following the

arguments presented this paper, it is conceivable that supersymmetry’s actual purpose is not to ensure

the stability of the electroweak scale, but to provide the right conditions for successful inflation!

In this paper, we only touched upon the implications of a high SUSY breaking scale for the particle

spectrum of the MSSM and more work in this direction is certainly needed. In particular, one should

re-evaluate in more detail how the running of the standard model coupling constants can be matched

with the coupling constants in the MSSM provided that supersymmetry is broken at energies close to

the GUT scale. This matching of the low-energy parameters with their counterparts at high energies is

sensitive to important experimental input data, such as the top quark mass mt and the strong coupling

constant αs. Given the current experimental uncertainty in these observables, we expect that it should

actually not pose any problem to successfully match the standard model to our high-scale scenario.

On top of that, large threshold corrections because of nonuniversal soft masses at high energies may

help us to achieve a successful matching (see [184] for a recent analysis). In fact, given our treatment

of the MSSM soft masses (see Eq. (153)), large nondegeneracies in the sparticle mass spectrum at high

energies are quite likely. Moreover, one should re-evaluate in more detail under which conditions our

high-scale scenario is compatible with the idea of gauge coupling unification. Again, such an analysis

would be sensitive to the experimental input data at low energies. In addition, it would also depend on
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the details of the anticipated unification scenario. We are, however, confident on general grounds that

it should be feasible to realize gauge coupling unification in our model. After all, unification is also

possible in entirely nonsupersymmetric scenarios. We therefore expect that supersymmetry, despite

the large value of its breaking scale, will only help in achieving gauge coupling unification [185].

In conclusion, we find that our model provides a consistent cosmological scenario that unifies five

different phenomena: (i) dynamical supersymmetry breaking at a high energy scale, (ii) viable D-term

hybrid inflation in supergravity, (iii) spontaneous B−L breaking at the GUT scale, (iv) baryogenesis

via leptogenesis, and (v) standard model neutrino masses due to the type-I seesaw mechanism. Our

model is built around a strongly coupled hidden sector, which puts it on a sound theoretical footing.

We do not need to make any ad hoc assumptions about the dimensionful parameters in our model.

Instead, all important mass scales are related to the dynamical scale of the strong interactions in the

hidden sector. Thanks to its precise parameter relations, our model is therefore well suited to be

used as a basis for further explicit calculations. It would, e.g., be worthwhile to study the reheating

process after inflation in greater detail and determine the corresponding implications for the spectrum

of gravitational waves. Similarly, a more comprehensive study of the MSSM particle spectrum and

its consequences for dark matter would be desirable. The analysis in the present paper should only

be regarded as a first step. It served the purpose to illustrate our main point: the fact that SUSY

breaking close to the GUT scale might be the key to a unified picture of particle physics and cosmology.

This is a fascinating observation and we are excited to see where it will lead us in the future. One

possibility is that it will eventually cause a paradigm shift in our understanding of SUSY’s role in the

physics of the early Universe. High-scale SUSY breaking might be the driving force behind inflation!
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A Technicalities: Supergravity in the Einstein/Jordan frame

Our model is based on a particular embedding into supergravity. We assume that the coupling to

gravity is most naturally described in a Jordan frame where all scalar kinetic terms are canonically

normalized (see Sec. 2). At the same time, we wish to perform a standard slow-roll analysis of the

inflationary dynamics (see Sec. 3), which requires a reformulation of our model in the Einstein frame.

To facilitate the transition between these two different frames, this appendix provides a dictionary

that allows one to translate back and forth between the two different formulations of our model.
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A.1 Bosonic action

In the usual Einstein frame, the purely bosonic action of our model takes the following form,19

Sbos =

∫
d4x
√
−g
[

1

2
M2

PlR−Kı̄j gµνDµφ
∗
ı̄ Dνφj −

1

4
FµνF

µν − V
]
. (171)

Here, MPl denotes the reduced Planck Mass, MPl ' 2.44 × 1018 GeV; g is the determinant of the

Einstein-frame spacetime metric gµν ; R is the Ricci scalar constructed from gµν ; gµν stands for the

inverse of the metric gµν ; the fields φi represent the complex scalar fields in our model; Dµ denotes

the usual gauge-covariant derivative; Fµν is the field strength tensor of the Abelian B−L vector field;

and V represents the total scalar potential in the Einstein frame. As evident from Eq. (171), the

scalar fields φi couple to gravity only via the inverse spacetime metric gµν . This corresponds to the

case of minimal coupling. At the same time, the scalar fields exhibit a nontrivial (Kähler) geometry

in field space. This is accounted for by the Kähler metric K which multiplies the scalar kinetic terms

in Eq. (171). The Kähler metric K is defined as the Hessian of the real-valued Kähler potential K,

Kı̄j =
∂2K

∂φ∗ı̄ ∂φj
. (172)

In our model, the Kähler potential K is not canonical, such that Kı̄j 6= δı̄j . The scalar kinetic terms

(and, hence, the scalar fields themselves) are, thus, not canonically normalized in the Einstein frame.

To obtain the equivalent of Eq. (171) in the Jordan frame, we need to perform a Weyl rescaling,

gJµν = C2 gµν , gµνJ = C−2 gµν ,
√
−gJ = C4√−g , C =

(
−

3M2
Pl

Ω

)1/2

, (173)

where C is known as the conformal factor. The frame function Ω is an arbitrary real negative function

of the complex scalars, Ω = Ω (φi, φ
∗
ı̄ ) < 0. Each choice for Ω defines a separate Jordan frame. In

Sec. 2, we make a particular choice for Ω, demanding the following relation to the Kähler potential,

Ω = −3M2
Pl exp

(
− K

3M2
Pl

)
⇔ K = −3M2

Pl ln

(
− Ω

3M2
Pl

)
. (174)

This results in what may be regarded as the standard Jordan frame. In light of the relation in

Eq. (174), the frame function Ω has two possible interpretations. In the curved superspace approach

to old minimal supergravity [116,117], Ω can be identified as the generalized kinetic energy on curved

superspace, while in the superconformal approach to old minimal supergravity [118, 119], Ω can be

identified as the prefactor of the kinetic term of the chiral compensator superfield. Eq. (174) allows to

relate the partial derivatives of the Kähler potential to the partial derivatives of the frame function,

Ki =
∂K

∂φi
= C2 ∂Ω

∂φi
= C2 Ωi , Kı̄ =

∂K

∂φ∗ı̄
= C2 ∂Ω

∂φ∗ı̄
= C2 Ωı̄ . (175)

Similarly, we are able to express the Kähler metric K in terms of derivatives of the frame function,

Kı̄j = C2 ωı̄j , ωı̄j = Ωı̄j −
Ωı̄ Ωj

Ω
, Ωı̄j =

∂2Ω

∂φ∗ı̄ ∂φj
. (176)

19Some authors in the literature distinguish between Einstein-frame and Jordan-frame quantities by labeling them

with indices E and J , respectively. We will, by contrast, not use any particular label for quantities in the Einstein frame

and merely label quantities in the Jordan frame with an index J . This will slightly simplify our notation.
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Here, we introduced ω as a rescaled field-space metric that is determined by the derivatives of the

frame function and that is equivalent to the Kähler metric up to the rescaling factor C2. Eq. (176)

automatically implies a similar relation between the respective inverse metrics, K−1 and ω−1,(
K−1

)
i̄

= C−2
(
ω−1

)
i̄
. (177)

We now apply the Weyl transformation in Eq. (173) to the Einstein-frame action in Eq. (171).

This yields the purely bosonic action of our model in the Jordan frame (see [112] for more details),

SJbos =

∫
d4x
√
−gJ

[
1

2

(
−Ω

3

)
RJ − Ωı̄j g

µν
J Dµφ

∗
ı̄ Dνφj + ΩAµAµ −

1

4
FµνF

µν − V J

]
. (178)

In view of this action, several comments are in order:

(i) The frame function Ω depends on the scalar fields of our model. The Einstein-Hilbert term

(i.e., the kinetic term for the metric that is proportional to the Ricci scalar RJ) therefore becomes

field-dependent. Or in other words, the scalar fields are now nonminimally coupled to gravity.

(ii) The Planck mass squared in Eq. (171) is now replaced by −Ω/3. This indicates that the square

root of −Ω/3 should be interpreted as the effective field-dependent Planck mass in the Jordan frame,

MJ
Pl =

(
−Ω

3

)1/2

⇔ MPl = CMJ
Pl , (179)

which is consistent with the fact that all Jordan-frame mass scales mJ pick a factor C when transform-

ing from the Jordan frame to the Einstein frame, m = CmJ . From this perspective, the conformal

factor C turns out to be nothing but the ratio of the two respective Planck masses, C = MPl/M
J
Pl.

(iii) The Kähler metric K in Eq. (171) is now replaced by the Hessian of Ω. In our model, we

choose Ω such that it only contains canonical as well as purely holomorphic/antiholomorphic terms,

Ω = −3M2
Pl + δı̄j φ

∗
ı̄φj + [J (φi) + h.c.] , (180)

where J is an arbitrary holomorphic function. The canonical terms, Ω ⊃ δı̄j φ∗ı̄φj , lead to nonminimal

couplings between the complex scalars and the Ricci scalar RJ that are invariant under a classical

conformal symmetry. These conformal couplings can be disturbed by a nonzero function J which

explicitly breaks the conformal symmetry. Irrespective of whether J = 0 or J 6= 0, Eq. (180) leads to

Ωı̄j = δı̄j . (181)

In this case, we obtain the following expressions for the rescaled field-space metric ω and its inverse,

ωı̄j = δı̄j −
Ωı̄ Ωj

Ω
,
(
ω−1

)
i̄

= δi̄ +
1

%

Ωı̄ Ωj

Ω
, % = 1− Ωk̄Ωk

Ω
. (182)

Here, the dimensionless parameter % functions as a measure for the amount of conformal symmetry

breaking in the frame function Ω. In the conformal limit, J → 0, it simply reduces to the conformal

factor squared, ρ → C2. In this sense, % plays a similar role as the reduced kinetic function of the

inflation field, f , defined in Eq. (89). In fact, in our concrete model, one can show that % = C2 (1− f).
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(iv) In the Jordan frame, the scalar kinetic terms receive additional contributions from the bosonic

part of the auxiliary SUGRA gauge field Aµ. This is accounted for by the third term on the right-hand

side of Eq. (178). The auxiliary field Aµ can be eliminated after solving its equation of motion,

Aµ =
1

Ω
Im {ΩiDµφi} . (183)

This solution illustrates that the A2 term in Eq. (178) is only relevant as long as we are interested

in the dynamics of angular degrees of freedom, i.e., the complex phases of the complex scalars φi.

This is, however, not the case. In our model, inflation occurs along the real direction of the complex

inflation field s. The auxiliary field Aµ therefore vanishes and the A2 term in Eq. (178) can be ignored.

Together with Eq. (181), Aµ = 0 leads to canonically normalized kinetic terms for all complex scalar

fields in our model. This is an important result and the main motivation for our ansatz in Eq. (180).

Combining our above results, the action in Eq. (178) can be simplified to the following expression,

SJbos =

∫
d4x
√
−gJ

[
1

2

(
MJ

Pl

)2
RJ − δı̄j gµνJ Dµφ

∗
ı̄ Dνφj −

1

4
FµνF

µν − V J

]
. (184)

This is the starting point for the analysis of our model in the Jordan frame. Thus far, we have not

commented on the relation between the potentials V and V J . We will do this now in the next section.

A.2 Scalar potential

The total scalar potential in the Einstein frame, V , has mass dimension four. On general grounds,

this implies the following universal relation to the total scalar potential in the Jordan frame, V J ,

V = C4 V J , V J = C−4 V , (185)

which holds at tree level as well as at the loop level. Eq. (185) implies the following useful relations,

Vi =
∂V

∂φi
= C4

(
V J
i −

2

Ω
Ωi V

J

)
, V J

i =
∂V J

∂φi
= C−4

(
Vi +

2

Ω
Ωi V

)
, (186)

Vı̄j =
∂2V

∂φ∗ı̄ ∂φj
= C4

[
V J
ı̄j −

2

Ω

(
Ωı̄V

J
j + ΩjV

J
ı̄

)
− 2

Ω

(
ωı̄j − 2

Ωı̄Ωj

Ω

)
V J

]
,

V J
ı̄j =

∂2V J

∂φ∗ı̄ ∂φj
= C−4

[
Vı̄j +

2

Ω

(
Ωı̄Vj + ΩjVı̄

)
+

2

Ω

(
ωı̄j + 2

Ωı̄Ωj

Ω

)
V

]
.

Together, Eqs. (185) and (186) illustrate that a Minkowski vacuum in the Einstein frame (V = Vi = 0)

also corresponds to a Minkowski vacuum in the Jordan frame (V J = V J
i = 0), and vice versa.

In the next step, we shall become more specific and discuss the individual contributions to V and

V J , respectively. The Einstein-frame potential consists of the usual F-term and D-term contributions,

V = VF + VD . (187)

To begin with, let us focus on the F-term scalar potential (see [186] for more details),

VF = F ∗ı̄ Kı̄jFj − 3 exp

(
K

M2
Pl

)
|W |2

M2
Pl

. (188)
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Here, the Fi and F ∗ı̄ stand for the generalized F terms in supergravity and their complex conjugates,

Fi = − exp

[
K

2M2
Pl

] (
K−1

)
i̄

(DW )∗̄ , F ∗ı̄ = − exp

[
K

2M2
Pl

] (
K−1

)∗
ı̄j

(DW )j , (189)

where DW denotes the Kähler-covariant derivative of the superpotential on the Kähler manifold,

(DW )i =
∂W

∂φi
+
∂K

∂φi

W

M2
Pl

. (190)

The F-term potential in the Jordan frame is given as V J
F = C−4 VF . This can be rewritten as follows,

V J
F =

(
Wi − 3W

Ωi

Ω

)(
ω−1

)
i̄

(
W ∗̄ − 3W ∗

Ω̄

Ω

)
+

9

Ω
|W |2 . (191)

which underlines the similarity between the role of the inverse metric ω−1 in the Jordan frame and the

role of the inverse Kähler metric K−1 in the Einstein frame. With our ansatz for the frame function

Ω in Eq. (180), V J
F can be further simplified to the following compact expression (see, e.g., [120]),

V J
F = V 0

F + ∆V J
F , V 0

F = WiW
∗
ı̄ , ∆V J

F =
1

%Ω
|Wi Ωı̄ − 3W |2 . (192)

Eq. (192) illustrates a remarkable effect. Provided that the scalar kinetic terms in the Jordan frame

are canonically normalized, V J
F splits into two separate contributions — where the first contribution,

V 0
F , is nothing but the ordinary F-term scalar potential in global supersymmetry and the second

contribution, ∆V J
F , represents an additive SUGRA correction. Eq. (192) provides the basis for the

calculation of the F-term scalar potential in our model (see Eqs. (110) and (111)). We first calculate

the F-term scalar potential in the Jordan frame according to Eq. (192). Then, we convert our result

from the Jordan frame to the Einstein frame making use of the general relation in Eq. (185),

VF = C4

(
WiW

∗
ı̄ +

1

%Ω
|Wi Ωı̄ − 3W |2

)
. (193)

Computing VF via this detour is considerably easier than a direct calculation starting with Eq. (188).

The SUGRA correction ∆V J
F in Eq. (192) is directly proportional to the mass scales that appear

in the superpotential. In our model, these mass scales correspond to the F-term SUSY breaking scale

µ, the effective inflaton-dependent mass of the waterfall fields, κ 〈S〉, and the R-symmetry-breaking

constant w0 (see Eq. (106)). All of these mass scales are responsible for the explicit breaking of

superconformal symmetry. Conversely, this means that, if the superpotential does not exhibit any

explicit mass scales, the SUGRA correction ∆V J
F must vanish. This is exactly what happens in the

class of canonical superconformal supergravity (CSS) models studied in [113]. These models are based

on the frame function in Eq. (180) with the holomorphic function J set to zero. Moreover, they exhibit

a purely cubic superpotential, such that ∆V J
F = 0. One generic feature of CSS models therefore is

that their Jordan-frame scalar potential coincides with the scalar potential in global supersymmetry,

CSS models: W =
1

3
λijk ΦiΦjΦk , V J

F = V 0
F , V J

D = V 0
D , ∆V J

F = 0 . (194)

Note that this statement applies to the total scalar potential, including the D-term scalar potential.
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In our model, the D-term scalar potential in the Einstein frame, VD, is given by [186]

VD =
1

2
D2 , (195)

where D denotes the auxiliary component of the B−L vector multiplet V . In writing down Eq. (195),

we assumed a canonical gauge-kinetic function for the B−L vector field, fV = 1, and absorbed the

gauge coupling constant g into the definition of D. On-shell, the auxiliary D field can be replaced by

D = −g qiKi φi . (196)

In the language of Kähler geometry, this is equivalent to the Killing potential of the U(1)B−L isometry

of our Kähler manifold. Together, Eqs. (195) and (196) result in the following expression for VD,

VD =
g2

2
(qiKi φi)

2 . (197)

This result can be easily translated into the Jordan frame by making use of Eqs. (175) and (185),

V J
D = C−4 VD =

g2

2
(qi Ωi φi)

2 . (198)

In our model, all complex scalars with nonzero gauge charge qi appear with a canonical term in Ω.

Just like in the class of CSS models, V J
D therefore obtains the same form as in global supersymmetry,

qi Ωi = qi φ
∗
ı̄ ⇒ V J

D =
g2

2

(
qi |φi|2

)2
= V 0

D . (199)

This means in turn that the D-term scalar potential in the Einstein frame can be written as

VD =
g2

2
C4
(
qi |φi|2

)2
. (200)

Combining all of our above results, we conclude that V and V J are given as follows in our model,

V = C4 V J , V J = WiW
∗
ı̄ +

g2

2

(
qi |φi|2

)2
+

1

%Ω
|Wi Ωı̄ − 3W |2 . (201)

This result is the starting point for our calculation of the inflaton potential in Sec. 2.5.

A.3 Scalar mass parameters

Eq. (201) allows us to derive useful expressions for the scalar mass parameters mJ
ab in the Jordan

frame.20 The scalar mass matrix is given by the Hessian of the scalar potential,
(
mJ
ab

)2
= V J

ab. As a

consequence of the simple structure of V J , the scalar masses, thus, split into two contributions: the

ordinary masses in global supersymmetry, m0
ab, as well as additive corrections in supergravity, ∆mab,

(
mJ
ab

)2
=
(
m0
ab

)2
+ ∆m2

ab ,
(
m0
ab

)2
=

∂2

∂za∂zb

(
V 0
F + V 0

D

)
, ∆m2

ab =
∂2

∂za∂zb
∆V J

F . (202)

20Here, a and b represent collective indices that encompass all scalar fields φi as well as their complex conjugates φ∗ı̄ .

In the following, the symbol za will therefore either denote the field φi for some index i or the field φ∗ı̄ for some index ı̄.
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In the case of scalar fields that only appear with a canonical term in the frame function, Ω ⊃ |φi|2,

the corrections ∆m2
ab take a particularly simple form. Based on our result in Eq. (192), we find

∆m2
ı̄j =

(
WjkΩk̄ − 2Wj

) (
W ∗
ı̄¯̀

Ω
`
− 2W ∗ı̄

)
%Ω

, ∆m2
ij =

(
WijkΩk̄ −Wij

)(
W ∗¯̀ Ω

`
− 3W ∗

)
%Ω

, (203)

and similarly for the respective conjugate parameters, ∆m2
i̄ =

(
∆m2

ı̄j

)∗
and ∆m2

ı̄̄ =
(
∆m2

ij

)∗
. The

diagonal entries of the scalar mass matrix therefore obtain the following compact form,

∆m2
ı̄i =

|WikΩk̄ − 2Wi|2

%Ω
. (204)

In addition to the masses encoded in the scalar potential, the complex scalar fields acquire further,

effective masses from their nonminimal coupling to RJ in the Jordan-frame action (see Eq. (178)),

(
mR
ab

)2
= ζRJ

∂2Ω

∂za∂zb
, ζ =

1

6
. (205)

All scalar fields with a canonical kinetic function, thus, receive a universal gravity-induced mass mR,

m2
R = ζRJ . (206)

In summary, the entries of the total effective mass matrix in the Jordan frame, M2
J , read as follows,(

M2
J

)
ab

=
(
m0
ab

)2
+ ∆m2

ab +
(
mR
ab

)2
. (207)

In our model, all scalar fields are canonically normalized by construction. The eigenvalues of the

matrix M2
J therefore directly correspond to the physical scalar mass eigenvalues in the Jordan frame.

The situation is more complicated in the Einstein frame, where the scalar fields parametrize the target

space of a non-linear sigma model (see Eq. (171)). There, the scalar fields are a priori not canonically

normalized which makes it more difficult to find the physical mass eigenvalues. Without reference to

the Jordan frame, the computation of the scalar mass spectrum in the Einstein frame requires two

steps. First, one has to perform a field transformation that renders all fields canonically normalized.

Then, one has to calculate the mass eigenvalues of these canonically normalized fields as usual. Our

result in Eq. (207), however, allows us to bypass this complicated procedure. Instead, we can simply

make use of the universal scaling behavior of physical mass scales when transforming back and forth

between the Jordan frame and the Einstein frame. According to this scaling behavior, we know that

total effective scalar mass matrix in the Einstein frame, M2, must obtain the following form,

M2
ab = C2

(
M2
J

)
ab

= C2
[(
m0
ab

)2
+ ∆m2

ab +
(
mR
ab

)2]2
. (208)

It would be interesting to check the validity of this result by means of an explicit calculation in the

Einstein frame. Such a task is, however, beyond the scope of this paper and left for future work.

More details on the mass parameters for all fields with nonzero spin (i.e., the fermions, vector

boson, and gravitino in our model) can be found in the literature. The relevant expressions in the

Jordan frame are spelled out in [112], while the standard Einstein-frame results are listed, e.g., in [186].
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A.4 Slow-roll parameters

Finally, let us discuss the relation between the inflationary slow-roll parameters in the Einstein frame,

ε and η, and their counterparts in the Jordan frame, εJ and ηJ . The results derived in the section

will enable us to use our results for the scalar potential in the Jordan frame (see Sec. 2) as input for

a standard slow-roll analysis of the inflationary dynamics in the Einstein frame (see Sec. 3).

Let us consider the action of the complex inflaton field s in the Einstein frame (see Eq. (171)),

Sinf = −
∫
d4x
√
−g
[
N 2 ∂µs

∗∂µs+ V (s)
]
, N = K1/2

s∗s . (209)

As can be seen from this action, the inflaton field is not canonically normalized in the Einstein frame.

This is made explicit by the noncanonical normalization factor of the inflaton kinetic term, N 6= 1.

However, in our slow-roll analysis, we will have to work with the canonically normalized field ŝ. The

field ŝ can be constructed as a function of the field s by solving the following differential equations,

∂σ̂

∂σ
= N (σ, τ) ,

∂τ̂

∂τ
= N (σ, τ) , s =

1√
2

(σ + iτ) , ŝ =
1√
2

(σ̂ + iτ̂) . (210)

In terms of the canonically normalized field ŝ, the action in Eq. (209) obtains its standard form,

Sinf = −
∫
d4x
√
−g [∂µŝ

∗∂µŝ+ V (ŝ)] , V (ŝ) ≡ V (s (ŝ)) . (211)

This action is the starting point of our standard slow-roll analysis. The slow-roll parameters in the

Einstein frame, ε and η, are defined in terms of the usual partial derivatives of the scalar potential,

ε =
M2

Pl

2

(
V ′

V

)2

, η = M2
Pl

V ′′

V
, V ′ =

∂V

∂σ̂
, V ′′ =

∂2V

∂σ̂2
. (212)

Here, we assumed that inflaton occurs along the real component σ̂ of the complex inflaton field ŝ. In

the next step, we rewrite these expressions making use of the chain rule and the relations in Eq. (210),

V ′ =
∂σ

∂σ̂

∂V

∂σ
=
Vσ
N

, V ′′ =
∂σ

∂σ̂

∂V ′

∂σ
=

1

N

(
Vσσ
N
− Nσ
N

Vσ
N

)
, (213)

where Vσ = ∂V/∂σ, Vσσ = ∂2V/∂σ2, and Nσ = ∂N/∂σ. With these definitions and relations, we find

ε =
ε̃

N 2
, η =

η̃ − 2 (νε̃)1/2

N 2
, (214)

where we assumed that Vσ > 0 and Nσ > 0. The parameters ε̃ and η̃ represent what can be referred to

as the naive slow-roll parameters in the Einstein frame, i.e., the slow-roll parameters that one would

obtain if one ignored the noncanonical normalization factor N in Eq. (209). Meanwhile, the factor ν

is an auxiliary slow-roll parameter that accounts for the field dependence of the factor N ,

ε̃ =
M2

Pl

2

(
Vσ
V

)2

, η̃ = M2
Pl

Vσσ
V

, ν =
M2

Pl

2

(
Nσ
N

)2

. (215)

The expressions in Eq. (214) are now well suited to establish a connection to the Jordan frame.

The naive slow-roll parameters ε̃ and η̃ can be readily related to the Jordan-frame slow-roll parameters

εJ and ηJ by employing the relations for the partial derivatives of the scalar potential in Eq. (186),

ε̃ =
(
ε

1/2
J − 2 ξ

1/2
J

)2
, η̃ = ηJ + 12 ξJ − 8 (εJ ξJ)1/2 − 2 ζJ , (216)
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where we assumed again a positive potential gradient, V J
σ > 0. The Jordan-frame slow-roll parameters

εJ and ηJ are defined in terms of the usual partial derivatives of the Jordan-frame scalar potential,

εJ =
M2

Pl

2

(
V J
σ

V J

)2

, ηJ = M2
Pl

V J
σσ

V J
with V J

σ =
∂V J

∂σ
, V J

σσ =
∂2V J

∂σ2
. (217)

In Eq. (216), we also introduced the auxiliary slow-roll parameters ξJ and ζJ which account for the

field dependence of the frame function Ω. These slow-roll parameters are defined as follows,

ξ
1/2
J =

MPl√
2

Ωσ

Ω
, ζJ = M2

Pl

Ωσσ

Ω
with Ωσ =

∂Ω

∂σ
, Ωσσ =

∂2Ω

∂σ2
. (218)

Unlike in the Einstein frame, we do not have to distinguish between naive and actual slow-roll param-

eters in the Jordan frame. This is because, in our model, all scalar fields are canonically normalized

in the Jordan frame by construction. In the language of Eq. (214), this can be phrased by saying that

the normalization factor of the inflaton kinetic term in the Jordan frame is simply trivial, NJ = 1.

Combining our results in Eqs. (214) and (216), we finally obtain the following relations,

ε =
1

N 2

(
ε

1/2
J − 2 ξ

1/2
J

)2
, (219)

η =
1

N 2

[
ηJ + 12 ξJ − 8 (εJ ξJ)1/2 − 2 ζJ − 2 ν1/2

(
ε

1/2
J − 2 ξ

1/2
J

)]
.

This is an important result that holds in any model with an Einstein-frame action as in Eq. (209).

Eq. (219) is the starting point for our computation of the Einstein-frame slow-roll parameters in Sec. 3.

We emphasize that computing ε and η according to Eq. (219) is considerably easier than a brute-force

calculation in the Einstein frame. In the Einstein frame, we would have to deal with a complicated

Kähler potential, a more complicated scalar potential, and a noncanonically normalized inflaton field.

Eq. (219) allows us to circumvent these complications and determine the parameters ε and η simply

based on the derivatives of the Jordan-frame scalar potential V J and the frame function Ω.
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