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Abstract

We introduce an unconventional interpretation of the fermion mass matrix elements.

As the full rotational freedom of the gauge-kinetic terms renders a set of infinite bases

called weak bases, basis-dependent structures as mass matrices are unphysical. Matrix

invariants, on the other hand, provide a set of basis-independent objects which are of

more relevance. We employ one of these invariants to give a new parametrisation of

the mass matrices. By virtue of it, one gains control over its implicit implications on

several mass matrix structures. The key element is the trace invariant which resembles

the equation of a hypersphere with a radius equal to the Frobenius norm of the mass

matrix. With the concepts of alignment or misalignment we can identify texture zeros

with certain alignments whereas Froggatt–Nielsen structures in the matrix elements are

governed by misalignment. This method allows further insights of traditional approaches

to the underlying flavour geometry.
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1 Introduction

After different trials to understand the various unsolved aspects of fermion masses and mix-

ing, the so called flavour puzzle still lacks for a satisfactory explanation. In spite of this, some

hints could already be pointing out for a theory of flavour, see for example Refs. [1–5]. The

common approaches have mainly concerned on introducing zeros (texture zeros) in the mass

matrices in order to reduce the number of parameters [6–13], the use of flavour symmetries

which at the same time can justify some of the aforementioned zeros [14], the use of hierar-

chical fermion masses to unveil the structure in fermion mixing [1,15], the Froggatt–Nielsen

mechanism [16] or extra dimensions to produce hierarchical fermion masses and mixing

angles [17], among others.

The main puzzle arises from the complete arbitrariness in which the mass matrices appear

in the Standard Model (SM), proportional to the Yukawa couplings of fermions to the Higgs

field, such that after electroweak symmetry breaking, a generic fermion mass matrix is given

by

M =
vp
2




|y11|eiδ11 |y12|eiδ12 |y13|eiδ13

|y21|eiδ21 |y22|eiδ22 |y23|eiδ23

|y31|eiδ31 |y32|eiδ32 |y33|eiδ33



 , (1)

with v = 246 GeV the Higgs vacuum expectation value. There are in general much more

parameters allowed than physical. Moreover, the question why there are three generations,

so why are they 3× 3 matrices stays unclear. We do not intend to resolve this open question

here but rather like to scrutinise the underlying arbitrariness. A new level of understanding

may be gained by a study of the generic properties of these mass matrices and identification

which or how many of the available parameters can be physical at the end. Later, one may

find a fundamental reason behind its construction. Regarding this two-level approach, in

this letter, we provide a way to dissolve the initial arbitrariness and understand some of the

phenomenological observations that have already been made. The second part lies beyond

the scope of our present work.

In the limit of massless fermions, e. g. vanishing Yukawa couplings, the matter sector

of the Standard Model reveals a very large accidental symmetry. This symmetry allows for

some arbitrariness in the choice of a weak basis.1 The largest flavour symmetry is given by

1A weak basis is a particular choice of U(3) transformations which leave the neutral and charged current

interactions invariant.
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the following global symmetries on the fermion fields:

GF ⊃ U(3)F
L
×U(3)a

R
×U(3)b

R
, (2)

which holds for both quarks and leptons, where F = Q,ℓ stands for the left-handed doublet

fields and a = u,ν and b = d, e for the right-handed singlets if we add 3 right-handed

neutrinos to the Standard Model to be symmetric in the quark and lepton sector.2 The mass

matrices M a and M b are modified by these weak basis transformations,

M
′
a
= LQ M aR

†
a

and M
′
b
= LQM bR

†

b
. (3)

where left- and right-handed fields are transformed independently

ψF
L
→ LF , (4a)

ψa
R
→ Ra, (4b)

ψb
R
→ Rb, (4c)

with X y ∈ U(3)
y

X unitary transformations, meaning X
†
y
X y = X yX

†
y
= 1.

Basically, this ambiguity reveals (3× 9) = 27 free parameters which have to be balanced

with (9 × 2 × 2) = 36 arbitrary parameters in the mass matrices like Eq. (1). In addition,

there is a freedom of a global rephasing in each fermion sector, known as global baryon or

lepton number which remains after introducing the masses. Thus, the number of physical

parameters3 apparently is given by 36− 27 + 1 = 10 which decomposes to the six masses,

three mixing angles and one complex phase. In the case of e. g. light Majorana neutrinos,

their mass matrix is constrained to be complex, but symmetric, so the counting is slightly

different, especially because no U(3)ν
R

freedom exists. We then have 2×9 arbitrary parameters

from the complex 3× 3 charged lepton masses and 2× 6= 12 parameters from the complex

symmetric neutrino Majorana mass, see also Section 6. In total, we are left with 30−18 = 12

physical parameters: compared to the pure Dirac case there are two more complex phases,

the well-known Majorana phases.

In the course of this letter, we present a novel route on how to relate the initially free

parameters of the mass matrices with the weak basis transformations and define a new inter-

2In general, models for neutrino masses involve a much broader range of possibilities. For our study, the

explicit UV complete theory of neutrino masses does not play a role and we can even work with the field content

of the pure SM only (no right-handed neutrinos and only an effective mass operators for the light neutrinos).
3Unphysical is the full rotational freedom of the gauge-kinetic terms.
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pretation for the individual mass matrix elements on a geometrical argument. By geometrical

reasoning (as e. g. alignment/misalignment), we can dissolve the arbitrariness within a weak

basis and give a way to study underlying flavour patterns through a systematical procedure.

While there exists already an exhaustive literature on the problem how weak basis transfor-

mations affects flavour structures and texture zeros in a general way, see e. g. Refs. [8,10–13],

our geometrical approach differs from them in its easiness and originality.

This letter is organised as follows: in Section 2, we propose a new spherical parametri-

sation for the magnitude of the mass matrix elements following from the matrix invariants.

In Section 3, we relate the angles of the spherical mass matrix to the physical angles and

discuss an explicit two-family description in Section 4. We examine the nature of texture ze-

ros in Section 5 and in Section 6 we explore similar considerations for the case of Majorana

neutrinos. The description of large fermion mass hierarchies by small angles can be found in

Section 7 relating to Froggatt–Nielsen-like models. Finally, in Section 8 we conclude.

2 The spherical mass matrix interpretation

Let M be a generic 3× 3 complex mass matrix,

M =




m11 m12 m13

m21 m22 m23

m31 m32 m33



 . (5)

Its Singular Value Decomposition (SVD) is given as

M =

3∑

j=1

ℓ jm j r
†

j
(6)

where ℓ j and r j are the singular vectors corresponding to the j-th singular value (mass)

m j. They set up the left and right unitary transformations L and R of Eq. (3), which di-

agonalise the two hermitian products of M: L
†
MM

†
L = diag(m2

1
, m2

2
, m2

3
) and R

†
M

†
MR =

diag(m2
1
, m2

2
, m2

3
), respectively.

A complex 3× 3 matrix has three invariants that do not change under the left and right
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unitary transformations:

ξ=
1

2

�
Tr
�
MM

†
�2 − Tr
��

MM
†
�2��

= m2
1
m2

2
+m2

2
m2

3
+m2

1
m2

3
, (7)

D = det
�
MM

†
�
= m2

1
m2

2
m2

3
, (8)

R2 = Tr
�
MM

†
�
= m2

1
+m2

2
+m2

3
, (9)

which can be expressed in terms of the singular values or masses. Conversely, this same set

can be written using the mass matrix elements,

ξ = x1x2 + x1x3 + x2x3 − (|y1|2 + |y2|2 + |y3|2), (10)

D = x1x2 x3 − x1|y3|2 − x2|y2|2 − x3|y1|2 + 2Re(y1 y∗
2

y3), (11)

R2 = x1 + x2 + x3, (12)

where we have abbreviated

x1 = |m11|2 + |m12|2 + |m13|2, (13a)

x2 = |m21|2 + |m22|2 + |m23|2, (13b)

x3 = |m31|2 + |m32|2 + |m33|2, (13c)

y1 = m11m∗
21
+m12m∗

22
+m13m∗

23
, (13d)

y2 = m11m∗
31
+m12m∗

32
+m13m∗

33
, (13e)

y3 = m21m∗
31
+m22m∗

32
+m23m∗

33
. (13f)

Of course, all these equations are well-known facts and these relations already have been

exploited in the flavour physics context, see e. g. Ref. [18,19]. Nevertheless, we want to state

a very pictorial interpretation, which can be shown to be a powerful parametrisation of the

mass matrix arbitrariness. In this interpretation the trace invariant suggests a parametrisation

of the matrix elements describing the surface of a hypersphere. As can be easily seen, the

trace of the hermitian product is given by the sum of squared matrix elements which also

defines the Frobenius norm ||M ||F . Thus, we have the relation

R2 = Tr
�
MM

†
�
= ||M ||2

F
=
∑

i, j

|mi j|2. (14)

This is the equation of a hypersphere in n2 dimensions, for i, j = 1, . . . n and n = 2, 3 for
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most of our purposes. It suggests a very elegant way of parametrising the individual matrix

elements in terms of spherical coordinates.

In the following, we define a slightly different notion of flavour space than what is usually

understood. Mass terms are usually written in terms of Lorentz-invariants and are explicitly

flavour dependent. If we wished to introduce flavour invariance we would find that it requires

a more careful treatment. The notion of a flavour symmetry or a democratic approach as the

one proposed in Ref. [2] are part of some of the trials to extend the flavour invariance of the

kinetic terms to the Yukawa sector.

Let us already put our personal bias in the choice of coordinate system. The final values,

however, do not depend explicitly on that choice as always a certain transformation can be

found that redefines the axes.4 For the hypersphere equation (14), the complex nature of the

matrix elements plays no role, so for the following we consider a real 3× 3 matrix

fM =




em11 em12 em13

em21 em22 em23

em31 em32 em33



 , (15)

with

em11 = R sinχ sinφ1 sinφ2 sinφ3 sinφ4 sinφ5 sinφ6 sinφ7, (16a)

em12 = R sinχ sinφ1 sinφ2 sinφ3 sinφ4 sinφ5 sinφ6 cosφ7, (16b)

em13 = R sinχ sinφ1 sinφ2 sinφ3 sinφ4 sinφ5 cosφ6, (16c)

em21 = R sinχ sinφ1 sinφ2 sinφ3 sinφ4 cosφ5, (16d)

em22 = R sinχ sinφ1 sinφ2 sinφ3 cosφ4, (16e)

em23 = R sinχ sinφ1 sinφ2 cosφ3, (16f)

em31 = R sinχ sinφ1 cosφ2, (16g)

em32 = R sinχ cosφ1, (16h)

em33 = R cosχ. (16i)

4This freedom can be characterised by the independent permutation of columns and rows S3L × S3R, where

S3 is the group of permutations of three identical objects.
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The angles are φi ∈ [0, 2π), i = 1, . . . , 7, and χ ∈ [0,π]. The mass matrix is then written as,

fM = R




sinχ
�∏6

i=1
sinφi

�
sinφ7 sinχ
�∏6

i=1
sinφi

�
cosφ7 sinχ
�∏5

i=1
sinφi

�
cosφ6

sinχ
�∏4

i=1
sinφi

�
cosφ5 sinχ
�∏3

i=1
sinφi

�
cosφ4 sinχ
�∏2

i=1
sinφi

�
cosφ3

sinχ sinφ1 cosφ2 sinχ cosφ1 cosχ



 .

(17)

Although it does not look very advantageous to express the mass matrix elements like this,

we can immediately draw some useful applications out. First, we see directly how the matrix

elements can be interrelated: an adjustment in one element also affects the others unless it

means exact alignment in one angle or only a small misalignment. Second, we can with a

certain choice of angles immediately produce “texture zeros”: null mass matrix elements at

distinct positions. For example, a vanishing m11 then could be obtained by setting φ7 = 0

without severely influencing any other matrix element (notice that cosφ7 = 1 in m12 and

the angle appears nowhere else). Similarly, for m13 = 0 one chooses φ6 =
π
2
, and so on.

Third, we discover that Froggatt–Nielsen-like patterns can easily be produced for small an-

gles, see Section 7: misalignment instead of alignment. We are going to give a more physical

connection to the observable and well-known flavour angles in Section 3.

It is easy to relate the mass matrix entries in this interpretation as a 9-dimensional vector

−→
m = ( em11, em12, em13, em21, em22, em23, em31, em32, em33)

T

to some flavour space, where we define the axes accordingly:

−L=
3∑

i, j=1

ψL,i emi jψR, j ≡
3∑

i, j=1

emi j x̂ i j, (18)

with x̂ i j a unit vector in the i- j direction, where the first index refers to the left-handed

fermions and the second one to the right-handed. Surely, the individual x̂ i j-directions cannot

be treated independently as they are the outer product of some flavour vectors and calculus

rules for outer products apply. Nevertheless, we consider the vectors x̂ i j as basis of the 9

dimensional vector space spanned by the mass matrix elements describing the surface of a

hypersphere. The apparent redundancy gets reduced later on.

In this interpretation, it can be easily seen that the angle χ represents the deviation of

the mass vector −→m from the 3-3 axis (χ = 0 means full alignment with the third generation
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✁
✁
✁
✁
✁✕ −→m

x33

❯
χ

✻

x32

x31

✁
✁
✁
✁
✁✕ −→m

■
φ1

✻

✲
x12

x11

✁
✁
✁
✁
✁✕ −→m

■
φ7

✻

✲

Figure 1: Visualization of the angles χ, φ1, and φ7. The other φi follow analogously; the coordinate

x i j represents the axis relating i-th and j-th generation ∼ ψ̄L,iψR, j.

of left- and right-handed fields5). The other angles represent the relative orientation with

respect to two axes, so φ1 interpolates between the 3-2 and the 3-1 axis and φ2 between

3-1 and 2-3 and so forth, see Fig. 1. Notice that in our specific parametrisation from above,

the last angle φ7 has the axis flipped with respect to the usual convention (i. e. in three

dimensions) and φ7 = 0 means alignment with the 1-2 axis rather than 1-1, which is very

useful for the application in flavour physics.

3 Relating mass matrix elements to physical angles

We show briefly in the following how the eight angles in the spherical mass matrix interpre-

tation can be related to the physical angles in the mixing matrices and masses. The Frobenius

norm of a general complex and rectangular m× n matrix A is given by the square root of the

sum of its matrix elements ai j squared,

||A||F =
Ç

Tr
�
AA

†
�
=

√√√ m∑

i=1

n∑

j=1

|ai j|2. (19)

In return, this relation may be seen as an hypersphere equation in m × n dimensions with

the Frobenius norm as radius of the sphere. The corresponding spherical coordinates require

(m× n− 1) angles and one radius.

On the other hand, this complex matrix has a number of q non-zero and positive singular

values, σi > 0. This defines its rank to be q. The Frobenius norm can also be expressed in

terms of the singular values as

||A||F =

√√√ q∑

i=1

σ2
i
, (20)

and similarly, this characterises the surface of a q-dimensional hypersphere.

5It is interesting to notice how this is approximately true for the known values of the charged fermion masses.
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For the following, we restrict ourselves to the flavour-physical case of square matrices, in

particular with dimension three. We work on the surface of unit sphere, where the radius is

an overall scaling factor and can be factored out by normalizing the matrix to its Frobenius

norm

Ā =
A

||A||F
. (21)

For the normalised singular values, we define

σ̄1 = sinα sinβ , σ̄2 = sinα cosβ , σ̄3 = cosα, (22)

with α,β ∈ [0, π
2
] for all σ̄i > 0. The three matrix invariants expressed through Eqs. (22) are

then

R̄2 = Tr
�
ĀĀ

†
�
= 1, (23)

D̄ = det
�
ĀĀ

†
�
= sin4α sin2β cos2α cos2β , (24)

ξ̄ = 1
2

h
Tr
�
ĀĀ

†
�2
− Tr
h�

ĀĀ
†
�2ii

= sin2α
�
sin2α sin2β cos2β + cos2α

�
. (25)

Eq. (22) shows that two angles are enough to describe the normalised singular values

spectra, which is equivalent to the fact that only two independent mass ratios are relevant.

This can be trivially extended to the n family case.

The next step is to reconsider the hypersphere made out of the matrix elements which

carries more information than the singular value spectrum. In this case, a nine dimensional

hypersphere requires a set of eight angles as written in Eq. (16). These eight angles are to be

related with the two “angles” describing the span of the singular values and furthermore 2×3

from the left and right unitary rotations. The two angles most tightly related to the singular

values can be read from comparison with Eq. (16) and we find χ and φ3 to be important

here. The other six angles, however, have to be related via the usual SVD

M f = L
†

f
Σ f R f , (26)

where we have three mixing angles in L f and R f each. Furthermore, the unitary transforma-

tions acting on the left-handed fields are physical in the sense that their combined product

V = LaL
†

b
, (27)
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describes the mixing matrix of the charged current interaction and thus the angles of V are

the observable quantities. The right-handed rotations disappear from phenomenology.

The SVD is independent of the normalisation factor and is given in an explicit form with

the singular values of Eq. (22)

M̄ ≡ M

||M ||F
= L

†




sinα sinβ 0 0

0 sinα cosβ 0

0 0 cosα



R. (28)

The unitary transformations L and R can be parametrised by three angles and six complex

phases each. Some of the phases are redundant and can be absorbed in the fermion fields, so

let us for simplicity first study the rotation matrices as real matrices. The right hand side of

Eq. (28) embraces eight independent angles: two from the singular values and three coming

from each unitary transformation, the same amount as in M̄ .6 The right transformations

R, however, are unphysical in the sense that they drop out from physical observables and

only the left rotations L play a role. Furthermore, whenever the same left transformation

L is used in both mass matrices, the charged current remains invariant, so this adds three

more unobservable angles. Hence, from the right transformations, there are three unphysical

angles for up- and down-type fermions each, whereas from the left ones, three more are

included to the sum, reaching a total of nine unphysical angles; this freedom can be used

e. g. to remove mass matrix elements, i. e. introduce “texture zeros”. The singular values in

the reduced form lack one more parameter each, which is the Frobenius norm and sets the

scale of the largest mass.

It is then a simple task to determine the “angles” α and β as functions of the (normalised)

singular values. With the definition of Eq. (22), the σ̄i are the singular values of the matrix

M̄ and one easily finds tanβ = σ̄1/σ̄2 and correspondingly sinβ tanα = σ̄1/σ̄3 for the ratios

of first to second and third generation masses. So we have the identities,7

sinβ =

√√√ σ̄2
1

σ̄2
1 + σ̄

2
2

, (29a)

sinα =

√√√ σ̄2
1 + σ̄

2
2

σ̄2
1 + σ̄

2
2 + σ̄

2
3

. (29b)

6This observation is rather trivial, since the number of independent parameters has to be balanced on the

two sides, and for the SVD an overall factor plays no role.
7We employ sin(arctan x) = xp

1+x2
.
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4 The two-flavour philosophy

Although two-flavour scenarios mostly lack the complexity of the “true” three-family con-

struction, it is very helpful to see what is going on and provide a gateway to further compli-

cations.

Let us consider an arbitrary 2× 2 mass matrix,

m =

�
m11 m12

m21 m22

�
, (30)

with real matrix elements mi j. A singular value decomposition of this matrix is given by m =

L
†
ΣR with U(2)-matrices L and R and the diagonal matrix of singular valuesΣ = diag(σ1,σ2)

with σ2 ¾ σ1 > 0. The matrix invariants relate the (somewhat arbitrary) entries of m with

the singular values, so from the trace,

Tr
�
mm

†
�
= |m11|2 + |m12|2 + |m21|2 + |m22|2 = σ2

1
+σ2

2
= Tr
�
Σ

2
�
≡ r2. (31)

This equation constrains the matrix elements to the surface of a four-dimensional sphere

and also correlates the two singular values with a circle, σ1 = r sinζ and σ2 = r cosζ with

ζ ∈ [0, π
2
] to avoid any negative σk. Consequently, we can write

m = r

�
cosθL − sinθL

sinθL cosθL

��
sinζ 0

0 cosζ

��
cosθR sinθR

− sinθR cosθR

�

= r

�
sinζ cosθL cosθR + cosζ sinθL sinθR sinζ cosθL cosθR − cosζ sinθL cosθR

sinζ sinθL cosθR − cosζ cosθL sinθR cosζ cosθL cosθR + sinζ sinθL sinθR

�
.

(32)

It is very intriguing to also look at the left-symmetric product in this way and discuss its

relation to the choice of a weak basis. We have

mm
† =

r2

2

�
1− cos(2ζ) cos(2θL) − cos(2ζ) sin(2θL)

− cos(2ζ) sin(2θL) 1+ cos(2ζ) cos(2θL)

�
, (33)

what trivially tells us, that θL = 0 is the basis in which mm
† is diagonal and∆σ2 = σ2

2
−σ2

1
=

cos(2ζ).
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On the other hand, we can also use the spherical mass matrix interpretation to find

m = r

�
sinχ sinφ1 sinφ2 sinχ sinφ1 cosφ2

sinχ cosφ1 cosχ

�
. (34)

It is not a straightforward task to build a direct connection between these angles and those

appearing in Eq. (32).8 However, the usefulness of this approach does not lie in a functional

relation between matrix elements and mixing angles but rather in the minimalistic picture

it offers to generate zero matrix elements or hierarchical elements and a complementary

understanding of both of them.

For small angles ρ ≡ χ ∼ φ1 ∼ φ2≪ 0 we can perform a Taylor expansion and find

m ∼
�

ρ3 ρ2

ρ − 2
3
ρ3 1− ρ2

2

�
+O(ρ4) and mm

† ∼
�

0 ρ2

ρ2 1

�
+O(ρ4), (35)

which also justifies the discussion about hierarchical matrix elements and a vanishing 1-1

entry in the Appendix of Ref. [1]. Similarly, by setting φ2 → 0, we insert one texture zero.

Therefore, we see that there is a basis where,

m = r

�
0 sinχ sinφ1

sinχ cosφ1 cosχ

�
, (36)

and one reaches the same conclusion up to O(ρ3) as under the small angle approximation

from Eq. (35). Furthermore, we can put Eq. (36) into the form of a Cheng–Sher ansatz

|m i j| ∼
p

mim j [20], exploiting sin(χ) =
p

1− cos2χ =
p
(1− cosχ)(1+ cosχ) (which

works for χ ∈ [0, π
2
]). Defining

m1 =
rp
2
(1− cosχ) and m2 =

rp
2
(1+ cosχ), (37)

8A similar structure, however, can appear if instead of rotating flavour space one shears it. So, e. g. one finds

m = r

�
1 tanζ sinφ1 cosφ2

0 1

��
sinζ 0

0 cosζ

��
1 0

tanζ cosφ1 1

�

= r

�
tanζ sinζ sinφ1 cosφ1 cosφ2 sinζ sinφ1 cosφ2

sinζ cosφ1 cosζ

�
+ r

�
sinζ 0

0 0

�
.
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we have together with φ1 =
π
4

m =

�
0

p
m1m2p

m1m2
1p
2
(m2 −m1)

�
. (38)

5 Physical and unphysical zeros

It has become common use to introduce null mass matrix elements defined as a certain

“ansatz” and (or) put initially complex mass matrices into hermitian form, arguing that weak

basis transformations allow them [6–8, 10, 11, 13]. In this section, we shall give a direct

explanation of their origin in our interpretation of mass matrices and comment on which

texture zeros can be called unphysical and which other can only be due to a physical origin

(e.g. a symmetries of the Lagrangian), reproducing the conclusions already reached in the

literature, see Refs. [8,10,11,13].

Consider the n family case. As no right-handed charged currents have been observed,

right-handed transformations in family space are unphysical; thus, giving a total of n(n− 1)

arbitrary unphysical angles per fermion sector. On the other hand, unitary transformations

preserving flavour invariance in the charged current interactions (weak basis transforma-

tions) will contribute to this number with n(n−1)/2. This set of angles, 3n(n−1)/2 in total,

is the one responsible for producing unphysical zeros in a mass matrix or equal mass matrix

elements. The key difference from our approach with others is that in a very simple man-

ner one can track the consequences of making a null element on the other matrix elements.

By introducing these zeros, the vector on the surface of the hypersphere gets aligned along

certain axes in flavour space as can be seen from the following subsection.

5.1 Nearest-Neighbour-Interaction form

For n= 3, we have 9 arbitrary and unphysical angles to which we can assign any value. From

Eq. (16), we see that under the choice

φ2,4,6 =
π

2
and φ7 = 0, (39)
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we easily generate the following well-known mass matrix, so called Nearest-Neighbour-

Interaction form [8]

|M |=




0 A 0

A′ 0 B

0 B′ C



 , (40)

with

A= R sinχ sinφ1 sinφ3 sinφ5, (41a)

A′ = R sinχ sinφ1 sinφ3 cosφ5, (41b)

B = R sinχ sinφ1 cosφ3, (41c)

B′ = R sinχ cosφ1, (41d)

C = R cosχ. (41e)

We can then reexpress the spherical coordinates by the mass matrix elements as

tanφ5 =
A

A′
, (42a)

tanφ3 =

√√√
1+

�
A

A′

�2
, (42b)

tanφ1 =

√√√
1+

�
1+

�
A

A′

�2�� A2

A′B

�2 B

B′
. (42c)

Moreover, we still have one more free angle by which we could choose A′ = A, that is φ5 =

π/4. Although this would only hold for one of the two mass matrices per fermion sector.

5.2 Inclusion of complex phases

The three unitary matrices giving rise to the weak basis transformations imply a total of

[3n(n+ 1)− 2]/2 arbitrary (unphysical) complex phases. For n = 3 we have 17 free phases.

In order to correctly introduce them in the spherical mass matrix interpretation, we need

to subtract the number of phases gone when producing null mass matrix elements. Take for

example our previous case, this implies having 17−8= 9 unphysical phases left. The matrices

have in total 10 complex phases. Through an appropriate choice of phases, we are allowed to

keep one independent phase; which could also have been anticipated if after introducing the

textures zeros, one realises that only one linear combination of phases remains in Eqs.(13),
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γ = δ21 + δ33 − δ31 − δ23. Therefore, by redefining them in such a way that only one δ21

survives we get

M a =




0 Aa 0

A′
a

0 Ba

0 B′
a

Ca



 , M b =




0 Abeiγ 0

Abe−iγ 0 Bb

0 B′
b

Cb



 , (43)

giving a total of ten independent parameters in accordance with the ones appearing in the

mass basis. So we see that by relating the weak basis transformations to the spherical mass

matrix interpretation allows us to directly write the matrix forms with all their redundancy

now ripped off.

5.3 Hermiticity and texture zeros

By demanding hermitian matrices, there is a cost one should pay, which is on one hand 6

of the 9 angles have been employed while on the other, 12 of the 17 available phases have

also been used. Therefore, the introduction of further constraints as null matrix elements

should be limited to only 3 free angles and 5 complex phases. So equally distributing three

null mass matrix elements between two matrices is impossible. That is, within the traditional

approach, no parallel structures with zero elements can be obtained via weak basis transfor-

mations when hermiticity has been first invoked.9 Within our approach this can also be done.

However, taking a look at Eqs. (16), an alternative scenario appears in which parallel struc-

tures seem to be allowed. In the following we will discuss the former scenario (no-parallel

structures) and then we will clarify the issue of the alternative one (parallel structures).

Let us show it. For the former point, first apply the hermiticity condition and thereafter

the spherical mass matrix interpretation. The space of the hypersphere now gets reduced

9Parallel structures are such matrix structures, where both matrices in the same fermion sector (quark or

lepton) shares their matrix form.
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from nine dimensions to only six with the matrix elements given by

em11 = R sinχ sinφ1 sinφ2 sinφ3 sinφ4, (44a)

em12 = R sinχ sinφ1 sinφ2 sinφ3 cosφ4, (44b)

em13 = R sinχ sinφ1 sinφ2 cosφ3, (44c)

em22 = R sinχ sinφ1 cosφ2, (44d)

em23 = R sinχ cosφ1, (44e)

em33 = R cosχ. (44f)

Note, that for a hermitian matrix, one has an overcounting for the Frobenius norm from the

off-diagonal elements, so we define the mass matrix as

M =




em11

1p
2
em12eiδ12 1p

2
em13eiδ13

1p
2
em12e−iδ12 em22

1p
2
em23eiδ23

1p
2
em13e−iδ13 1p

2
em23e−iδ23 em33



 . (45)

In this sense, we have now five angles from which two may correspond to the singular

values and the other three allow to introduce texture zeros. Nevertheless, in total we have

no more than three free angles for both matrices. So following this, we can produce the next

kind of no-parallel weak basis matrices,

M a =




0 Aa 0

Aa Ba Ca

0 Ca Da



 , M b =




Ab Bbeiβ 0

Bbe−iβ Cb Db

0 Db Eb



 , (46)

thus reaching the traditional conclusions [11]. Apparently, we have chosen φa
4
= 0, φ

a(b)

3 =
π
2
. First of all, there is no physical meaning attached to any of those zeros in a certain weak

basis like the one we have singled out here. We have to reduce the number of free parameters

to ten—how this is achieved should have no influence on the observable physics. Second,

there can be no parallel structures for hermitian matrices with only one complex phase.

However, with φ b
4
= 0, one either has to introduce an additional phase or one can construct

a prediction of one of the SM parameters in terms of the others. This is only valid by adhoc

assumptions or proposing a kind of flavour symmetry. In the latter case, there is, of course,

a physical meaning associated with it; see for example [21].

One remark about alternative scenarios and possible loopholes in our interpretation: No-
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tice that if we had considered φ b
2
= π

2
in the second matrix we could have found a parallel

structure. And moreover, for φ b
3
= 0 and φa

3
= 0 plus an adequate initial reordering of

the matrix entries, we could have found another parallel structure. Therefore, it seems that

we can indeed build parallel structures with more than three independent texture zeros to-

gether with hermiticity. What seems to be wrong? Both alternative scenarios reach a weak

basis with less than ten arbitrary parameters. But this contradicts our interpretation on the

angles which corresponded to the freedom in the weak basis transformations (one cannot

have a weak basis with less than ten arbitrary parameters). Hence, the alternative scenarios

are not valid within the approach.

5.4 Deviations from hermiticity in the Nearest-Neighbour-Interaction

form

From the point of view of our approach and the traditional ones, producing the Nearest-

Neighbour-Interaction form together with an hermitian matrix, is impossible. However, from

Eq.(43), we could work out the deviations from hermiticity if we work in the small angle

approximation (further results about small angles in the next section). With the assignment

φ
a(b)

7 = 0,φ
a(b)

2,4,6
=
π

2
,φa

5
=
π

4
,φa

1
=
π

4
+ ǫa

1
, and φ b

1,5
=
π

4
+ ǫb

1,5
,

where ǫ j≪ 1, we get the following:

M a ≃




0 Aa 0

Aa 0 Ba

0 Ba Ca



+ ǫa
1




0 0 0

0 0 Ba

0 −Ba 0



+O
�
(ǫa

5)
2
�

, (47)

M b ≃




0 Abeiβ 0

Abe−iβ 0 Bb

0 Bb Cb



+ ǫb
1




0 0 0

0 0 Bb

0 −Bb 0



+ ǫb
5




0 Abeiβ 0

−Abe−iβ 0 0

0 0 0



+O

�
(ǫb

1,5)
2
�

. (48)

It can be readily seen how the presence of the small deviations helps to the counting of ten

free parameters within the weak basis. This approach reduces from four to three parameters,

as previously used [12,22], to measure the deviations from hermiticity. It is a straightforward

task to determine that this set of parameters reproduce both the masses and the mixing in

the quark sector.
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6 Majorana neutrinos

Massive neutrinos are not part of the renormalisable Standard Model. There is, however, one

single operator at dimension five that can generate very small neutrino masses for the left-

handed neutrinos only [23], without introducing right-handed neutrinos. The UV-completion

of this operator will reveal some new physics at the scale ΛNP. This operator requests the

resulting mass matrix to be of the Majorana type, meaning complex but symmetric. It is a

gauge- and Lorentz-invariant construction:

L5 =
1

2

cαβ

ΛNP

�
L̄c

Lα
eH∗
� � eH† LLβ

�
+ h. c. , (49)

where LL = (νL, eL)
T and H = (H+, H0)T are the left-handed lepton and the Higgs dou-

blet of the SM, respectively; we follow the usual notation for the charged conjugated Higgs

field as eH = iσ2H∗. The coefficients cαβ are arbitrary numbers, but supposed to be O(1)

numbers or show some rather mild hierarchy which is imprinted in the neutrino mass spec-

trum. The whole operator is suppressed by the new physics scale, ∼ 1/ΛN P , which can be

O(1010...14 GeV).

We want to study the different zero elements that could arise from weak basis transfor-

mations. The flavour group for the lepton sector is

GF ⊃ U ℓ
L
(3)× U e

R
(3). (50)

The above group of transformations can be used to diagonalise the charged lepton mass

matrix. In this weak basis, which we could call the charged lepton basis, the symmetrical mass

matrix of neutrinos gets diagonalised by the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)

matrix. So we immediately reach the conclusion that as no freedom is left to still make weak

basis transformations, any texture zero in the neutrino mass matrix will be physical as long

as we are in the charged lepton basis.

6.1 Weak bases

Let us consider those weak bases where the charged lepton mass matrices are still non diago-

nal. This discussion not only reproduces some known facts, as of Ref. [24], but, if extended,

may provide further observations. From the six free angles, we can choose four of them as
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φe
7
= 0 and φe

2,4,6
= π

2
in the spherical mass matrix interpretation, to get e. g.

M e =




0 Aae−iδ 0

A′
e
eiδ 0 Be

0 B′
e

Ce



 . (51)

The neutrino mass matrix, however, has to be symmetric. We change the notation slightly

and perform a renaming φ → ω in the angles to show the difference. Hence, we have the

following entries

emν
11
= Rν sinχν sinων

1
sinων

2
sinων

3
sinων

4
, (52a)

emν
12
= Rν sinχν sinων

1
sinων

2
sinων

3
cosων

4
, (52b)

emν
13
= Rν sinχν sinων

1
sinων

2
cosων

3
, (52c)

emν
22
= Rν sinχν sinων

1
cosων

2
, (52d)

emν
23
= Rν sinχν cosων

1
, (52e)

emν
33
= Rν cosχν, (52f)

of the complex symmetric matrix

M
ν =




emν

11
eiϕν11

1p
2
emν

12
eiϕν12

1p
2
emν

13
eiϕν13

1p
2
emν

12
eiϕν12 emν

22
eiϕν22

1p
2
emν

23
eiϕν23

1p
2
emν

13
eiϕν13

1p
2
emν

23
eiϕν23 emν

33
eiϕ33



 . (53)

From the two remaining unphysical degrees of freedom, we can induce several texture

zeros in the neutrino masses, e. g. with ων
4
= 0 and ων

3
= π

2
we find

Mν =




0 Aνe

−iα1 0

Aνe
−iα1 Bν Cνe

−iα2

0 Cνe
−iα2 Dν



 . (54)

It is outside the scope of this work to provide an exhaustive list of different weak basis matrix

forms. Therefore, the take-home message lies in the simplicity of the spherical mass matrix

interpretation on studying matrices in different weak bases.
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6.2 Phenomenological application: the Altarelli–Feruglio model

The charged lepton basis is ideal to get further insights into the masses or mixing of neutri-

nos, as everything is extracted from their mass matrix. In this regard, the famous Altarelli–

Feruglio model provides us with a good example [25, 26]. The model implements the A4

non-Abelian and discrete symmetry group inside a Frogatt–Nielsen framework. It naturally

implies tribimaximal mixing (TBM) for the PMNS matrix [27]:

UTBM =





q
2
3

q
1
3

0

−
q

1
6

q
1
3
−
q

1
2

−
q

1
6

q
1
3

q
1
2



 . (55)

Its weak point, however, is that the reactor mixing angle is predicted to be exactly zero, θ ν
13
=

0, so it is in the meantime excluded by experimental observation [28–30]. Nevertheless, the

main ingredient of the model, the underlying tribimaximal mixing, still can be relevant for

a partial diagonalisation. The fact, that neutrino masses are less hierarchical than charged

fermion masses, suggest a more democratic flavour pattern, which is related to tribimaximal

mixing.

Three main features characterize the Altarelli–Feruglio mass matrix: mν
12
= mν

13
, mν

22
=

mν
33

, and mν
22
= −2mν

12
. Under the spherical mass matrix interpretation we look for the

consequences of implementing them starting from the charged lepton basis.

We assume the following assignment of the real matrix elements:

emν
11
= Rν sinχν sinων

1
sinων

2
cosων

3
, (56a)

emν
12
= Rν sinχν sinων

1
sinων

2
sinων

3
sinων

4
, (56b)

emν
13
= Rν sinχν sinων

1
sinων

2
sinων

3
cosων

4
, (56c)

emν
22
= Rν sinχν sinων

1
cosων

2
, (56d)

emν
23
= Rν sinχν cosων

1
, (56e)

emν
33
= Rν cosχν. (56f)

The equality of emν
12
= emν

13
implies a basis choice in which ων

4
= π

4
. On the other hand,

with emν
33
= emν

22
one needs tanχν ≥ 1 and thus χν ∈ [π

4
, π

2
). Note how one may identify

the particular choice of the elements with a particular orientation of the mass vector in the

flavour basis. Last, we require emν
22
= −2emν

12
and see that it is only fulfilled withων

3
= 3π

2
and
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ων
2
= 5π

4
. Under these conditions one gets the following mass matrix,

|Mν|=




0 aν aν

aν −2aν bν

aν bν −2aν



 , (57)

where we have aν = Rν

2
p

2
sinχν sinων

1
and bν = Rνp

2
sinχν cosων

1
, and the relation

tanχν sinων
1
= −
p

2. (58)

Notice that it does not reproduce the full Altarelli–Feruglio mass matrix (e.g. mν
11
6= 0).

Therefore, we expect a deviation from tribimaximal mixing, which is actually required by

experiment. The vanishing 1-1 element in our case is a direct consequence of the spherical

mass matrix interpretation as the individual elements are not fully independent.

Let us decompose the mass matrix into a democratic part and a remainder which only

has 2-3 mixing

|Mν|=




aν aν aν

aν aν aν

aν aν aν



+




−aν 0 0

0 −3aν bν − aν

0 bν − aν −3aν



 . (59)

The first term gets diagonalised by the tribimaximal mixing matrix. After that, we have

|M ′
ν
|=





1
3
(−6aν + bν)

p
2

3
(3aν − bν) 0

p
2

3
(3aν − bν) 2bν

3
0

0 0 −2aν − bν



 , (60)

which still requires a further diagonalisation. This, however, can be done trivially. The full

PMNS matrix is then given by the initial tribimaximal mixing matrix, corrected with the

diagonalisation of Eq. (60). Since there are furthermore only two independent parameters,

aν and bν, the mass spectrum as well as the neutrino mixing matrix can be fully determined

by a fit to the experimentally known mass squared differences only. With the most recent

results of [31]10

∆m2
21
= 7.40× 10−5 eV2, and ∆m2

31
= 2.494× 10−3 eV2,

10Similar results can be found in other sources like [32]. We only perform a proof of principle here and also

do no error analysis, just to see whether we roughly get the right numbers.
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we obtain, assuming normal hierarchy and ignoring the errorbars, we get two real and posi-

tive solutions for aν and bν, that are very close

aν ∈ {0.0127, 0.0138}eV, and (61a)

bν ∈ {0.0274, 0.0257}eV. (61b)

This determines the neutrino mass spectrum to be for the two solutions

mν
3
= {0.0527, 0.0533}eV, mν

2
= {0.0190, 0.0205}eV, mν

1
= {0.0169, 0.0186}eV, (62)

and the PMNS matrix for both the cases

|UPMNS|=









0.727 0.686 0

0.485 0.514 0.707

0.485 0.514 0.707



 ,




0.724 0.690 0

0.488 0.512 0.707

0.488 0.512 0.707









. (63)

Apparently, this PMNS matrix cannot describe the true neutrino phenomenology, which is also

not surprising: the Altarelli–Feruglio models were invented to predict a θν
13
= 0, and staying

within the underlying pattern for the mass matrix, we cannot generate a non-vanishing entry

there.

It is, however, astonishingly simple to correct for a non-vanishing 1-3 mixing. The Altarelli–

Feruglio matrix cannot have a 1-3 mixing: from Eq. (59), we see that the non-democratic

part of the mass matrix does not mix the first and third generation. We can nevertheless

accomodate for it by a small misalignment of the two elements emν
12

and emν
13

, simply with the

choice ων
4
= π

4
+ ǫ, leading to a corrected mass matrix

|Mν|=




0 aν + δν aν − δν

aν + δν −2aν bν

aν − δν bν −2aν



+O(ǫ2), (64)

with δν = aνǫ. With δν, we have a handle on θν
13

and in order to generate sinθ ν
13
≈ 0.15, we

find δν = 0.005eV and one set of solutions with

aν = 0.0126eV, and bν = 0.0263eV, (65)
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resulting in a slightly modified mass spectrum

mν
3
= 0.0526eV, mν

2
= 0.0187eV and mν

1
= 0.0166eV. (66)

This naïve correction still has some tension in comparison with the global fit values of the

PMNS matrix. We find

|UPMNS|=




0.696 0.702 0.150

0.398 0.551 0.733

0.598 0.451 0.663



 . (67)

We nowadays have strong hints of C P violation in neutrino oscillations, besides the fact

that the third mixing angle is definitely non-zero. Furthermore, recent global fits tend to-

wards a rather maximal C P-phase in the Standard Parametrisation (δC P = 234+43
−31
◦ [31]),

which is compatible with δC P ≈ −90 ◦. TBM mixing is thus ruled out and the Altarelli–

Feruglio model has to be adjusted for this, including C P violation. This easily can be accom-

modated within the approach presented above. Let us consider an imaginary perturbation,

ων
4
= π

4
+ iǫ, and thus sin(ων

4
) ≈ (1 + iε)

p
2, we can simply multiply δν with a maximal

complex phase eiπ/2. Keeping δν = 0.005, to achieve a large sinθ ν
13
≈ 0.15, this modifies

slightly the mass eigenvalues. Hence, to reproduce the proper ∆m2, we have to refit the aν

and bν parameters and find

aν = 0.0127eV, and bν = 0.0285eV, (68)

and correspondingly

mν
3
= 0.0528eV, mν

2
= 0.0193eV and mν

1
= 0.0172eV. (69)

The PMNS matrix now has a complex phase and is given by

UPMNS =




0.742 0.668 −0.00715+ 0.148i

−0.463+ 0.101i 0.524+ 0.0456i −0.696− 0.0673

−0.463− 0.101i 0.524− 0.0456i 0.699



 . (70)

This has surprisingly a C P-phase δC P = −0.485π in accordance with the global fit.
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7 Small angles and hierarchies

Generically, it is believed that any kind of hierarchy in the eigenvalues (singular values) of

a mass matrix has to be already coded in the hierarchical structure of the individual matrix

elements, as was proposed by Froggatt and Nielsen [16]

−LFN =
∑

n,ψ

ψ̄L,iψR, jHλ
ψ

i j

�ϕ
Λ

�ni j

+ h. c. , (71)

where ψi are generic fermions with i = 1, 2, 3 counting the number of generations, H being

the SM Higgs doublet breaking electroweak gauge symmetry and ϕ a flavon field break-

ing the continous and global flavour symmetry. The flavour symmetry is assumed to be an

Abelian U(1)F global symmetry and the “coupling constants” λ
ψ

i j
are supposed to be arbitrary

O(1) numbers, where the additional scale Λ refers to a larger scale at which new degrees of

freedom are integrated out. So the final “Yukawa couplings” as effective couplings of the SM

fermions to the SM Higgs are given by

Y
f

i j
= λ

f

i j

�〈ϕ〉
Λ

�ni j

, (72)

with ni j ∈ N being the sum of the corresponding U(1)F charges. The hierarchical fermion

masses are then encoded in powers of a small parameter ǫ = 〈ϕ〉/Λ. As numerical example:

take Λ to be 10TeV and 〈ϕ〉 to be of the electroweak scale ∼ 100GeV, then ǫ ≃ 10−2.

Therefore, apparently, a hierarchical matrix configuration can only be attached to the

idea of a complicated mechanism fully responsible for it. The art of finding a viable UV-

completion of this model typically leads to vastly extended sets of matter and scalar fields

and may not be called aesthetic. In the following, we explore a different route to arrive at

a very similar suppression of small numbers by high powers employing the spherical mass

matrix interpretation. The small numbers then arise from a small misalignment of the mass

vector with respect to the underlying flavour basis.

Let us consider all the angles very close to zero, so the actual vector in the 9-dimensional

space points along the m33-axis. Surprisingly, one finds immediately Froggatt–Nielsen-like

structures. Let us take all angles to be of the same order, say ǫ ≡ χ ∼ φa(b)

k
≪ 1, and we get

|M | ∼ R




ǫ8 ǫ7 ǫ6

ǫ5 ǫ4 ǫ3

ǫ2 ǫ 1



 , (73)
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without referring to a Froggatt–Nielsen (FN) mechanism of Eq. (71). Notice also, that the

pattern of Eq. (73) is not unique and, moreover, there is no reason not to treat individual

angles individually. A very obvious transformation of this kind is χ → χ − π
2
, then the 3-3

element becomes ∼ ǫ and the power of epsilons is reduced by one on the other elements.

The key part in this construction is, that—depending on the alignment in the abstract high

dimensional space—hierarchies can be generated by the choice of the basis and a hierarchical

basis as suggested by the FN mechanism does not imply hierarchy of new physics scales.

Finally, the relevant object to construct the mixing matrix is the left-hermitian product

|MM
†| ∼ R2




ǫ12 +O(ǫ14) ǫ9 +O(ǫ11) ǫ6+O(ǫ8)

ǫ9 +O(ǫ11) ǫ6 +O(ǫ8) ǫ3+O(ǫ5)

ǫ6 +O(ǫ8) ǫ3 +O(ǫ5) 1+ ǫ2 +O(ǫ4)



 (74)

which shows a strong hierarchical structure.

Now, let us give a twist to the story. As previously noted, hierarchical mass ratios are a

direct consequence of only two small angles, if we assign spherical coordinates to the singular

values in a similar manner. Accordingly, there is no need to have all the eight angles as small

numbers, φi,χ ≪ 1. So to produce mass hierarchies, we actually do not need such a very

strong suppression in all matrix elements. It is sufficient to have the following kind of mild

hierarchical structures:

|M | ∼ R




ǫ2 ǫ2 ǫ2

ǫ2 ǫ2 ǫ

ǫ ǫ 1



 ⇒ |MM
†| ∼ R2




ǫ4 ǫ3 ǫ2

ǫ3 ǫ2 ǫ

ǫ2 ǫ 1+ ǫ2



 . (75)

8 Conclusions

We have introduced a new and innovative interpretation of the fermion mass matrix elements

in the SM. This interpretation allows cross-relations to weak basis transformations. The key

element is found in one of the matrix invariants involving the trace of the left-hermitian

product. Its equation simultaneously describes the surface of a nine dimensional hypersphere

with its radius equal to the Frobenius norm of the mass matrix. This interpretation is trivially

not constrained to three families but applies to all n×n mass matrices. The idea of assigning

to each matrix element a basis of spherical coordinates, provides a framework to correlate

their magnitudes in a very simple manner. Moreover, it can be seen from this approach that

individual matrix elements cannot be set to zero without affecting also others. There are
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eight angles needed in the spherical mass matrix interpretation which can be furthermore

related to the weak basis angles and the singular values of the mass matrices. Therefore, this

interpretation also allows to relate introduction of null elements, so called texture zeros, to

a geometrical alignment in the underlying flavour space.

A very compelling application of this approach has been found in the neutrino sector.

The main characteristics of the neutrino mass matrix in the Altarelli–Feruglio can be mapped

to a set of conditions for the angles in the spherical mass matrix interpretation. Within the

Altarelli–Feruglio model, we have been able to fully determine the mass spectrum as well as

the neutrino mixing matrix. By virtue of a small correction in terms of a perturbation of one

of the angles, we furthermore could reproduce a large reactor angle which is initially zero in

that model. Moreover, with a purely imaginary perturbation, the value of the Dirac C P-phase

in the PMNS matrix turns out to be close to the value favoured by the global fit.

In the same approach, with a small misalignment, it is easy to reproduce Froggatt–Nielsen

like patterns for hierarchical mass matrices without the need of introducing a new physics

scale or a complicated UV-completion for such suppression. Nevertheless, the mechanism be-

hind this misalignment stays unclear at this stage. The spherical mass matrix interpretation

is not to be seen as a dynamical model of flavour but shall rather help to simplify model as-

sumptions behind such models. With the interpretation of aligning or misaligning individual

mass matrix elements with a certain direction in flavour space, it might be possible to draw

conclusions going further than texture zeros. We want to remind, that actually the flavour

bases for the up and down sector are not fully independent in the spherical mass matrix inter-

pretation and thus, in a more deeper analysis, relations between up- and down-type fermion

masses shall be revealed.
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