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Abstract
We quantitatively analyze a quark-lepton flavour model derived from a six-dimensional supersym-

metric theory with SO(10)×U(1) gauge symmetry, compactified on an orbifold with magnetic flux.

Two bulk 16-plets charged under the U(1) provide the three quark-lepton generations whereas two

uncharged 10-plets yield two Higgs doublets. At the orbifold fixed points mass matrices are gen-

erated with rank one or two. Moreover, the zero modes mix with heavy vectorlike split multiplets.

The model possesses no flavour symmetries. Nevertheless, there exist a number of relations between

Yukawa couplings, remnants of the underlying GUT symmetry and the wave function profiles of

the zero modes, which lead to a prediction of the light neutrino mass scale, mν1 ∼ 10−3 eV and

heavy Majorana neutrino masses in the range from 1012 GeV to 1014 GeV. The model successfully

includes thermal leptogenesis.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is a chiral gauge theory with three copies

of a quark-lepton generation containing a quark doublet q = (u, d), a lepton doublet l = (ν, e)

and four singlets, uc, dc, ec and nc, of Weyl fermions in different representations of the gauge

group GSM = SU(3)×SU(2)×U(1). This gauge theory has a U(3)6 flavour symmetry which

is almost completely broken by 36 complex Yukawa couplings and 6 complex Majorana mass

terms. Only a Z2 matter parity and the global U(1) of baryon number survive, which is

broken by an anomaly. Most of the 84 real parameters are unphysical and can be eliminated

by a redefinition of the quark and lepton fields, leaving 25 observables: 6 quark masses, 3

charged lepton masses, 6 Majorana neutrino masses, 6 mixing angles in the charged current

and 4 CP violating phases. The traditional goal of flavour physics is to reduce the number

of independent input parameters by means of symmetries in order to obtain relations among

the various observables. These relations would then shed light on the origin of the Yukawa

couplings.

Relations between quark and lepton Yukawa matrices are obtained in grand unified theo-

ries (GUTs) where the Standard Model gauge group is embedded in the non-Abelian gauge

groups SU(4) × SU(2) × SU(2) [1], SU(5) [2], SO(10) [3, 4] or flipped SU(5) [5, 6]. For

example, in SU(5) GUTs the 36 SM Yukawa couplings are reduced to 24 couplings and in

SO(10) GUTs with two Higgs 10-plets only 12 independent couplings are left. However,

the obtained relations between Yukawa couplings are only partially successful and in order

to account for all measured observables one needs higher-dimensional Higgs representations

and/or higher-dimensional operators (see for example [7–22] for quantitative analyses of the

fermion mass spectrum in some SO(10) models).

A partial understanding of the hierarchies among quark and lepton Yukawa couplings can

be obtained by means of U(1) flavour symmetries [23] or discrete symmetries [24, 25]. Such

flavour symmetries have also been derived in string compactifications [26–30]. They are of

particular importance in supersymmetric compactifications where they can forbid operators

leading to proton decay. Note, however, that none of these flavour symmetries is exact.

They are all spontaneously or explicitly broken.

Hierarchical Yukawa couplings can also be obtained in toroidal compactifications of Super-

Yang-Mills theories with magnetic flux in ten or fewer dimensions. The couplings between

bulk Higgs and matter fields are calculated as overlap integrals of wave functions that have

non-trivial profiles in the magnetized extra dimensions [31]. In a similar way, Yukawa

couplings of magnetized toroidal orbifolds have been analyzed [32–37]. The resulting flavour

structure depends on the number of pairs of Higgs doublets. In the simplest cases it appears

difficult to obtain the measured hierarchies of quark and lepton masses [34, 35].

In this paper we pursue an alternative avenue. Our starting point is the six-dimensional

(6D) orbifold GUT model with gauge group SO(10) × U(1) considered in [38]. The GUT

group SO(10) is broken to different subgroups at the orbifold fixed points where also the

Yukawa couplings are generated [39, 40]. Abelian magnetic flux generates three quark-
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lepton families from two bulk 16-plets, ψ and χ, and, together with two uncharged 16∗-plets

vectorlike split multiplets. Moreover, the magnetic flux breaks supersymmetry [41]. Two

uncharged bulk 10-plets yield two Higgs doublets. The 6D theory has no flavour symmetry.

All quarks and leptons arise as zero-modes of bulk 16-plets. But since their wave functions

are different, they couple with different strength to the Higgs fields at the fixed points.

As a consequence, also the effective 4D theory has no flavour symmetries. Nevertheless,

the GUT symmetry and the flux compactification leads to a number of relations between

the Yukawa matrices. The 36 SM complex Yukawa couplings are reduced to 12 complex

complings. In addition there are nonrenormalizable terms generating the heavy Majorana

neutrino masses and mass mixing terms between the chiral quark-lepton generations and

the vectorlike multiplets. In the following we shall study to what extent such a structure

can quantitatively describe the measured observables, extending the previous work on two

quark-lepton generations [42].

The paper is organized as follows. In Section II we describe symmetry breaking and zero

modes of the model under consideration. Moreover, we list the values of the zero mode wave

functions at the various fixed points and work out the Yukawa couplings which determine

the flavour spectrum. Section III is devoted to numerical fits of the model to measured

observables. In a first fit, light and heavy neutrino masses and the baryon asymmetry are

predicted, whereas in a second fit the observed baryon asymmetry is also fitted. Summary

and conclusions are given in Section IV. Some technical features of numerical fits and results

are described in Appendices A and B, respectively.

II. GUT MODEL AND YUKAWA COUPLINGS

In this section we describe the six-dimensional SO(10) GUT model introduced in [38],

extended by a pair of bulk 16-plets. This allows to account for the flavour structure of

three quark-lepton generations, with some predictions for neutrino masses. Two additional

10-plets, needed to cancel the 6D SO(10) gauge anomalies, do not mix with quarks and

leptons and will not be discussed in the following.

The starting point is an N = 1 supersymmetric SO(10) × U(1) gauge theory in six

dimensions with vector multiplets and hypermultiplets, compactified on the orbifold T 2/Z2.

One conveniently groups 6D vector multiplets into 4D vector multiplets A = (Aµ, λ) and 4D

chiral multiplets Σ = (A5,6, λ
′), and 6D hypermultiplets into two chiral multiplets, (φ, χ) and

(φ′, χ′) [43, 44], where (φ′, χ′) transform in the complex conjugate representation compared

to (φ, χ). The origin ζI = 0 is a fixed point under reflections, Ry = −y, where y denotes

the coordinates of the compact dimensions. Imposing chiral boundary conditions on the

orbifold, 6D N = 1 supersymmetry is broken to 4D N = 1 supersymmetry, and the chiral

superfields Σ and φ′ are projected out.

The bulk SO(10) symmetry is broken to the Standard Model group by means of two

Wilson lines. The fixed points ζi, i = PS,GG, fl are invariant under combined lattice trans-

lations and reflection: T̂iζi = ζi (see, for instance, [42]). Demanding that gauge fields on the
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FIG. 1. Orbifold T 2/Z2 with two Wilson lines and the fixed points ζI, ζPS, ζGG, and ζfl.

orbifold satisfy the relations

PiA(x, T̂iy)P−1
i = ηiA(x, y) , i = PS ,GG , (1)

with appropriately chosen SO(10) matrices Pi and parities ηPS, ηGG = ±, the gauge group

SO(10) is broken to the Pati-Salam subgroup GPS = SU(4)×SU(2)×SU(2) and the Georgi-

Glashow subgroup GGG = SU(5)×U(1)X at the fixed points ζPS and ζGG, respectively (see

Fig. 1). In four dimensions the SM gauge group results as intersection of the Pati-Salam and

Georgi-Glashow subgroups of SO(10), GSM′ = GPS∩GGG = SU(3)×SU(2)×U(1)Y×U(1)X.

Group theory implies that SO(10) is broken to flipped SU(5), Gfl = SU(5)′ ×U(1)X′ at ζfl.

Like the vector multiplets, the hypermultiplets satisfy relations

Pi φ(x, T̂iy) = ηi φ(x, y) , i = PS ,GG , (2)

where the matrices PPS and PGG now depend on the representation of the hypermultiplet

(see [42]). The SO(10) multiplets φ can be decomposed into SM multiplets, φ = {φα}. Each

of them belongs to a repesentation of GPS as well as GGG and is therefore characterized by

two parities,

φβ(x, T̂PSy) = ηβPS φ
β(x, y) , φβ(x, T̂GGy) = ηβGG φ

β(x, y) . (3)

They can be freely chosen subject to the requirement of anomaly cancellations. A given

set of parities then defines a 4D model with SM gauge group. The model [38] contains two

pairs of 16- and 16∗-plets, ψ and ψc with parities ηPS = −1 , ηGG = +1, and Ψ and Ψc with

parities ηPS = −1 , ηGG = −1. Two 10-plets contain the Higgs doublets Hu and Hd. We now

introduce a third pair of 16- and 16∗-plets, χ and χc with parities ηPS = −1 , ηGG = −1.

Magnetic flux is generated by a U(1) background gauge field. For a bulk 16-plet with

charge q and magnetic flux f = −4πN/q one obtains N left-handed 16-plets of zero modes.
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SO(10) 10

GPS (1,2,2) (1,2,2) (6,1,1) (6,1,1)

GGG 5∗−2 5+2 5∗−2 5+2

parities ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG

H1 + − + + − − − +

Hu

H2 + + + − − + − −
Hd

SO(10) 16

GPS (4,2,1) (4,2,1) (4∗,1,2) (4∗,1,2)

GGG 10−1 5∗+3 10−1 5∗+3,1−5

parities ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG

ψ − + − − + + + −
qi li uci , e

c
i dci , n

c
i

uc3, e
c
3

χ − − − + + − + +

q3 l3 uc4, e
c
4 dc3, n

c
3

dc4, n
c
4

Ψ − − − + + − + +

Dc, N c

SO(10) 16∗

GPS (4∗,2,1) (4∗,2,1) (4,1,2) (4,1,2)

GGG 10∗+1 5−3 10∗+1 5−3,1+5

parities ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG

ψc − + − − + + + −
u, e

χc − − − + + − + +

d, n

Ψc − − − + + − + +

D,N

TABLE I. PS- and GG-parities for bulk 10-plets, 16-plets and 16∗-plets. The index i = 1, 2 labels

two quark-lepton families of zero modes.

In addition there is a split multiplet of zero modes whose quantum numbers depend on the

choice of ηPS and ηGG. We choose the charges q = 2 and q = 1 for ψ and χ, respectively,

whereas ψc, χc, Ψ and Ψc carry zero U(1) charge1. The resulting zero modes are summarized

1 We expect that charged and neutral SO(10) singlets can be added such that all gauge and gravitational
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in Table I. Note that expectation values of N c and N break U(1)X , and therefore B − L.

The zero modes of the charged hypermultiplets have non-trivial wave function profiles.

The decomposition of all bulk 16- and 16∗-plets reads

ψ =
∑
i=1,2

[
qiψ

(i)
−+ + liψ

(i)
−− + (dci + nci)ψ

(i)
+−

]
+
∑

α=1,2,3

(ucα + ecα)ψ
(α)
++ , (4)

χ = q3χ
(1)
−− + l3χ

(1)
−+ + (uc4 + ec4)χ

(1)
+− +

∑
i=1,2

(dci+2 + nci+2)χ
(i)
++ , (5)

Ψ = Dc +N c , ψc = u+ e , χc = d+ n , Ψc = D +N . (6)

Here the chiral multiplet q = (u, d) contains an SU(2) doublet of left-handed up- and down

quarks, l = (ν, e) a doublet of left-handed neutrino and electron, and the charge conjugate

states of right-handed up- and down-quark, neutrino and electron are contained in uc, dc,

nc and ec, respectively.

All Yukawa couplings and mass mixing terms depend on the values of the wave functions

at the four fixed points. For ψ
(a)
ηPS,GG and χ

(a)
ηPS,GG we use expressions given in [42]. For N flux

quanta, a wave function ϕ
(a)
ηPS,ηGG(y1, y2) is given as

ϕ(a)
ηPS,ηGG

(y1, y2;N) =N e−2πNy22
∑
n∈Z

e−2πN(n− a
2N )

2
−iπ(n− a

2N )(ikPS−kGG)

× cos

[
2π

(
−2nN + a+

kPS

2
(y1 + iy2)

)]
, (7)

where ηPS = eiπkPS , ηGG = eiπkGG and kPS, kGG = 0, 1. For ηPS = ηGG = +1, one gets N + 1

massless modes with a = 0, 1, ..., N . In the remaining cases, one obtains N zero modes with

a = 0, 1, ..., N − 1. We choose the ordering

ψ(2)
ηPS,ηGG

(y1, y2) = ϕ(0)
ηPS,ηGG

(y1, y2; 2),

ψ(1)
ηPS,ηGG

(y1, y2) = ϕ(1)
ηPS,ηGG

(y1, y2; 2),

ψ
(3)
++(y1, y2) = ϕ

(2)
++(y1, y2; 2),

χ(1)
ηPS,ηGG

(y1, y2) = ϕ(0)
ηPS,ηGG

(y1, y2; 1),

χ
(2)
++(y1, y2) = ϕ

(1)
++(y1, y2; 1). (8)

The wave functions evaluated at the different fixed points ζI : (y1 = 0, y2 = 0), ζPS : (y1 =

1/2, y2 = 0), ζGG : (y1 = 0, y2 = 1/2), ζfl : (y1 = 1/2, y2 = 1/2) are given in Table II.

The Yukawa interactions arise at the four fixed points in the model. Considering the

unbroken symmetries and the corresponding matter multiplets (see Table I) at the different

fixed points, one obtains the following Yukawa superpotential from the lowest-dimensional

anomalies cancel. For the model [38] this was recently shown in [45]. We also neglect the possible effect

of zero modes localized at the fixed points, which may be needed to cancel fixed points anomalies.
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ζI ζPS ζGG ζfl

ψ
(α)
++ (1.086, 1.6818, 0.1454) (−1.086, 1.6818, 0.1454) (1.0864, 0.1454, 1.6818) (−1.0864, 0.1454, 1.6818)

ψ
(i)
+− (0.7654(1 + i), 1.6818) (−0.7654(1 + i), 1.6818) (0, 0) (0, 0)

ψ
(i)
−+ (0.4238, 1.9546) (0, 0) (1.9546, 0.4238) (0, 0)

ψ
(i)
−− (0.2749(1 + i), 1.9546) (0, 0) (0, 0) (1.3819(1− i), 0.3887i)

χ
(i)
++ (1.4195, 0.5880) (1.4195,−0.5880) (0.5880, 1.4195) (0.5880,−1.4195)

χ
(1)
+− 1.4089 1.4089 0 0

χ
(1)
−+ 1.4089 0 1.4089 0

χ
(1)
−− 1.2920 0 0 1.2920i

TABLE II. Wave functions at different fixed points for one flux quantum N = 1. ψ(α), α = 1, 2, 3,

and ψ(i), i = 1, 2, are mode functions of the bulk field ψ with q = 2; χ(i), i = 1, 2, and χ(1) are

mode functions of the bulk field χ with q = 1.

operators:2

WY = δI

[(
1

2
yI
ua ψψ + yI

ub ψχ+
1

2
yI
uc χχ

)
H1

+

(
1

2
yI
da ψψ + yI

db ψχ+
1

2
yI
dc χχ

)
H2

+

(
1

2
yI
na ψψ + yI

nb ψχ+
1

2
yI
nc χχ

)
ΨcΨc

]
+ δPS

(
1

2
yPS
na 4∗ψ4∗ψ + yPS

nb 4∗ψ4∗χ +
1

2
yPS
nc 4∗χ4∗χ

)
FF

+ δGG

(
1

2
yGG
ua 10ψ10ψH5 + yGG

db 10ψ5∗χH5∗ + yGG
νc 5∗χ1χH5 +

1

2
yGG
nc 1χ1χNN

)
+ δfl

(
yfl
ea5̃
∗
ψ1̃ψH5̃ + yfl

ub5̃
∗
ψ1̃0χH5̃∗ +

1

2
yfl
dc1̃0χ1̃0χH5̃ +

1

2
yfl
nc1̃0χ1̃0χT̃

∗T̃ ∗
)
, (9)

where 1ψ = nc and 1̃χ = ec. In addition to the above, the mixing between the ψ, χ and ψc,

χc at various fixed points can be written as3

Wmix =
∑

p=I,PS,GG,fl

δp (µpaψ
cψ + µpbψ

cχ+ µpcχ
cχ+ µpdχ

cψ) . (10)

For simplicity, we assume universal mass terms at fixed points and set µI
i = µPS

i = µGG
i =

µfl
i ≡ µi for i = a, b, c, d.

2 The magnetic flux generates a Stueckelberg mass term for the U(1) vector boson [46]. By means of the

corresponding axion the Yukawa couplings can be made invariant w.r.t. the U(1) symmetry.
3 Note that the structure of the mixing terms is considerably simpler than the one found in [42]. This is

due to the fact that no mixings with colour triplets from bulk 10-plets have to be taken into account to

obtain satisfactory flavour mixings.
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After the electroweak symmetry breaking the mass Lagrangian for up-type quarks ob-

tained from Eqs. (9),(10) can be written as

−Lup
m = vu

[ ∑
p=I,GG

ypua (ψ
(i)
−+ψ

(α)
++)|p uiucα + yI

ub (ψ
(i)
−+χ

(1)
+−)|I uiuc4

+
∑
p=I,fl

ypub (χ
(1)
−−ψ

(α)
++)|p u3u

c
α + yI

uc (χ
(1)
−−χ

(1)
+−)|I u3u

c
4

]
+

∑
p=I,PS,GG,fl

µa ψ
(α)
++|p uucα +

∑
p=I,PS

µb χ
(1)
+−|p uuc4 + h.c. , (11)

where i, j = 1, 2 and α = 1, 2, 3. The mass Lagrangian for the down-type quarks can be

obtained from Eq. (9) in the same way. We obtain

−Ldown
m = vd

[
yI
da (ψ

(i)
−+ψ

(j)
+−)|I didcj +

∑
p=I,GG

ypdb (ψ
(i)
−+χ

(j)
++)|p didcj+2

+ yI
db (χ

(1)
−−ψ

(i)
+−)|I d3d

c
i +

∑
p=I,fl

ypdc (χ
(1)
−−χ

(j)
++)|p d3d

c
j+2

]
+
∑
p=I,PS

µd ψ
(i)
+−|p ddci +

∑
p=I,PS,GG,fl

µc χ
(j)
++|p ddcj+2 + h.c. . (12)

Similarly, the charged lepton mass terms are given by

−Lcl
m = vd

[∑
p=I,fl

ypea (ψ
(i)
−−ψ

(α)
++)|p eiecα + yI

eb (ψ
(i)
−−χ

(1)
+−)|I eiec4

+
∑

p=I,GG

ypeb (χ
(1)
−+ψ

(α)
++)|p e3e

c
α + yI

ec (χ
(1)
−+χ

(1)
+−)|I e3e

c
4

]
+

∑
p=I,PS,GG,fl

µa ψ
(α)
++|p eecα +

∑
p=I,PS

µb χ
(1)
+−|p eec4 + h.c. , (13)

where yI
ea = yI

da, y
I
eb = yI

db, y
I
ec = yI

dc and yGG
eb = yGG

db . For the Dirac-type neutrino mass

terms one obtains from Eq. (9)

−LDirac
m = vu

[
yI
νa (ψ

(i)
−−ψ

(j)
+−)|I νincj +

∑
p=I,fl

ypνb (ψ
(i)
−−χ

(j)
++)|p νincj+2

+ yI
νb (χ

(1)
−+ψ

(i)
+−)|I ν3n

c
i +

∑
p=I,GG

ypνc (χ
(1)
−+χ

(j)
++)|p ν3n

c
j+2

]
+

∑
p=I,PS,GG,fl

µc χ
(j)
++|p nncj+2 +

∑
p=I,PS

µd ψ
(i)
+−|p nnci + h.c. , (14)

where yI
νa = yI

ua, y
I
νb = yI

ub, y
I
νc = yI

uc and yfl
νb = yfl

ub. Note that the mass mixing terms µa
and µb decouple one linear combination of ucα, u

c
4 and ecα, e

c
4 from the low energy effective

theory whereas µc and µd decouple one linear combination of dci , d
c
i+2.
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The two mass mixing terms in the Dirac neutrino mass matrix for n, nci and n, nci+2 are

comparable to the large Majorana mass terms for nci and nci+2. From Eq. (9) one obtains for

the Majorana mass terms generated by the B − L breaking VEV vB−L = 〈Ψc〉:

−LNm =
v2
B−L

MP

(
1

2

∑
p=I,PS

ypna (ψ
(i)
+−ψ

(j)
+−)|p ncincj +

∑
p=I,PS

ypnb (ψ
(i)
+−χ

(j)
++)|p ncincj+2

+
1

2

∑
p=I,PS,GG,fl

ypnc (χ
(i)
++χ

(j)
++)|p nci+2n

c
j+2

)
+ h.c. . (15)

Here MP = 2×1017 GeV is the reduced 6D Planck scale. The eigenvalues of the correspond-

ing 4×4 matrix Mn are O(v2
B−L/MP ). Together, Eqs. (14),(15) yield an 8×8 neutrino mass

matrix,

Mν,n =

 03×3 vu(YD)3×4 03×1

vu(Y
T
D )4×3 (Mn)4×4 (µTD)4×1

01×3 (µD)1×4 0

 , (16)

where vu(YD)3×4 connects νi, ν3 with nci , n
c
i+2, and µD connects n with nci , n

c
i+2. We denote

the lower right 5 × 5 block of the matrix by MN , which has 5 Majorana mass eigenstates.

MD = (vu(YD)3×4, 03×1) is a 3 × 5 Dirac neutrino mass matrix. Integrating out the five

heavy Majorana neutrinos one obtains the seesaw formula for the 3× 3 light neutrino mass

matrix,

Mν = −MDM
−1
N MT

D , (17)

from which we can extract the relevant neutrino observables.

The above mass matrices contain the complete information about the flavour spectrum of

quarks and leptons. In the following section, we shall study in detail the viability of Eqs. (11)-

(17) in reproducing the experimentally observed fermion spectrum and the predictions for

neutrino masses and the baryon asymmetry via leptogenesis [47].

It is tempting to speculate that a fit of quark and lepton mass matrices with the ex-

pressions in Eqs. (11)-(17) is straightforward, given the large number of free parameters.

However, this is not the case since the flavour structure of the matrices is determined by

the wave function profiles, with matrix elements of O(1), which naively is at variance with

hierarchical quark and charged lepton masses. In fact, in the model [42], which has only one

bulk 16-plet, a successful fit turned out to be impossible, despite many parameters. One

quark-lepton generation always remained massless. The reason is, that before mass mixings,

the mass matrices are generically rank-one. In addition, there are relations between Yukawa

couplings, which reflect the different unbroken GUT groups at the different fixed points. For

example, at the SO(10) fixed point there are several relations, (see Eqs. (11)-(14))

yI
ea = yI

da , yI
eb = yI

db , yI
ec = yI

dc , yI
νa = yI

ua , yI
νb = yI

ub , yI
νc = yI

uc , (18)

and at the Georgi-Glashow and flipped SU(5) fixed points one has

yGG
eb = yGG

db , yfl
νb = yfl

ub . (19)

9



Note that the SO(10) relation for yI
νa, y

I
νb and yI

νc imply that B−L has to be broken at the

GUT scale in order to generate viable mass scale for the SM neutrinos. Considering these

interrelationships between the quark and lepton sectors, it is not guaranteed that one can

correctly reproduce all the observables using Eqs. (11)-(17) despite of having substantial

number of parameters.

The magnetic flux is quantized in units of the inverse volume V −1
2 of the compact dimen-

sions. This leads to scalar quark and lepton masses of GUT scale size [41],

m2
q̃ = m2

l̃
∼ 4π

V2

∼ (1015 GeV)2 . (20)

An analysis of supersymmetry breaking and moduli stabilisation shows that also gravitino

and gauginos are heavy (see [42, 48]),

mg̃ ∼ mW̃ ∼ mB̃ ∼ m3/2 ∼ 1014 GeV . (21)

One is therefore left with an extension of the Standard Model where, depending on radiative

corrections, only two Higgs doublets and higgsinos can be light. It is interesting that such a

model can be consistent with gauge coupling unification, which imposes constraints on tan β

and the Higgs boson masses [49].

The presented model assumes that all the quarks and leptons arise as zero modes of bulk

fields, caused by magnetic flux. This is the standard picture of flux compactifications in field

and string theory. Of course, in principle there could also be “twisted sectors”, i.e. matter

localized at fixed points. Matter from bulk fields and twisted sectors has previously been

considered in orbifold GUTs (see, for example, [50]) and heterotic string compactifications

(see, for example, [51]). However, in all these models magnetic flux has not been included.

An analysis of flux compactifications containing twisted sectors remains a challenging ques-

tion for further research.

III. NUMERICAL ANALYSIS OF FLAVOUR SPECTRUM

As described in the previous section, Eqs. (11)-(17) determine the masses and mixing

parameters of the SM fermions. In order to check whether the model correctly describes the

known fermion spectrum, we perform a χ2 test. For this we construct a χ2 function

χ2 =
n∑
i=1

(
Oth
i (x1, x2, ..., xm)−Oexp

i

σexp
i

)2

, (22)

where Oth
i (x1, x2, ..., xm) are the observables estimated from Eqs. (11) - (17). They depend

on the various parameters of the model denoted as xj. The Oexp
i are the experimentally

measured values of the corresponding observables and σexp
i are the standard deviations. As

of now, 18 of these observables are directly measured in various experiments. They include

9 charged fermion masses, 2 neutrino mass differences, 3 mixing angles and a phase in the
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CKM or quark mixing matrix and 3 mixing angles in the PMNS or lepton mixing matrix

[52]. There also exists preliminary and indirect information about the Dirac CP phase in

the lepton sector through global fits of neutrino oscillation data [53–55].

The spectrum computed from Eqs. (11)-(17) holds at the GUT scale. We therefore choose

the GUT scale extrapolated values of the various observables as Oexp
i for consistency. The

flux compactification also breaks supersymmetry and leads to a two-Higgs-doublet model

(2HDM) of type-II below the GUT scale [38]4. For this reason, we use the GUT scale values

of charged fermion masses extrapolated in 2HDM with vu/vd = tan β = 10 from the latest

analysis [56] as an example set of data for our analysis. The effects of the renormalization

group equations (RGE) are known to be very small in the case of the CKM parameters,

and therefore we use their low scale values from [52]. The RGE effects are small also in

case of neutrino masses and mixing angles if the light neutrino masses are hierarchical and

follow normal ordering. Therefore we use the low scale values of solar and atmospheric

mass squared differences and leptonic mixing angles from the recent global fit of neutrino

oscillation data performed in [53]. In order to account for RGE effects, various threshold

corrections and uncertainties due to neglecting next-to-leading order corrections in the the-

oretical estimations of flavour observables, we adopt a conservative approach and consider

30% standard deviation in the masses of light quarks (up, down and strange) and electron

and 10% standard deviation in the remaining quantities instead of using the extrapolated

experimental values of standard deviations in Eq. (22). Further, we assume normal ordering

for the neutrino mass spectrum. The various Oexp
i we use are listed in the third column of

Table III.

The details of our procedure of extracting physical observables from Eqs. (11)-(17) are

described in Appendix A. For an estimation of Oth
i in the case of charged fermions, we

first integrate out the heavy vectorlike states and obtain effective 3 × 3 matrices for each

flavour. In case of neutrinos, 5 Weyl fermions, namely n in Eq. (14) and nci , n
c
i+2, i = 1, 2

in Eqs. (15),(17) form a 5× 5 Majorana mass matrix MN with GUT scale eigenvalues. The

mass matrix of three light neutrinos is then given by the seesaw mass formula Eq. (17).

The various fermion masses and the CKM and PMNS matrices are obtained using the

diagonalization procedure describe in the Appendix A. The elements of the CKM matrix

are denoted as Vij while we use the PDG [52] convention for the parametrization of the

PMNS matrix to represent its elements in terms of the mixing angles θij.

The function χ2 is numerically minimized in order to check the viability of the model in

different cases. The model contains a large number of free parameters (20 complex couplings

in Eq. (9), 4 real mass parameters in Eq. (10) and a real VEV vB−L). For simplicity, we

first assume that all couplings in Eq. (9) are real. This leads to m = 25 real parameters

to account for n = 19 observed quantities. We the find that one can correctly reproduce

the entire fermion spectrum with vanishing leptonic Dirac CP phase. The reason for this

can be understood as follows. In case of real couplings in Eq. (9), the CP violation in the

quark and lepton sector arise entirely from the complex profile factors given in Table II. By

4 This feature automatically suppresses the contribution of dimension-5 operators in proton decay.
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choosing an appropriate basis, it can be shown that the CP violation in the lepton sector

due to the profile factors can completely be rotated away while the same cannot be done for

the quarks. It turns out that the model can still successfully account for the observed CP

violation in the quark sector while it leads to a CP conserving lepton sector.

The recent T2K data [57] and the global fits of neutrino oscillation data show a mild

preference for maximal Dirac CP violation, sin δMNS ∼ −1. Moreover, in order to account

for the observed baryon asymmetry of the universe through leptogenesis, the model would

require CP phases in the lepton sector. Motivated by this, we shall consider more general

Yukawa couplings in Eq. (9). Since CP violation in the quark sector is already explained

without complex couplings, we consider the minimal case in which only the Yukawa couplings

of SM singlet fermions are complex, i.e. ypna, y
p
nb, y

p
nc with p = I,PS and yGG

nc , y
fl
nc. This

introduces 8 new parameters in the model. In the following, we discuss two different χ2 fits

obtained for this case.

A. Predicting neutrino masses and baryon asymmetry

For the above choice of couplings the χ2 function includes n = 19 observables as functions

of m = 33 real parameters. We minimize χ2 numerically in order to find solutions for

the parameters which can reproduce the data. We find a very good fit corresponding to

χ2 = 0.5 at the minimum. The results of this fit are listed in Table III. It is remarkable

that all observables are fitted to their experimental values with very small deviations. The

maximum deviation is found in the strange quark mass which is still smaller than the allowed

30% deviation from its experimental value extrapolated at the GUT scale. The fitted values

of parameters are listed in Appendix B.

At the bottom of Table III we show predictions for various quantities that can be es-

timated from the fitted values of the parameters. These include the Majorana phases

(α21, α31), the mass of the lightest SM neutrino mν1 , the effective neutrinoless double beta

decay mass mββ, the mass measured in standard beta decay mβ and the masses of the heavy

neutrinos MNα with α = 1, ..., 5. As a comparison with the subsequent fit will show, the

order of magnitude of the absolute neutrino mass scale, i.e. mν1 , is a robust prediction

whereas the remaining quantities can change significantly if the fit is slightly varied.

The baryon asymmetry generated by decays and inverse decays of the lightest singlet

neutrino can be written as [58, 59]

ηB = 0.96× 10−2 ε1 κf , (23)

where the CP asymmetry is given by [60]

ε1 = − 3

16π m̃1

Im
[
(h†Mνh

∗)11

]
, (24)

and washout processes are taken into account by the efficiency factor

κf ' 2× 10−2 ×
(

0.01 eV

m̃1

)1.1

. (25)
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Observables Oth Oexp Deviations (in %)

mu [GeV] 0.00048 0.00048 0

mc [GeV] 0.23 0.23 0

mt [GeV] 74.0 74.1 0

md [GeV] 0.0011 0.0011 0

ms [GeV] 0.018 0.021 -16

mb [GeV] 1.19 1.16 3

me [GeV] 0.00043 0.00044 -2

mµ [GeV] 0.093 0.093 0

mτ [GeV] 1.60 1.61 -1

m2
sol [eV2] 0.000075 0.000075 0

m2
atm [eV2] 0.0025 0.0025 0

Vus 0.22 0.23 -3

Vcb 0.041 0.041 0

Vub 0.0036 0.0036 0

sin2 θ12 0.31 0.31 0

sin2 θ23 0.44 0.44 0

sin2 θ13 0.022 0.022 0

JQCP 0.000031 0.000030 1

δMNS [o] 281 261 8

Predictions

α21 [o] 273 MN1 [GeV] 1.8× 1010

α31 [o] 215 MN2 [GeV] 6.3× 1010

mν1 [eV] 0.0043 MN3 [GeV] 1.1× 1011

mββ [eV] 0.0004 MN4 [GeV] 1.7× 1012

mβ [eV] 0.0098 MN5 [GeV] 2.7× 1013

ηB 5.2× 10−12

TABLE III. Fit without leptogenesis: the results obtained for the best fit corresponding to χ2 =

0.5 .

CP asymmetry and washout processes depend on the effective neutrino mass

m̃1 =
v2
u

MN1

(
h†h
)

11
. (26)

In Eqs. (24) and (26), h denotes the Dirac neutrino Yukawa matrix in a basis where

the mass matrix of the heavy neutrinos is diagonal, i.e. h = YDUN with UT
NMNUN =

diag.(MN1 , ...,MN5). In order to obtain the expression (24) for the CP asymmetry, a sum-

mation over lepton flavours in the final state has to be carried out.
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Using the parameters of the fit, one obtains for the baryon asymmetry generated from

N1, ηB ' 5.2 × 10−12, which is two orders of magnitude smaller than the observed value

ηB ' (6.10± 0.04)× 10−10 [52]. However, for the heavy Majorana masses given in Table III,

the baryon asymmetry calculated from Eqs. (23)-(25) can be modified by flavour effects of

charged leptons and other heavy neutrinos by more than an order of magnitude [61, 62]. To

obtain a realistic estimate of the baryon asymmetry, the flavour effects of charged leptons

and in particular the contributions of the heavier Majorana neutrinos have to be taken into

account.

From Eqs. (17) and (23)-(26) one can easily read off how a rescaling of couplings may

lead to a baryon asymmetry enlarged by two orders of magnitude. Rescaling h by a factor 10

while keeping the neutrino masses constant, i.e. rescaling MN by a factor 100, enhances ε1
by a factor 100, leaving m̃1 and κf unchanged. Hence, ηB is indeed enlarged by a factor 100.

It is not clear, however, whether such a rescaling can be made consistent with a description

of the quark sector since the Dirac neutrino Yukawa couplings and the up-quark Yukawa

couplings are related.

B. Predicting neutrino masses

We now perform a fit including the baryon asymmetry ηB in the χ2 function in order to

check the viability of model in reproducing the correct baryon asymmetry together with the

flavour spectrum. The number of input parameters are same as the before. The results are

displayed in Table IV. We obtain the minimal χ2 = 0.95 which is slightly higher compared

to the previous case but it can be still considered a very good fit. The resulting input

parameters are listed in Appendix B.

Compared to the first fit the Majorana phases α21 and α31 have changed by about 50%.

The order of magnitude of the light neutrino masses has remained the same whereas the

heavy neutrino masses have increase by two orders of magnitude, as expected. Correspond-

ingly, the B−L breaking VEV increases by a factor 10. The increase of the heavy Majorana

masses has the interesting effect that the baryon asymmetry is now indeed dominated by

decays and inverse decays of the Majorana neutrino N1. Since MN2 . . .MN5 ∼ 1014 GeV,

they are likely not to be produced from the thermal bath and therefore they have no ef-

fect on the baryon asymmetry. Moreover, the enhanced mass MN1 ∼ 1012 GeV now lies in

the unflavoured regime where flavour effects of charged leptons can be neglected. For the

effective light neutrino mass we find

m̃1 = 0.023 eV , (27)

lying precisely in the mass range √
m2

sol < m̃1 <
√
m2

atm . (28)

Hence, leptogenesis takes place in the preferred strong washout regime where the final asym-

metry is independent of initial conditions. For this value of m̃1 the heavy Majorana neutrino
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Observables Oth Oexp Deviations (in %)

mu [GeV] 0.00048 0.00048 0

mc [GeV] 0.23 0.23 0

mt [GeV] 74.1 74.1 0

md [GeV] 0.00096 0.00113 -15

ms [GeV] 0.018 0.021 -18

mb [GeV] 1.16 1.16 0

me [GeV] 0.00051 0.00044 16

mµ [GeV] 0.094 0.093 1

mτ [GeV] 1.61 1.61 0

m2
sol [eV2] 0.000075 0.000075 0

m2
atm [eV2] 0.0025 0.0025 0

Vus 0.23 0.23 0

Vcb 0.041 0.041 0

Vub 0.0035 0.0035 0

sin2 θ12 0.31 0.31 0

sin2 θ23 0.44 0.44 0

sin2 θ13 0.022 0.022 0

JQCP 0.000030 0.000030 0

δMNS [o] 279 261 7

ηB 6.1× 10−10 6.1× 10−10 0

Predictions

α21 [o] 129 MN1 [GeV] 1.3× 1012

α31 [o] 353 MN2 [GeV] 2.0× 1014

mν1 [eV] 0.0017 MN3 [GeV] 3.5× 1014

mββ [eV] 0.0026 MN4 [GeV] 3.7× 1014

mβ [eV] 0.0089 MN5 [GeV] 4.6× 1014

TABLE IV. Fit with leptogenesis: the results obtained for the best fit corresponding to χ2 = 0.95 .

mass has to satisfy the lower bound M1 > 1011GeV (see Fig. 10 in [58]), which is also satis-

fied. We conclude that the estimation of the baryon asymmetry and the fit to the fermion

spectrum are self-consistent.

It is instructive to reconstruct from the fitted values of the input parameters given in

Table V how the description of the flavour spectrum and baryogenesis is accomplished.

The mixing of the zero modes of ψ and χ via the heavy vectorlike multiplets is difficult to

disentangle but it is clear that largest up-type and down-type Yukawa couplings scale as one

15



expects for the heaviest generation,

yI
uc ∼ yfl

ub ∼
mt

mb

yI
dc

tan β
∼ mt

mb

yfl
dc

tan β
. (29)

Very important are also the relations at the SO(10) fixed point yI
ea = yI

da and yI
νc = yI

uc (see

Eqs. (13), (14)). The last one implies that B − L is broken at the GUT scale and therefore

mν1 ∼ 10−3 eV.

The Yukawa couplings vary over a range comparable to the range in the Standard Model.

This, together with mass mixings with vectorlike states and wave function values differing

by an order of magnitude leads to a successful fit of the measured observables.

IV. SUMMARY AND CONCLUSIONS

Six-dimensional supersymmetric theories with GUT gauge symmetries are an attrac-

tive intermediate step towards embedding the Standard Model in string theory. We have

analyzed the structure of Yukawa couplings and mass mixings that occur in an orbifold

compactification of a 6D SO(10) GUT model with Abelian magnetic flux. Three quark-

lepton generations are generated as zero modes of bulk 16-plets together with two Higgs

doublets obtained from two bulk 10-plets and further vectorlike split multiplets. Although

all quarks and leptons have the same origin, they have different wave functions in the com-

pact dimensions and therefore different couplings to the Higgs fields at the orbifold fixed

points.

The underlying GUT symmetry and the wave function profiles of the zero modes imply

a number of relations between the various Yukawa couplings. In a minimal setup the model

has 33 real parameters. It is non-trivial that a good fit is possible to quark and lepton

masses and mixings, CP violating phases and the baryon asymmetry via leptogenesis (20

observables). Due to SO(10) relations between up-quark and Dirac neutrino Yukawa cou-

plings, B − L is broken at the GUT scale. The smallest neutrino mass is predicted to be

mν1 ∼ 10−3 eV and also the neutrino masses mβ and mββ, to be measured in standard beta

decay and neutrinoless double beta decay, are very small. Heavy Majorana neutrino masses

are predicted in the range from 1012 GeV to 1014 GeV, and the effective light neutrino mass

is m̃1 = 0.023 eV. Hence, the baryon asymmetry is indeed dominated by decays and inverse

decays of the lightest GUT scale Majorana neutrino and flavour effects on the generated

asymmetry are negligible. It is remarkable that all light neutrino masses lie in the neutrino

mass window 10−3 eV < mνi < 0.1 eV where thermal leptogenesis works best.

The model presented in this paper addresses the question of flavour physics in flux com-

pactifications, but it is incomplete in several respects. First of all, the vacuum expectation

values 〈Hu〉, 〈Hd〉 and 〈N〉 correspond to flat directions of the model. Hence, the determi-

nation of the scales of electroweak breaking and B−L breaking require further interactions

and parameters which remain to be specified. Another important point concerns the effect

of the large mass mixing terms on the zero mode profiles (for a recent discussion, see [37]).
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In principle, one has to analyse numerically the differential equations for the bulk wave func-

tions including the mixing terms. This may lead to O(1) effects on the wave functions at

the fixed points. However, since the values of the wave functions at fixed points are already

O(1), we expect no qualitative change of our discussion, but rather a quantitative change

in the numerical values of the free parameters. These questions will be studied in detail in

a future analysis.

Our results provide a non-standard perspective on the flavour problem. Traditionally,

one searches for flavour symmetries to understand the hierarchies of fermion masses and

mixings. In the considered model with flux compactification the quarks and leptons of the

three generations have different internal wave functions and therefore different couplings

to the Higgs fields. As a consequence, there is no fundamental flavour symmetry. The

effective 6D theory still contains unexplained Yukawa couplings which may be related to

geometry and fluxes if the orbifold singularities are resolved in a ten-dimensional theory.

The presented model illustrates that in string compactifications flavour symmetries are not

fundamental, although they may occur as approximate accidental symmetries in specific

compactifications.
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APPENDIX

Appendix A: Extraction of masses and mixing parameters

In this appendix we discuss our method of extracting physical observables from Eqs. (11)-

(17). For the charged fermions, f = u, d, e, Eqs. (11), (12) and (13) can generally be written

as

−Lfm =
(
f1 f2 f3 f

)
Mf


f c1
f c2
f c3
f c4

+ h.c , (A1)
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where

Mf =

(
vf Yf
µfα

)
, (A2)

ve = vd = v cos β, vu = v sin β and v = 174 GeV. Yf is a 3× 4 Yukawa coupling matrix and

µfα, α = 1, ..., 4, are the GUT scale mass mixing terms. We then obtain a hermitian matrix

Hf ≡Mf M
†
f =

(
v2
f Yf Y

†
f vf (Yf )iαµ

∗
α

vf (Y ∗f )iαµα µ̃2
f

)
, (A3)

with µ̃2
f =

∑
α |µfα|2. One typically finds (Hf )44 � (Hf )i4 � (Hf )ij with i = 1, 2, 3. One

linear combination of f1, f2 and f3 forms together with f a Dirac fermion with GUT scale

mass and decouples from the low energy spectrum. After integrating it out, we obtain an

effective 3× 3 matrix H̃f for the three families of SM fermions,

(H̃f )ij = v2
f (YfY

†
f )ij −

1

µ̃2
f

(Hf )i4(H∗f )j4

= v2
f (YfY

†
f )ij − v2

f (Yf )iα(Y ∗f )jβ
µf∗α µ

f
β

µ̃2
f

. (A4)

In case of the three families of light neutrinos we similarly construct H̃ν = MνM
†
ν using

the 3×3 Majorana neutrino mass matrix Mν obtained from Eq. (17). The hermitian matrices

H̃f obtained for f = u, d, e, ν are then diagonalized using U †fH̃fUf = Diag.(m2
f1
,m2

f2
,m2

f3
)

where mfi are the physical masses of corresponding fermions. The CKM and PMNS mixing

matrices are constructed using V = U †uUd and U = U †l Uν , respectively.

The effective masses for standard beta decay and neutrinoless double beta decay denoted

by mβ and mββ, respectively, are obtained using

mβ =
√

(Mνf M
†
νf )ee and mββ = |(Mνf )ee| , (A5)

where Mνf is the neutrino mass matrix in the diagonal basis of charged leptons and is given

by Mνf = U †lMνU
∗
l .

Appendix B: Fitted values of parameters

We list here the values of input parameters of the model defined in Eqs. (9,10) obtained

from the two fits. The GUT scale mixing parameters µa,b,c,d are given in the unit of the

reduced Plank scale, MP = 2× 1017 GeV.
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