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Abstract: Non-supersymmetric Grand Unified SO(10) × U(1)PQ models have all the
ingredients to solve several fundamental problems of particle physics and cosmology – neu-
trino masses and mixing, baryogenesis, the non-observation of strong CP violation, dark
matter, inflation – in one stroke. The axion - the pseudo Nambu-Goldstone boson arising
from the spontaneous breaking of the U(1)PQ Peccei-Quinn symmetry - is the prime dark
matter candidate in this setup. We determine the axion mass and the low energy couplings
of the axion to the Standard Model particles, in terms of the relevant gauge symmetry
breaking scales. We work out the constraints imposed on the latter by gauge coupling
unification. We discuss the cosmological and phenomenological implications.
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1 Introduction

Observations in particle physics and cosmology have revealed five fundamental problems
which can not be solved by the field and particle content of the Standard Model (SM):

i) neutrino masses and mixing,

ii) the baryon asymmetry of the universe,

iii) the non-observation of strong CP violation,

iv) dark matter, and

v) inflation.

Employing a bottom-up approach, it has been shown recently that a minimal extension
model of the SM – dubbed Standard Model - Axion - Seesaw - Higgs portal inflation model
or SMASH – may explain these problems in one stroke [1, 2]. It consists in extending the
SM by three right-handed extra neutrinos, by an extra quark, and a complex scalar field,
which are charged under a new global U(1)PQ Peccei-Quinn (PQ) symmetry. The latter
is assumed to be broken spontaneously at an intermediate scale vσ ∼ 1011 GeV given by
the vacuum expectation value of the scalar field. The neutrino flavour oscillation puzzle is
solved by the well-known type-I seesaw mechanism [3–6]: the neutrino mass eigenstates
split into a heavy set comprising three states with masses proportional to vσ, composed
of mixtures of the new right-handed neutrinos, and a light set of three states with masses
inversely proportional to vσ, composed of mixtures of the SM left-handed neutrinos. The
extra quark and the excitation of the modulus of the new scalar field also get large masses
proportional to vσ, while the excitation of the phase of the new scalar field stays very light,
its mass being inversely proportional to vσ. Crucially, this phase field acquires a linear
coupling to the gluonic topological charge density from a loop correction due to the extra
quark. Correspondingly, it replaces the θ angle of QCD by a dynamical field and thus
solves the strong CP problem [7]. Its particle excitation can therefore be identified with the
axion [8, 9]. Loop effects involving gravitons induce non-minimal gravitational couplings
of the Higgs boson and of the new scalar field. These couplings make the scalar potential
energy in the Einstein frame convex and asymptotically flat at very large field values.
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Correspondingly, the modulus of the new scalar field or a mixture of it with the modulus
of the Higgs field can play the role of the inflaton. The baryon asymmetry is produced
via thermal leptogenesis [10]. Soon after reheating of the universe and breaking of the
U(1)PQ symmetry, the decays of the right-handed neutrinos produce a lepton asymmetry,
which is partly converted into a baryon asymmetry by sphaleron interactions before the
breaking of the electroweak symmetry. Finally, at temperatures around the QCD transition
between a quark-gluon and a hadron plasma phase, dark matter is produced in the form
of a condensate of extremely nonrelativistic axions [11–13]. To account for all of the cold
dark matter in the universe, the U(1)PQ symmetry breaking scale is required to be around
vσ ∼ 2 × 1011 GeV, corresponding an axion mass around 30µeV [1, 2, 14, 15]. Adding a
cosmological constant to account for the present acceleration of the universe, SMASH offers
a self-contained description of particle physics, from the electroweak scale to the Planck
scale, and of cosmology, from inflation until today.

It is an interesting question whether one can get a similar self-contained description
by exploiting a grand unified theory (GUT) extension of the SM: a GUT SMASH variant1.
In fact, it is well established that GUTs based on the gauge group SO(10) [17, 18] may
solve the fundamental problems i)-iv) discussed above exploiting the same mechanisms as
our bottom-up variant of SMASH [19–24]. In fact, the right-handed neutrinos and thus the
seesaw mechanism and the possibility of baryogenesis via thermal leptogenesis [25] occur
automatically in these models. Moreover, an axion suitable to solve the strong CP problem
and to account for the observed amount of dark matter can arise from the rich Higgs
sector of these models. An intermediate scale MI ∼ 1011 GeV (as required in order to have
axion dark matter) between the GUT scale and the electroweak scale may arise naturally
from the necessity of one or more intermediate gauge groups between the SM gauge group
and SO(10) to get gauge coupling unification without invoking TeV scale supersymmetry
[26–28]. Finally, the Higgs sector of these models necessary for the breaking of SO(10)

and its intermediate scale subgroups also provides candidates for the inflaton if they are
non-minimally coupled to gravity [29].

As a first step towards an SO(10) GUT SMASH model, in this paper we identify the
physical axion field and determine its low energy effective Lagrangian in a set of well-
motivated non-supersymmetric SO(10) × U(1)PQ models – a missing piece in the existing
literature. In our treatment we bridge the gap between GUT and low scales: we pay partic-
ular attention to low energy constraints, ensuring orthogonality of the physical axion with
respect to the gauge bosons of all the broken gauge groups, and we are able to identify the
global symmetry associated with the physical axion, given by a combination of the original
PQ symmetry and transformations in the Cartan subalgebra of SO(10). We provide cal-
culations of the domain-wall number for the physical axion –which match the expectations
from the simple UV symmetries– and we also explore how gauge coupling unification, pro-
ton decay, B-L, black hole superradiance and stellar cooling constraints affect the allowed
window of axion masses.

The paper is structured as follows. In Section 2 we revisit how a PQ symmetry can be

1For a recent first attempt in this direction exploiting a non-supersymmetric SU(5) setup see ref. [16].
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motivated in non-supersymmetric SO(10) models independently of the strong CP problem:
it forbids some terms in the Yukawa interactions responsible for the fermion masses and
their mixing, thereby crucially improving the economy and predictivity of the models. The
general construction of the low energy effective Lagrangian of the axion in theories with
multiple scalar fields is reviewed in Section 3. This formalism is then used in Section 4 to
work out the axion predictions for a number of promising SO(10) × U(1)PQ models. The
constraints imposed by gauge coupling unification are explored in Section 5. We summarise
and discuss the cosmological and phenomenological implications of our results in Section 6.

2 The case for a Peccei-Quinn symmetry

The SM matter content nicely fits in three generations of a 16-dimensional spinorial repre-
sentation 16F of SO(10), cf. Table 1. On the other hand, there are many possible Higgs
representations corresponding to various possible symmetry stages between SO(10) and
SU(3)C ⊗U(1)em, cf. Table 2. Group theory requires at least the following representations

SO(10) 4C2L2R 4C2L1R 3C2L1R1B−L 3C2L1Y

16F (4, 2, 1) (4, 2, 0)
(
3, 2, 0, 1

3

) (
3, 2, 1

6

)
:= q

(1, 2, 0,−1)
(
1, 2,−1

2

)
:= l

(4̄, 1, 2)
(
4̄, 1, 1

2

) (
3̄, 1, 1

2 ,−
1
3

) (
3̄, 1, 1

3

)
:= d(

1, 1, 1
2 , 1
)

(1, 1, 1) := e(
4̄, 1,−1

2

) (
3̄, 1,−1

2 ,−
1
3

) (
3̄, 1,−2

3

)
:= u(

1, 1,−1
2 , 1
)

(1, 1, 0) := n

Table 1. Decomposition of the fermion multiplets according to the various subgroups in our
breaking chains. All SM fermions have masses set by the Higgs mechanism, the heavy right handed
neutrinos acquire their mass at the BL breaking scale from the coupling to the 126H .

in order to achieve a full breaking of the rank five group SO(10) down to the rank 4 SM
group SU(3)× SU(2)× U(1):

• 16H or 126H : they reduce the rank by at least one unit, either leaving a rank four
SU(5) little group unbroken, or else breaking the SM group.

• 45H or 54H or 210H : they admit for rank five little groups, either SU(5) ⊗ U(1) or
different ones, like the Pati-Salam (PS) group SU(4) ⊗ SU(2) ⊗ SU(2) [30]. In the
latter case, the intersection of the little group with the SU(5) preserved by a 16H or
126H can give the SM gauge group.

We will exploit in our explicit models the 126H and the 210H representations. Since
16F × 16F = 10H + 120H + 126H , the most general Yukawa couplings involve at most three
possible Higgs representations,

LY = 16F
(
Y1010H + Y120120H + Y126126H

)
16F + h.c., (2.1)
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SO(10) 4C2L2R 4C2L1R 3C2L1R1B−L 3C2L1Y 3C1em VEV

10H (1, 2, 2) (1, 2, 1
2) (1, 2, 1

2 , 0) (1, 2, 1
2) (1, 0) =: Hu v10

u

(1, 2,−1
2) (1, 2,−1

2 , 0) (1, 2,−1
2) (1, 0) =: Hd v10

d

126H (10, 1, 3) (10, 1, 1) (1, 1, 1,−2) (1, 1, 0) (1, 0) := ∆R vR

(15, 2, 2) (15, 2, 1
2) (1, 2, 1

2 , 0) (1, 2, 1
2) (1, 0) := Σu v126

u

(15, 2,−1
2) (1, 2,−1

2 , 0) (1, 2,−1
2) (1, 0) := Σd v126

d

210H (1, 1, 1) (1, 1, 0) (1, 1, 0, 0) (1, 1, 0) (1, 0) := φ v210

Table 2. Decomposition of the scalar multiplets according to the various subgroups in our breaking
chains. We only display the multiplets which get nonzero vacuum expectation values (VEVs) in the
different models considered in the paper.

where Y10 and Y126 are complex symmetric matrices, while Y120 is complex antisymmetric.
It is then natural to ask: what is the minimal Higgs sector to reproduce the observed fermion
masses and mixings? Clearly, in order to get fermion mixing at all, one needs at least two
distinctive Higgs representations2. Out of the six remaining combinations, however, only
three turn out to give realistic fermion mass and mixing patterns: 10H+126H , 120H+126H ,
and 10H +120H (see for example [31, 32] and references therein). From these combinations,
the first two are phenomenologically preferred since the 126H is required for neutrino mass
generation via the seesaw mechanism. The first one is the most studied, in particular
because it is the one occurring in the minimal supersymmetric version of SO(10). We will
also exploit it in our PQ extensions of SO(10), as elaborated next.

First of all, it is important to note that the components of 10H can be chosen to be
either real or complex. In the non-supersymmetric case it is natural to assume a real 10H
representation. However, as pointed out in [22, 33], this is phenomenologically unacceptable,
because it predicts mt ∼ mb. In the alternative case in which the complex conjugate fields
differ from the original ones by some extra charge, 10H 6= 10∗H , both components are allowed
in the Yukawa Lagrangian,

LY = 16F

(
Y1010H + Ỹ1010∗H + Y126126H

)
16F + h.c. , (2.2)

since they transform in the same way under SO(10). The representations in (2.2) decompose
under the Pati-Salam group SU(4)C ⊗ SU(2)L ⊗ SU(2)R as

16F = (4, 2, 1)⊕ (4, 1, 2) ,

10H = (1, 2, 2)⊕ (6, 1, 1) ,

126H = (6, 1, 1)⊕ (10, 1, 3)⊕ (10, 3, 1)⊕ (15, 2, 2) .

(2.3)

(Throughout the paper we will consider decompositions of representations under the PS
gauge group by default). From the above it follows that the fields which can develop a VEV

2A single Yukawa matrix can always be diagonalised by rotating the 16F fields.
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in which the SM subgroup SU(3)C⊗SU(2)L⊗U(1)Y is only broken by SU(2)L doublets, as
in the standard Higgs mechanism, are (1, 2, 2), (10, 3, 1), (10, 1, 3), and (15, 2, 2): as seen in
table 2, the above PS representations include singlets under SU(3)C ⊗ U(1)em. We denote
the associated VEVs as

vL ≡
〈
(10, 3, 1)126

〉
, vR ≡ 〈(10, 1, 3)126〉 ,

v10
u,d ≡

〈
(1, 2, 2)10

u,d

〉
, v126

u,d ≡
〈
(15, 2, 2)126

u,d

〉
.

(2.4)

The (1, 2, 2) bi-doublet can be further decomposed under the SM gauge group, yielding
(1, 2, 2)PS = [(1, 2,+1

2)SM ≡ Hu] ⊕ [(1, 2,−1
2)SM ≡ Hd], where the suffixes PS and SM

refer to decompositions of representations under the Pati-Salam and SM gauge groups,
respectively. Now if 10H = 10∗H we have H∗u = Hd as in the SM, while if 10H 6= 10∗H then
H∗u 6= Hd as in the MSSM or in the Two Higgs Doublet Model (2HDM).

As can be seen in table 1, each generation of SM fermions in the 16F of SO(10)

transforms as (4, 2, 1) and (4, 1, 2) under SU(4)C⊗SU(2)L⊗SU(2)R. The SM colour group
SU(3)C is embedded within the SU(4) of the PS group, SU(4)C ⊃ SU(3)C ⊗ U(1)B−L,
while SM hypercharge is identified as

Y = U(1)R +
1

2
U(1)B−L, (2.5)

with U(1)R being the usual T 3 generator within the Lie algebra of SU(2)R. Given this
embedding of the SM fermion families into PS representations, we can express the fermion
mass matrices arising from the interactions in (2.2) after electroweak symmetry breaking
as

Mu = Y10v
10
u + Ỹ10v

10∗
d + Y126v

126
u ,

Md = Y10v
10
d + Ỹ10v

10∗
u + Y126v

126
d ,

Me = Y10v
10
d + Ỹ10v

10∗
u − 3Y126v

126
d , (2.6)

MD = Y10v
10
u + Ỹ10v

10∗
d − 3Y126v

126
u ,

MR = Y126vR ,

ML = Y126vL .

Here, MD, MR and ML enter the neutrino mass matrix defined on the symmetric basis
(ν, n)3, (

ML MD

MT
D MR

)
. (2.7)

The three different Yukawa coupling matrices in (2.6) weaken the predictive power of
the model. This motivated the authors of Ref. [22] to impose a PQ symmetry [7], under
which the fields transform as

16F → 16F e
iα,

10H → 10He
−2iα, (2.8)

126H → 126He
−2iα ,

3In the notation of table 1, ν denotes the left-handed neutrinos included in the lepton doublets l, and n
designates the right-handed neutrinos.
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which forbids the coupling Ỹ10 in (2.6) (see also Ref. [33]).
As mentioned above, the 126H alone breaks SO(10) to the experimentally disfavoured

SU(5) –or else it would also break the SM group– so that we have to introduce a third
Higgs representation to achieve a symmetry breaking pattern that arrives at the SM gauge
group at a scale above that of electroweak symmetry breaking. We exploit in this paper
the 210H representation, which has the following PS decomposition:

210H = (1, 1, 1)⊕ (15, 1, 3)⊕ (15, 1, 1)⊕ (15, 3, 1)⊕ (10, 2, 2)⊕ (10, 2, 2)⊕ (6, 2, 2) . (2.9)

The former allows for a VEV that preserves the SM gauge group,

v210 ≡ 〈(1, 1, 1)210〉 . (2.10)

We will further assume vL = 0 (see equation (2.4)), which implies ML = 0 in the mass
matrices in equations (2.6) and (2.7), thus giving a type-I seesaw, and yielding the following
two-step breaking chain:

SO(10)
v210−210H−→ 4C 2L 2R

vR−126H−→ 3C 2L 1Y
v10,126u,d −10H
−→ 3C 1em . (2.11)

The symmetry breaking VEVs are constrained by the requirement of gauge coupling uni-
fication and can be calculated from the renormalisation group running of the coupling
constants, see Section 5. vR and v210 are further constrained by proton decay and lepton-
number violation bounds, but the former still allow for excellent fits to the fermion masses
and mixings, as was seen in [23, 34, 35] and references therein. For a recent analysis of
unification with intermediate left-right groups, see [36].

3 Axion generalities

As argued before, within the SO(10) framework one can use predictivity to motivate a
global PQ symmetry under which the fermions are charged, see (2.8). The chiral fermionic
content of the theory ensures that the symmetry is anomalous under the GUT group, and
by extension under the subgroups that survive at low energies, such as SU(3)C . This allows
to embed the axion solution of the strong CP problem in the GUT theory, as such solution
requires a spontaneously broken global U(1) symmetry with an SU(3)C anomaly. Moreover,
the resulting axion excitation can play the role of dark matter.

In this section we will review generalities of axion fields in models with multiple scalar
fields. We will first introduce the strong CP problem and its axionic solution, followed by
a review on how the axion excitation is identified in terms of the VEVs and PQ charges of
the fields, and how its effective Lagrangian is determined. Then we will elaborate on the
orthogonality conditions of the physical axion –which imply that the global U(1) symmetry
of the axion is not simply given by the PQ symmetry in (2.8) – and on the axion domain-wall
number.
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3.1 The guts of the strong CP problem

Gauge theories with field strength Fµν = F aµνT
a = ∂µAν − ∂νAµ − ig[Aµ, Aν ] admit renor-

malisable, CP-violating interactions of the form

Lθ = T̄r
g2θ

16π2
F̃µνF

µν = T̄r
g2θ

32π2
εµνρσFµνFρσ, (3.1)

where εµνρσ is the Levi-Civita antisymmetric tensor with ε1234 = 1, and T̄r denotes a
normalised trace over an arbitrary representation ρ of the Lie algebra. Denoting the Dynkin
index of ρ as S(ρ) –defined from the identity Trρρ(Tm)ρ(Tn) = S(ρ)δmn– one has

T̄r ≡ 1

2S(ρ)
Trρ, (3.2)

which implies T̄rT aT b = 1/2 δab.
The theta term Lθ can be seen to be total derivative, so that its contribution to the

action only picks a surface term and becomes topological. In fact this contribution is
proportional to the integer topological charge ntop of a given gauge field configuration4:

Sθ =

∫
d4xLθ = θ ntop. (3.3)

The coupling θ is known as the “θ angle”, because physics is invariant under shifts θ →
θ + 2nπ, n ∈ Z. This follows simply from the fact that the partition function of the theory
involves the functional integral (after rotation to Euclidean time):

Z =

∞∑
ntop=−∞

∫
[dϕ] exp [−SE [ϕ] + intopθ] , (3.4)

(where ϕ is a shorthand for all the fields in the theory), which is invariant under the above
shifts of θ.

Crucially, Lθ is of the same form as the chiral anomaly. Indeed, let’s assume that
the gauge theory has Weyl fermions ψa in representations T a of a non-Abelian group.
Let’s further assume that the fermions have mass-terms (which could be field-dependent)
L ⊃ −1/2Mabψaψb + c.c. . Then under chiral transformations

ψa → eiαψa, (3.5)

the associated chiral current Jµ is anomalous [37–39],

∂µJ
µ = iMabψaψb + c.c.+

2g2
∑

a S(ρa)

16π2
T̄r F̃µνF

µν , (3.6)

where S(ρa) is the Dynkin index of the representation ρa associated with the Weyl fermion
ψa.

4In Euclidean space, ntop can be interpreted as a Pontryagin index, while in Minkowski space in the so
called “topological gauge”, with A0 = 0 and Ai → 0 for |~x| → ∞, ntop becomes equal to the difference of
the Chern-Simons numbers at t =∞ and t = −∞.
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Under a chiral transformation the quantum effective action Γ transforms as5

δαΓ = −α
∫
d4x∂µJ

µ = −
∫
d4x iα2Mab〈ψaψb〉+ c.c.−Nαntop, (3.7)

with

N ≡ 2
∑
a

S(ρa). (3.8)

(3.6) is equivalent to a simultaneous transformation of Mab and θ, θ → θ − Nα, Mab →
e2iαMab. This means that the CP-violating phase θ is unphysical, as it is not invariant
under field redefinitions such as chiral rotations. In fact, if there is at least one massless
fermion charged under the gauge group, one can always rotate θ away without affecting the
rest of the parameters by just rephasing the massless field. Similarly, if there is at least one
mass term pairing a singlet fermion with a fermion charged under the gauge group (which
requires a Yukawa interaction in order to preserve gauge invariance) θ is again unphysical:
one may change θ without altering M by compensating rephasings of the charged and
singlet fermion, the charged fermion’s rephasing inducing a change of θ and M , and the
transformation of the singlet leaving θ unaffected but driving back M to its original form.
However, if there are no massless charged fermions and the mass terms only couple charged
fermions among themselves (so that a change in Arg detM necessarily implies a change in
θ), then the combination

θphys = θ +
N
2N

Arg detM, (3.9)

where N is the number of Weyl fermions in nontrivial representations, and N is given in
(3.8), is a chiral invariant that will show-up in CP-violating observables.

In the SM one could in principle have θ angles for all gauge groups. The U(1)Y angle
θ1 cannot have any effect, as there are no finite-action hypercharge field configurations
with nonzero topological charge. Since the Weyl fermions charged under SU(2)L only
get masses by coupling to the right-handed SU(2)L singlets, the arguments given before
equation (3.9) imply that the corresponding θ2 angle is unobservable.6 However, for the
strong interactions there is a physical θ angle, which would contribute to flavor conserving
CP-violating observables such as the neutron dipole moment. Current experimental bounds,
however, imply |θphys| < 10−10 [43], from which the strong CP problem follows: why is θphys

so small?
In a GUT completion of the SM, the SU(3)C θ term can only come from a GUT θ term

as in equation (3.1), modulo rotations of fermion fields. The SM θSM term can be related

5This can be derived using path integral methods when accounting for the non-invariance of the fermionic
measure [40], or, within dimensional regularisation, when accounting for the non-anticommuting character
of the regularised chirality operator [41].

6The fact that θ2 can be driven to zero without affecting fermion masses –but changing the unobservable
θ1– can be also understood in terms of B and L symmetries [42], as they are also associated with opposite
rephasings of left and right-handed Weyl spinors.
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to the GUT θGUT by matching physical invariants in the GUT and its low-energy effective
description (SM), so that

θphys = θSM
3 +

N SM
3

2N3
Arg detMSM

3 = θGUT +
NGUT

2NGUT
Arg detMGUT, (3.10)

whereN SM
3 , N3,M

SM
3 refer to the SMWeyl fermions charged under SU(3)C . Since Arg detM

is a sum of phases over the different eigenvalues, it is clear that θSM is equal to θGUT plus a
combination of phases associated with the heavy fermion states. In any case, the strong CP
problem has again a reflection in the GUT theory, as again the physical invariant combina-
tion to the right of (3.10) appears to be tuned to a small value. Solving the CP problem
at the level of the GUT by explaining the smallness of θphys guarantees a solution of the
strong CP problem, given that θphys has to match in both the UV and IR descriptions.

3.2 The axion solution

The axion solution relies on replacing the chiral invariant θphys with a combination involving
a dynamical field. Once this is achieved, the CP-problem is solved if it can be shown that
the now dynamical θphys(x) gets a potential with a minimum at θphys(x) = 0. Given
(3.9), having a dynamical θphys is suggestive of a field-dependent Arg detM , which can
be achieved if the mass-matrices depend on some complex scalar fields with dynamical
phases. With part of the mass-matrices becoming field-dependent, one can combine chiral
rotations of the fermions with a rephasing of the complex scalars to define a classical U(1)

symmetry of the theory, which, being chiral, becomes anomalous at the quantum level. In
order to avoid massless fermions and have a well-defined Arg detM , the complex scalars
must get VEVs. Thus, as anticipated, the axion solution involves an anomalous chiral
U(1) symmetry acting on fermions coupled to scalars –the PQ symmetry– which must be
spontaneously broken. Then θphys will involve a combination of phases of the scalars which
contains the pseudo-Goldstone excitation A(x) corresponding to the spontaneously broken
U(1) symmetry, i.e. the axion. Indeed, at low energies, when the massive excitations of
the phases are decoupled, one can recover –as will be shown next– an effective Lagrangian
involving the axion in which θ always enters in a combination

θ̄ ≡ θ + N̂A/fPQ, (3.11)

for some dimensionful scale fPQ and constant N̂ , so that θphys = θ+N/(2N)Arg detM ′+

N̂A/fPQ, where detM ′ designates the determinant restricted to the fermions which are not
charged under the global U(1) symmetry.

The last ingredient of the solution to the strong CP problem is the fact that nonpertur-
bative QCD effects generate a nonzero mass for θphys. As said before, at low energies one
predicts that the QCD θ term will involve the effective combination θ̄ = θ+N̂A/fPQ, which
coincides with θphys if the quark masses are chosen to be real. Since the partition function
of a theory is related to the vacuum energy density, one can obtain an effective potential
for θ̄ from the Euclidean partition function of QCD with real masses, supplemented with
the topological term Lθ̄ (see (3.1)):

ZQCD[θ̄] = exp
[
−V Veff(θ̄)

]
, (3.12)
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where V designates the four-dimensional Euclidean volume. The effective potential can be
shown to have a minimum at θ̄ = 0, because for vector-like fermions Z can be written as a
path integral involving positive functions times a θ̄-dependent phase factor [44]. Then the
axion solves indeed the CP problem, and the axion mass is given by

m2
A =

N̂2

f2
PQ

d2Veff(θ̄)

dθ̄2

∣∣∣
θ̄=0
≡ 1

f2
A

d2Veff(θ̄)

dθ̄2

∣∣∣
θ̄=0
≡ χ

f2
A

. (3.13)

Above, we defined the axion decay constant fA as

fA ≡
fPQ

N̂
, (3.14)

with N̂ appearing in the combination θ in equation (3.11) that enters the axion effective
Lagrangian. In (3.13), χ = d2Veff(θ̄)/dθ̄2|θ̄=0 is the topological susceptibility – the variance
of the topological charge distribution divided by the four-dimensional Euclidean volume,
χ = 〈n2

top〉/V . It can be calculated from chiral perturbation theory or with lattice tech-
niques, with recent agreement [14, 45]. Within the error of the NLO calculation of [45], one
has

mA = 57.0(7)

(
1011GeV

fA

)
µeV. (3.15)

3.3 Constructing the axion and its effective Lagrangian

Next we may explicitly construct the axion field and its interactions in a theory with Weyl
fermions ψa and complex scalars φi, and Ng gauge groups. We assume a PQ symmetry
under which the fermions and scalars have charges qa and qi, respectively, and which is
broken spontaneously by VEVs 〈ψi〉 = vi/

√
2. In the broken phase, we may parameterise

scalar excitations as

φj =
1√
2

(vj + ρj)e
iAj/vj . (3.16)

The spontaneous breaking of the global PQ symmetry implies the existence of a Goldstone
state A [46], the axion, which corresponds to the following excitation of the phases:

Ai =
qivi
fPQ

A+ orthogonal excitations, (3.17)

where fPQ is a dimensionful scale. Canonical normalisation of A –whose kinetic term follows
from applying (3.17) to the sum of kinetic terms of the complex scalars– implies

fPQ =

√∑
j

q2
j v

2
j . (3.18)

From (3.17) one may then derive

A =
1

fPQ

∑
i

qiviAi. (3.19)
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The effective Lagrangian for the axion can be obtained from the anomalous conservation
of the PQ current [47]. The latter is given by

Jµ =
∑
a

qaψ
†
aσ̄

µψa + i
∑
j

qj(∂µφ
†
jφj − φ

†
j∂µφj), (3.20)

and satisfies the anomaly equation

∂µJ
µ =

Ng∑
k=1

g2
kN̂k

16π2
T̄r F̃ kµνF

k,µν , N̂k = 2
∑
a

qaTk(ρa). (3.21)

Using (3.17) in (3.20), one has that at low-energies –when the heavier excitations of the
Ai are decoupled and can be ignored on the r.h.s of (3.17)– the anomaly equation (3.21)
becomes

fPQ�A+
∑
a

qa∂µ(ψ†aσ̄
µψa) =

Ng∑
k=1

g2N̂k

16π2
T̄r F̃ kµνF

k,µν . (3.22)

The latter is equivalent to the Euler-Lagrange equations of the following effective interaction
Lagrangian L[A]eff [47],

L[A]eff =
1

2
∂µA∂

µA+ ∂µA
∑
a

qa
fPQ

(ψ†aσ̄
µψa) +A

Ng∑
k=1

1

fA,k

g2
k

16π2
T̄r F̃ kµνF

k,µν , (3.23)

where

fA,k =
fPQ

N̂k

, (3.24)

with fPQ and N̂k determined from the VEVs and PQ charges as in equations (3.18) and
(3.21). As anticipated earlier, the θk parameter for a given group (see (3.1)) and the axion
enter the low-energy Lagrangian in the combination θk + 1/fA,kA.

The above effective interactions can also be recovered by rotating the scalar phases away
from the Yukawa couplings [48]. The PQ-invariant Yukawa couplings induce contributions
to the Lagrangian of the form

L ⊃ yiabφiψaψb + c.c. ⊃
yiabvi√

2
eiqiA/fPQψaψb + c.c. =

yiabvi√
2
e−i(qa+qb)A/fPQψaψb + c.c.,

(3.25)

where we used (3.17) and the fact that the PQ invariance of the above Yukawa coupling
demands qi + qa + qb = 0; for simplicity, we suppressed the internal indices for the different
representations of the gauge groups, and assumed the appropriate gauge-invariant contrac-
tions. The phase factors in (3.25) can be removed by field-dependent chiral rotations of the
fermions,

ψa → eiqaA/fPQψa. (3.26)
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After the previous rotations, the kinetic terms of the fermions pick extra contributions,
given –up to a minus sign– by the axion-fermion interactions in (3.23). Accounting for the
fact that the effective action picks up an anomalous term after chiral rotations, one gets the
axion-gauge boson interactions in (3.23), again up to a minus sign. The difference in sign
in the terms linear in the axion can be removed with a physically irrelevant redefinition
A→ −A, so that the results are equivalent.

It should be noted that the fermion rotations in (3.26) are not the only possibility
to eliminate the axion dependence in the Yukawas as in (3.25). One may make different
choices of fermionic rephasings that will give rise to different effective actions. However, as
these just differ by redefinitions of the phases of the fermion fields, they will be physically
equivalent. In this respect, one may wonder whether these alternative Lagrangians give
different bosonic interactions than the ones following from equations (3.23), (3.24), (3.18)
and (3.21); in particular, if the resulting value of fA,3C for the SU(3)C gauge group were to
be sensitive to the chosen rephasings, one would predict different axion masses (see (3.15)),
in contradiction with the expectation that physical quantities should remain invariant under
field redefinitions. Fortunately this is not the case, as is explicitly shown in Appendix A.
An important consequence from this is that fA,3C is fixed by the scalar PQ charges, as is
clear from the fact that one can always remove the phases in (3.25) by rotating a single
fermion per Yukawa interaction, with a phase fixed by the phase of the scalar field entering
the Yukawa coupling. An explicit formula for fA,3C in terms of the scalar PQ charges is
given in equation (A.5) of Appendix A.

All the SO(10) models considered here have the same couplings to neutral gauge bosons,
aside from variations in the scale fA ≡ fA,3C . This is not surprising, as the GUT symmetry
relates the different SM gauge groups [47]. Starting from the anomalous Ward identity of
PQphys in the full GUT theory, it follows that the effective Lagrangian of the axion must
contain axion-gauge boson interactions as in (3.23), but with a single gauge group SO(10):

L ⊃ A

fA,GUT

g2
GUT

16π2
T̄r

GUT
F̃GUT
µν FGUTµν . (3.27)

Then the effective Lagrangian in terms of the SM gauge bosons can be recovered from (3.27)
by selecting the contributions of the SM fields. Consider the definition of Tr in equation
(3.2) in terms of an arbitrary representation R (the division by S(R) ensures that the trace
gives a representation-independent result). Without loss of generality, we may pick the 10

of SO(10), which decomposes under SU(3)×SU(2)L × U(1)Y as in table 1:

10 =

(
3, 1,−1

3

)
SM

+

(
3̄, 1,

1

3

)
SM

+

(
1, 2,

1

2

)
SM

+

(
1, 2,−1

2

)
SM

. (3.28)

One has S(10) = 1, and using the orthogonality of the GUT generators belonging to
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different subgroups, we may write

T̄r
GUT

F̃GUT
µν FGUT,µν =

1

2
FGUT,a
µν FGUT bµν TrGUT

10 T aT b

⊃ 1

2
F̃ 3C ,a
µν F 3C bµν TrGUT

10 T a3CT
b
3C

+
1

2
F̃ 2L,a
µν F 2L bµν TrGUT

10 T a2LT
b
2L

+
1

2
F̃ YµνF

Y µν TrGUT
10 TY TY .

(3.29)
Using the decomposition in (3.28), and using TrT aT b = 1/2δab in the (anti)fundamental
representations of SU(N), one gets

A

fA,GUT

g2
GUT

16π2
T̄r

GUT
F̃GUT
µν FGUT,µν =

A

fA,GUT

αGUT

8π

(
F̃ 3C a
µν F 3Caµν + F̃ 2L a

µν F 2Laµν

+
5

3
F̃ YµνF

Y µν

)
⊃ A

fA,GUT

αGUT

8π
G̃aµνGaµν +

A

fA,GUT

αGUT sin2 θW
8π

8

3
F̃µνFµν .

(3.30)

At low energies αGUT renormalises differently in each term, and identifying αGUT → αs in
the QCD term, and αGUT sin2 θW → α in the electromagnetic term, one recovers the result
in (A.6) –derived with the method of fermion rephasings– but without any assumption on
the matter representations. The ratio of the couplings of the axion to gauge bosons is
thus predicted to be the same for any SO(10) theory regardless of the matter content [47].
Moreover, the fA scale of the QCD interactions corresponds to that in the grand unified
theory, fA,GUT.

3.3.1 Axial basis

It is customary to write the axion-SM fermion couplings in terms of chiral currents of the
massive SM fermions:

L[A]eff ⊃
∑
f

cf
∂µA

fA
Ψfγ

µγ5Ψf , (3.31)

where Ψ = {ψα, ψ̃†,α̇} are Dirac fermions constructed from the Weyl spinors paired by
mass terms.7 The axial basis is particularly useful when accounting for nonperturbative
QCD effects in the axion-nucleon interactions, either because one may use current algebra
techniques [8, 47], or because the matching between the UV and nucleon theory is sim-
plified when using axial currents [45]. Moreover, as will be seen, the coefficients of the
fermion-axion interactions in the axial basis depend only on the scalar PQ charges. One
has Ψγµγ5Ψ = −ψ†σµψ− ψ̃†σµψ̃, from which it follows that the axion-fermion interactions
in the general formula (3.23) can be recasted in terms of chiral currents as in (3.31) if
the Weyl fermions connected by mass terms have equal PQ charges. This won’t be the
case in the GUT models considered here, for which the global symmetry associated with

7We use a notation in which conjugates of Lorentz spinors are denoted with dotted indices, (ψα)† = ψ†α̇,
and indices are lowered and raised with antisymmetric matrices εαβ , εα̇β̇ , e.g. ψ̃†,α̇ = εα̇β̇ψ̃†β , with ε12 =

ε12 = 1. The chirality operator γ5 is defined in such a way that a Dirac spinor Ψ = {ψα, 0} has a negative
eigenvalue.
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the physical axion enforces different charges for the fermions interacting through Yukawas.
However, one can always redefine the fermion fields with axion-dependent phases in such a
way that one recovers interactions of the form in (3.31), without affecting the axion cou-
pling to neutral gauge bosons or the Yukawa couplings. Consider for example two SM Weyl
spinors ψ, ψ̃ with PQ charges q1, q2, and which can be grouped into a massive Dirac fermion
after electroweak symmetry breaking –e.g. {uL, u}, where uL is the upper component of a
q doublet, in the notation of table 1. One can always redefine

ψ → ei∆qA/(2fPQ)ψ, ψ̃ → e−i∆qA/(2fPQ)ψ̃, ∆q = q1 − q2. (3.32)

Under such redefinition with opposite phases, the axion couplings to neutral gauge bosons
remain invariant, as the redefinition is a non-anomalous vector transformation, rather than
a chiral one. On the other hand, the axion couplings to ψ, ψ̃ change to

∂µA

[
q1

fPQ
ψ†σ̄µψ +

q2

fPQ
ψ̃†σ̄µψ̃

]
→ −∂µA

q1 + q2

2fPQ
Ψγµγ5Ψ. (3.33)

The combination of charges q1 + q2 above can be related to the PQ charge of the Higgs
that gives a mass to the SM fermion in question, because the Yukawas have to be invariant
under the PQ symmetry. From (2.6) it is clear that in the presence of a PQ symmetry
(enforcing Ỹ = 0 in (2.6)) the up quarks receive their masses from the scalars Hu,Σu,
and the down quarks and charged leptons from Hd,Σd. Then in the axial basis the axion
interaction with u, d quarks and the electron can be expressed in terms of axial currents
involving the corresponding Dirac fields U,D,E as

L[A]eff ⊃ ∂µA
qHu

2fPQ
Uγµγ5U + ∂µA

qHd
2fPQ

Dγµγ5D + ∂µA
qHd

2fPQ
Eγµγ5E, (3.34)

where qHu and qHd are the PQ charges of the Higgses. In regards to the neutrinos, in the
models considered here the Weyl spinors ν ⊃ l and and the SM singlet n (see table 1)
have nontrivial charges under the physical PQ symmetry. For a high seesaw scale vR (see
equations (2.6) and (2.7)), the light physical states in the neutrino sector will be mostly
aligned with the νi. One may always do an axion-dependent phase rotation such that the νi
end up carrying no PQ charge, and which again does not affect the axion couplings to neutral
bosons because the neutrinos are singlets under the strong and electromagnetic groups. The
physical light neutrinos can then be described with Majorana spinors constructed from the
νi and which do not couple to the axion, in contrast to the other fermion fields in (3.34).

The previous arguments seem to imply that the PQ charges of the fermions might
be unobservable, since one can choose a basis of fields in which the axion coupling to
charged fermions only depends on the scalar PQ charges, and in which the light neutrinos
do not couple to the axion. However, an important subtlety is that the axion-dependent
rephasings needed to go to this special basis of fermion fields, although they do not affect
the couplings of the axion to the neutral gauge bosons, remain anomalous under SU(2)L
and thus alter the couplings of the axion to the weak gauge bosons. Thus the latter retain
the lost information of the fermionic PQ charges, and if the corresponding couplings were
measurable one could potentially distinguish theories differing in the fermionic PQ charges,

– 14 –



as for example a GUT model in which the fermionic PQ charges are related to the global
symmetries of the GUT theory, versus a DFSZ model in which the fermion charges are not
constrained by the GUT symmetry.

3.3.2 Mixing with mesons and the axion-photon coupling

Although the effective Lagrangian in (3.23) includes couplings of the axion to the photon,
such interaction is further modified by QCD effects. The reason is essentially that QCD
induces a mixing between the axion and the neutral mesons, which in turn couple to photons
through the chiral anomaly, involving the same F̃F interaction that appears in the axion-
photon coupling. The QCD-induced shift of the axion to photons can be computed with
current algebra techniques [8, 47] or in chiral perturbation theory, with next-to-leading
order results provided in [45]. At lowest order, the modification of the coupling can be
recovered by noting that the mixing between the axion and neutral mesons can be removed
with an appropriate axion-dependent rotation of the meson fields, which however induces an
anomalous shift of the action which is precisely the QCD-induced axion-to-photon coupling.
This shift is universal and does not depend on the PQ charges of the quarks, and is given
by

δLeff =
α

8πfA
δCAγAF̃µνF

µν , δCAγ = −2

3

(
4mu +md

mu +md

)
+ higher order = −1.92(4).

(3.35)

3.3.3 Axion-nucleon interactions

In regards to axion-nucleon interactions, they can also be obtained by current algebra
methods [47, 49], or alternatively using a nonrelativistic effective theory for nucleons, with
couplings determined from lattice data [45]. The axion-nucleon interactions are not uni-
versal, and are given in [45] in terms of the coefficients of the UV axion-fermion effective
Lagrangian in the axial basis, i.e. with fermion interactions as in (3.31), (3.34), with coef-
ficients fixed by the scalar PQ charges. Equation (3.34) shows that the UV coefficients are
simply determined by the scalar charges of the Higgses Hu, Hd. Then the results in [45]
imply the following axion-nucleon interactions in the chiral basis:

δLeff = −∂µA
CAN
2fA

Nγµγ5N − ∂µA
CAP
2fA

Pγµγ5P, (3.36)

with
CAN = − 0.02(3) + 0.41(2)

qHufA
fPQ

− 0.83(3)
qHdfA
fPQ

,

CAP = − 0.47(3)− 0.86(3)
qHufA
fPQ

+ 0.44(2)
qHdfA
fPQ

.

(3.37)

3.4 The physical axion: orthogonality conditions

In the presence of both gauge and global symmetries, identifying the axion becomes a bit
subtle, as the PQ symmetry is not uniquely defined. This is due to the fact that the gauge
symmetries themselves are associated with global symmetries, so that any combination of
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the PQ symmetry plus a global U(1) symmetry associated with one of the gauge groups
defines a new global U(1) symmetry. This arbitrariness implies that one cannot readily
identify the PQ charges qi that define the axion as in equation (3.19), as well as determine
the ensuing axion interactions and domain wall number, all of which depend on the qi.
Nevertheless, there is an important physical constraint that allows to uniquely single out a
global PQ symmetry PQphys: its associated axion must correspond to a physical, massless
excitation, and thus it must remain orthogonal to the Goldstone bosons of the broken gauge
symmetries. This allows to identify the combination of phases that defines the axion, from
which one can reconstruct the scalar charges of PQphys. This will be the procedure used in
Section 4 when studying the properties of the axion in concrete SO(10) models.

First, the combination of phases should be massless. Suppose the Lagrangian generates
a quadratic interaction for a combination of the phase fields,

L ⊃ m

(∑
m

dmAm

)2

, (3.38)

for some coefficients dm. Then one can simply use (3.17) and demand that the term becomes
zero, which gives ∑

m

dmqmvm = 0. (3.39)

Writing the axion as
A =

∑
i

ciAi, (3.40)

then equation (3.39) is equivalent to ∑
m

dmcm = 0, (3.41)

which can be interpreted as an orthogonality condition between the mass eigenstate
∑

m dmAm
(see (3.38)) and the axion

∑
m cmAm.

Another physical constraint on the axion is the fact that it should not mix with the
massive gauge bosons. When the complex scalars are charged under gauge groups, which
are then broken by the VEVs, there are additional Goldstone bosons associated with the
broken gauge generators. These Goldstones are related to the longitudinal polarisations
of massive gauge bosons, and should be orthogonal to the axion. The interaction of the
scalars with a gauge field Aµ contains the following terms:∫

d4xL =

∫
d4x

∑
m

Dµφ
†
mD

µφm + · · · =
∫
d4x

∑
mn

(iAaµφ
†
mT

a
mn∂

µφn + c.c.) + . . . (3.42)

=

∫
d4x ∂µA

µ,a

(∑
mn

vmT
a
mnAn

)
+ (Am and Bµ-independent).

Using equation (3.17), the cancellation of the axion-gauge boson interaction requires the
following constraint on the PQ charges:∑

mn

vmT
a
mnqnvn = 0. (3.43)
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For a U(1) generator under which the scalars φi transform by simple rephasings with gauge
charges q̃i, this reduces to ∑

m

q̃mqmv
2
m = 0. (3.44)

(note that q̃m and qm represent the gauge and PQ charges, respectively). Again, the
avoidance of axion-gauge boson mixing can be also interpreted as an orthogonality condition
between the axion combination A =

∑
i ciAi and the Goldstone G̃ ≡

∑
i diAi of the U(1)

gauge group. Indeed, the same reasoning behind equation (3.19) implies that di = 1/fG q̃ivi,
so that (3.44) is equivalent to the orthogonality relation

∑
m cmdm = 0, or∑

m

cmq̃mvm = 0. (3.45)

Under some conditions satisfied in the theories studied in this paper, it will suffice to
consider orthogonality of the axion with respect to the Goldstones associated with diagonal
U(1) generators in the Cartan subalgebra of the gauge group. This algebra, of dimension
equal to the rank of the Lie group (5 for SO(10)) is spanned by the mutually commuting
generators Hi, i = 1, . . . 5 of the Lie algebra. The commutation property allows to choose
representations of matter fields with well defined quantum numbers, or weights, under the
elements of the Cartan algebra. In other words, the Cartan generators will be diagonal.
Their associated U(1) symmetries correspond to rephasings of the fields, and thus the
orthogonality requirements for the axion along the Cartan generators are of the form of
equation (3.44). In regards to the orthogonality conditions for the non-diagonal generators
outside the Cartan subalgebra, they can be simplified in terms of the weights of the fields
and the roots of the algebra (that is, the weights in the adjoint representation). As shown
in Appendix B, orthogonality conditions for non-diagonal generators are satisfied if, within
each SO(10) multiplet, the field components that get nonzero VEVs have SO(10) weights
whose difference is not a root of the Lie algebra. This is the case in the models considered
in this paper, with the fields getting nonzero VEVs indicated in table 2; more details are
given in Appendix B.

An important consequence following from the constraint of equation (3.44) is that if a
field φn is charged under a given diagonal generator, then if the axion decay constant fA
is to involve the VEV 〈φn〉 = vn/

√
2, then there has to be at least another scalar charged

under the same generator as φn [50]. This simply follows from the fact that, for a VEV vn to
contribute to fA, the associated PQ charge qn has to be nonzero (see equations (3.18) and
(3.14)). Then in order to have a solution to (3.44) with nonzero charge q̃n one needs at least
another scalar charged under both PQ and the diagonal generator. This is a consequence
of the fact that if only one scalar charged under PQ and the diagonal gauge generator
develops a VEV, a physical global unbroken symmetry survives the breaking. Other fields
are needed in order to break this surviving symmetry and give rise to an axion. Even when
there are several scalars with nonzero VEVs and charged under both PQ and a diagonal
generator, then if one expectation value is much larger than the rest, it follows that fA is
bound to be of the order of the smaller VEVs. The orthogonality condition (3.44) implies
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that the PQ charge qh of the heavy field goes as

qh = −
∑
m

q̃l
mq

l
mv

l
m

2

q̃hvh2 , (3.46)

where the superscripts h, l denote the heavy field and the light fields, respectively. Plugging
this into (3.14) and (3.18), one gets

f2
A =

1

N̂2

∑
m

(qlmv
l
m)2 +

(∑
m

q̃l
mq

l
mv

l
m

2

q̃hvh

)2
 , (3.47)

which shows explicitly that fA is determined by the light VEVs vlm. This can be interpreted
in an effective theory framework as follows: as discussed before, the single large VEV vh

leaves a global symmetry unbroken, so that the theory with the heavy field integrated out
has a new PQ symmetry that can only be broken by the VEVs of the light fields, which
will determine the scale fA.

Finally, once the axion has been identified by starting from a general linear combination
as in (3.40) and imposing the orthogonality and masslessness constraints, the effective
Lagrangian can be determined in terms of the coefficients ci, which encode the charges of
the physical PQ symmetry. Indeed, comparing (3.40) with (3.19), one has that

qi
fPQ

=
ci
vi
. (3.48)

The charges qi correspond to the physical global symmetry PQphys connected to the axion.
This symmetry must be a combination of the original global symmetries in the Lagrangian,
and one may find the corresponding coefficients by solving a system of linear equations.
Since we expect PQphys to act as a rephasing of fields, and since all fields have well-defined
quantum numbers (weights) under the generators of the Cartan subalgebra of SO(10), it
is natural to expect PQphys to be a combination of the original PQ symmetry and the
transformations in the Cartan subalgebra. The latter includes in particular the charges
R and B − L of tables 1 and 2. Once the relevant combination of global symmetries
has been identified, then one can immediately obtain the ratios qa/fPQ for the fermion
fields. This provides all the necessary information to construct the interaction Lagrangian
(3.23), together with the QCD induced photon corrections (3.35) and the axion to nucleon
interactions in (3.36),(3.37), which only depend on the former ratios. This is clear for the
axion-fermion interactions, while for the axion-gauge boson interactions it follows from the
fact that (3.14), (3.18) and (3.21) imply

f−1
A,k = 2

∑
a

(
qa
fPQ

)
Tk(ρa). (3.49)

Note how the qi/fPQ, qa/fPQ, and fA are invariant under rescalings of the PQ charges,
because under qi → c qi, qa → cqa, one also has fPQ → cfPQ, as follows from (3.18).
Thus, as expected, the axion effective Lagrangian (3.23) does not depend on the overall
normalisation of the PQ symmetry. The same applies to the axion mass (3.15).
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We note that, since the PQphys symmetry of which the axion is a pseudo-Goldstone
boson is a combination of global symmetries of the GUT theory, the arguments leading to
(3.30) are still valid when one considers the axion of PQphys, rather than the original PQ
symmetry.

3.5 Remnant symmetry and domain-wall number

Under a PQ symmetry, which we may assume to be orthogonal to gauge transformations
as discussed in the previous section, the scalar phases transform as δαAi = qivi. Together
with (3.18), this implies that the axion (3.19) transforms as

δαA = αfPQ. (3.50)

The effective Lagrangian accounting for the PQ anomaly, given in (3.23), breaks the con-
tinuous PQ symmetry to a discrete subset

S(n) : A→ A+
2πn

N̂
fPQ, n ∈ Z. (3.51)

Like the periodicity of θ discussed around (3.4), this follows from the invariance of the
partition function, once the contribution

∫
d4xLeff in (3.23) is included.

Within the previous transformations, not all of them are necessarily nontrivial, as
some may correspond to rephasings of the original scalar phases Ai by 2πvi, which leaves
all complex scalar fields unchanged. According to (3.17), these trivial symmetries generate
the following group of transformations for the axion:

P (ni) : A→ A+
∑
i

2πniqiv
2
i

fPQ
, ni ∈ Z. (3.52)

Thus the physical symmetry group left after the anomaly is the quotient Sphys = S/P . If
Sphys is a finite group, then any potential generated for the axion will have a finite number
of minima, and there will be domain walls. This is because the potential has to be invariant
under Sphys, so that its transformations relate minima with other degenerate minima. The
number of vacua must be then an integer times the dimension of the finite group. The
only truly protected degeneracy is that induced by the finite group, and so we expect as
many minima as the dimension of the finite group (as happens for the potential of the
axion generated by QCD effects). The domain wall number NDW corresponds then to the
dimension of the finite group, dim(S/P ):

Domain wall number: NDW = dim

[
S

P

]
. (3.53)

Next we elaborate on a procedure to determine NDW in terms of fPQ, the PQ charges qi
and the VEVs vi. Suppose that nmin is the minimum number n for which one transformation
in S (eq. (3.51)) can be undone with a transformation in P (eq. (3.52)). This implies

2πnmin

N̂
=
∑
i

2πniqiv
2
i

f2
PQ

(3.54)
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for some values ni. Then any transformation S(knmin), k ∈ Z, can also be undone with
an element of P , as is clear by doing nmin → knmin, ni → kni in (3.54). This means that
any element in S(n) with knmin ≤ n ≤ (k+ 1)nmin is equivalent, up to a P transformation,
to an element in {S(n), 0 ≤ n ≤ nmin}. For the extrema of the interval, this follows from
our previous arguments showing that all the S(knmin), k ∈ Z are equivalent to the trivial
transformation S(0). For the transformations inside the interval (knmin, (k + 1)nmin) we
have

n = knmin + δ, 0 < δ < nmin ⇒ δAS(n) =
2πnfPQ

N̂
=

2πknminfPQ

N̂
+

2πδfPQ

N̂
. (3.55)

The part involving 2πknminfPQ/N̂ is by hypothesis equivalent to a transformation in P ,
and the part involving 2πδfPQ/N̂ is a transformation in {S(n), 0 < n < nmin}. This proves
that all S(n) are equivalent under P to S(n), n ≤ nmin. Thus

dim
S

P
= NDW, NDW = minimum integer

{
N̂
∑
i

niqiv
2
i

f2
PQ

, ni ∈ Z

}
. (3.56)

If there is a finite solution for NDW, since S(NDW) ∼ S(0) (equivalence up to a P trans-
formation), then one has in fact

S

P
= ZNDW

, (3.57)

which is the usual finite symmetry associated with domain walls.
We may write NDW in terms of the coefficients ci of the axion combination (3.40).

Using (3.48) and (3.18) it follows that

NDW = minimum integer

{
1

fA

∑
i

nicivi, ni ∈ Z

}
. (3.58)

Again, NDW is invariant under common rescalings of the PQ charges, as these leave ci and
fA invariant. A simple case is that in which N̂ is an integer and the scalar qi charges have
at least one common divisor, which could be unity. Let k denote the maximal common
divisor. In this case the domain-wall number is simply N̂/k. Indeed, writing

qi ≡ kq̃i, (3.59)

then the term in brackets in equation (3.56) reaches a minimum integer value when taking
ni = qi/k:

nmin = N̂
∑
i

niqiv
2
i

f2
PQ

= N̂
∑
i

q2
i f

2
i

kf2
=
N̂

k
. (3.60)

N̂/k is an integer because N̂ is a sum of terms proportional to the charges (see (3.21)).
The latter have k as their maximal common divisor, and so k is a maximal divisor of N̂ .

It should be stressed that the domain-wall number for the axion corresponding to
PQphys, computed after imposing orthogonality with respect to the gauge bosons, is not
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the same as the domain-wall number calculated using the above formulae but with the
charges of the original PQ symmetry. The reason is as follows. Starting from the original
PQ symmetry, without imposing orthogonality conditions, one has a group of discrete
transformations S as in (3.51), but defined in terms of the original PQ charges. Similarly,
one can define P transformations as in (3.52). When identifying the physically relevant
transformations within S, then one has to remove not only the trivial rephasings in P , but
also the discrete transformations in the center Z of the gauge group. Thus we may rewrite
equation (3.53) more precisely, emphasising the fact that it has assumed orthogonality with
respect to gauge transformations, as follows:

Domain wall number: NDW = dim

[
Sphys

Pphys

]
= dim

[
S

ZP

]
. (3.61)

For SO(10) the center of the group is Z = Z2, so that the naive domain wall number
computed from the original PQ symmetry (e.g. (2.8)) using equations (3.56) or (3.58) will
be two times larger than the actual physical domain-wall number.

The domain-wall number NDW is relevant because the existence of NDW inequivalent,
degenerate vacua implies that, once the PQ symmetry is broken and QCD effects generate
a nonzero axion mass, the universe becomes populated with patches in which the axion
falls into one of the NDW vacua. These patches are separated by domain walls that meet at
axion strings, with each string attached to NDW domain walls. Within a domain wall, the
axion field has nonzero gradients, so that the walls store a large amount of energy which
may in fact overclose the universe, unless the system of domain walls and strings is diluted
by inflation –as is the case if the PQ symmetry is broken before the end of inflation and
not restored afterwards– or is unstable [51]. The latter can happen if string-wall systems
can reconnect in finite size configurations which may shrink to zero size by the emission
of relativistic axions or gravitational waves. This is allowed for NDW = 1 [52], when for
example a string loop becomes the boundary of a single membrane; however, for NDW > 1

the loops become boundaries of multiple membranes in between which the axion field takes
different values, and such configurations cannot be shrunk continuously to a point, which
prevents their decay.

4 Axion properties in various SO(10) × U(1)PQ models

After motivating the PQ symmetry in predictive SO(10) constructions and reviewing its
connection to the axion solution to the CP problem, next we study the properties of the
axion in SO(10) models, using the results of the previous section. First, we will show that
the Peccei-Quinn symmetry (2.8) –postulated to get a predictive scenario for fermion masses
and mixing– is phenomenologically unacceptable unless other scalar fields with nonzero PQ
charges are introduced. This is because the model with the 10H and 126H scalars predicts
an axion decay constant at the electroweak scale, which has been ruled out experimentally
(for a review, see [53]). Then we will move on to consider models in which the axion decay
constant lies at either the unification scale or in between the latter and the electroweak
scale.
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SO(10) 4C2L2R 4C2L1R 3C2L1R1B−L 3C2L1Y 3C1em scale VEV

10H (1, 2, 2) (1, 2, 1
2) (1, 2, 1

2 , 0) (1, 2, 1
2) (1, 0) =: Hu MZ v10

u

(1, 2,−1
2) (1, 2,−1

2 , 0) (1, 2,−1
2) (1, 0) =: Hd MZ v10

d

45H (1, 1, 3) (1, 1, 0) (1, 1, 0, 0) (1, 1, 0) (1, 0) := σ MPQ vPQ

126H (10, 1, 3) (10, 1, 1) (1, 1, 1,−2) (1, 1, 0) (1, 0) := ∆R MBL vBL

(15, 2, 2) (15, 2, 1
2) (1, 2, 1

2 , 0) (1, 2, 1
2) (1, 0) := Σu MZ v126

u

(15, 2,−1
2) (1, 2,−1

2 , 0) (1, 2,−1
2) (1, 0) := Σd MZ v126

d

210H (1, 1, 1) (1, 1, 0) (1, 1, 0, 0) (1, 1, 0) (1, 0) := φ MU vU

Table 3. Decomposition of the scalar multiplets according to the various subgroups in our breaking
chains. We only display the multiplets which get nonzero vacuum expectation values (VEVs) in the
different models considered in the paper. “Scale” refers to the contribution to gauge boson masses
induced by the VEV of a multiplet, rather than to the mass of the multiplet itself. According to
the extended survival hypothesis, we only keep the multiplets which acquire a VEV at lower scales,
(with the exception of Σu,Σd, which decouple at MBL in order to give rise to a low-energy 2HDM
limit). All submultiplets not in the list are assumed to be at the unification scale MU. In all cases,
we have MZ < {MBL,MPQ} < MU. The different relations between MBL and MPQ are considered
in the cases A and B. Depending on the model, not all listed multiplets are included. The various
models are described in the text.

4.1 Models with an axion decay constant at the electroweak scale

Here we consider the minimal scalar content motivated in Section 2, i.e. a 210H , a 10H
and a 126H , with the latter two charged under the PQ symmetry in accordance to equation
(2.8). The scale fA will be a combination of the VEVs of the fields charged under PQ,
i.e. 10H , 126H . These VEVs determine the fermion masses, which include the SM fermions
–whose masses and associated VEVs must lie below the electroweak scale– and the right-
handed neutrinos, which are allowed to be heavy. The mass of the latter is set only by
the VEV vR = 〈(10, 1, 3)126〉 within 126H , as follows from equations (2.4), (2.6), (2.7).
The U(1)B−L ⊃ SU(4)C symmetry is broken only by the VEVs vR = 〈(10, 1, 3)126〉 and
vL = 〈(10, 3, 1)126〉. The latter breaks the electroweak symmetry and contributes to light
neutrino masses and low-energy lepton number violation, so that vR � vL. Then we are
at the situation commented at the end of the previous section, in which a gauge symmetry
is broken by several VEVs, with a single dominant one. It follows that fA is of the order
of the light VEVs, i.e. vL, v10

u,d, v
126
u,d , which are at the electroweak scale or below. For an

overview of the various VEVs and mass scales, see table 3. The corresponding mass scales
of the fermions are presented in table 4.

Despite the lack of viability of the model, it is instructive to construct the axion ex-
plicitly using the techniques outlined in Section 3; this will serve as a simple example
that will pave the way to the computations in viable models. Again, the axion involves
the fields charged under PQ and getting nonzero VEVs, which are contained in the 126H
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SO(10) 4C2L2R 4C2L1R 3C2L1R1B−L 3C2L1Y scale

16F (4, 2, 1) (4, 2, 0)
(
3, 2, 0, 1

3

) (
3, 2, 1

6

)
:= q MZ

(1, 2, 0,−1)
(
1, 2,−1

2

)
:= l MZ

(4̄, 1, 2)
(
4̄, 1, 1

2

) (
3̄, 1, 1

2 ,−
1
3

) (
3̄, 1, 1

3

)
:= d MZ(

1, 1, 1
2 , 1
)

(1, 1, 1) := e MZ(
4̄, 1,−1

2

) (
3̄, 1,−1

2 ,−
1
3

) (
3̄, 1,−2

3

)
:= u MZ(

1, 1,−1
2 , 1
)

(1, 1, 0) := n MBL

10F (6, 1, 1) (6, 1, 0)
(
3, 1, 0,−2

3

) (
3, 1,−1

3

)
:= D̃ MPQ(

3̄, 1, 0, 2
3

) (
3̄, 1, 1

3

)
:= D MPQ

(1, 2, 2)
(
1, 2, 1

2

) (
1, 2, 1

2 , 0
) (

1, 2, 1
2

)
:= L̃ MPQ(

1, 2,−1
2

) (
1, 2,−1

2 , 0
) (

1, 2,−1
2

)
:= L MPQ

Table 4. Decomposition of the fermion multiplets according to the various subgroups in our
breaking chains. All SM fermions have masses set by the Higgs mechanism, the heavy right handed
neutrinos acquire their mass at the BL breaking scale from the coupling to the 126H . Fermions in
the 10F representation can obtain a mass from a Yukawa coupling to the 45H or to a scalar singlet
(if present).

and 10H multiplets. As detailed in table 3, the PQ fields getting VEVs are the Higgses
Hu, Hd ⊃ (1, 2, 2)10, Σu,Σd ⊃ (15, 2, 2)126, and the SM singlet ∆R ⊃ (10, 1, 3)126. To sim-
plify the notation as much as possible, we will denote the VEVs with v and the phases with
A, with appropriate subindices, as in equation (3.16). We define

φ1 ≡Σu, φ2 ≡Σd, φ3 ≡Hu, φ4 ≡Hd, φ5 ≡∆R. (4.1)

For simplicity, and as was anticipated in Section 2, we consider a zero VEV vL for the
(10, 3, 1)126 multiplet, in order to avoid B − L violation at low energies, and to realise
the simplest version of the seesaw mechanism (see equations (2.4) through (2.7)). We will
also denote vBL ≡ vR as this is now the only B-L breaking VEV. A general parameterisa-
tion of the axion, without knowledge of the PQ charges, can now be written as in (3.40).
As detailed in Section 3, we may constrain the previous coefficients by imposing orthog-
onality with respect to the Goldstone bosons of the broken gauge symmetries, as well as
perturbative masslessness. For the gauge constraints, the choice of nonzero VEVs is such
that, as commented in 3.4 and and shown in Appendix A the only nontrivial orthogo-
nality conditions are those with respect to the Goldstones associated with the generators
in the five-dimensional Cartan subalgebra of the gauge group. Since all the VEVs corre-
sponds to colour singlets, they carry no weights under the two generators of the Cartan
subalgebra of SU(3)C ⊃ SU(4)C . By assumption, the fields also carry no electric charge,
which eliminates another combination of Cartan generators (see equation (B.10) for the
relation between the electric charge and the weights corresponding to the Cartan genera-
tors of the group SU(4)C × SU(2)L × SU(2)R ⊃ SO(10)). This leaves two independent
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Cartan generators giving rise to two nontrivial orthogonality constraints. We may use the
generators U(1)B−L ⊃ SU(4)C and U(1)R ⊃ SU(2)R –see Appendix B for how B − L is
embedded into the Cartan algebra of SU(4)C × SU(2)L × SU(2)R). The charges of our
fields φi = {Hu,d,Σu,d,∆R} under these symmetries are given in table 2. The orthogonality
constraints (3.45) yield

c1v1 − c2v2 + c3v3 − c4v4 = 0,

c5 = 0.
(4.2)

Moving on to impose perturbative masslessness, we note that in the scalar potential the term
10H 10H 126

†
H126

†
H+h.c. is allowed by both the gauge and PQ-symmetries. After symmetry

breaking, these terms induce masses for some combinations of phase fields. Denoting gauge-
invariant contractions by “inv”, we have:

10H 10H 126
†
H 126

†
H |inv + h.c. ⊃ (1, 2, 2)(1, 2, 2, )(15, 2, 2)(15, 2, 2)|inv + h.c.

⊃ (Hu +Hd)(Hu +Hd)(Σ
†
u + Σ†d)(Σ

†
u + Σ†d)|inv + h.c.

⊃ −v2
3v

2
1

(
A3

v3
− A1

v1

)2

− v2
4v

2
2

(
A4

v4
− A2

v2

)2

.

The orthogonality conditions as in equations (3.38),(3.41) yield

− c1

v1
+
c3

v3
=0

− c2

v2
+
c4

v4
=0.

(4.3)

More massive combinations can be found under closer inspection of the scalar potential, but
they cannot give additional constraints on the axion as we already identified four constraints
which, together with the requirement for a canonical normalisation of the axion, fix the five
independent coefficients ci. Proceeding in this way we can finally conclude that the axion
is given, up to a minus sign8, by

A = −(A4v4 +A2v2)(v2
3 + v2

1) + (A3v3 +A1v1)(v2
4 + v2

2)√
v2(v2

4 + v2
2)(v2

3 + v2
1)

, v2 ≡
4∑
i=1

v2
i . (4.4)

We remind the reader that the above parameters vi, Ai are defined by equations (3.16) and
(4.1). The axion couplings to matter can be calculated using the results of section 3.3.
Equations (3.23) and (3.49) imply that the effective Lagrangian can be simply derived from
the ratios qa/fPQ corresponding to the fermions. The ones corresponding to the scalars
can be obtained from the scalar ratios qi/fPQ, which can be immediately derived from the
axion coefficients ci by using (3.48). Applying the latter identity to the axion combination
(4.4), it follows that

q1

fPQ
=

q3

fPQ
= −

√
v2

4 + v2
2

v
√

(v2
3 + v2

1)
,

q2

fPQ
=

q4

fPQ
= −

√
v2

3 + v2
1

v
√

(v2
2 + v2

4)
, q5 = 0. (4.5)

8We choose the sign that gives a positive value for the fA,k, see (4.9).
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From these we may derive the PQ charges qa/fPQ of the Weyl fermions by identifying
the appropriate combination of global symmetries in the Lagrangian that gives rise to the
charges in (4.5). The physical symmetry PQphys can be expressed as a combination of the
global PQ, U(1)R and U(1)B−L –as anticipated in 3.4, the modification of PQ involves the
symmetries within the Cartan algebra of the group:

PQphys = s1 PQ + s2 U(1)R + s3 U(1)B−L. (4.6)

From the conventions in (4.1), the PQ charges in (2.8) and the U(1)R, U(1)B−L charges
given in table 2 one deduces:

s1

fPQ
=

v

4
√(

v2
1 + v2

3

) (
v2

2 + v2
4

) , s2

fPQ
=

v2
1 − v2

2 + v2
3 − v2

4

v
√(

v2
1 + v2

3

) (
v2

2 + v2
4

) ,
s3

fPQ
=

v2
1 − 3v2

2 + v2
3 − 3v2

4

4v
√(

v2
1 + v2

3

) (
v2

2 + v2
4

) . (4.7)

Finally, the values of qa/fPQ for the fermions follow from (4.6) and (4.7), and the charge
assignments in table 4:

qq
fPQ

=
1

3v

√
v2

1 + v2
3(

v2
2 + v2

4

) , qu
fPQ

=
−v2

1 + 3v2
2 − v2

3 + 3v2
4

3v
√(

v2
1 + v2

3

) (
v2

2 + v2
4

) ,
qd
fPQ

=
2

3v

√
v2

1 + v2
3(

v2
2 + v2

4

) , ql
fPQ

=
1

v

√
v2

2 + v2
4(

v2
1 + v2

3

) ,
qe
fPQ

=
v2

1 − v2
2 + v2

3 − v2
4

v
√(

v2
1 + v2

3

) (
v2

2 + v2
4

) , qn
fPQ

= 0.

(4.8)

From the above we may obtain the fA,k using (3.49):

fA,3C = fA,2L =
5

3
fA,Y =

1

3

√(
v2

1 + v2
3

) (
v2

2 + v2
4

)
v2

. (4.9)

As explained in 3.3, the value of fA,3C only depends on the scalar PQ charges, and can be
also obtained from equation (A.5). The simple relations above reproduce exactly the result
of equation (3.30), which was derived in the grand unified theory. Calling fA ≡ fA,3 we
obtain the effective Lagrangian for the axion

Lint =
1

2
∂µA∂

µA+
αs
8π

A

fA
GbµνG̃

bµν +
α

8π

8

3

A

fA
FµνF̃

µν + ∂µA
∑

f=q,u,d,l,e

qf
fPQ

(f †σ̄µf), (4.10)

where the qf/fPQ factors (which are the same across generations) are given in equation
(4.8).

As stated at the end of section 3.3, one may obtain a physically equivalent effective
Lagrangian L′int by starting from the usual fermion kinetic terms and Yukawa interactions
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and perform different phase rotations (A.3) that remove the scalar phases in the Yukawa
terms. This does not affect the coupling of the axion to the photon; see Appendix A for
more details. At low energy, incorporating the QCD effects from the axion-meson mixing in
equation (3.35) and the nucleon interactions in (3.36), (3.37), and expressing the electron
interactions in the axial basis as in eq. (3.34), the Lagrangian involving the axion, the
photon, nucleons and electrons is:

LQCD
int =

1

2
∂µA∂

µA− 1

2
m2
AA

2 +
α

8π

CAγ
fA

AFµνF̃
µν

− ∂µA
[
CAP
2fA

P
†
γµγ5P +

CAN
2fA

N
†
γµγ5N +

CAE
2fA

E
†
γµγ5E

]
,

CAγ =
8

3
− 1.92(4),

CAP = − 0.62 + 0.43 cos2 β ± 0.03,

CAN = 0.26− 0.41 cos2 β ± 0.03,

CAE =
1

3
sin2 β,

(4.11)

where we defined

tan2 β ≡ v2
1 + v2

3

v2
2 + v2

4

. (4.12)

The couplings to fermions coincide with those in the usual DFSZ model [45, 54, 55], although
the relation between the parameter β and the scalar VEVs now involves additional fields.
As commented in 3.3.1, potential differences with respect to DFSZ models could come from
the axion interactions with the weak bosons, which in the axial basis leading to (4.11) will
contain the information of the PQphys charges of the fermions.

The domain-wall number of the model can be calculated from (3.58). We may first
consider the “naive” domain wall number obtained by using the PQ charges of equation
(2.8), without imposing orthogonality conditions. In this case N̂ = 12 (see (3.21)) is an
integer –note that the value of N̂ is the same for the GUT group and all its non-Abelian
subgroups, as follows from the fact that N̂ in (3.21) can be expressed as a single trace over
all fermions, which fall into GUT representations. On the other hand, the scalar charges
have k = 2 as a maximum common divisor. In this situation, as discussed in section 3.5, the
domain wall number would be N̂/k = 6, as corresponds to a DFSZ axion model. On the
other hand, using the physical PQ charges in (4.5), the calculation is a bit more involved.
Starting from equation (3.58), the quantity in brackets is a rational function of the vi.
In order to have an integer result, we must demand that the numerator is proportional
to the denominator. This gives a system of equations, as many as there are independent
monomials in the denominator. Denoting the minimum integer as nmin (which will be the
domain-wall number) one has:

nmin + 3(n1 + n2) = 0, nmin + 3(n2 + n3) = 0,

nmin + 3(n1 + n4) = 0, nmin + 3(n3 + n4) = 0.
(4.13)
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Since the ni are integers, clearly one has NDW = nmin = 3. That is, the domain wall number
is half of the naive estimate with the unphysical PQ symmetry in (2.8). As discussed around
equation (3.61), this is due to the fact that the naive estimate is not taking into account
the need to quotient the remnant discrete symmetry by the center Z2 of the gauge group .

As anticipated at the beginning of this section, all VEVs appearing in fA ≡ fA,3C
in equation (4.9) have to be at the electroweak scale, as follows from the conventions in
(4.1) and equation (2.6). Hence, the axion described in this model is visible, being just
a GUT-embedded variant of the original Peccei-Quinn-Weinberg-Wilczek model which is
phenomenologically unacceptable (for a review, see [53]).

There are several ways to lift the axion decay constant to higher values, which, as
follows from the discussion in 3.4, must involve additional scalars with PQ charges. The
simplest way is to give a PQ charge to the Higgs field responsible for the GUT symmetry
breaking [20]. An alternative way is to introduce a new scalar multiplet, e.g. a 45H , also
charged under the PQ symmetry [21, 23]. A third way is to introduce an SO(10) singlet
complex scalar field responsible for the U(1)PQ symmetry breaking [24]. We will consider
in this paper benchmark models from all these three categories.

4.2 Models with axion decay constants at the unification scale

As follows from the arguments in Section 3.4, in order to have a heavy axion one needs at
least two fields charged under PQ and getting large VEVs. In the model of the previous
section, the scalar 210H , which was needed to ensure the breaking of the GUT group, was
not charged under PQ. Thus the most minimal way to decouple the axion decay constant
from the electroweak scale is to extend the PQ symmetry (2.8) to the 210H ,

16F → 16F e
iα,

Model 1 : 10H → 10He
−2iα,

126H → 126He
−2iα,

210H → 210He
4iα.

(4.14)

The PQ charge of 210H follows from the requirement of allowing gauge invariant cubic inter-
actions between the 210H multiplet the other scalars. The only possibility is 210H 126H 10H ,
which fixes the above PQ charge.

The construction of the axion field in this model goes along the same lines as in the
previous section, yet with an added extra phase associated with the φ = (1, 1, 1) component
of the 210H multiplet whose VEV vU ≡ vφ = v6 breaks SO(10) to 4C × 2L × 2R (see table
2). We now define

φ1 ≡Σu, φ2 ≡Σd, φ3 ≡Hu, φ4 ≡Hd, φ5 ≡∆R, φ6 ≡φ. (4.15)

The general parameterisation of the axion is now A =
∑6

i=1 ciAi. When imposing pertur-
bative masslessness, we have the same constraints (4.3) as before, plus new ones coming
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from the new interaction 210H 126H 10H :

210H 126H 10H |inv + h.c. ⊃ (1, 1, 1)[(10, 1, 3) + (15, 2, 2)](1, 2, 2)|inv + h.c.

= φΣuHd + φΣdHu + h.c.

⊃ −v6v1v4

2
√

2

(
A6

v6
+
A1

v1
+
A4

v4

)2

− v6v2v3

2
√

2

(
A6

v6
+
A2

v2
+
A3

v3

)2

,

where “inv” denotes a projection into gauge-invariant contractions. Masslessness of the
axion requires then

c6

v6
+
c2

v2
+
c3

v3
= 0,

c6

v6
+
c1

v2
+
c4

v3
= 0.

(4.16)

In addition, since φ is a singlet under U(1)R and U(1)B−L, we still have the same con-
straints from orthogonality as before, equations (4.2) and (4.3). Solving the linear system
of equations and normalising, we construct the axion for this model:

A = −(A4v4 +A2v2)(v2
3 + v2

1) + (A3v3 +A1v1)(v2
4 + v2

2)−A6v6v
2√

v2((v2
4 + v2

2)(v2
3 + v2

1) + v2
6v

2)
, v2 ≡

4∑
i=1

v2
i . (4.17)

Note that in the limit MZ � MU the axion is just A = A6. This follows from the field
assignments in (4.25) and the scales in table 2. Therefore, the dominant contribution to
the axion field comes from the 210H .9 The PQphys charges of the scalars are now:

q1

fPQ
=

q3

fPQ
= − v2

2 + v2
4

v
√(

v2v2
6 +

(
v2

1 + v2
3

) (
v2

2 + v2
4

)) ,
q2

fPQ
=

q4

fPQ
= − v2

1 + v2
3

v
√(

v2v2
6 +

(
v2

1 + v2
3

) (
v2

2 + v2
4

)) ,
q5 = 0,

q6 =
v√

v2v2
6 +

(
v2

1 + v2
3

) (
v2

2 + v2
4

) .
(4.18)

Once more, the global symmetry PQphys can be expressed as a combination of PQ and
the Cartan generators U(1)R and U(1)B−L, as in equation (4.7), but with coefficients si
that now take the values

s1

fPQ
=

v

4
√(

v2
1 + v2

3

) (
v2

2 + v2
4

)
+ v2v2

6

,
s2

fPQ
=

v2
1 − v2

2 + v2
3 − v2

4

v
√(

v2
1 + v2

3

) (
v2

2 + v2
4

)
+ v2v2

6

,

s3

fPQ
=

v2
1 − 3v2

2 + v2
3 − 3v2

4

4v
√(

v2
1 + v2

3

) (
v2

2 + v2
4

)
+ v2v2

6

.

(4.19)

9Note that the 210H is not charged under U(1)R and U(1)B−L –see table 3– so that the axion can be
aligned with the phase of a field getting a large VEV, like φ ⊃ 210H , without violating any orthogonality
condition. This is in contrast to the model 4.1.
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The PQphys charges of the fermions can be obtained from (4.6) and (4.19), and the charges
of table 4:

qq
fPQ

=
v2

1 + v2
3

3v
√(

v2
2 + v2

4

)
(v2

1 + v2
3) + v2v2

6

,
qu
fPQ

=
−v2

1 + 3v2
2 − v2

3 + 3v2
4

3v
√(

v2
1 + v2

3

) (
v2

2 + v2
4

)
+ v2v2

6

,

qd
fPQ

=
2(v2

1 + v2
3)

3v
√

(v2
1 + v2

3)
(
v2

2 + v2
4

)
+ v2v2

6

,
ql
fPQ

=
v2

2 + v2
4

v
√(

v2
1 + v2

3

)
(v2

2 + v2
4) + v2v2

6

,

qe
fPQ

=
v2

1 − v2
2 + v2

3 − v2
4

v
√(

v2
1 + v2

3

) (
v2

2 + v2
4

)
+ v2v2

6

,
qn
fPQ

= 0.

(4.20)

The fA,k, following from (3.49), satisfy again the GUT relations in (3.30), and are given
by:

fA,3C = fA,2L =
5

3
fA,Y =

1

3

√
v2

6v
2 + (v2

4 + v2
2)(v2

3 + v2
1)

v2
. (4.21)

In the limit MZ � MU, fA ∼ v6
3 = vU

3 , so that the axion decay constant is dominated by
the GUT-breaking scale. The effective Lagrangian for the axion is as in equation (4.10),
with the PQphys charges in (4.20). At low energies, incorporating QCD effects and going
into the axial basis, one gets the DFSZ-like interactions in (4.11), with the the parameter
β in (4.12).

As in the previous model, the original PQ symmetry in (4.14) involves scalar charges
with a maximum common divisor k = 2, and one has integer N̂ = 12 (common to the
GUT group and its non-Abelian subgroups). Thus the naive domain-wall number –without
imposing orthogonality of the axion with respect to the gauge fields– is again N̂/k = 6.
To get the physical domain-wall number we may use (3.58). As was done for the previous
model, (3.58) can be converted into a system of equations involving nmin and integer ni:

nmin + 3(n1 + n2) = 0, nmin + 3(n2 + n3) = 0,

nmin + 3(n1 + n4) = 0, nmin + (n3 + n4) = 0,

nmin − 3n6 = 0.

(4.22)

Once again, one has NDW = nmin = 3, half of the naive estimate10 .

4.3 Models with an intermediate scale axion decay constant

4.3.1 Additional 45H

As was mentioned before, lifting the axion from the electroweak scale requires a scalar
other than the 126H having a nonzero PQ charge and a large VEV. In the previous section,
this scalar was chosen as the one responsible for the first stage of GUT breaking. This

10As already pointed out in [56], a DFSZ model featuring NDW = 3 can also be constructed without
reference to a bigger gauge group. The defining criterion is a Peccei-Quinn that allows a dimension three
coupling between the PQ charged scalars. This is common to the models 2.1, 2.2, 3.1 and 3.2 considered in
this paper.
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linked fA and the GUT scale. Choosing nonzero VEVs along other components of the 210H
multiplet which are not involved in the first-stage breaking and can thus have smaller values
does not help in lowering fA, as there is always the GUT-scale VEV. However, one may
consider an additional scalar with a lower-scale vacuum expectation value. To motivate
the choice of representation under the unified group, we can be guided by minimality and
predictivity. We would like to constrain the axion mass by the requirement of gauge coupling
unification, which is only possible if the PQ-breaking VEV of the new scalar is also related
to the breaking of a gauge group. It should therefore be a singlet under an intermediate
symmetry group between 4C2L2R and 3C2L1Y . In other words, it should break the Pati-
Salam group, but not to the Standard Model. There are few multiplets in the SO(10)

representations up to 210H which fulfill this criterion -the lowest ones being the (1, 1, 3)

and the (15, 1, 1) of the 45H , denoted by their Pati-Salam quantum numbers,

45H = (1, 1, 3)⊕ (1, 3, 1)⊕ (6, 2, 2)⊕ (15, 1, 1) . (4.23)

The only other option would be the (15, 1, 1) of the 210H , which, as mentioned above does
not help in lowering fA, as the multiplet contains a GUT-scale VEV. One could consider
an additional 210H , independent of the GUT breaking, but minimality favours a smaller
multiplet like the 45H . We will adopt this choice, and to comply with existing literature
[21, 23], we choose to use the field σ = (1, 1, 3) ⊃ 45H , which breaks SU(2)R down to
U(1)R when it acquires its VEV vPQ ≡ 〈σ〉. Aside from the GUT scale MU, the theory will
now have two additional physical scales MBL and MPQ related with the VEVs of the 126H
and 45H , respectively (see table 2). In this model, the 210H does not carry PQ-charge, as
again this would lift fA to the GUT scale. For the 45H we can choose different PQ charges,
depending on the interactions we want to allow with the other scalars. As opposed to the
case of the 210H in the previous section, there are no cubic interactions of the 45H with the
other scalars that are compatible with a nonzero PQ charge for the 45H . On the other hand,
one can allow the quartic couplings 210H × 126H × 126H × 45H , 210H × 10H × 126H × 45H ,
which enforce a PQ charge of four units for the new scalar:

16F → 16F e
iα,

10H → 10He
−2iα,

Model 2.1 : 126H → 126He
−2iα,

210H → 210H ,

45H → 45He
4iα.

(4.24)

The construction of the axion goes analogous to Section 4.2. The VEV vPQ of the 45H
now plays the role of the VEV of the 210H , so we define:

φ1 ≡Σu, φ2 ≡Σd, φ3 ≡Hu, φ4 ≡Hd, φ5 ≡∆R, φ6 ≡σ. (4.25)

The masslessness conditions now arise from the interactions 210H × 126H × 126H × 45H
–which includes terms going as φσΣuΣd, see table 2– and 210H × 10H × 126H × 45H ,
which includes φσ(H/Σ)u(Σ/H)d. Since σ is not charged under U(1)R and U(1)B−L, the
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orthogonality conditions are as in Section 4.1. Despite the different masslessness conditions,
the formulae (4.17), (4.18), (4.20) and (4.21) of the previous section apply to this model,
although with v6 and A6 now referring to the field σ. In the limit MZ � MPQ, the axion
is dominated by the VEV of the 45H and we have

fA ∼
v6

3
=
vPQ

3
. (4.26)

Once more, the initial PQ symmetry in (4.24) has scalar charges with a maximum
common divisor k = 2; on the other hand, for the GUT group and its non-Abelian subgroups
one has integer N̂ = 12, giving a naive domain-wall number of 6. The physical domain-wall
number follows from (3.58), which is equivalent to the following system of equations:

nmin + 3(n1 + n2) = 0, nmin + 3(n2 + n3) = 0,

nmin + 3(n1 + n4) = 0, nmin + 3(n3 + n4) = 0,

nmin − 3n6 = 0.

(4.27)

Once again, one has NDW = nmin = 3, half of the naive estimate. The effective Lagrangian
for the axion is as in (4.10), with the values of fA and qi/fPQ given in equations (4.18) and
(4.21). Accounting for QCD effects in the axial basis, one recovers again the DFSZ-like
interactions in (4.11), (4.12).

In [23] vPQ was chosen to lie at the same scale as the VEV of the 126H . In principle,
there is no reason for this equality, so we will not use it in our analysis. Generically, as
mentioned before we have two physical scales MBL and MPQ associated with the VEVs of
126H and 45H . We will now distinguish between two cases:

Case A: MPQ > MBL. If the 45H acquires its VEV before the 126H , it takes part in
the gauge symmetry breaking. This is because, as said before, vPQ breaks the Pati-Salam
group to SU(4)C × SU(2)L × U(1)R (see table 2). We are therefore confronted with the
following three-step symmetry breaking chain:

SO(10)
MU−210H−→ 4C 2L 2R

MPQ−45H−→ 4C 2L 1R
MBL−126H−→ 3C 2L 1Y

MZ−10H−→ 3C 1em.(4.28)

Both vPQ, related to MPQ, and the VEV vBL, related to MBL, have to be compatible with
gauge coupling unification at MU. Since vPQ ∼ 3fA (see (4.26)), this constrains the axion
decay constant. Such constraints will be analysed in Section 5.

Case B: MBL > MPQ. In this case the 45H does not take part in the gauge symmetry
breaking, because vBL breaks the Pati-Salam group to the SM, which is preserved by the
VEV vPQ of σ. Hence, in these scenarios one cannot constrain the axion-decay constant fA
from unification requirements. The only limit on vPQ is set by the requirement vBL > vPQ.

4.3.2 Additional 45H and extra fermions

All the models analyzed so far feature NDW = 3 and are therefore troubled by a domain-
wall number problem, if the topological defects are not diluted by inflation. A variant
of the model in Section 4.3.1 which does not suffer from the domain wall problem was
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originally proposed in [57]. It additionally contains two generations of fermions in the 10F
representation which become massive via Yukawa interactions with the 45H ,

16F → 16F e
iα,

10H → 10He
−2iα,

Model 2.2 : 126H → 126He
−2iα,

210H → 210H ,

45H → 45He
4iα,

10F → 10F e
−2iα.

(4.29)

The axion is given by the same combination of phases as in section 4.3.1, as the con-
struction only depends on the scalar PQ charges. The axion decay constant can be obtained
from equation (3.49) –which, applied to models with N10 extra fermion multiplets in the
10F , gives (A.5)– substituting the values of qi/fPQ in (4.18), and using N10 = 2. This gives

fA ≡ fA,3C =

√
v2

6v
2 + (v2

4 + v2
2)(v2

3 + v2
1)

v2
. (4.30)

Due to the extra fermions, the PQ symmetry in (4.29) has now N̂ = 4, as opposed to
the previous value of 12. Again, the scalar PQ charges have a maximum common divisor
of 2, so that the naive domain wall number is 2. When taking the quotient of the discrete
symmetry group with respect to the center Z2 of the gauge group, one expects then a
physical domain wall number NDW = 1, which gets rid of the domain-wall problem. This
can be explicitly checked using equation (3.58), which now implies the following system of
equations for the ni and the minimum integer nmin that gives the domain-wall number:

nmin + (n1 + n2) = 0, nmin + (n2 + n3) = 0,

nmin + (n1 + n4) = 0, nmin + (n3 + n4) = 0,

nmin − n6 = 0.

(4.31)

As expected, we haveNDW = nmin = 1. In order to obtain an axion effective Lagrangian
we need the PQphys charges of the extra fermions D̃,D, L̃, L in the 10F (see table 4). As the
scalar content of the theory is as in the previous section, we have that, as before, PQphys

is given by (4.6) with the si in (4.19). Using the 1R and 1B−L assignments in table 4, the
charges of the extra fermions are:

qD̃
fPQ

= − 2(v2
1 + v2

3)

3v
√(

v2
2 + v2

4

)
(v2

1 + v2
3) + v2v2

6

,
qD
fPQ

= − v2
1 + 3v2

2 + v2
3 + 3v2

4

3v
√(

v2
1 + v2

3

) (
v2

2 + v2
4

)
+ v2v2

6

,

qL̃
fPQ

= − (v2
2 + v2

4)

v
√

(v2
1 + v2

3)
(
v2

2 + v2
4

)
+ v2v2

6

,
qL
fPQ

= − v2
1 + v2

3

v
√(

v2
1 + v2

3

)
(v2

2 + v2
4) + v2v2

6

.

(4.32)
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The axion interactions are then given by

Lint =
1

2
∂µA∂

µA+
αs
8π

A

fA
GbµνG̃

bµν +
α

8π

8

3

A

fA
FµνF̃

µν + ∂µA
∑

f=
q, u, d, l, e,

D̃,D, L̃, L

qf
fPQ

(f †σ̄µf),

(4.33)

with the values of fA and qi/fPQ given in equations (4.21), (4.18), and (4.32). Including
QCD effects and going to the axial basis, the Lagrangian for axion, photon, nucleon and
electrons now has a different relative weight between axion and fermion couplings than in
the previous DFSZ-like result of (4.11). In the current domain-wall-free model one has now
an extra factor of three in the fermionic couplings:

LQCD
int =

1

2
∂µA∂

µA− 1

2
m2
AA

2 +
α

8π

CAγ
fA

AFµνF̃
µν

− ∂µA
[
CAP
2fA

P
†
γµγ5P +

CAN
2fA

N
†
γµγ5N +

CAE
2fA

E
†
γµγ5E

]
,

CAγ =
8

3
− 1.92(4),

CAP = − 0.91 + 1.30 cos2 β ± 0.05,

CAN = 0.81− 1.24 cos2 β ± 0.05,

CAE = sin2 β,

(4.34)

with β as in (4.12). Since the scalar content of the models is unchanged with respect to the
previous section, the symmetry breaking chains are the same as before. A slight difference
occurs in case B: If MBL > MPQ, the extra fermions acquire masses only below the scale
MPQ. In the analysis of gauge coupling unification, one has to take into account the extra
contributions of these fermions between MU and MPQ.

4.4 Models with decay constants independent of the gauge symmetry breaking

A third way to lift the PQ-breaking scale from the electroweak scale, also relying on a new
scalar charged under the PQ symmetry and getting a large VEV, relies in the introduction
of a complex gauge singlet scalar S and exploits thus an even more minimal scalar sector
than the previous intermediate scale axion models exploiting an additional 45H . However,
this choice lacks the predictivity of the previous approaches since the singlet S does not par-
ticipate in the gauge symmetry breaking. As in the models containing a 45H , the minimal
model has a domain wall problem which can be avoided by introduction of two generations
of heavy fermions. Under the Peccei Quinn symmetry, the scalar fields transform as follows
for the two models:

16F → 16F e
iα,

10H → 10He
−2iα,

Model 3.1 : 126H → 126He
−2iα,

210H → 210H ,

S → Se4iα,

(4.35)
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which features NDW = 3, and

16F → 16F e
iα,

10H → 10He
−2iα,

Model 3.2 : 126H → 126He
−2iα,

210H → 210H ,

S → Se4iα,

10F → 10F e
−2iα,

(4.36)

for the model with NDW = 1.
In both of these models the construction is analogous to 4.3.1 and 4.3.2, where the role

of the 45H is now played by the singlet S. Like σ in Sections 4.3.1 and 4.3.2, S is not
charged under U(1)R and U(1)B−L, so that the orthogonality conditions are unchanged.
The massive combinations which the axion needs to be orthogonal to only occur at di-
mension 6 in the shape of the operator 126H 126H 10H 10H S S. The resulting system of
equations however yields the same formulae as in equations (4.17), (4.18), as well as (4.26)
–with no additional fermions in the 10F – and (4.30) –with fermions in the 10F – yet with
v6 and q6 corresponding now to the field S. The calculation of the domain wall number is
identical to that in Sections 4.3.1 and 4.3.2, and so is the axion effective Lagrangian. In
particular, at low energies we get the DFSZ interactions in (4.11) for the NDW = 3 model,
and the result in (4.34) for the NDW = 1 case.

5 Constraints on axion properties from gauge coupling unification

In this section we analyse the constraints put on the axion mass by the requirement of gauge
coupling unification in the models introduced in the previous section. In each case, we take
into account the running of the gauge couplings at two-loop order. A consistent analysis to
this order needs to take into account one-loop threshold corrections. The general and model-
specific β-functions and matching conditions are given in Appendix C.11 Since the scalar
masses depend strongly on the parameters of the scalar potential, which are not known
a priori, the scalar threshold corrections due to the Higgs scalars cannot be calculated
exactly. Instead, we have assumed that the scalar masses are distributed randomly in
the interval [ 1

10MT , 10MT ], where MT(T ∈ {U,BL,PQ}) is the threshold at which these
particles acquire their masses. For the RG running, we have employed a modified version
of the extended survival hypothesis [60]. According to the latter, scalars get masses of the
order of their VEVs, so that the scalars remaining active in the RG at a given scale are
those whose VEVs lie below that scale. We consider however an exception [24, 33]: in
order to have a 2HDM at low energies, we will assume that Σu and Σd, the SM doublets
in the (15, 2, 2)PS of the 126H , have masses of the order of MBL. Such a choice is not
arbitrary. First, as commented in Section 2, realistic fermion masses require VEVs v126

u,d of

11Our analysis has been performed using Mathematica [58]. In the calculation of the beta functions, we
have employed the LieART package[59], as well as our own code. The appearance of our plots was enhanced
using Szabolcs Horvat’s MaTeX package.
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the order of the electroweak scale for the previous fields. Small VEVs for massive fields can
be achieved through mixing with the light doublets Hu, Hd in the 10H , which themselves
must acquire electroweak VEVs v10

u,d. The mixing can be induced by a PQ invariant operator

such as 10H 126
†
H 126H 126

†
H , which gives VEVs v126

u,d of the order of v2
BL/M

2
(15,2,2)v

10
u,d, where

M(15,2,2) is the mass of the (15, 2, 2)PS multiplet [24, 33]. If the mass is of the order of vBL,
the desired electroweak-scale VEVs are achieved. Taking into account the scalar content
of each model, the surviving multiplets can be read from table 3. The RG equations
also take into account the fermionic representations –three generations of fermions in the
16F representations, and two additional generations in the 10F in the models defined in
equations (4.29) and (4.36).

To sharpen the predictions of our models, we take into account constraints from the
non-observation of proton decay, bounds on the B-L breaking scale obtained from fits to
fermion masses, as well as black hole superradiance and stellar cooling constraints.

In regards to proton decay, we use a naive estimate for its lifetime, considering only
the decay mediated by superheavy gauge bosons [32]. We approximate the lifetime of the
proton by τ ∼ M4

U

m5
pα

2
U
(for mp = 0.94 GeV) and compare it to the current experimental limits

[61] τ(p→ π0e+) > 1.6× 1034y. In subsequent plots, constraints imposed by current limits
from proton decay will be shown in blue.

The constraints on the B-L scale in SO(10) models can be obtained by fitting the
observed values of fermion masses and mixing angles to the relationships implied by the
gauge symmetry (eq. (2.6)). Such fits have been performed for example in [35] and [34]. In
the former the fit was performed at the weak scale, while in the latter it was done at the
GUT scale. As in the models in our analysis, [34] considered a two-Higgs-doublet model
at low scales above MZ . Both studies only considered the scalar fields contributing to the
Yukawa interactions –in our model the 10H and the 126H– since these are largely model
independent. In both cases the analysis yielded an upper bound on the B-L breaking scale
of about 3 × 1015 GeV. The final formula for the B-L breaking VEV can be derived from
(2.6) and the seesaw formula, and it includes two mixing angles β and γ:

vR126 = vBL = 3× sin γ cosβ × 1015 GeV, (5.1)

where we have defined

tanβ =
vu
vd

=

√
(v10
u )2 + (v126

u )2√
(v10
d )2 + (v126

d )2
,

tan γ =
v126
d

v10
d

.

(5.2)

Since the fits only determine the ratios v126u

v126d
and v10u

v10d
, the two factors sin γ and cosβ are

not constrained. Allowing for some fine tuning – as it is customary in SO(10) models– the
B-L breaking scale can be lowered to 109 GeV. For each of our models we have considered
different levels of fine tuning in this sector, allowing vBL to be within windows with an
upper value of 1015 GeV and a lower value of either 109, 1011 or 1013 GeV. In the figures
of the rest of the section, constraints imposed by the B-L scale will be shown in green.
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Finally, black hole superradiance constraints arise from the fact that axion condensates
around black holes can affect their rotational dynamics and the emission of gravitational
waves [62–64]. We will show the associated constraints in black. Bounds from stellar
cooling arise from taking into account the loss of energy by axion emission due to photon
axion-conversion in helium-burning horizontal branch stars in globular clusters [65]. Such
constraints will be shown in gray.

5.1 Running with one intermediate scale

Let us first consider Model 1 described by (4.14) with PQ charged scalars in the 210H , 126H
and 10H representations. Figure 1 shows the predicted running of the gauge couplings for
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Figure 1. Running and gauge coupling unification in Model 1 in the case of minimal threshold
corrections.

the case of minimal threshold corrections, in which all scalar masses are degenerate with
the corresponding gauge boson masses. Gauge coupling unification fixes the different scales





 




















































 















































































 














 






















































































 
















































 
















































































 



































 








































 






 




































































































⨯⨯

8 10 12 14

13

14

15

16

17

18

19





 












































 







 































































































 
























































































 


















































 

















































































 



































 


















































 




































































































⨯⨯

8 10 12 14

13

14

15

16

17

18

19





 













































 







 

























































































































































































 



















































 

















































































 



































 


















































 






































































































⨯⨯

8 10 12 14

13

14

15

16

17

18

19

Figure 2. Intermediate and unification scale for randomised scalar threshold corrections in Model
1. Only the large orange points are not excluded by our constraints. Points in blue are excluded
by proton decay limits, points in black are excluded by the limits from black hole superradiance
constraints. Points in green are allowed by black hole superradiance and proton decay, but forbidden
by the chosen range of B-L breaking. The black cross indicates the minimal threshold case, i.e. the
case when all scalar masses are degenerate and at the corresponding unification scales for which the
running of the gauge couplings is illustrated in figure 1. We have performed the scan for 400 sets
of initial conditions, 310 of which yielded unification of the gauge couplings.
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in this case to

MU = MPQ = 1.4× 1016 GeV, αU(MU)−1 = 33.6, MBL = 6.3× 1010 GeV. (5.3)

The unification scale is well above constraints from proton decay. Exploiting the relation

Figure 3. Possible ranges of the axion mass and decay constant consistent with gauge coupling
unification in our models, for the case where all heavy scalars are degenerate at their various
threshold scales. Regions in black are excluded by constraints from black hole superradiance,
regions in blue by proton stability constraints. Regions in green are disfavoured depending on the
allowed range of the B-L breaking scale. Regions in gray are excluded by stellar cooling constraints.
The width of the region in Model 1 is exaggerated to make the bar visible. Note that for the
Models 2.1, 2.2 and 3 the exclusion of the higher B-L breaking scales comes from an interplay of
the proton stability constraint and the limit on vBL. In all these models, a higher B-L breaking
scale corresponds to a lower GUT unification scale, which leads to an instability of the proton and
is therefore excluded.

MU = gUvU, (5.4)

between the mass of the superheavy gauge bosons and the VEV vU and the relation (4.21)
between the axion decay constant and the VEVs, we obtain

fA '
1

3
vU =

MU

3gU
=

√
αU (MU)−1

3
√

4π
MU = 7.7× 1015 GeV, (5.5)

yielding, via (3.15), an axion mass

mA = 7.4× 10−10 eV. (5.6)
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This result is illustrated in the first three lines of figure 3, which summarises our results for
the case of vanishing threshold corrections.

As illustrated in figure 2 and as already pointed out in [66], taking into account the
possibility of scalar threshold corrections induces large uncertainties in the prediction of the
GUT scale, which result in corresponding large uncertainties in the prediction of the axion
mass. Including constraints from proton decay limits and the non-observation of black hole
superradiance, the allowed range is

2.6× 1015 GeV < fA < 3.0× 1017GeV,

1.9× 10−11 eV < mA < 2.2× 10−9 eV.
(5.7)

Finally, we have considered the various constraints imposed by the B-L breaking scale. As
shown in figure 2, varying the allowed range of vBL changes the viable range of vPQand
therefore of fA. For vBL > 1011(1013) GeV, the upper bound on fA is lowered to 1.0 ×
1017(3.5×1015) GeV. In the latter case, our random sample contains only two viable points
(cf. figure 2). These findings are summarised in the first three lines of figure 4.

Figure 4. Possible ranges of the axion mass and decay constant consistent with gauge coupling
unification in our models, for the case where scalar threshold corrections have been taken into
account. Regions in black are excluded by constraints from black hole superradiance, regions in
blue by proton stability constraints. Regions in green are disfavoured depending on the allowed
range of the B-L breaking scale. Regions in gray are excluded by non-observation of excessive
cooling of helium burning stars by axion emission.
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Figure 5. Relationship between the three unification scales for the Model 2.1 described in (4.24) in
the case of minimal threshold corrections. The regions in blue are excluded by the non-observation
of proton decay. In case B, MPQ < MBL, MPQ is unconstrained - it can take any value, while the
B-L breaking scale MBL is fixed at ∼ 1010 GeV.

5.2 Running with two intermediate scales

5.2.1 An extra multiplet

In the Model 2.1 described in (4.24), the requirement of gauge coupling unification does not
sufficiently constrain the system of differential equations to uniquely fix both intermediate
scales - we can only infer a relationship between the three unification scales MPQ,MBL and
MU. We have calculated this relationship, and also imposed the aforementioned limits on
the unification scale and on the B-L breaking scale.

Depending on which VEV is bigger, the RG running is different. In case B, i.e.
MPQ<MBL, the Peccei-Quinn breaking VEV does not break any gauge symmetries, and
thus it is unconstrained by the evolution. In this case, we have essentially a two-step break-
ing model, in which the two symmetry breaking scales MU and MBL are fixed. In case A,
with MPQ>MBL, vPQ breaks the SU(2)R gauge symmetry and is therefore constrained by
the evolution. Both cases are indicated in figure 5.

In the case of minimal threshold corrections, in which all scalars are assumed to be
degenerate in mass with the gauge bosons that get masses at the corresponding threshold
scale, gauge coupling unification and limits from proton decay constrain the intermediate
scale MBL between

1010 GeV .MBL . 2.3× 1010 GeV (5.8)

and put an upper bound on MPQ of order

MPQ < 1.3× 1011 GeV, (5.9)

cf. figure 5. An example of the evolution of the gauge couplings in this case is shown in
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Figure 6. Running gauge couplings for MBL = 6.3× 1010 GeV in Model 2.1. The corresponding
higher unifications scales are MPQ = 1.3× 1012 GeV and MU = 2.1× 1015 GeV. Threshold correc-
tions due to non-degenerate scalars are not included. Beta functions for this model are given in
Appendix C.

figure 6. For completeness, let us also mention the special case in which the PQ and the B-L
scales are taken to coincide 12, MPQ = MBL. We find in this case, for minimal threshold
corrections,

MPQ = MBL = 1.1× 1010 GeV, MU = 1.6× 1016 GeV. (5.10)

The upper limit (5.9) on MPQ – derived by proton decay constraints in the case of
minimal threshold corrections – can be turned into an upper limit on the axion decay
constant and a corresponding lower limit on the axion mass as follows. Since MPQ is the
mass of the gauge bosons that become heavy by the SU(2)R → U(1)R breaking, we get

MPQ = gRvPQ. (5.11)

The corresponding limit on the axion mass follows straightforwardly from

fA =
1

3
vPQ =

MPQ

3gR
=

MPQ

3
√

4π

√
α−1
R < 1.4× 1011 GeV

mA > 4.1× 10−5 eV.

(5.12)

This limit is illustrated in lines 4 to 6 of figure 3. This constraint however is still subject
to potentially large corrections from scalar threshold effects. In fact, in figure 7 we display
the relation between the different unification scales –as in figure 5– but now for randomised
scalar threshold corrections for different ranges of vBL. Obviously, the threshold corrections
can increase the bound on MPQ and thus on fA. For 109(1011) GeV < vBL < 1015 GeV, we

12See also [23], which considered the same model, however only taking into account only one-loop running
and a single Higgs doublet at the weak scale. They find in this case MPQ = 1.3 × 1011 GeV and MU =

1.9× 1016 GeV.
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Figure 7. Intermediate scalesMPQ andMBL and GUT-scaleMU for different threshold corrections
in Model 2.1. Refer to figure 5 for clearer view of the different scales. The curves in blue are excluded
by gauge-mediated proton decay limits, the curves in green by the limit on the B-L breaking scale.
We have considered three different ranges of allowed B-L breaking scales. The threshold corrections
are randomised in the following way: All scalars take masses among the values { 1

10 , 1, 10} times
the corresponding threshold scale, where we have taken care not to make proton decay mediating
scalars contained in the (6, 2, 2) (Pati-Salam) multiplet light. We have chosen this discrete set of
masses in order to focus on the largest possible corrections coming from the mass degeneracies. The
scan was performed using 240 different sets of threshold corrections. Allowing the scalars to take
masses in the whole interval [ 1

10 , 10] times the threshold scale, one could "fill the gaps" and find
even more compatible solutions. These would however not significantly increase the allowed region
of MPQ, whose upper and lower limits we are interested in.

get fA < 6.7 × 1012 GeV and mA > 8.5 × 10−7 eV, while for 1013 GeV < vBL < 1015 GeV

no allowed range of fA remains - in this case, the model is excluded. These findings are
summarised in lines 4 to 6 of figure 4.

5.2.2 An extra multiplet, and additional fermions

Model 2.2 with PQ charges given in (4.29) contains additional quarks which acquire masses
at the scale MPQ. Above MPQ, they contribute to the running of the coupling constants
(cf. Appendix C). Correspondingly, in this model we obtain a relation between MPQ and
MBL even in the case where MPQ does not break a gauge symmetry. The corresponding

Figure 8. Intermediate scales MPQ and MBL and GUT-scale MU for Model 2.2 for different
threshold corrections. The curves in blue are excluded by gauge-mediated proton decay limits, the
curves in green by the limit on the B-L breaking scale. We have considered three different ranges
of allowed B-L breaking scales. The threshold corrections are randomised in the following way: All
scalars take masses among the values { 1

10 , 1, 10} times the corresponding threshold scale, where we
have taken care not to make proton decay mediating scalars contained in the (6, 2, 2) (Pati-Salam)
multiplet light.
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plots are shown in figure 8. After constraining the B-L breaking scale we obtain an upper
limit on the axion mass and decay constant in this model. The minimal threshold case
is only allowed if MBL can be as low as 109 GeV, in this case the maximal allowed fA is
4.2× 1011 GeV – this is also shown in lines 7 to 9 of figure 3.

Including all threshold corrections in our random sample, for 109(1011) GeV < vBL <

1015 GeV, fA is constrained to be smaller than 8.6 × 1012 GeV. For 1013 GeV < vBL <

1015 GeV, no viable solutions were found in the sample - the model is strongly disfavoured
in this case. The results on the axion decay constant are summarised for this model in lines
7 to 9 of figure 4.

5.3 Models with a scalar singlet

In the simplest Model 3.1, described in (4.35), the Peccei-Quinn breaking is driven by a
scalar singlet and the axion mass is unconstrained, cf. line 12 in figure 4. There is no
relation between the PQ breaking scale and the two other scales. The possible ranges for
MU andMBL however can be read from figure 2 –the extra scalar singlet in this model does
not change the running. Also in this model a lower B-L breaking scale is preferred, and the
model is excluded if vBL > 1013 GeV is imposed.

If, however, we employ the mechanism of reference [57] to reduce the domain wall num-
ber and introduce additional heavy fermions (Model 3.2, (4.36)), one has to account for how
the latter change the running of the gauge couplings above the scale MPQ at which they
acquire their masses, if MPQ < MU. Correspondingly we obtain a relation between the

Figure 9. Intermediate scales MPQ and MBL and GUT-scale MU for Model 3.2 for different
threshold corrections. The curves in blue are excluded by gauge-mediated proton decay limits, the
curves in green by the limit on the B-L breaking scale. We have considered three different ranges
of allowed B-L breaking scales. The threshold corrections are randomised in the following way: All
scalars take masses among the values { 15 , 1, 5} times the corresponding threshold scale, where we
have taken care not to make proton decay mediating scalars light. We have reduced the range of
possible threshold corrections since the bigger range did not yield enough viable solutions.

scales MU, MPQ and MBL also in this model. However, this dependence –plotted in figure
9 for different sets of threshold corrections– is very weak, and the additional fermions do
not change the beta functions enough to introduce additional constraints. We have verifed
that the model is still allowed in the entire parameter space of vPQ.

For MPQ > MU, the extra fermions are integrated out above the GUT scale and do
not change the running of the three gauge couplings. This case is always allowed, as long
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as the model without the additional fermions is not ruled out. The only constraint on both
Models 3.1 and 3.2 – which we summarise as Model 3– comes then from the B-L breaking
scale. For degenerate scalars at the thresholds, we need to allow for vBL as low as 109 GeV,
as indicated in lines 10 to 12 of figure 3. If we allow variations in the masses of the heavy
scalars, values of vBL of order 1011−1012 GeV are still allowed. For vBL > 1013 GeV, Model
3 is excluded. This is illustrated in in lines 10 to 12 of figure 4.

5.4 Dependence on the proton lifetime

In our analysis we are dealing with three different scales, none of which have been observed
so far. Apart from the axion mass, one could also hope to constrain the unification scale in
the future by detecting proton decay. The projected sensitivity of the Hyper-Kamiokande
Cherenkov detector to the channel p→ e+π0 after 10 years of measurement is 1.3× 1035yr

at 90%CL [67]. Assuming that proton decay is observed during the first decade of Hyper-
Kamiokande, we can place further (hypothetical) constraints on the axion decay constant
in each of our models. In figure 10 we illustrate how an upper bound on the proton decay
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Figure 10. Intermediate and unification scale for randomised scalar threshold corrections in
Models 1 (top), 2.1 (bottom left) and 2.2 (bottom right) including the limit coming from a hy-
pothetical observation of proton decay at Hyper-Kamiokande. Only the orange points/regions are
not excluded by the constrained proton lifetime. For models 2.1 and 2.2, the threshold corrections
induce large uncertainties in the viable fA ranges even in the case where the unification scale is
known.

scale constrains the scale of Peccei-Quinn breaking and ergo the axion decay constant and
mass. We make a naive analysis and assume that proton decay is only mediated by the
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heavy gauge bosons. As a lower bound for the proton lifetime we use the present limit
1.6×1034yr [61]. As shown in figure 11, an observation of proton decay is very constraining
only for our Model 1 –here we obtain 2.6× 1015 GeV < fA < 4.0× 1015 GeV- , while in the
other models the allowed ranges of fA are still rather large.

Figure 11. Viable ranges of fA in the hypothetical case of a known proton lifetime between
1.6 × 1034 and 1.3 × 1035 years. Allowed regions are plotted in orange. Regions in black are
excluded from black hole superradiance constraints, regions in gray from the non-observation of
excessive stellar cooling.

6 Summary and discussion

We have analysed various non-supersymmetric Grand Unified SO(10)×U(1)PQ models for
their predictions on the axion mass, the domain wall number, and the low-energy couplings
to SM particles. The basic field content of all the considered models consisted of three
spinorial 16F representations of SO(10) representing the fermionic matter content and three
Higgs representations: 210H , 126H and 10H , see table 5. The latter have been assumed to
take VEVs in such a way that SO(10) is broken along the symmetry breaking chain

SO(10)
MU−210H−→ 4C 2L 2R

MBL−126H−→ 3C 2L 1Y
MZ−10H−→ 3C 1em .

In some of the models, this basic field content was extended by further scalar and fermion
representations. This includes an additional scalar in the 45H , in which case we have
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16F 126H 10H 210H 45H S 10F NDW

Model 1 1 −2 −2 4 − − − 3

Model 2.1 1 −2 −2 0 4 − − 3

Model 2.2 1 −2 −2 0 4 − −2 1

Model 3.1 1 −2 −2 0 − 4 − 3

Model 3.2 1 −2 −2 0 − 4 −2 1

Table 5. Field content, PQ charge assignments, and resulting domain wall number NDW in the
various SO(10)× U(1)PQ models considered in this paper.

considered a further symmetry breaking chain,

SO(10)
MU−210H−→ 4C 2L 2R

MPQ−45H−→ 4C 2L 1R
MBL−126H−→ 3C 2L 1Y

MZ−10H−→ 3C 1em.

In all models one can choose a basis of fermion fields for which the phenomenologically
most important couplings to photons (γ), electrons (f = e), protons (f = p) and neutrons
(f = n) read, at energies lower than ΛQCD,

L =
1

2
∂µA∂

µA− 1

2
m2
AA

2 +
α

8π

CAγ
fA

AFµνF̃
µν − 1

2

CAf
fA

∂µA Ψfγ
µγ5Ψf , (6.1)

with

mA = 57.0(7)

(
1011GeV

fA

)
µeV, (6.2)

and with the couplings CAx given by

CAγ =
8

3
− 1.92(4) , CAe =

1

NDW
sin2 β ,

CAp = −0.47(3) +
3

NDW
[0.29 cos2 β − 0.15 sin2 β ± 0.02] , (6.3)

CAn = −0.02(3) +
3

NDW
[−0.14 cos2 β + 0.28 sin2 β ± 0.02] ,

where tan2 β = ((v10
u )2 + (v126

u )2)/((v10
d )2 + (v126

d )2), and NDW is the domain-wall number,
which in the models considered is either 3 or 1. For NDW = 3 one recovers the results for
the DFSZ axion [45, 47, 54, 55], although the microscopic origin of the parameter β differs
(as it is determined by the VEVs of four Higgses, as opposed to two in DFSZ models). The
fermion fields for which the above interactions are valid are obtained after special axion-
dependent rotations of the fermion fields that carry charges under the global symmetry
PQphys compatible with the GUT symmetry. These fermion rotations do not act in the
same way over all the components of the 16F multiplets, and thus will “hide” the GUT
symmetry, and moreover modify the axion couplings to the weak gauge bosons. A possible
measurement of the latter couplings would open up the possibility of recovering the GUT
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Figure 12. Possible ranges of the axion mass and decay constant consistent with gauge coupling
unification in our four models. Regions in black are excluded by constraints from black hole su-
perradiance, regions in dark blue by proton stability constraints. Regions in gray are excluded by
stellar cooling constraints from horizontal branch stars in globular clusters [65]. For comparison,
we show also the mass regions preferred by axion dark matter (DM) (lines 5 to 7), cf. [68]. Here,
the dark regions indicate the ranges where the axion can make up the main part of the observed
DM, with the possibility of fine tuning the initial misalignment angle in the scenario where the
PQ symmetry is broken before the end of inflation and not restored thereafter (pre-inflationary PQ
symmetry breaking scenario). In the light regions, axions could still be DM, but not the dominant
part. The remaining regions are not allowed - axions in this mass range would be overabundant.
Note that the region in the NDW = 3 case has been derived under the assumption that the PQ
symmetry is protected by a discrete symmetry, so that Planck scale suppressed PQ violating oper-
ators are allowed at dimension 10 or higher [69]. In the last two lines the projected sensitivities of
various experiments are indicated [70–77].

compatible charges under PQphys, and discriminate these models from e.g. simpler DFSZ
scenarios.

The overall phenomenologically viable range in the axion decay constant of these models
spans a very wide range, 107 GeV . fA . 1017 GeV, corresponding to an axion mass mA

between 10−10 eV and 10−1 eV (see the orange regions in figure 12). These predictions
survive constraints from gauge coupling unification, from black hole superradiance (black),
from proton decay (blue), and stellar cooling13 (gray). The features of the different models
are summarised next.

13For the stellar cooling bound, we took the one on the photon coupling from horizontal branch stars
in globular clusters [65]. The one on the nucleon coupling from supernova 1987A is presumably stronger,
fA > 3×108 GeV, corresponding tomA < 0.02meV [77], but suffers still from nuclear physics uncertainties.
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Model 1 – employing just the basic field content mentioned above and assuming that
all these fields are charged under the PQ symmetry, cf. equation (4.14) and table 5 –
appears to be most predictive. In fact, we infer from the first line in figure 12 that the
aforementioned phenomenological constraints result in an axion parameter region

2.6× 1015 GeV < fA < 3.0× 1017GeV, 1.9× 10−11 eV < mA < 2.2× 10−9 eV, (6.4)

if we allow the seesaw scale to get as low as vBL ' 109 GeV. The allowed axion mass range
moves towards the upper end, mA ' 2.2×10−9 eV, if we restrict the seesaw scale to higher
values, vBL & 1013 GeV, cf. figure 4 (first and second line).

The small axion mass predicted in Model 1 implies that the PQ symmetry has to be
broken before and during inflation and must not be restored thereafter [14] (pre-inflationary
PQ symmetry breaking scenario). In fact, in the opposite case (post-inflationary PQ sym-
metry breaking scenario), the axion mass is bounded from below by about 23µeV [14, 15],
cf. figure 12. In order for axion cold dark matter not to become overabundant, the initial
value of the axion field in the causally connected patch which contains the present universe
had to be small, 10−3 . |θi| = |A(ti)/fA| . 10−2 [14]. Furthermore, the Hubble expansion
rate during inflation must have been small, HI . 109 GeV, to avoid constraints from the
non-observation of traces of isocurvature fluctuations in the cosmic microwave background
radiation [78–81]. The latter constraint disqualifies Model 1 as a possible GUT SMASH
candidate, since in Higgs portal inflation the Hubble expansion rate during inflation is of
order 1013 GeV . HI . 1014 GeV [2].

Remarkably, the predicted axion mass range of Model 1 will be probed in the upcom-
ing decade by the CASPEr experiment [70], cf. figure 12, which aims to detect directly
axion dark matter by precision nuclear magnetic resonance techniques. If successful and
interpreted in terms of Model 1, one may translate, via (5.5), the measurement of the axion
mass into an indirect determination of the mass of the superheavy gauge bosons, i.e. the
unification scale,

MU ' 3gU
√
χ/mA, (6.5)

where χ is the topological susceptibility in QCD, χ = [75.6(1.8)(0.9)MeV]4 [14, 45]. The
unification scale can be probed complementarily by the next generation of experiments
searching for signatures of proton decay, such as Hyper-Kamiokande [82] or DUNE [83].

Models featuring an axion with a larger mass, mA & 23µeV, compatible with the post-
inflationary PQ symmetry breaking scenario, can only be obtained if the 210H responsible
for the first gauge symmetry breaking at MU has no PQ charge. But in addition – as
emphasised already in references [21, 22] – the scalar sector has to be extended by yet
another PQ charged field obtaining a VEV. Otherwise the axion decay constant is predicted
to be as low as the electroweak scale, which is firmly excluded by laboratory experiments
and stellar astrophysics. Correspondingly, we considered also models which have additional
scalar fields such as a PQ charged 45H (Models 2.1 and 2.2) or a PQ charged SO(10)

singlet complex scalar field S (Models 3.1 and 3.2), cf. table 5. Crucially, in these extended
models, the PQ symmetry breaking scale vPQ and the seesaw scale vBL are independent
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parameters – in fact, the axion field has to be orthogonal to the Goldstone field which is
eaten by the gauge bosons getting mass by B-L breaking. This is different in the original
SMASH model [1, 2], where the PQ symmetry is at the same time also a B-L symmetry.

Model 2.1 features PQ charges for the 16F , 126H and 10H multiplets and an additional
PQ charged 45H , cf. (4.24) and table 5. The range in the axion decay-constant/mass is
predicted to be quite distinct from the one of Model 1, see figure 12. Just accounting
for gauge coupling unification with scalar threshold corrections, we have found an upper
bound on the decay-constant fA < 4.0 × 1014 GeV, and a corresponding lower bound on
the axion mass, mA > 1.4× 10−8 eV. Imposing in addition constraints from proton decay,
the upper limit on fA comes further down, while constraints on the photon coupling from
stellar cooling introduce also a lower limit on fA,

1.3× 107 GeV < fA < 6.7× 1012GeV, 8.5× 10−7 eV < mA < 0.5 eV. (6.6)

Furthermore, the model features an upper limit on the scale of B-L breaking: vBL <

1013 GeV, cf. figure 4.
In this model, both the pre-inflationary as well as the post-inflationary PQ symmetry

breaking scenarios are possible, see figure 12. As far as the latter case is concerned, it is
important to note that the possibly inherent domain wall problem can be circumvented if the
PQ symmetry is only a low energy remnant of an exact discrete symmetry, so that Planck
scale suppressed PQ violating operators – which have been argued to be induced in any case
by quantum gravity effects [84–87], and which render string-wall systems with NDW > 1

unstable – occur at dimension ten14 [69]. In this case, the preferred mass range for dark

16F 10H 126H 45H S

Model 2.1 − 1
40

1
20

1
20 − 1

10 −
Model 3.1 − 1

40
1
20

1
20 − − 1

10

Table 6. Charges of the fermionic and scalar fields under a PQ-protecting discrete Z40 symmetry
for Models 2.1 and 3.1. The lowest dimensional PQ violating operators allowed by these symmetries
are 4510H for Model 2.1 and S10 for Model 3.1.

matter is a bit higher than the one singled out in the post-inflationary NDW = 1 scenario.
In particular, for NDW = 3, as in Model 2.1, it is given by 0.18 meV . mA . 2.0 meV, cf.
figure 12. Intriguingly, for mA = O(10)meV and tanβ & 0.3, the axion in this model may
explain at the same time recently observed stellar cooling excesses observed from helium
burning stars, red giants and white dwarfs [77].

Fortunately, there are a number of running (ADMX [71], HAYSTAC [88], ORGAN [89]),
presently being assembled (CULTASK [72], QUAX [90]), or planned (ABRACADABRA
[73], KLASH [91], MADMAX [74], ORPHEUS [92]) axion dark matter experiments, which
cover a large portion of the mass range of interest for axion dark matter in the pre-
inflationary PQ symmetry scenario in Model 2.1, see figure 12. Furthermore, in the meV

14For explicit examples of such discrete symmetries and more details see table 6 and Appendix D.
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mass range of interest for the post-inflationary PQ symmetry breaking scenario, the model
can be probed by the presently being build fifth force experiment ARIADNE [75] and the
proposed helioscope IAXO [76], cf. figure 12.

Model 2.2 adds to the field content of Model 2.1 two PQ charged vector representations
10F of SO(10), getting their mass from the 45H and cancelling two units of the domain wall
number. Correspondingly, Model 2.2 has no domain wall problem whatsoever. Allowing
vBL to be as small as 109 GeV, the allowed mass range in this model is very similar to the
one of Model 2.1. Taking into account additional limits from gauge coupling unification,
proton decay and the limit from stellar cooling, the preferred ranges in this model are

1.3× 107 GeV < fA < 1.5× 1013 GeV, 3.8× 10−7 eV < mA < 0.5 eV. (6.7)

This model can be probed by the same experiments as Model 2.1. Similar to Model
2.1, this model allows for axions in the post-inflationary DM window. Remarkably, the
model features a second potential DM candidate: the lightest stable combination of the
additional fermions [93–96]. Therefore we do not need to insist on the axion being 100%

of the observed dark matter and can allow for bigger axion masses (cf. the region labelled
"subdominant" in the NDW = 1 bar of figure 12).

Model 3.1 contains PQ-charged fermions in the 16F representation, as well as PQ
charged scalars in the 10H , 126H and a singlet S. The axion decay constant in this model
is set by the VEV of the scalars singlet. It is a free parameter not constrained by gauge
coupling unification, since it does not break any gauge symmetries. In a sense, Model 3.1 is
the most minimal GUT model with an invisible axion with decay constant possibly in the
intermediate range between the electroweak scale and the unification scale, see figure 12.
Similar to Model 2.1, its possible domain wall problem in the post-inflationary symmetry
breaking case can be avoided if the PQ symmetry is only an accidental symmetry of a
discrete symmetry which forbids PQ-violating operators up to dimension 10. For an example
of such a discrete symmetry, we refer to table 6.

Model 3.2 adds to the field content of Model 3.1 two vectorial 10F representations
of fermions getting their masses by the VEV vS of the singlet S. Despite the fact that
the fermions affect the running of gauge couplings at scales above vS , we found that, as
in Model 3.1, the axion decay constant cannot be constrained by the running of the gauge
coupling. Both models 3.1 and 3.2 feature a B-L breaking scale lower than 1013 GeV.

Variations of these models can be obtained by: (i) Changing the PQ-charges of the
scalar that sets the axion decay constant while keeping the other PQ charges constant. E.g.,
a lower PQ charge 2 of the S in our model 3.1 will result in an increased domain wall number
NDW = 6. (i) Choosing a different scalar sector and therefore different breaking chains.
For example, one can choose SU(3)C × SU(2)L × SU(2)R × U(1)B−L as the intermediate
gauge group by assigning a VEV to the corresponding singlet in the 210H . Or one may
replace the 210H by a 45H . For both these model variations – (i) and (ii) – we expect
similarly large ranges of viable axion masses. (iii) Employing a different gauge group at the
unification scale. If the breaking chain does not go via SO(10), the analysis can be very
different from the one in this paper.
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Finally, we return back to the question posed in the introduction, concerning whether
the field content of the considered models may allow for a self-contained description of
particle physics and cosmology on the same level as the minimal SMASH model. For
Model 3, this question can almost certainly be answered in the affirmative, since nearly all
the considerations and calculations done in minimal SMASH can be translated to Model
3 if one exploits the (in general non-minimally gravitationally coupled) complex singlet
S (or a linear combination with the Higgs) as the inflaton. Note that, although fA in
Model 3 is poorly constrained for vBL < 1013 GeV, there can be further bounds coming
from demanding stability in the Higgs direction, as analyzed for the SMASH theory in refs.
[1, 2]. Such study was beyond the scope of this paper. Although less minimal, Model 2
may also be a good candidate for a GUT SMASH model, and features a more constrained
axion mass.
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A Invariance of axion-neutral gauge boson couplings under fermionic
rephasings

As mentioned in Section 3.3, one may obtain the axion effective Lagrangian by performing
redefinitions of the fermionic phases which eliminate the dependence of the Yukawa interac-
tions on the axion field. Although rephasings fixed by the fermionic PQ charges suffice, one
may choose alternative redefinitions –all cancelling the axion dependence coming from the
Yukawas– which will give rise to different effective actions. These are physically equivalent,
as they only differ by field redefinitions whose effects vanish on-shell. In this appendix we
show explicitly that, in keeping with these expectations, the SU(3)C axion decay constant
fA,3C –and with it the axion mass– as well as the coupling of the axion to photons are not
sensitive to rephasings of the fermion fields. Although the interactions of the axion with
fermions and massive gauge boson remain sensitive to the choice of fermionic PQ charges,
the different effective Lagrangians should yield identical on-shell results.

To prove the assertions about the couplings of the axion to the massless bosons, we
will consider the Yukawa interactions for the Weyl fermion fields q, u, d, l, e, n (see table 1)
generated by the SO(10) invariant couplings in (2.2), with Ỹ10 = 0 due to the assumed PQ
symmetry (2.8). For completeness, we will also add the Yukawas of additional N10 fermion
multiplets in the 10F of SO(10) coupled to a scalar in the 45H , as needed in some of the
models of section 4:

LY = 16F
(
Y1010H + Y126126H

)
16F + Y4510F 45H10F + h.c.. (A.1)

Using the decompositions of the scalars in the 10H , 126H and 45H into SM representations
given in table 2, as well as the decompositions of the fermion representations in table 1, we
may write

LY ⊃Y10(qHu + qHdd+ lHde+ lHun) + Y126(qΣuu+ qΣdd+ lΣde+ lΣun)

+ Y45 σ (D̃D + L̃L).
(A.2)

Since they couple to the same fermion fields, Hu and Σu must have identical PQphys charges
q1/fPQ; similarly, Hd and Σd must have a common charge q2/fPQ. We also allow a charge
q6/fPQ for the field σ.15 Then we may remove the axion contributions to the Yukawa
couplings by performing any of the following fermion rotations, parameterised by arbitrary
q̂q, q̂l, q̂D, q̂L:

ψa → eiq̂a/fPQAψa, ψa = {q, u, d, l, e, n,D, D̃, L, L̃},
q̂u = − q1 − q̂q, q̂d = − q2 − q̂q,
q̂e = − q2 − q̂l, q̂n = − q1 − q̂l,
q̂D̃ = − q6 − q̂D, q̂L̃ = − q6 − q̂L

(A.3)

15The notation is chosen for compatibility with sections 4.3.1, 4.3.2.
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Under such anomalous transformations, after redefining A → −A, the axion-gauge boson
interactions become:

δL ⊃ A

fPQ

∑
k

(
2
∑
a

qaTk(Ra)

)
g2
k

16π2
T̄r F̃ kµνF

k,µν =

− A

(
3q1

fPQ
+

3q2

fPQ
+
N10q6

fPQ

)
g2

3

16π2
T̄r F̃ 3

µνF
3,µν

+ A

(
3q̂l
fPQ

+
9q̂q
fPQ
− N10q6

fPQ

)
g2

2

16π2
T̄r F̃ 2

µνF
2,µν

− A

(
3q̂l
fPQ

+
9q̂q
fPQ

+
8q1

fPQ
+

8q2

fPQ
+

5N10q6

3fPQ

)
g2

1

16π2
T̄r F̃ 1

µνF
1,µν

⊃ −A
(

3q1

fPQ
+

3q2

fPQ
+
N10q6

fPQ

)
αs
8π

G̃aµνG
aµν

− 8A

(
q1

fPQ
+

q2

fPQ
+
N10q6

3fPQ

)
α

8π
F̃µνF

µν ,

(A.4)

where αs = g2
s/(4π), α = e2/(4π) = g2

2g
2
1/(g

2
1 +g2

2)/(4π) are the strong and electromagnetic
fine-structure constants, and Gaµν , Fµν denote the components of the strong and electro-
magnetic field strengths, respectively. The previous result shows explicitly that, although
the fermionic PQ charges appear in the effective Lagrangian, the interactions between the
axion and the massless bosons only depend on the PQ charges of the scalars, and thus
are independent of possible rephasings of the fermions in the low-energy theory. From our
results we may obtain an expression for fA ≡ fA,3C in terms of the scalar PQ charges:

f−1
A = f−1

A,3C
= −3

(
q1

fPQ
+

q2

fPQ

)
−N10

q6

fPQ
. (A.5)

Including the axion-fermion interactions arising from the fermion rephasings, we may finally
write the effective Lagrangian defined for the general fermion rotations in (A.3) and the
above fA value:

Leff = ∂µA
∑
a

q̂a
fPQ

(ψ†aσ̄
µψa) +

A

fA

αs
8π

G̃aµνG
aµν +

A

fA

8

3

α

8π
F̃µνF

µν . (A.6)

B Roots and weights of SO(10) and 4C × 2L × 2R

In this appendix we review some basic properties of the roots and weights of SO(10) –
for more details, see [97]– and prove that for our choice of VEVs in table 2 the axion is
automatically orthogonal to the Goldstone bosons associated with the broken, non-diagonal
generators of the gauge group.

The Lie algebra of SO(10) has rank five, as it contains a subspace of mutually com-
muting generators –the Cartan subalgebra– of dimension five. The latter is spanned by
generators Hi, i = 1 . . . 5. As the Hi are hermitian and commute with each other, in any
representation of the algebra one can find a basis of orthonormal eigenstates of the Hi, with
real eigenvalues λ called “weights”. This applies in particular to the adjoint representation,
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whose weights are called the roots of the Lie algebra. The roots are defined in a basis of
generators in which the adjoint action of the Hi is diagonal. Aside from the Hi, the Lie
algebra is then spanned by generators Eα satisfying

[Hi, Eα] = αiEα. (B.1)

The Eα are not hermitian –in fact (B.1) implies E†α = E−α– but one can always recover
hermitian generators from the combinations 1/2(Eα−E−α), 1/2i(Eα−E−α). In an arbitrary
representation, one can label the states with well-defined weights as |λ〉, which satisfy

Hi|λ〉 = λi|λ〉, 〈λ|λ′〉 = δλλ′ . (B.2)

The commutation relations (B.1) imply

Eα|λ〉 = Nα,λ|λ+ α〉 (B.3)

for some normalisation constant Nα,λ. The roots α = {αi} and weights λ = {λi} can be
seen as vectors in an Euclidean space of dimension equal to the rank of the group. There
is a convenient choice of non-orthonormal basis called the Dynkin basis in which the αi
and λi can be represented with integer numbers. One starts by identifying a set of linearly
independent roots αp = {αpi } called “simple roots”, such that any root can be expressed
as a linear combination of the simple roots, with coefficients that are all positive or zero,
or alternatively all negative or zero. The scalar products of the simple roots –defined as
(αp, αq) =

∑
i α

p
iα

q
i – allow to define a Cartan matrix Aij

Apq = 2
(αp, αq)

(αq, αq)
. (B.4)

Then the Dynkin basis is spanned by the following basis of roots α̃p = {α̃pi }

α̃p =
∑
q

(A−1)pqα
q. (B.5)

In the Dynkin basis, any root or weight can be expressed as a linear combination of the α̃p

with integer coefficients:

λi =
∑
p

apα̃pi , ap integer. (B.6)

For SO(10), there are 5 zero roots corresponding to the Cartan generators, plus 20
“positive” roots, and 20 negative roots given by minus the positive roots. The positive roots
are

(0, 1, 0, 0, 0)

(1,−1, 1, 0, 0)

(−1, 0, 1, 0, 0), (1, 0,−1, 1, 1)

(−1, 1,−1, 1, 1), (1, 0, 0,−1, 1), (1, 0, 0, 1,−1)

(0,−1, 0, 1, 1), (−1, 1, 0,−1, 1), (−1, 1, 0, 1,−1), (1, 0, 1,−1,−1)

(0,−1, 1,−1, 1), (0,−1, 1, 1,−1), (−1, 1, 1,−1,−1), (1, 1,−1, 0, 0)

(0, 0,−1, 0, 2), (0, 0,−1, 2, 0), (0,−1, 2,−1,−1), (−1, 2,−1, 0, 0), (2,−1, 0, 0, 0).

(B.7)
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The five simple roots αp of SO(10) are those at the bottom of the previous list.
The maximal subgroup 4C2L2R ⊃ SO(10) has rank 5, and thus its Cartan generators

contain those of SO(10), and the two bases of Cartan generators for each group are related
by a linear transformation. Then one can map weights of representations of 4C2L2R into
weights of SO(10). The relation is given by an invertible projection matrix P such that

λ4C2L2R = PλSO(10), P =



0 0 1 1 1

0 0 1 0 0

1 1 1 0 1

0 1 1 1 0

−1 −1 −1 −1 0


. (B.8)

With the former choice of matrix, the weights under 4C2L2R are of the form {wi}, i =

1, . . . , 5, where w1 is the weight corresponding to the generator T3 of 2L, w2 is the weight
of T3 for the group 2R (or, as denoted in tables 2, 1, the 1R charge), and w3, w4, w5 are
the three weights of the Cartan algebra of SU(4), with w3, w4 the weights of the Cartan
generators T 3, T 8 of SU(3). The former assignments can be checked by starting from
the SO(10) weights of the 16 of SO(10), computing the 4C2L2R weights with (B.8), and
identifying the quantum numbers of the SM fermions and the RH neutrino, as in table 1.
One can also identify the charge B − L as a combination of SU(4) weights

B − L =
1

3
w3 +

2

3
w4 + w5. (B.9)

The electric charge is

Q = T3 + 1R +
1

2
(B − L) =

w1

2
+
w2

2
+

1

6
w3 +

1

3
w4 +

1

2
w5. (B.10)

With the previous tools we may prove now that with the choice of fields getting VEVs
in table 2, the orthogonality conditions of the axion with respect to Goldstone bosons
associated with the off-diagonal gauge generators are always satisfied. The non-diagonal
generators of the Lie algebra in a given representation are spanned by the Eα. Let’s assume
a representation of scalar fields in which the nonzero VEVs vi correspond to states |λ(i)〉.
Then the orthogonality constraints (3.43) from off-diagonal generators can be satisfied with
the following sufficient conditions:

(Eα)mn = 0 for m,n such that vm 6= 0, vn 6= 0, α 6= 0. (B.11)

The previous conditions have to be verified within each SO(10) irreducible representation,
as the generators only link field components within them. One has

(Eα)mn = 〈λ(m)|Eα|λ(n)〉 = Nα,λ(n)〈λ(m)|λ(n) + α〉 = Nα,λ(n)δλ(m),λ(n)+α. (B.12)

This means that (Eα)mn will be zero –and the orthogonality condition with all the Eα
(and with them the non-diagonal generators) automatically satisfied– if the difference of
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the weights associated with the vm 6= 0 is not a nonzero root of the Lie algebra, that is
λ(m) 6= λ(n)+α for all roots α 6= 0. This will always be the case if only one component in a
given representation has a nonzero VEV, but has to be checked for more general situations.
If the property holds, then the only nontrivial orthogonality conditions are those arising
from (3.44) applied to the diagonal Cartan generators (or their linear combinations).

In this article, we consider the following scalar representations: 210H , 10H , 45H , 126H .
In both the 210H and 45H , only one component (φ for the 210H , σ for the 45H , see table 2)
gets a VEV, so that orthogonality with respect to the off-diagonal generators is guaranteed.
For the 10H and 126H , however, we have in both cases two field components getting a VEV:
the neutral components of Hu and Hd, and those of Σu and Σd, respectively. Hu has the
same quantum numbers as Σd, meaning identical weights. A similar relation holds for Hd

and Σd. Since the orthogonality condition can be checked in terms of weights, it suffices
to consider the Σ components. From table 2 one gets their quantum numbers under 1R,
B − L. The fact that the states are colour singlets implies w3 = w4 = 0. The table gives
B − L = 0, so that equation (B.9) implies then w5 = 0. Charge neutrality, together with
(B.10), fixes T3 = −1R. In the Dynkin basis, the SU(2) weights are twice the usual ones, as
follows from relation (B.6), and the fact that there is a unique simple SU(2) root given by
the number 2, in the conventional normalisation. Then the 4C2L2R weights of the neutral
Σu and Σd states in the Dynkin basis are

λ(Σ0
u) = (1,−1, 0, 0, 0)4C2L2R , λ(Σ0

d) = (−1, 1, 0, 0, 0)4C2L2R . (B.13)

Inverting the relation (B.8), the resulting SO(10) weights in the Dynkin basis are

λ(Σ0
u) = (0, 0,−1, 1, 1)SO(10), λ(Σ0

d) = (0, 0, 1,−1,−1)SO(10). (B.14)

One has λΣ0
u
−λΣ0

d
= (0, 0,−2, 2, 2)SO(10), which is not a root of the Lie Algebra, as neither

it nor its opposite are within the list in (B.7). This means then that the orthogonality
condition (3.43) is satisfied for all non-diagonal generators in the 126H representation.
Identical results apply for the 10H .

C Coupling evolution

As usual, we can write the renormalisation group equations for the gauge couplings as

dα−1
i (µ)

d lnµ
= − ai

2π
−
∑
j

bij

8π2α−1
j (µ)

(C.1)

where i, j indices refer to different subgroups of the unified gauge group at the energy scale
µ and

α−1
i =

4π

g2
i

. (C.2)
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The β-function of a gauge coupling gi associated with the gauge group Gi at two-loop order
in the MS scheme is given by [98]

βgi = µ
dgi
dµ

= − g3
i

(4π)2

{
11

3
C2(Gi)−

4

3
κ
∑
a

na,iSi(ρa)−
1

6
η
∑
m

nm,iSi(ρm)

}

− g3
i

(4π)4

34g2
i

3
C2(Gi)

2 − κ
∑
a

4
∑
j

g2
jC2,j(ρa) +

20g2
i

3
C2(Gi)

na,iSi(ρa)
−η
∑
m

2
∑
j

g2
jC2,j(ρm) +

g2
i

3
C2(Gi)

nm,iSi(ρm)

 . (C.3)

In the above equation, the irreducible fermion and scalar representations are labelled by a
andm, respectively. An irreducible representation of a product of groups can contain several
copies of irreducible representations of the individual groups. For a fermion representation
ρa we denote the multiplicity of representations of the group i as na,i; similarly, for a scalar
representation ρm we use the notation and nm,i. Si(ρa) is a shorthand for the the Dynkin
index of the irreducible representation of the group i contained within a given fermion
representation ρa. Si(ρm) is the analogue for a scalar representation ρm. C2(Gi) = Si(ad)

designates the quadratic Casimir for the gauge fields in the adjoint representation of the
gauge group i, while C2,i(ρa), C2,i(ρm) are the quadratic Casimirs of the representation of
the group i contained in ρa and ρm, respectively. Finally, in equation (C.3) one has κ = 1, 1

2

for Dirac and Weyl fermions, respectively, and η = 1, 2 for real and complex scalar fields.
At each scale, one has to take care as to which multiplets have to be included in

the running. As described in section 5, we consider for the scalars an extended survival
hypothesis, modified so as to allow for a 2HDM limit at low energies, while still having
electroweak VEVs for all doublets in the 10 and 126, as needed to achieve realistic fermion
masses. According to the extended survival hypothesis, fields contribute to the running
only if they acquire a VEV at lower scales. The exceptions are the doublets Σu, Σd in the
(15, 2, 2)PS component of the 126, which are assumed to have a mass of the order of MBL.
A list of the scalar components that get VEVs is given in table 2. The decomposition of
the fermions is given in table 1. With the previous assumptions, between MW and the
lowest intermediate scale, the beta functions for all models mentioned in this paper are
the beta functions of a two-Higgs doublet model, with gauge groups given in the order
SU(3)C × SU(2)L × U(1)Y :

a2HDM =


−7

−3
21
5

 ; b2HDM =


−26 9

2
11
10

12 8 6
5

44
5

18
5

104
25

 , (C.4)

where we used the GUT normalisation for the hypercharge gauge coupling, gY =
√

5/3g′,
which ensures that the generator TY enters the Lagrangian in the combination gy

√
3/5TY ,

with
√

3/5TY a generator with the appropriate GUT normalisation. For a consistent anal-
ysis at the two-loop order, at each symmetry breaking scale one needs to impose matching
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conditions for the gauge couplings that account for finite one-loop thresholds. For a sym-
metry breaking scale in which each ultraviolet group GUV

i is broken down to a subgroup
GIR
i , the matching conditions for the gauge couplings gi are of the form [99, 100]:

1

αIR
i (µ)

=
1

αUV
G (µ)

− λi(µ)

12π
, (C.5)

where, assuming diagonal mass matrices compatible with the infrared gauge symmetries
–that is, with a common mass for each IR multiplet– one has

λi(µ) =C2(GUV
i )− C2(GIR

i )−21
∑
j

Si(Vj) ln
MVj

µ

+ η
∑
kphys

Si(Skphys) ln
MSkphys

µ
+ 8κ

∑
l

Si(Fl) ln
MFl

µ
.

(C.6)

For each value of i in the above equation, the Vj designate the GIR
i representations of

gauge bosons that receive a mass at the corresponding threshold, leading to the breaking
of the UV group GUV

i . Skphys designate the GIR
i representations of heavy scalars that are

integrated out at the threshold, omitting the unphysical Goldstone bosons. Finally, Fl
are the GIR

i representations of heavy Dirac fermions that decouple at the threshold. The
notation of η and κ is as in equation (C.3). We will apply the former matching conditions
at the threshold scale µ corresponding to the masses of the heavy gauge bosons, so that the
contributions λVi can be ignored (up to subleading effects from possible lack of degeneracy
of the massive gauge bosons from different groups, if the UV gauge group is not simple).

Next we consider the case in which a U IR(1) group arises by combining two U(1)

subgroups in the UV, denoted as U1(1) ∈ GUV
1 and U2(1) ∈ GUV

2 . The associated U(1)

generators T IR, TUV
1 , TUV

2 are all part of the Lie Algebra of the GUT group, and for GUT
multiplets in representations ρ of the GUT group with Dynkin index SGUT(ρ), they satisfy

Trρ(T
IR)2 =

1

kIR
SGUT(ρ), Trρ(T

UV
1 )2 =

1

k1
SGUT(ρ), Trρ(T

UV
2 )2 =

1

k2
SGUT(ρ). (C.7)

The ki encode the normalisation of the U(1) generators when embedded into the GUT
group, such that

√
kIR T

IR,
√
k1 T

UV
1 and

√
k2 T

UV
2 define GUT generators with the usual

normalisation. Assuming that GUV
1 and GUV

2 become broken at the threshold to GIR
1 and

GIR
2 , respectively –so that part of the symmetry breaking is given by GUV

1 ⊗ GUV
2 →

GIR
1 ⊗GIR

2 ⊗ U(1)IR– the matching of couplings goes as:

1

kIR αIR(µ)
=

1

k1 αUV
1 (µ) sin2 θ12

− λ̃(µ)

12π
=

1

k1 αUV
1 (µ)

+
1

k2 αUV
2 (µ)

− λ̃(µ)

12π
, (C.8)
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with

tan2 θ12 =
g2

2k2

g2
1k1

,

λ̃(µ) =
2∑
i=1

[
C2(GUV

i )

ki

]
− 21

∑
j

Q2
IR(Vj) ln

MVj

µ

+η
∑
kphys

Q2
IR(Skphys) ln

MSkphys

µ
+ 8κ

∑
l

Q2
IR(Fl) ln

MFl

µ

 .
(C.9)

In the above equation, g1 and g2 are the couplings of the groups GUV
1 and GUV

2 , re-
spectively, and Q2

IR represent the U(1) charges under the generator T IR. The coupling gIR
arising from the previous matching is in the GUT-compatible normalisation, as ensured by
the factors of ki.

Before moving on to the different models, we provide in table 7 a summary of the
decompositions of the different scalar multiplets under the gauge groups appearing in our
breaking chains. The table also lists the scales at which the different representations de-
couple; decompositions are only provided for gauge groups which emerge at or above the
decoupling scale, with the exception of fields decoupling at MPQ, since the latter may or
may not break the gauge group. For fermion fields, the reader is referred to table 4.

C.1 Model 1

In this minimal model the 45H is not present. BetweenMBL andMU, all particles mentioned
in the second column of table 2 are included in the RG running. The resulting beta functions
for the coupling constants of the gauge group SU(4)C × SU(2)L × SU(2)R are

a =


−7

3

2
26
3

 ; b =


2435

6
105
2

249
2

525
2 73 48

1245
2 48 779

3

 . (C.10)

In this model, there are two high-scale thresholds associated with the breakings SO(10)→
SU(4)c⊗SU(2)L⊗SU(2)R → SU(3)C⊗SU(2)L⊗U(1)Y . The matching conditions of each
gauge coupling at each threshold are determined by the group structure and the particle
content of the theory, following equations (C.5), (C.6), (C.8) and (C.9).

Model 1 matching: SO(10)→ SU(4)c ⊗ SU(2)L ⊗ SU(2)R

This breaking is triggered at the scaleMU by the (1, 1, 1) VEV vU in the 210 representation,
which, given its nonzero PQ charge (see (4.14)), is taken as complex, as are the scalar
representations 126 (complex to start with) and the 10. There are 24 broken generators,
and correspondingly 24 Goldstone bosons inside the 210 representation, with the same
quantum numbers as the broken generators. These Goldstones reside in the real part of
the (6, 2, 2) ⊂ 210. According to the extended survival hypothesis, the scalar multiplets
which don’t get VEVs at lower scales should be integrated out. These are the multiplets
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SO(10) 4C2L2R 4C2L1R 3C2L1R1B−L 3C2L1Y Decoupling scale VEV

210H (1, 1, 1) MU vU

(15, 1, 1) MU

(6, 2, 2) MU

(15, 1, 3) MU

(15, 3, 1) MU

(10, 2, 2) MU

(10, 2, 2) MU

10H (6, 1, 1) MU

(1, 2, 2) (1, 2, 1/2) (1, 2, 1/2, 0) (1, 2, 1/2) MZ v10u

(1, 2,−1/2) (1, 2,−1/2, 0) (1, 2,−1/2) MZ v10d

126H (6, 1, 1) MU

(10, 3, 1) MU

(10, 1, 3) (10, 1, 1) (1, 1, 1,−2) (1, 1, 0) MBL vBL

(3, 1, 1,−2/3) (3, 1, 2/3) MBL

(6, 1, 1, 2/3) (6, 1, 4/3) MBL

(10, 1, 0) (1, 1, 0,−2) (1, 1,−1) Max{MPQ,MBL}
(3, 1, 0,−2/3) (3, 1,−1/3) Max{MPQ,MBL}
(6, 1, 0, 2/3) (6, 1, 1/3) Max{MPQ,MBL}

(10, 1,−1) (1, 1,−1,−2) (1, 1,−2) Max{MPQ,MBL}
(3, 1,−1,−2/3) (3, 1,−4/3) Max{MPQ,MBL}
(6, 1,−1, 2/3) (6, 1,−2/3) Max{MPQ,MBL}

(15, 2, 2) (15, 2, 1/2) (1, 2, 1/2, 0) (1, 2, 1/2) MBL v126u

(3, 2, 1/2, 4/3) (3, 2, 7/6) MBL

(3, 2, 1/2,−4/3) (3, 2,−1/6) MBL

(8, 2, 1/2, 0) (8, 2, 1/2) MBL

(15, 2,− 1
2

) (1, 2,−1/2, 0) (1, 2,−1/2) MBL v126d

(3, 2,−1/2, 4/3) (3, 2, 1/6) MBL

(3, 2,−1/2,−4/3) (3, 2,−7/6) MBL

(8, 2,−1/2, 0) (8, 2,−1/2) MBL

45H (1, 3, 1) MU

(15, 1, 1) MU

(6, 2, 2) MU

(1, 1, 3) (1, 1, 0) (1, 1, 0, 0) (1, 1, 0) MPQ vPQ

(1, 1, 1) (1, 1, 1, 0) (1, 1, 1) Max{MPQ,MBL}
(1, 1,−1) (1, 1,−1, 0) (1, 1,−1) Max{MPQ,MBL}

Table 7. Decomposition of the scalar multiplets according to the various subgroups in our breaking
chains. We list the scales at which the different representations decouple, and for a given represen-
tation we don’t provide the decomposition under gauge groups that emerge below its decoupling
scale, except for fields decoupling at MPQ (depending on the model, MPQ can lead to the breaking
of the gauge group, or not).

not included in table 2, (see also table 7) and listed below:

210 ⊃{(1, 1, 1), (15, 1, 1),Re(6, 2, 2)(G), Im(6, 2, 2), (15, 3, 1), (15, 1, 3), (10, 2, 2),

(10, 2, 2)},
126 ⊃{(6, 1, 1), (10, 3, 1)},
10 ⊃ (6, 1, 1),

(C.11)
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where the G indicates where the Goldstones reside. The relevant matching conditions are
(C.5), (C.6), which give(

1

α4C(MU )
,

1

α2R(MU )
,

1

α2L(MU )

)
= (1, 1, 1)

1

αG(MU )
− 1

12π
(λU4C , λ

U
2R, λ

U
2L),

(λU4C , λ
U
2R, λ

U
2L) = (4, 6, 6) + (8, 0, 0) logU M(15,1,1) + (4, 6, 6) logU M(6,2,2)

+ (24, 60, 0) logU M(15,3,1) + (24, 0, 60) logU M(15,1,3)

+ (24, 20, 20) logU M(10,2,2)M(10,2,2) + (2, 0, 0) logU M(6,1,1)M(6,1,1)

+ (18, 40, 0) logU M(10,3,1).

(C.12)

In the previous equations, we have defined

logU A ·B · · · · ≡ log

[
A

MU

B

MU
. . .

]
, (C.13)

We have omitted threshold corrections depending on the masses of the heavy gauge bosons,
as we assumed a choice of µ = MU for which these contributions cancel; we will proceed
similarly in the rest of the section.

Model 1 matching: SU(4)c ⊗ SU(2)L ⊗ SU(2)R → SU(3)C ⊗ SU(2)L ⊗ U(1)Y

This breaking is triggered at the scale MBL by the VEV vR inside the (1, 1, 0)SM of the
126 (In the rest of this subsection, decompositions refer to the SM gauge group). There are
9 Goldstone bosons, contained in the real and imaginary parts of {(3, 1, 2/3), (1, 1,−1)} ⊃
126, and in the real part of (1, 1, 0) ⊂ 126. All the 210 fields were already integrated out
at the previous threshold. Within the extended survival hypothesis, plus the assumption
that Σu,d decouple at MBL, the scalar fields to be integrated out at MBL are only inside
the 126 –since the surviving ones from the 10 include the fields Hu, Hd that get VEVs at
the electroweak scale– and are given by (see table 7):

126 ⊂{Re(1, 1, 0), Im(1, 1, 0)(G), (1, 1,−1)(G), (1, 1,−2), (3, 1, 2/3)(G)

(3, 1,−1/3), (3, 1,−4/3), (6, 1, 4/3), (6, 1, 1/3), (6, 1,−2/3), (8, 2, 1/2)

(8, 2,−1/2), (3, 2, 7/6), (3, 2, 1/6), (3, 2,−1/6), (3, 2,−7/6), (1, 2, 1/2)

(1, 2,−1/2)}.

(C.14)

The matching of the couplings of the groups 3C and 2L follows equations (C.5) and (C.6),
which yield(

1

α3C(MBL)
,

1

α2L(MBL)

)
=

(
1

α4C(MBL)
,

1

α2L(MBL)

)
− 1

12π
(λBL3C , λ

BL
2L ),

(λBL3C , λ
BL
2L ) = (1, 0) + (1, 0) logBL M(3,1,−1/3)M(3,1,−4/3)

+ (5, 0) logBL M(6,1,4/3)M(6,1,1/3)M(6,1,−2/3) + (12, 8) logBL M(8,2,1/2)M(8,2,−1/2)

+ (2, 3) logBL M(3,2,7/6)M(3,2,1/6)M(3,2,−7/6)M(3,2,−1/6)

+ (0, 1) logBL M(1,2,1/2)M(1,2,−1/2),

(C.15)
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where now

logBLA
x ·By · · · · ≡ log

[(
A

MBL

)x( B

MBL

)y
. . .

]
. (C.16)

The matching for the hypercharge coupling can be obtained by applying (C.8) and (C.9).
The relevant U(1) generators in the UV are TUV

1 = (B − L)/2 ⊂ SU(4)C and TUV
2 =

T 3
2R ⊂ SU(2)R, with associated k1 = 3/2, k2 = 1. On the other hand, the GUT-normalised

hypercharge coupling gY has an associated kY = 3/5. Then the matching goes as

1

αY (MBL)
=

2

5α4C(MBL) sin2 θBL
−
λBLY
12π

=
2

5α4C(MBL)
+

3

5α2R(MBL)
−
λBLY
12π

,

tan2 θBL =
2α2R

3α4C
,

λBLY =
14

5
+ logBLM

24/5
(1,1,−2)M

2/5
(3,1,−1/3)M

4/5
(6,1,1/3)M

32/5
(3,1,−4/3)M

64/5
(6,1,4/3)×

×M16/5
(6,1,−2/3)M

24/5
(8,2,1/2)M

24/5
(8,2,−1/2)M

49/5
(3,2,7/6)M

1/5
(3,2,1/6)M

49/5

(3,2,−7/6)
×

×M1/5

(3,2,−1/6)
M

3/5
(1,2,1/2)M

3/5
(1,2,−1/2).

(C.17)

The above matching conditions, especially the matching of hypercharge to the higher gauge
groups, are in agreement with existing literature [101, 102].

C.2 Model 2.1. Case A: MPQ > MBL

The 45H breaks 4C2L2R to 4C2L1R, so we need to consider the RG running for both groups.
BetweenMU andMPQ, the beta functions for the coupling constants of SU(4)C×SU(2)L×
SU(2)R are given by:

a =


−7

3

2
28
3

 ; b =


2435

6
105
2

249
2

525
2 73 48

1245
2 48 835

3

 . (C.18)

The differences between (C.10) and (C.18) come from the inclusion of the (1, 1, 3) multiplet
of the complex 45H (the rest of the fields in the 45 are integrated out at MU , to conform
with the extended survival hypothesis –see table 7). Between MPQ and MBL, the gauge
group is SU(4)C × SU(2)L × U(1)R with beta functions

a =


−13

3

2
38
3

 ; b =


1691

6
105
2

59
2

525
2 73 16

885
2 48 59

 . (C.19)

The matching conditions are given next.
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Model 2.1.A matching: SO(10)→ SU(4)c ⊗ SU(2)L ⊗ SU(2)R

Things go as in C.1, but with the following differences: in models such as the presently
analyzed –and the ones that will follow– the 210 is not charged under PQ and can be taken
as real, which reduces the threshold corrections. Also, there are new fields in the 45 (which
is charged under PQ and thus complex) which have to be integrated out, as they don’t get
VEVs at lower scales. The scalar multiplets to be integrated out at the MU threshold are
then (see table 7):

210 ⊃{(1, 1, 1), (15, 1, 1), (6, 2, 2)(G), (15, 3, 1), (15, 1, 3), (10, 2, 2), (10, 2, 2)},
126 ⊃{(6, 1, 1), (10, 3, 1)},
10 ⊃ (6, 1, 1),

45 ⊃{(6, 2, 2), (1, 3, 1), (15, 1, 1)}.

(C.20)

The matching conditions(C.5) and (C.6) give now (using the same notation as before)

(λU4C , λ
U
2R, λ

U
2L) = (4, 6, 6) + (4, 0, 0) logU M(15,1,1) + (12, 30, 0) logU M(15,3,1)

+ (12, 0, 30) logU M(15,1,3) + (12, 10, 10) logU M(10,2,2)M(10,2,2)

+ (2, 0, 0) logU M(6,1,1)M(6,1,1) + (18, 40, 0) logU M(10,3,1)

+ (8, 0, 0) logU M ′(15,1,1) + (0, 4, 0) logU M(1,3,1) + (8, 12, 12) logU M(6,2,2).

(C.21)

Model 2.1.A matching: SU(4)c ⊗ SU(2)L ⊗ SU(2)R → SU(4)C ⊗ SU(2)L ⊗ U(1)R

This breaking is triggered at a scale MPQ by the VEV vPQ within the (1, 1, 0)4C2L1R ⊂ 45

(We consider decompositions along 4C2L1R in the rest of this subsection). There are two
broken generators of SU(2)R, whose Goldstones are in real part of the (1, 1, 1) and (1, 1,−1)

components of the 45. The scalar fields to be integrated out are (see table 7)

45 ⊃{Re(1, 1, 1)(G), Im(1, 1, 1),Re(1, 1,−1)(G), Im(1, 1,−1), (1, 1, 0)},
126 ⊃{(10, 1, 0), (10, 1,−1)}.

(C.22)

This gives threshold corrections (with notation that should be clear from the above cases)

(λPQ4C , λ
PQ
2L , λ

PQ
1R ) = (0, 0, 2) + (0, 0, 1) logPQM1,1,1M1,1,−1 + (6, 0, 0) logPQM10,1,0

+ (6, 0, 20) logPQM10,1,−1.
(C.23)

Model 2.1.A matching: SU(4)c ⊗ SU(2)L ⊗ U(1)R → SU(3)C ⊗ SU(2)L ⊗ U(1)Y

This case is similar to that in section C.1, with the following differences. First, the Gold-
stones from the breaking of SU(2)R are now shared between the 45 (whose Goldstones were
integrated out at the previous thresholds) and the 126. Additionally, now one must exclude
from the loops the heavy gauge bosons that were decoupled at the scale MPQ. All the 45

fields were integrated out at the latter scale, so that the fields that acquire a mass at the
scale MBL are (see table 7):

126 ⊃{Re(1, 1, 0), Im(1, 1, 0)(G), (3, 1, 2/3)(G), (6, 1, 4/3), (8, 2, 1/2), (8, 2,−1/2),

(3, 2, 7/6), (3, 2, 1/6), (3, 2,−1/6), (3, 2,−7/6), (1, 2, 1/2), (1, 2,−1/2)}.
(C.24)
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Note the difference in Goldstone mode counting with respect to (C.14), and the absence
of the descendants of the (10, 1, 0)4C2L1R , (10, 1,−1)4C2L1R . The values of λBL3C , λ

BL
2L are, as

follows follows from equations (C.5) and (C.6),

(λBL3C , λ
BL
2L ) = (1, 0) + (5, 0) logBL M(6,1,4/3) + (12, 8) logBL M(8,2,1/2)M(8,2,−1/2)

+ (2, 3) logBL M(3,2,7/6)M(3,2,1/6)M(3,2,−7/6)M(3,2,−1/6)

+ (0, 1) logBL M(1,2,1/2)M(1,2,−1/2),

(C.25)

while for λY we now have

λY =
8

5
+ logBLM

64/5
(6,1,4/3)M

24/5
(8,2,1/2)M

24/5
(8,2,−1/2)M

49/5
(3,2,7/6)M

1/5
(3,2,1/6)×

×M49/5

(3,2,−7/6)
M

1/5

(3,2,−1/6)
M

3/5
(1,2,1/2)M

3/5
(1,2,−1/2).

(C.26)

C.3 Model 2.1. Case B: MBL > MPQ

Since the 45H in this case acquires its VEV only after the 126H , there is only one interme-
diate gauge symmetry group to consider, SU(4)C ×SU(2)L×SU(2)R. The beta functions
between MU and MBL are given by (C.18), while for scales below MBL they are given by
(C.4) (the only field in the 45 surviving below the MBL threshold is a SM singlet, and thus
does not contribute to the beta functions). Since the symmetry breaking chain is the same
is in model 4.2, the matching conditions are similar. However we have to take into account
additional heavy particles from the 45 multiplet.

Model 2.1.B matching: SO(10)→ SU(4)c ⊗ SU(2)L ⊗ SU(2)R

The matching goes in this case as in equation (C.21).

Model 2.1.B matching: SU(4)c ⊗ SU(2)L ⊗ SU(2)R → SU(3)C ⊗ SU(2)L ⊗ U(1)Y

The matching is similar to that in section C.1, but with the difference that now the compo-
nents of the 45 which do not get a VEV below the MBL threshold have to be integrated out
–in addition to the fields in (C.14)– so as to comply with the extended survival hypothesis.
As the new components are singlets under SU(3)C and SU(2)L, the matching of α3C and
α2L is as in (C.15). On the other hand, the threshold correction for αY receives extra
contributions:

λBLY =
14

5
+ logBLM

24/5
(1,1,−2)M

2/5
(3,1,−1/3)M

4/5
(6,1,1/3)M

32/5
(3,1,−4/3)M

64/5
(6,1,4/3)×

×M16/5
(6,1,−2/3)M

24/5
(8,2,1/2)M

24/5
(8,2,−1/2)M

49/5
(3,2,7/6)M

1/5
(3,2,1/6)M

49/5

(3,2,−7/6)
×

×M1/5

(3,2,−1/6)
M

3/5
(1,2,1/2)M

3/5
(1,2,−1/2)M

6/5
(1,1,1)M

6/5
(1,1,−1).

(C.27)

Model 2.1.B matching across the PQ threshold (no group breaking)

At the MPQ threshold there is only one field component getting a VEV, (1, 1, 0)SM ⊂
45. This is a singlet under all SM groups, and thus it contributes to no finite threshold
corrections. The matching is then trivial.
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C.4 Model 2.2. Case A: MPQ > MBL

In contrast to Model 2.1.A one has to consider the additional fermions in the 10 repre-
sentation, which contribute to the running between MU and MPQ. The beta functions of
SU(4)C × SU(2)L × SU(2)R are changed accordingly:

a =


−1
10
3
32
3

 ; b =


885
2

105
2

249
2

525
2

268
3 51

1245
2 51 884

3

 . (C.28)

BetweenMPQ andMBL, the heavy fermions have been integrated out and do not contribute
to the running anymore. The beta functions are given by (C.19). Below MBL the running
is that in equation (C.4). The matching conditions are discussed next.

Model 2.2.A matching: SO(10)→ SU(4)c ⊗ SU(2)L ⊗ SU(2)R

As in (C.21).

Model 2.2.A matching: SU(4)c ⊗ SU(2)L ⊗ SU(2)R → SU(4)C ⊗ SU(2)L ⊗ U(1)R

The difference with the matching in 2.1.A (section C.2) comes from the heavy fermions in
the 10 of SO(10), which acquire masses due to the VEV vPQ. The Weyl fermions from the
two multiplets in the 10 can be grouped into massive Dirac fermions. Then in addition to
the fields in (C.22), one has to integrate out the heavy Dirac fermions from the 10F in the
following representations of SU(4)C ⊗ SU(2)L ⊗ U(1)R (see table 4):

{10F , 10F } ⊃ {(6, 1, 0), (1, 2, 1/2), (1, 2,−1/2)}. (C.29)

As a consequence of the extra fields above, (C.23) must be modified to

(λPQ4C , λ
PQ
2L , λ

PQ
1R ) = (0, 0, 2) + (0, 0, 1) logPQM1,1,1M1,1,−1 + (6, 0, 0) logPQM10,1,0

+ (6, 0, 20) logPQM10,1,−1 + (8, 0, 0) logPQM(6,1,0)

+ (0, 4, 4) logPQM(1,2,1/2)M(1,2,−1/2).

(C.30)

Model 2.2.A matching: SU(4)c ⊗ SU(2)L ⊗ U(1)R → SU(3)C ⊗ SU(2)L ⊗ U(1)Y

With the extra fermions already integrated out, the matching goes as in (C.25) and (C.26).

C.5 Model 2.2. Case B: MBL > MPQ

The fermions contribute the the RG running down to the scale at which they acquire their
masses - MPQ. Between MU and MBL, the relevant gauge group is SU(4)C × SU(2)L ×
SU(2)R and the beta functions the same as (C.28). At lower scales between MBL and MPQ

however, the additional fermions are still active and contribute to the coupling evolution.
The corresponding beta functions for the gauge group SU(3)C × SU(2)L × U(1)Y are

a =


−17

3

−5
3

83
15

 ; b =


−2

3
9
2

41
30

12 73
3

9
5

164
15

27
5

347
75

 . (C.31)
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Model 2.2.B matching: SO(10)→ SU(4)c ⊗ SU(2)L ⊗ SU(2)R

As in equation (C.21).

Model 2.2.B matching: SU(4)c ⊗ SU(2)L ⊗ SU(2)R → SU(3)C ⊗ SU(2)L ⊗ U(1)Y

As in (C.27).

Model 2.2.B matching across the PQ threshold (no group breaking)

From the 45, only the SM singlet was left below the MBL threshold. This field cannot
contribute to one-loop finite corrections of the gauge couplings. Still, one has to integrate
out the fermions in the 10 of SO(10), whose decomposition under the SM gauge group is
(see table 4)

{10F , 10F } ⊃ {(3, 1, 1/3), (3̄, 1,−1/3), (1, 2, 1/2), (1, 2,−1/2)}. (C.32)

The matching is then

(λPQ3C , λ
PQ
2L , λ

PQ
Y ) =

(
4, 0,

8

5

)
logPQM(3,1,1/3)M(3̄,1,−1/3)

+

(
0, 4,

12

5

)
logPQM(1,2,1/2)M(1,2,−1/2).

(C.33)

C.6 Model 3.1

The model differs from Model 1 by the addition of a singlet under all gauge symmetries.
Then one can take the beta functions and matching conditions as in section C.1 (if the 210
is again assumed to be complex).

C.7 Model 3.2. Case A: MPQ > MBL

With the heavy quarks acquiring their masses before the B-L scale is broken, we obtain the
following beta function coefficients for scales between MU and MPQ:

a =


−1
10
3

10

 ; b =


885
2

105
2

249
2

525
2

268
3 51

1245
2 51 276

 . (C.34)

At scales belowMPQ and aboveMBL, the beta coefficients are given by (C.10). At the lowest
scales aboveMZ , we have two Higgs doublet running given by (C.4) as usual. The matching
will only differ from that of Model 1 due to the effects of the fermions, as summarised next.

Model 3.2.A matching: SO(10)→ SU(4)c ⊗ SU(2)L ⊗ SU(2)R

As in (C.12).
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Model 3.2.A matching at MPQ (no group breaking)

The only effect comes from the fermions in the 10, whose representations under the Pati-
Salam group are

{10F , 10F } ⊃ {(6, 1, 1), (1, 2, 2)}. (C.35)

Their effect on the matching follows from (C.6):

(λU4C , λ
U
2R, λ

U
2L) = (8, 0, 0) logPQM(6,1,1) + (0, 8, 8) logPQM(1,2,2). (C.36)

Model 3.2.A matching: SU(4)c ⊗ SU(2)L ⊗ SU(2)R → SU(3)C ⊗ SU(2)L ⊗ U(1)Y

With the extra fermions already integrated out, the matching is as in (C.15) and (C.17).

C.8 Model 3.2. Case B: MBL > MPQ

Between MU and MBL, the beta coefficients are given by (C.34). At scales between MBL

andMPQ, we obtain (C.31) (in model 2.2.B, the only component from the 45 left below the
MBL threshold is the SM singlet, which does not contribute to the beta functions). Below
MPQ one has the 2HDM running of (C.4).

Model 3.2.B matching: SO(10)→ SU(4)c ⊗ SU(2)L ⊗ SU(2)R

As in equation (C.12).

Model 3.2.B matching: SU(4)c ⊗ SU(2)L ⊗ SU(2)R → SU(3)C ⊗ SU(2)L ⊗ U(1)Y

As in in (C.15) and (C.17).

Model 3.2.B matching at MPQ (no group breaking)

As in (C.33).

D Higher dimensional PQ-violating operators

In models where the Peccei-Quinn symmetry is a low-energy remnant of a discrete global
symmetry –which can protect the axion sector from gravitational corrections [85, 86, 103]–
one can derive constraints on charges of the scalar fields under such discrete symmetries, see
e.g. [69]. (For other works using discrete symmetries to protect the axion’s interactions in
models with extended gauge groups, see for example [104–106], and the recent [107, 108]).

For the derivation we need to know how the higher-order Peccei-Quinn violating oper-
ators that are allowed by the discrete symmetry enter in the axion effective potential. In
order to keep in line with the observations of the electric dipole moment of the neutron, one
has to ensure that the contributions of these higher order operators are small enough. In
the models described in [69], the VEV that breaks the accidental Peccei-Quinn symmetry
is the VEV of the additional scalar σ whose phase eventually becomes the axion. The
dominant contribution to the axion potential then comes from the PQ violating operator
σN

MN−4
p

. In Models 2.1 and 3.1 of the present paper, it is not quite so obvious which operator
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is dominant, as additional fields that acquire large VEVs are present. In particular, the
126H aquires a VEV vBL that can even be larger than vPQ. In the following we will analyze
the dominant contributions derived from the symmetry defined in table 6 for Model 2.1.

The discrete symmetry allows for Peccei-Quinn violating operators in the Lagrangian
of the form

126H
nBL 45

nPQ

H

MD−4
p

+ h.c. ⊃
v
nPQ

PQ vnBL
BL

MD−4
p

+ h.c., (D.1)

with
D = nPQ + nBL. (D.2)

Not all of these operators are allowed by the gauge symmetries of the models. From table
6 we read that

1

10
nPQ +

1

20
nBL = Z ↔ 2nPQ + nBL = 20Z (D.3)

must be satisfied for some positive integer Z. (Negative Z just correspond to complex
conjugates of these operators, Z = 0 describes Peccei-Quinn conserving operators). The

lowest dimensional such operator is O10 :=
4510H
M6
p
⊃ v10PQ

M6
p
. At dimension 10, this is the only

PQ violating operator. We now impose that all higher order operators should be suppressed
with respect to O10:

v10
PQ

M6
p

>
v
nPQ

PQ vnBL
BL

MD−4
p

↔ v
20Z−2nPQ

BL M
10−nPQ−nBL
p < v

10−nPQ

PQ . (D.4)

Let us first consider the case Z = 1. In this case, nPQ ≤ 10 and (D.4) becomes

v2
BLM

−1
p < vPQ. (D.5)

Using the upper bound vBL < 1013 GeV derived in sections 5 and 6, we obtain a lower
bound on vPQ:

(1013 GeV)2(1018 GeV)−1 = 108 GeV < vPQ. (D.6)

This lower bound is fulfilled if the axion is the dominant component of dark matter (compare
figure 12). The case Z = 1 covers all operators up to dimension 19. Operators of even higher
dimensions are suppressed by higher orders of Mp and can therefore be neglected. We can
conclude that O10 is the dominating PQ violating operator in this model.

Our model is a special case of the DFSZ axion model and the calculation of the relic
abundance goes through as in reference [69] (however with N = 10 and NDW = 3). The
same argument can be applied to Model 3.1, replacing 45H → S.
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