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The Peccei–Quinn (PQ) solution to the Strong CP Problem is expected to fail unless the global
symmetry U(1)PQ is protected from Planck-scale operators up to high mass dimension. Suitable
protection can be achieved if the PQ symmetry is an automatic consequence of some gauge symmetry.
We highlight that if baryon number is promoted to a gauge symmetry, the exotic fermions needed
for anomaly cancellation can elegantly provide an implementation of the Kim–Shifman–Vainshtein–
Zakharov ‘hidden axion’ mechanism with a PQ symmetry protected from Planck-scale physics.

INTRODUCTION

In principle one expects that the QCD Lagrangian
should contain a CP-violating term of the form

LQCD ⊃ −θ̄
αS

8π
GµνG̃

µν . (1)

This would imply a non-vanishing neutron electric-dipole
moment dn ≃ 5.2 × 10−16θ̄ e cm [1], which has been
constrained to be dn < 3.0× 10−26e cm at 90 % C.L. by
experimental searches [2]. Satisfying this experimental
upper limit on dn requires θ̄ . θ̄lim ≃ 10−10 and the
unexplained smallness of θ̄ is the Strong CP Problem.
Fortunately, there is an elegant resolution due to Pec-

cei and Quinn (PQ) [3, 4] in which θ̄ is promoted to a
dynamical field and the scalar potential is minimised for
θ̄ = 0. The PQ mechanism involves a global symmetry
U(1)PQ which is spontaneously broken by a vacuum ex-
pectation value (VEV) and explicitly broken by the QCD
chiral anomaly. If in addition U(1)PQ is explicitly broken
by other sources, then generically θ̄ 6= 0. One potential
concern in this context is that continuous global sym-
metries are expected to be explicitly broken by Planck-
scale (MPl) physics [5, and references therein]. Indeed,
unless Planck-scale suppressed operators with mass di-
mension D . 9 are absent, then generically θ̄ > θ̄lim, in
conflict with observation [6, 7]. Thus for the PQ mecha-
nism to be successful these PQ violating operators must
be forbidden or highly suppressed. Manners of forbid-
ding these PQ violating Planck-scale operators include
imposing discrete symmetries, or embedding U(1)PQ into
a local symmetry or GUT [7–12].
Here we consider models with the gauge symmetry

SU(3)× SU(2)L ×U(1)Y ×U(1)
B
, (2)

where U(1)B is generalised baryon number, under which
the Standard Model quarks carry charge 1/3, whilst other
Standard Model fields are neutral. Promoting the acci-
dental U(1) symmetries of the Standard Model to gauge
symmetries is an interesting idea with roots in the work
of [13–15]. Recently such models have received a marked
growth in interest following the explicit models of File-
viez Perez and Wise [16, 17] (see also [18]). The quan-
tum numbers of the Standard Model fermions (with three

right-handed neutrinos NR) are

QL = (3,2, 1/3, 1/3)×3 , LL = (1,2,−1, 0)×3 ,

uR = (3,1, 4/3, 1/3)×3 , eR = (1,1,−2, 0)×3 ,

dR = (3,1,−2/3, 1/3)×3 , NR = (1,1, 0, 0)×3 ,

(3)

with notation (d3,d2, qy, qB)×n where dN is the di-
mension of the representation under SU(N), the qi are
U(1)i charges and the subscript ×3 indicates the num-
ber of families. The quantum numbers of the Higgs are
H = (1,2, 1, 0)×1. In the Standard Model global baryon
number U(1)B is anomalous with non-vanishing anomaly
coefficients

AU(1)
B
×SU(2)2 = 3/2 , AU(1)

B
×U(1)2

Y

= −6 . (4)

An anomaly-free theory of gauged baryon number there-
fore requires new chiral fermions transforming under the
Standard Model gauge group as well as U(1)B.
In this work we highlight that the PQ symmetry can

be protected from MPl operators by U(1)B gauge invari-
ance.1 This is a well motivated example of the case that
U(1)PQ arises as an accidental symmetry due to a gauge
symmetry. Moreover, the chiral fermions needed for
anomaly cancellation can naturally yield the field content
to implement the Kim–Shifman–Vainshtein–Zakharov
(KSVZ) mechanism for ‘hiding’ the axion [19, 20]. Since
baryon number is intimately tied to the QCD sector, it
is aesthetically pleasing to connect the resolution of the
Strong CP Problem to a baryonic symmetry.

GAUGE-EMBEDDED PQ SYMMETRIES

The PQ mechanism dynamically sets θ̄ ≈ 0 provided
there is some global U(1)PQ for which the main source
of explicit breaking is due to the QCD chiral anomaly,
AU(1)PQ×SU(3)2 6= 0. In the following we discuss how

such an anomalous global U(1) can arise in models with
gauged baryon number U(1)B.

1 Associating a PQ symmetry to local baryon number was briefly
remarked on in an early paper of Foot, Joshi, and Lew [15].

http://arxiv.org/abs/1712.01841v2


2

We supplement the Standard Model with exotic
fermions charged under the Standard Model gauge group
as well as U(1)B. If cross-terms involving both Stan-
dard Model quarks and exotics are forbidden by gauge
invariance and the choice of particle content, the model
exhibits a global ‘exotics’ symmetry U(1)X which is inde-
pendent of global Standard Model baryon number U(1)B.
Nevertheless, the baryon and exotics sectors are linked
by the underlying U(1)B symmetry. It is insightful to fix
the global U(1)X and U(1)B charges to match the cor-
responding U(1)B charges. Given this choice, the can-
cellation of the U(1)B × G2 gauge anomaly implies that
the anomalies of the global symmetries with some gauge
group G must be equal and opposite:

AU(1)
B
×G2 = 0 ⇒ AU(1)

B
×G2 = −AU(1)

X
×G2 . (5)

With only the Standard Model quarks carrying global
baryon number, U(1)B does not have a QCD anomaly
(AU(1)

B
×SU(3)2 = 0) and hence also AU(1)

X
×SU(3)2 = 0,

impeding an identification of exotics number U(1)X with
the PQ symmetry.
One can however easily envision two independent

global ‘exotics’ symmetries, which we call suggestively
U(1)PQ and U(1)′PQ. Independent global symmetries oc-
cur if there are no cross-terms between sets of fermions.
With the U(1)B induced normalisation the anomalies of
these two individual global symmetries are related to the
anomaly of global exotics number by

AU(1)
X
×G2 = AU(1)

PQ
×G2 +AU(1)′

PQ
×G2 . (6)

By eq. (5) it remains that AU(1)
X
×G2 = 0, however with

appropriate charge assignments one can arrange for

AU(1)
PQ

×SU(3)2 = −AU(1)′
PQ

×SU(3)2 6= 0 , (7)

and thus these global symmetries are suitable for imple-
menting the PQ mechanism.
Spontaneous breaking of the two independent global

PQ symmetries will lead to two Nambu–Goldstone
bosons. The physical axion a will be an admixture of
these two Goldstone bosons while the orthogonal field
will be eaten by the U(1)B gauge boson Z ′ resulting in a
non-zero mass mZ′ . The effective axion decay constant
fa is given by [21]

fa =
ff ′

√
f2 + f ′2

, (8)

where f and f ′ are the breaking scales of U(1)PQ and

U(1)
′

PQ. The ‘axion window’ in which fa is appropriate
to avoid cosmological and astrophysical limits is roughly
109 GeV . fa . 1012 GeV [22]. The axion obtains a
mass from the QCD chiral anomaly and a contribution
∆a from Planck-scale breaking

m2
a ≃ (mQCD

a )2 +∆2
a . (9)

For the case that the leading MPl breaking operator is
mass dimension D, the correction ∆a is of order [6, 10]

∆2
a ∼ g cos δM2

Pl

(
fa
MPl

)D−2

, (10)

where g is a coupling associated to gravitational interac-
tions and δ is the rotation of the phase of the fermion
mass matrix into θ̄. Breaking of U(1)PQ by gravitational
effects leads to θ̄ ∝ ∆2

a which is generically non-zero.
Specifically, (for ∆2

a ≪ m2
a) the Planck-scale breaking of

the PQ symmetry leads to

θ̄ ≃
∆2

a

m2
a

tan δ ∼ g sin δ
M2

Pl

m2
a

(
fa
MPl

)D−2

. (11)

For g, δ ∼ O(1) and fa ∼ 1011 GeV the dimension
D of the gravity induced operator should be D & 10
in order to ensure θ̄ ≤ θ̄lim. We note in passing that
there are two potential caveats: further ad-hoc symme-
tries could forbid these operators up to some order or,
alternatively, if g ≪ 1 Planck-scale breaking may not be
important. There are some arguments in the literature
that these operators could potentially be exponentially
suppressed [23], however, it is far from clear that this is
the case and näıvely one might expect gravitationally in-
duced operators with O(1) coefficients. Thus, in general
protection from Planck-scale symmetry violation should
be considered an important requirement for successful
implementations of the PQ mechanism.

PQ PROTECTION FROM U(1)B

As was discussed in the last section, to implement a
protected PQ symmetry with gauged baryon number one
needs at least two pairs of fermion exotics that can be as-
sociated with two accidental PQ symmetries. Moreover,
one requires that at least one exotic fermion pair trans-
forms non-trivially under SU(2)L in order to cancel the
SU(2)2L×U(1)B anomaly. However, if the fermion ex-
otics carry SU(3) colour and are chiral under U(1)B one
cannot simultaneously cancel the SU(2)2L×U(1)B and
SU(3)2×U(1)B anomalies if all the exotic fermions trans-
form in the same SU(2)L representation. To allow sim-
ple mass terms for the fermion exotics, we limit ourselves
to pairs that are vector-like under the Standard Model
gauge group.

The Planck-scale operators which dominantly cause θ̄
to deviate from zero are those involving only scalars with
high scale VEVs, while operators involving fields that do
not obtain VEVs are expected to be subdominant [24].
Therefore for a given PQ model it is important to deter-
mine the leading scalar operator which violates the PQ
symmetry.
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Consider the following set of n fermion pairs,2 which
we label by the dimension λi ∈ N of their SU(2)L repre-
sentation,

λ1L = (3,λ1, Y1, B1), λ1R = (3,λ1, Y1, B
′
1),

...
... (12)

λnL = (3,λn, Yn, Bn), λnR = (3,λn, Yn, B
′
n),

with Yi, Bi, B
′
i ∈ Q. Note that whilst no theorem pre-

cludes irrational charges in gauge theories, it has been
argued that irrational charges are inconsistent with the-
ories of quantum gravity [5]. The simultaneous cancella-
tion of the SU(2)2×U(1)B as well as the SU(3)2×U(1)B
anomalies enforces the relation

n∑

i=1

λi (Bi −B′
i) = 0. (13)

Other anomalies further constrain possible charges of the
fermion exotics.
In this setup one generally needs up to n new scalars

Φi to give mass to all n pairs of fermion exotics. Diagonal
mass terms can be obtained with Φi = (1,1, 0, Bi −B′

i).
To avoid the presence of massless Goldstone bosons, we
limit ourselves to cases in which two exotic scalars can
give mass to all fermion exotics. This can be achieved
if some of the differences ∆i ≡ Bi − B′

i are chosen to
be equal, resulting in two scalars with U(1)B charges ∆1

and ∆2. Then, one of the Goldstone bosons is eaten by
the U(1)B gauge boson, and the other is the axion.
In this scenario the lowest-order scalar operator which

breaks the anomalous combination of the global PQ sym-
metries (but respects the gauged combination) occurs at
mass dimension D with

D ≤

n∑

i=1

λi . (14)

This inequality is saturated if the following are coprime:

∑

Bi−B′

i
=∆1

λi and
∑

Bi−B′

i
=∆2

λi .

Otherwise, the mass dimension of the leading PQ break-
ing scalar operator is significantly reduced. A similar
result has been obtained in [25].
Minimal models (in terms of fermion content) would

consist of two pairs of fermion exotics in different rep-
resentations λ1 and λ2 of SU(2)L. With two scalars,
Φλ1

and Φλ2
, giving Yukawa masses to each pair of

fermions, there are two global symmetries involving

2 A new family of quarks which are vector-like under the Standard
Model gauge group, as studied in [17], corresponds to n = 3 pairs
with λ1 = 2 and λ2 = λ3 = 1.

the exotics: one global U(1)PQ involving transforma-
tions of {Φλ1

, λ1L, λ1R} and one global U(1)′PQ involving
{Φλ2

, λ2L, λ2R}. The leading PQ violating scalar oper-
ator will be at most mass dimension (λ1 + λ2) and for
suitably large SU(2)L representations one can forbid PQ
violating operators to arbitrary order. To forbid all oper-
ators up to dimension 10, one requires λi ≥ 6 for at least
one of the SU(2)L representations (since λ1 = λ2 = 5
cannot cancel the anomalies) and suitable charge assign-
ments exist to give anomaly-free spectra. A potential
concern however is that large SU(2)L representations
may lead to Landau poles below the Planck scale and
requiring αi(MPl) < 1 restricts λi ≤ 3 for fa ∼ 1011 GeV
and fermion pairs transforming in the fundamental rep-
resentation of SU(3), compare the setup in Eq. (12).3

From our general discussion above it is clear that the
dimension of the leading PQ violating scalar operator
can typically be increased by introducing further exotic
fermions. Models with fermions up to the adjoint rep-
resentation of SU(2)L necessarily require several exotic
fermions to provide adequate protection. Below we out-
line a viable model using four pairs of fermion exotics in
which U(1)B gauge invariance protects the PQ symmetry
from Planck-scale operators,

T 1
L = (3,3, 1, 1/2), T 1

R = (3,3, 1, 5/8),

T 2
L = (3,3, 1, 1/4), T 2

R = (3,3, 1, 3/8),

S1
L = (3,1, 1, 0)×3, S1

R = (3,1, 1, 1/8)×3,

S2
L = (3,1,−5/3, 3/8), S2

R = (3,1,−5/3,−3/4).

(15)

Yukawa-like mass terms can be constructed for all of the
fermion exotics with two Standard Model singlet scalar
fields Φ1 and Φ2 with gauge quantum numbers

Φ1 = (1,1, 0,−1/8), Φ2 = (1,1, 0, 9/8). (16)

The Yukawa terms of the exotic fields have the form

L♯1 ⊃ Φ1

(
κ1T 1

LT
1
R + κ2T 2

LT
2
R + κ3S1

LS
1
R

)

+ κ4Φ2S2
LS

2
R + κ×Φ

†
1T

1
LT

2
R + h.c.

(17)

There are two global symmetries of L♯1 involving the ex-
otics, one global U(1)PQ involves transformations of the
fields {T i

L, T
i
R, S

1
L, S

1
R,Φ1}. These exotic fermions are re-

quired to transform together since they all interact with
the same scalar. The second U(1)′PQ involves the other

exotics {S2
L, S

2
R,Φ2}. Both U(1)’s exhibit QCD anoma-

lies, appropriate for implementing the PQ mechanism

AU(1)
PQ

×SU(3)2 = −AU(1)′
PQ

×SU(3)2 = −3/16 . (18)

3 To be more specific, up to two pairs of SU(2)L triplets are viable,
or one pair of SU(2)L triplets with additional SU(2)L doublets.
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The VEVs of Φ1 and Φ2 spontaneously break U(1)B and
both the global PQ symmetries while global baryon num-
ber U(1)B remains unbroken up to Planck-scale violation
and thus typically there is no concern regarding observ-
able proton decay.
For Model ♯1, the leading PQ violating operator is at

mass dimension 10, given by

O♯1 ∼
1

9!

g10
M6

Pl

Φ9
1Φ2 . (19)

Planck-scale breaking of the PQ symmetry due to the
operator of eq. (19) leads to non-zero θ̄. Since the scalar
PQ breaking operators are forbidden until mass dimen-
sion 10, the value of θ̄ can naturally be below its experi-
mental limit without excessive tuning of the coupling g10
for fa ∼ 1011GeV. Nevertheless these models typically
imply a non-zero θ̄ near the experimental bound. Given
that the current experimental limit will improve in the
next decade to dn ∼ 10−28e cm [26], it is quite conceiv-
able that a non-zero neutron electric dipole moment may
be observed in the near future.
If some fermion exotics obtain masses other than from

Yukawa terms, then one can suppress Planck-scale PQ
violation with less fermion exotics. For example, an
anomaly-free set of exotics is

X1
L = (3,3, 1/3,−1/2), X1

R = (3,3, 1/3, 1/2),

X2
L = (3,3, 1/3, 1/6), X2

R = (3,3, 1/3,−7/12),

YL = (3,1, 5/3, 1/2), YR = (3,1, 5/3,−1/4) .

(20)

One can give (TeV scale) masses to the X2
L,R and YL,R

via higher-dimensional operators through the Lagrangian

L♯2 ⊃ κ1ϕ1X1
LX

1
R +

κ2

MPl
ϕ2
2X

2
LX

2
R +

κ3

MPl
ϕ2
2YLYR + h.c. ,

(21)
where the two scalars have the following charges

ϕ1 = (1,1, 0,−1), ϕ2 = (1,1, 0, 3/8). (22)

The leading PQ violating operator with these scalars is
ϕ3
1ϕ

8
2 at dimension 11.

Furthermore, simple variants can also provide protec-
tion to similar order or higher. Models for example
with one SU(2)L triplet pair and 4 pairs of SU(2)L dou-
blets avoids Landau poles below the Planck scale for
fa = 1011GeV and can lead to scenarios in which the
leading PQ violating operators only occur at mass di-
mension 11 or higher.

DISCUSSION

Let us briefly discuss the cosmological and phenomeno-
logical implications of these models. Axion cosmology
significantly depends on whether the PQ symmetry is
broken before or after an inflationary phase. In the first

case, axions are mainly produced (non-relativistically)
via the misalignment mechanism and the axion abun-
dance depends on the initial misalignment angle, allow-
ing for a large range in fa. In the latter case, there
is no such freedom and the PQ scale is fixed to about
fa ∼ 1011 GeV if the axions are required to comprise all
of the dark matter [27].
After PQ breaking a discrete symmetry will be left un-

broken, leading to cosmological domain walls which are
potentially problematic as they evolve to dominate the
energy density of the Universe [28]. If PQ breaking oc-
curs prior to inflation the issue is resolved, as the walls are
absent after reheating. PQ violating Planck-scale opera-
tors with dimension D . 12 offer an alternative solution
since they explicitly break the discrete symmetry, lifting
the vacuum degeneracy [10], and thus allow for scenarios
of post-inflationary PQ breaking. The viability of such
scenarios has been recently reanalysed in [29, 30].
Furthermore, the lightest exotics will typically be cos-

mologically stable, since their quantum numbers forbid
low dimension operators via which they can decay. For
exotics with masses of order of the PQ scale fa with a
thermal abundance in the early universe, they will con-
tribute a sizable component to the matter abundance.
The abundance can be drastically reduced if the reheat
temperature after inflation is well below the mass of the
exotics such that they are never produced, or if their
abundance is diluted via an entropy injection after freeze-
out, see e.g. [31, 32].
Moreover, for exotics whose masses are in the TeV

range (as is naturally the case if it is induced by a di-
mension 5 operator as in our example above) there is
the interesting possibility that they may freeze out to a
very small abundance due to the large annihilation cross
section. However, since the exotics are coloured and typ-
ically carry electric charge their abundance is strongly
constrained by searches, for instance through the study
of anomalous heavy isotopes [33], and even small abun-
dances may be inconsistent with data (for a recent dis-
cussion see [34, 35]).
Other constraints from direct searches, astrophysics,

and cosmology will be largely similar to other KSVZ-type
models [22], although since the exotics are in non-trivial
SU(2)L representations there may be interesting devia-
tions. In future work we will examine further aspects of
model building and phenomenology.
In summary, we have highlighted that U(1)PQ can arise

as a consequence of gauged baryon number U(1)B. Ex-
otic fermions are required to cancel the gauge anomalies
of local baryon number and we have shown that they
naturally implement the KSVZ mechanism. Thus these
models elegantly intertwine the KSVZ sector with a new
baryonic gauge symmetry. In particular the U(1)B gauge
invariance can protect the PQ symmetry from prob-
lematic Planck-scale symmetry breaking which otherwise
spoil the PQ solution of the Strong CP Problem.
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