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Fuchsia and Master Integrals for Energy-Energy
Correlations at NLO in QCD
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In this talk we discuss some aspects of the analytical calculation of en-
ergy correlations in electron-positron annihilation at a next-to-leading order
in QCD. Our primary focus is on the most difficult task: the calculation of
master integrals for real-emission contributions, which are functions of two
dimensionless variables and the dimensional regulator. We use a method of
differential equations and their so-called epsilon-form which is constructed
with the help of the Fuchsia program based on Lee’s algorithm.

PACS numbers: PACS numbers: 12.38.-t; 12.38.Bx; 02.70.Wz

1. Introduction

The energy-energy correlation (EEC) is an observable proposed back
in 1978 in [1] to test the consistency of quantum chromodynamics (QCD),
when QCD was still considered as ”an appealing candidate for the field
theory of hadronic interactions”. In those times, EEC was considered a
very convenient observable to measure from the experimental point of view,
since no definition of a jet axis is needed. From the theoretical point of view,
EEC is an observable free of mass singularities, as can be easily deduced
from its definition,

Σ(ξ) =
∑

a,b

∫

dPS
EaEb

Q2
σ
(

e+ + e− → a+ b+X
)

δ (ξ − cos θab) , (1)

† Presented at Matter to the Deepest Conference in Podlesice (Poland) 3–8 Sep 2017
and at RADCOR Conference in St. Gilgen (Austria) 24–29 Sep 2019.

(1)
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since the phase space integration of the cross section σ with the measure dPS
weighted with the energies Ea and Eb of partons a and b eliminates all di-
vergences arising from soft and collinear particles production. Nevertheless,
the fact that individual diagrams may still diverge requires the use of some
regularization scheme, which we choose to be dimensional regularization in
m = 4− 2ǫ space-time dimensions.

Over a time span of almost 40 years EEC was thoroughly studied.
Among the recent results is the so far most accurate fixed-order calcula-
tion at next-to-next-to-leading order (NNLO) [2] in QCD. This result was
subsequently combined with resummation of large logarithms to next-to-
next-to-leading logarithmic (NNLL) accuracy and low-energy hadronization
effects [3], which allowed for a detailed comparison with available data from
LEP.

The focus of our study is twofold. First, we aim to obtain a fully ana-
lytical result at next-to-leading order (NLO) in QCD which to our surprise
is not yet available for the moment. This is in contrast to N = 4 super-
Yang-Mills theory, where analytical expressions for the NLO corrections
have recently been derived [4] and one expects that the latter results cor-
respond to those in QCD (after the usual identification of color factors)
as far as the polylogarithms of highest weight are concerned. Second, we
wish to extend the application of Lee’s algorithm [5] and the Fuchsia pro-
gram [6, 7] beyond univariate problems. To our knowledge, there are no
examples of such usage in the literature so far while the method is not lim-
ited to univariate problems only. With the NLO integrals for real-emission
contributions in EEC at hand, we have an example of a multivariate sys-
tem of differential equations [8, 9], demonstrate its solution with Fuchsia

to obtain the so-called epsilon form [10], and discuss a method to fix the
necessary integration constants.

2. The Method

The contributions to EEC at NLO in QCD arise from the three electron-
positron annihilation sub-processes depicted in Fig. 1. The first ones, the
virtual contribution, are rather simple to calculate by directly integrating
corresponding matrix elements available from [11]. The last two, on the
other hand, form the most difficult part of our calculation. For clarity, we
consider here only the first one with gluons, corresponding to the center one
Fig. 1:

e+ + e− → γ∗(q) → q(p1) + q̄(p2) + g(p3) + g(p4), p2i = 0 . (2)

Here, pi denote the light-like final-state particle momenta, while q (with q2 =
Q2 > 0) is the sum of the initial e+ and e− momenta. In addition, we restrict
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ourselves among all possible combinations of correlated particles ab, i.e., qq̄,
qg, q̄g, and gg, to the qg-correlation only. The corresponding squared matrix
elements are generated with FeynArts [12] and FormCalc [13] based on
FORM [14]. All the remaining correlations can be calculated in a similar
way.

Fig. 1. The virtual and the two distinct real emission sub-processes contributing to

EEC at NLO.

Let us start with an explicit parametrization of the phase-space in eq. (1)
in terms of kinematic invariants, which are suitable for a further integral
reduction by means of integration-by-parts (IBP) [15]. To that end, we set
q2 = 1 and introduce a new, more convenient, angular variable

z =
1− ξ

2
=

p1 ·p3
2 q ·p1 q ·p3

, (3)

which, however, still contains non-linear kinematic invariants not yet suit-
able for an IBP reduction. To fix this, we introduce a new parameter

x = 2q ·p1 (4)

which leads to the final parametrization of the semi-inclusive three-particle
phase-space

dPS(3;x, z) = x q·p3 δ
(

1− x− (q − p1)
2
)

δ (x z q ·p3 − p1 ·p3 ) dPS(3) , (5)

where the corresponding inclusive three-particle phase-space dPS(3) is given
by

dPS(3) = dmp1 δ(p
2
1) d

mp2 δ(p
2
2) d

mp3 δ(p23) δ
(

(q − p1 − p2 − p3)
2
)

. (6)

With this parametrization IBP rules for the corresponding real-emission
phase space integrals can be applied to derive differential equations for the
set of master integrals. These master integrals now depend on the two scale-
less parameters x and z, which is an added complication. However, we will
see later this can be easily resolved.
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2.1. IBP Reduction for F (x, z, ǫ)

In the IBP reduction of real-emission phase space integrals all delta
functions in eq. (6) are treated as cut propagators according to the Cutkosky
rules. We use the program LiteRed [16, 17] for this task, which produces
a family of 11 master integrals Fi(x, z, ǫ) defined as

F1 = {} F2 = {2} F3 = {2, 2} F4 = {2, 6}

F5 = {1, 2} F6 = {5} F7 = {1, 4, 5} F8 = {2, 3, 4}

F9 = {2, 5} F10 = {3, 5} F11 = {2, 4, 5}

, (7)

where phase space integration according to eq. (5) is understood. The inte-
grals F2, F3, and F4 form a coupled sub-system and the denominators are
defined 1 as

D1 = (p2 + p3)
2 D2 = (q − p2)

2 D3 = (q − p1 − p2)
2

D4 = (q − p1 − p3)
2 D5 = (q − p2 − p3)

2 D6 = p21 D7 = q ·p3
. (8)

2.2. Differential Equations for F (x, z, ǫ)

With the complete set of IBP reduction rules at hand we can easily
construct a system of differential equations. In our approach we consider
ordinary differential equations, where only one variable is free and the rest
are treated as symbolic constants. At this stage we choose z as a free
variable, which leads to a system of equations

dF (x, z, ǫ)

dz
= A(x, z, ǫ) F (x, z, ǫ) (9)

with singular points (alphabet) in

0, 1,
1

x
,

1

x (x− 2)
. (10)

To solve this system we find its epsilon form [10] with Fuchsia [6, 7] (see
also [18, 19, 20]) and then integrate it to any order in ǫ using a recursive
definition of hyperlogarithms (see [21] and references therein). The resulting
new system takes the form

dF̂ (x, z, ǫ)

dz
= ǫ B(x, z) F̂ (x, z, ǫ) , (11)

1 Note, that D6 corresponds to the on-shell delta function δ(p21) and denotes its addi-
tional power when used in the parametrization of F4, e.g, δ

2(p21).
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with the relation between new and old bases given as

F (x, z, ǫ) = T (x, z, ǫ) F̂ (x, z, ǫ) , (12)

where the matrix T (x, z, ǫ) has been found automatically by Fuchsia.
For clarity, let us provide here the solution to one of master integrals in

eq. (7),

F4(x, z, ǫ) =
1

15 ǫ2

(

C0
3 (x)− 2C0

2 (x)

)

+
1

30 ǫ

(

(

15C0
1 (x) + 4C0

2 (x)

− 6xC0
3 (x)− 2xC0

4 (x)

)

H0(z) +

(

15

1− x
C0
1 (x) + 2C0

3 (x)

− 2xC0
4 (x)

)

H1(z) +

(

15(x− 2)

1− x
C0
1 (x) + 20C0

2 (x) + 4xC0
4 (x)

+ 2(3x− 7)C0
3 (x)

)

H1/x(z) +
2
(

13xz2 − 17xz + 3x+ z
)

xz(1 − z)
C0
3 (x)

−
15(1 − 2z)

xz(1− z)
C0
1 (x) +

4(13xz − 1)

xz
C0
2 (x) +

2(xz − 2z + 1)

z(1− z)
C0
4 (x)

− 4C1
2 (x) + 2C1

3 (x)

)

+O
(

ǫ0
)

,

(13)

where the polylogarithms H~w are recursively defined as

Ha,~w(z) =

∫ z

0

dz′

z′ − a
H~w(z

′) . (14)

2.3. Integration Constants for F (x, z, ǫ)

The unknown integration constants C(x) in eq.(13) are functions of x
and still need to be found. For this purpose we employ the following relation

F ⋆
i (x, ǫ) =

∫

1

0

dz fi(z) Fi(x, z, ǫ). (15)

Here, the idea is the following: If we know both sides of this relation we
can derive a system of linear equations with C(x) as unknown functions
by requiring that coefficients in front of identical polylogarithms on both
sides of eq. (15) are equal. Solutions of this system provide those unknown
integration constants C(x).

The integration on the right-hand side of eq. (15) can be done with
the help of the HyperInt package [22]. However, particular attention
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should be paid at this stage since some of these integrals diverge (like in the
case of F4(x, z, ǫ) above). We account for this by introducing additional z-
dependent pre-factors f(z) for each of the master integrals in eq. (7). These
are listed in the table:

i 1 2 3 4 5 6 7 8 9 10 11
fi 1 1 z z (1− z) 1 z2 1− z z z z z (1− z)

In this way, all the integrals on the right-hand side of eq. (15) become finite
and can be integrated.

2.4. IBP Reduction for G(x, ǫ)

For the left-hand side of eq. (15) we can introduce a new IBP basis, since
the integration over z eliminates one delta function in eq. (5) and leads to
a new three-particle phase-space given by

dPS(3; x) =

∫

1

0

dz dPS(3; x, z) = dPS(3) δ
(

1− x− (q − p1)
2
)

. (16)

We find the IBP reduction rules for this basis, again using LiteRed,
which leads to 12 master integrals defined as

G1 = {} G2 = {2} G3 = {7} G4 = {2, 7}

G5 = {2, 6 6, 7} G6 = {1, 2} G7 = {2, 3, 4, 7} G8 = {5, 7}

G9 = {2, 4, 5} G10 = {2, 4, 5, 7} G11 = {3, 5, 7} G12 = {1, 4, 5, 7}

.

(17)
where phase space integration according to eq. (16) is again implied. In
this way we can express the left-hand side of eq. (15) by using only these
masters. For example,

F ⋆
4 (x, ǫ) =

(2− 3ǫ)
(

x+ 5ǫx− 2ǫ2 (8− 7x)
)

4 ǫ2 x2 (4− 5x)
G1(x, ǫ)

+
x (1− x) + ǫ

(

16 − 33x + 15x2
)

− ǫ2
(

48− 82x+ 26x2
)

4 ǫ x2 (4− 5x)
G2(x, ǫ)

+
(1− 2ǫ)

(

x− 2ǫ (2− x)
)

4 ǫ x (4− 5x)
G3(x, ǫ)

−
4− 7x+ 2x2 + ǫ x (4− 2x)

4 x (4− 5x)
G4(x, ǫ)−

3 x (1− x)

4 (4− 5x)
G5(x, ǫ) .

(18)
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2.5. Differential Equations for G(x, ǫ)

Next, we compute the master integrals in eq. (17) by solving the corre-
sponding system of differential equations, but this time in x variable. As
before, we find its epsilon form using Fuchsia and solve the resulting system
to desired order in ǫ by applying the recursive definition of polylogarithms
in eq. (14). For example, the solution to G5 looks as follows:

G5(x, ǫ) =
2

x ǫ2

(

30C0
1 + 6C0

2 + 6C0
3 + (14− 35x)C0

4 − 2C0
5

)

+
1

x ǫ

(

+ 60C1
1

− 390C0
1 − 78C0

2 + 12C1
2 − 78C0

3 + 12C1
3 − (182 − 455x)C0

4 + (28 − 70x)C1
4

+ 26C0
5 − 4C1

5 +
(

(60 − 120x)C0
1 + (132 − 144x)C0

2 − (48− 36x)C0
3

− (112 − 84x)C0
4 + (16− 12x)C0

5

)

H0(x) +
(

(−480 + 120x)C0
1 − (96 − 144x)C0

2

− 36(1 + x)C0
3 + (−224 + 336x)C0

4 + (−8 + 12x)C0
5

)

H1(x)

)

+O
(

ǫ0
)

.

(19)

In this case, the integration constants C0,1
i are now just numbers.

2.6. Integration Constants for G(x, ǫ)

In order to obtain the integration constants for the integrals G(x, ǫ) we
use the same technique as for F (x, z, ǫ) before. We define a relation

G⋆
i (ǫ) =

∫

1

0

dx gi(x) Gi(x, ǫ) (20)

and integrate its right-hand side with HyperInt using now x-dependent
pre-factors f(x) to regularize the denominators in x. For each of the master
integrals in eq. (17) they are given in the table:

i 1 2 3 4 5 6 7 8 9 10 11 12
gi 1 1 1 1 x 1 (1− x)2 1 x x(1− x) 1− x 1− x

.

2.7. IBP Reduction for H(ǫ)

For the last iteration, that is the computation of the left-hand side of
eq. (20) we introduce a new IBP basis, since, as before, the integration
eliminates one delta function and the new phase-space becomes

∫

1

0

dx dPS(3; x) = dPS(3) , (21)
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cf. eq. (6). We find the necessary IBP reduction rules for this basis again
with LiteRed and only two master integrals remain,

H1 = {} H2 = {1, 2, 7} . (22)

These are sufficient to determine the left-hand side of eq. (20). For example,
we find

G⋆
5(ǫ) = −

2 (2− 3ǫ) (3− 4ǫ)
(

1− 7ǫ+ 30ǫ2 − 36ǫ3
)

3 ǫ2
(

1− 5ǫ+ 6ǫ2
) H1(ǫ) . (23)

3. Results

We can now summarize all the results for the master integrals H(ǫ),
G(x, ǫ) and F (x, z, ǫ) in this order by subsequently substituting the solutions
for H(ǫ) back into G(x, ǫ) and G(x, ǫ) back into F (x, z, ǫ).

3.1. Master Integrals H(ǫ)

The integrals in eq. (22) coincide with fully inclusive phases-space inte-
grals. The first one is known in the literature [23], i.e.,

H1(ǫ) =
1

12
+

59

72
ǫ+

(

2 263

432
−

2

3
ζ2

)

ǫ2 +

(

72 023

2 592
−

59

9
ζ2 −

13

6
ζ3

)

ǫ3

+

(

2 073 631

15 552
−

2 263

54
ζ2 −

767

36
ζ3 +

1

12
ζ4

)

ǫ4 +O
(

ǫ5
)

, (24)

and we calculate the second one explicitly as:

H2(ǫ) = −
4ζ3
ǫ

− 42ζ4 +O(ǫ) . (25)

3.2. Master Integrals G(x, ǫ)

Next, we substitute eqs. (24)–(25) into eq. (23) which delivers us the left-
hand side of eq. (20). The right-hand side was integrated with HyperInt

and we can determine the integration constants in eq. (19). The result is
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given by

G5(x, ǫ) =
1

3x

[

−
1

ǫ2
+

H0(x) + 4H1(x)

ǫ
− (7− 6x) H0,0(x)− 2(5− 3x) H0,1(x)

− 2(2 + 3x) H1,0(x)− 2(5 + 3x) H1,1(x)− 2(1− 3x) ζ2 +

(

(

61− 54x
)

H0,0,0(x)

+ (46 − 36x)H0,0,1(x) + 4H0,1,0(x) + 28H0,1,1(x)− 18xH0,1,1(x) + 4H1,0,0(x)

+ 18xH1,0,0(x) + 16H1,0,1(x) + 4H1,1,0(x) + 36xH1,1,0(x) + 10H1,1,1(x)

+ 54xH1,1,1(x) + ζ2
(

38H0(x)− 36xH0(x)− 16H1(x)
)

+
(

36− 18x
)

ζ3

)

ǫ

]

+O
(

ǫ2
)

.

In this way we can obtain the entire set of integrals in eq. (17).

3.3. Master Integrals F (x, z, ǫ)

Finally, we can compute the left-hand side of eq. (15) by using IBP re-
duction rules similar to eq. (18) and find the remaining unknown integration
constants C(x, ǫ) in eq. (13). As an example, the result for F11 reads

F11(x, z, ǫ) =
4

3(1 − x)x2(1− z)z

[

3 + x− 4xz

2ǫ2
+

1

ǫ

(

− 2(3 + x− 4xz)H1(x)

− (6− x− 5xz)H0(x)− (3 + x− 4xz)H0(z)− (3− x− 2xz)H1(z)

+ 6(1 − xz)H1/x(z)

)

+ 9(1 − x)H0,1(x) + 8(3 + x− 4xz)H1,1(x) + (24

− 7x− 17xz)H0,0(x) +
(

2(6 − x− 5xz)H0(z) + 4(3 − x− 2xz)H1(z)

− 15(1 − xz)H 1
x

(z)− 3(1 − xz)H 1
x(2−x)

(z)
)

H0(x) + H0(1− x)
(

5(3 + x

− 4xz)H0(x) + 4(3 + x− 4xz)H0(z) + 4(3 − x− 2xz)H1(z)− 21(1

− xz)H 1
x

(z)− 3(1 − xz)H 1
x(2−x)

(z)
)

+ 2(3 + x− 4xz)H0,0(z) + 2(3 − x

− 2xz)H0,1(z)− 12(1 − xz)H
0, 1

x

(z) + 2(3− x− 2xz)H1,0(z) + 2(3− 2x

− xz)H1,1(z)− 6(2− x− xz)H
1, 1

x

(z)− 9(1− xz)H 1
x
,0(z)− 6(1− xz)

×H 1
x
,1(z) + 15(1 − xz)H 1

x
, 1
x

(z)− 3(1 − xz)H 1
x(2−x)

,0(z) + 3(1− xz)

×H 1
x(2−x)

, 1
x

(z) + 2(3− 5x+ 2xz)ζ2

]

+O(ǫ) .



10 ustron printed on November 16, 2017

This is the final result computed to sufficient depth in ǫ which can then be
further used to calculate the EEC defined in eq. (1).

4. Summary

In this talk we have presented the NLO real-emission master integrals
for the quark-gluon EEC in electron-positron annihilation in QCD. They
are expressed in terms of polylogarithms of two variables. Real-emission in-
tegrals are the most complicated pieces on the way to obtain the complete
result for EEC at NLO, hence their calculation is a crucial task. To that
end we have derived the epsilon form for the corresponding systems of dif-
ferential equation in a fully automatic manner using the implementation in
the Fuchsia program, which is based on Lee’s algorithm. We have shown
that Fuchsia and the method are, in general, indeed suitable to solve dif-
ferential equations with multiple dimensionless variables, a fact that has not
been mentioned in the literature so far.
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