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Abstract: We present up-to-date matched predictions for the bb̄H inclusive cross section

at the LHC at
√
s = 13 TeV. Using a previously developed method, our predictions con-

sistently combine the complete NLO contributions that are present in the 4-flavor scheme

calculation, including finite b-quark mass effects as well as top-loop induced YbYt inter-

ference contributions, with the resummation of collinear logarithms of mb/mH as present

in the 5-flavor scheme calculation up to NNLO. We provide a detailed estimate of the

perturbative uncertainties of the matched result by examining its dependence on the fac-

torization and renormalization scales, the scale of the Yukawa coupling, and also the low

b-quark matching scale in the PDFs. We motivate the use of a central renormalization

scale of mH/2, which is halfway between the values typically chosen in the 4-flavor and

5-flavor scheme calculations. We evaluate the parametric uncertainties due to the PDFs

and the b-quark mass, and in particular discuss how to systematically disentangle the para-

metric mb dependence and the unphysical b-quark matching scale dependence. Our best

prediction for the bb̄H production cross section in the Standard Model at 13 TeV and

for mH = 125 GeV is σ(bb̄H) = 0.52 pb
[
1 ± 9.6%(perturbative) +2.9%

−3.6%(parametric)
]
. We

also provide predictions for a range of Higgs masses mH ∈ [50, 750] GeV. Our method to

compute the matched prediction and to evaluate its uncertainty can be readily applied to

other heavy-quark-initiated processes at the LHC.
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1 Introduction

Heavy-quark initiated processes and accurate theoretical predictions for them are important

for precision tests of the Standard Model (SM), searches for New Physics, and are also

essential for the precise determination of parton distribution functions (PDFs).

Predictions for processes involving initial-state b-quarks at hadron colliders are typi-

cally made using factorization theorems that are valid for two different parametric hierar-

chies between the b-quark mass, mb, and the hard-interaction scale of the process, Q. In

the 4-flavor scheme (4FS), one formally considers mb ∼ Q, while in the 5-flavor scheme

(5FS) one formally considers mb � Q. The predictions obtained in either scheme have

different features. The 4FS predictions include power corrections in mb/Q as well as the

exact massive quark final-state phase space, while logarithms of ln (mb/Q) are included at

a given fixed order. The 5FS predictions do not include power corrections in mb/Q but

resum the potentially large logarithms ln (mb/Q) to all orders via DGLAP into a b-quark

PDF. The construction of matched predictions that include the merits of both schemes in

DIS (sometimes called variable flavor number schemes) has been the subject of many years

of work [1–13] and recently progress in this direction for hadron-hadron colliders has also

been made [14–16].
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The focus of this paper is on bb̄H production, for which predictions for the inclusive

cross section are available up to NNLO in the 5FS [17–21] and NLO in the 4FS [22–

24]. In the past, the results in the two schemes have been averaged using the pragmatic

Santander-Matching prescription [25]. Given that this prescription amounts to a simple

weighted average of the two results, it is clear that it does not constitute a satisfactory

and theoretically-consistent matching. In particular, as already observed in ref. [16], the

contributions present in one and not the other scheme should get added in their combination

rather than averaged, which in this case leads to a noticeably higher cross section of the

properly matched result compared to the Santander average.

In ref. [16], we used a simple effective field theory setup to systematically derive

matched predictions for the bb̄H cross section, which combines the ingredients of both

4FS and 5FS schemes. The result contains the full 4FS result, including the exact depen-

dence on the b-quark mass, and improves it with a resummation of collinear logarithms

of mb/mH , as are present in the 5FS. An important aspect of our construction is the

perturbative counting of the effective b-quark PDF, which is counted as an O(αs) object

for phenomenologically relevant hard (factorization) scales below ∼ 1 TeV. This counting

rearranges the perturbative expansion of the cross section, such that in the massless limit

the result corresponds to a reorganized 5FS result. An important advantage is that in this

way the logarithms present in the resummed (5FS) result order-by-order exactly match

those present in the fixed-order (4FS) contributions. This feature greatly facilitates the

combination of both types of contributions.

In this paper, using the approach of ref. [16], we present state-of-the-art predictions

for the bb̄H cross section for the LHC at 13 TeV, including a comprehensive study of its

perturbative and parametric uncertainties. Our predictions include the effects of top-quark

loop-induced interferences, proportional to YbYt, which are known to be important in the

Standard Model [22–24]. (These were not yet included in ref. [16].) We also investigate in

detail the effects of pure 2-loop terms that are present in the 5FS NNLO calculation but

are formally of higher order in our perturbative counting.

The two-step matching used in ref. [16] makes it explicit that there are two relevant

scales in the problem: the hard scale µH ∼ mH and the b-quark scale µb ∼ mb (also

referred to as the b-quark threshold scale). Since a perturbative expansion is performed at

both of these scales, a reliable theory uncertainty should take into account the perturbative

uncertainties related to both. The uncertainty due to µb has been neglected in the past

in essentially all 5FS and matched cross section predictions, since all standard 5FS PDF

sets make the fixed choice µb = mb. However, the µb uncertainty should be regarded as an

additional resummation uncertainty, and in ref. [16] it was shown how to systematically

estimate it and that it can indeed have a nonnegligible effect. We discuss and motivate

an appropriate choice of the central scales and provide a full breakdown of theoretical

uncertainties due to µF , µR, µb variations.

We show that this more general setup also disentangles the dependence on µb and mb

and thus allows one to correctly evaluate the uncertainty in the predictions due to the

parametric uncertainty in the value of mb. This discussion is relevant for any heavy-quark

initiated process calculated in either the fixed 5FS or a matched approach.
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The structure of the paper is as follows: in section 2, we recall the main features in the

construction of the matched NLO+NLL result and discuss the extensions to include the

YbYt interference terms and higher-order 2-loop terms. In section 3, we discuss in detail the

perturbative and parametric uncertainties. In section 4, we present our numerical results

for the inclusive cross section for a range of Higgs masses mH ∈ [50, 750] GeV, including

the full breakdown of all uncertainties. We conclude and give a short outlook in section 5.

2 Matched cross section

In this section we discuss the theoretical ingredients for our predictions of the bb̄H cross

section. In sections 2.1 and 2.2, we summarize the main steps and results of ref. [16] in

the construction of the fixed-order + resummation matched result, which is valid for any

parametric hierarchy between mb and mH . For the detailed derivation we refer to ref. [16].

In section 2.3, we discuss the inclusion of the formally higher-order two-loop terms in

the resummed results. We will denote the corresponding result as NLO+NNLLpartial. In

section 2.4, we discuss the inclusion of the YbYt interference terms.

2.1 Fixed order and resummed results

The fixed-order cross section that enters the matched result, and which is recovered when

the resummation is turned off, is obtained in a factorization scheme that is formally valid

for the parametric power counting mb ∼ mH . Hence, it is equivalent to a 4FS result,

where bottom quarks do not appear in the initial-state and can only be produced via gluon

splittings into b-quark pairs. It includes the exact dependence on the b-quark mass (i.e.,

it includes power corrections to all orders in m2
b/m

2
H) both in the partonic cross sections

and in the phase space. Logarithmic terms ∼ ln(m2
b/m

2
H) arising from collinear gluon

splittings are included at fixed order in αs. The fixed-order result is given in terms of

coefficient functions Dij(mH ,mb, µF ), which depend explicitly on mb, and 4-flavor PDFs,

σFO =
∑

i,j=g,q,q̄

Dij(mH ,mb, µF ) f
[4]
i (µF ) f

[4]
j (µF )

=
∑

i,j,k,l=g,q,q̄

Dij(mH ,mb, µF )
[
U

[4]
ik (µF , µ0)f

[4]
k (µ0)

][
U

[4]
jl (µF , µ0)f

[4]
l (µ0)

]
. (2.1)

For notational simplicity, we keep all Mellin convolutions between PDFs, evolution factors,

and coefficient functions implicit and simply write products throughout the paper. The

sum over partons only includes gluons and light (anti)quarks (q = d, u, s, c), µF is the hard

factorization scale of the process. In the second line the 4-flavor PDFs f
[4]
j (µF ) are written

in terms of the fitted PDFs at the low scale µ0
1 and DGLAP evolution factors U

[4]
ij with

nf = 4 active quark flavors. The fixed-order result of eq. (2.1) is equivalent to a 4FS result

and the coefficients Dij for bb̄H are known to NLO.

1In this work we consider the charm quark to be a fitted light-quark PDF. In most PDF fits, the charm

PDF, as with the bottom PDF, is generated perturbatively, however this is not of relevance for the present

discussion.
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The pure resummed result is based on the factorization theorem derived in the limit

mb � mH , i.e., in a power expansion in mb/mH , where the leading power term leads to

the usual 5FS result, while subleading power terms correspond to subleading twist terms

and are usually not considered. In this case, b-quarks are treated as massless at the hard

matching scale µF ∼ mH and appear in the initial state of the corresponding partonic

matching calculation. The collinear logarithms of mb/mH are resummed by DGLAP evo-

lution from the hard scale µF ∼ mH to the b-quark matching scale µb ∼ mb. At µb, the

b-quark is integrated out of the theory. These steps result in an effective perturbative b-

quark PDF. The resummed cross section is given by the convolution of coefficient functions

Cij(mH , µF ), which contain no mb dependence, with 5-flavor PDFs,

σresum =
∑

i,j=g,q,q̄,b,b̄

Cij(mH , µF ) f
[5]
i (mb, µF ) f

[5]
j (mb, µF ) (2.2)

=
∑

i,j=g,q,q̄,b,b̄

Cij(mH , µF )

[ ∑
k=g,q,q̄,b,b̄
l,p=g,q,q̄

U
[5]
ik (µF , µb)Mkl(mb, µb)U

[4]
lp (µb, µ0)f [4]

p (µ0)

]

×
[ ∑
k=g,q,q̄,b,b̄
l,p=g,q,q̄

U
[5]
jk (µF , µb)Mkl(mb, µb)U

[4]
lp (µb, µ0)f [4]

p (µ0)

]
.

In the second step, the 5-flavor PDFs at µ = µF are written out explicitly in terms of

the 5-flavor evolution from µF to µb, the matching at µb yielding matching coefficients

Mkl(mb, µb) that explicitly depend on mb, followed by the 4-flavor evolution from µb to

µ0 and the fitted 4-flavor PDFs at scale µ0. All mainstream 5FS PDF sets construct their

b-quark PDFs in this way, however, with the fixed choice of µb = mb. With this choice, the

O(αs) matching coefficients Mij in the mb pole-scheme are exactly zero, which somewhat

simplifies the implementation. However, identifying µb = mb confuses the parametric

physical dependence on mb and the unphysical dependence on the matching scale µb, which

controls the resummation of logarithms and should cancel to the order one is working. We

will discuss how we rectify this situation in section 3.

2.2 Matching fixed order and resummation: NLO+NLL

In all practical applications we are aware of, the evolved PDFs are always treated as

external O(1) objects and the perturbative expansion of the cross section is based solely on

the perturbative expansion of the coefficient functions Dij and Cij in eqs. (2.1) and (2.2).

For the fixed-order and resummed results this leads to the usual 4FS and 5FS predictions.

The corresponding contributions are schematically depicted in figure 1 by the first column

for the 4FS (green dotted boxes) and by the three diagonals (blue shading) for the 5FS.

As noted above, the b-quark PDF is itself a perturbative object with the expansion

f
[5]
b (mb, µF ) =

[
U

[5]
bg (µF , µb) +

αs(µb)

4π
U

[5]
bb (µF , µb)M(1)

bg (mb, µb)
]
f [4]
g (µb) + · · ·

∼ O(αs) + O(αs) +O(α2
s) . (2.3)
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Figure 1. Pictorial representation with sample diagrams appearing in the computation of the bb̄H

cross section, grouped according to the different perturbative countings adopted in the 4FS (green

boxes), 5FS (blue areas) and our matched resummed result (red boxes).

In principle, each of its terms should be included in the perturbative counting and be

regarded as part of the perturbative expansion of the cross section. Counting it as an O(1)

object would be justified in the limit where the off-diagonal evolution factor U
[5]
bg (µF , µb) ∼

1. However, U
[5]
bg (µF , µb) is suppressed by an overall αs ln(µF /µb) relative to the diagonal

evolution factors and vanishes in the limit µb → µF , and therefore this only holds for

scales µF ≫ µb. Numerically, for µb ∼ mb this is only attained for scales µF & 1 TeV.

Hence, for the scales of interest here it is more appropriate to count U
[5]
bg (µF , µb) as O(αs),

as indicated in eq. (2.3), in which case the whole f
[5]
b becomes an O(αs) object. The

perturbative expansion in αs of the resummed cross section in eq. (2.2) is then performed

by expanding the product of coefficient functions Cij together with the terms making up

the b-quark PDF including the b-quark matching coefficients Mij and U
[5]
bg ∼ αs. For a

more detailed discussion we refer to ref. [16].

The 4FS and 5FS results can significantly differ from each other and in particular

display different patterns in their factorization-scale dependence due to the different log-

arithmic terms present at each order in the two schemes. Hence, a consistent matching

appears to be nontrivial. The above treatment of the resummed result has the important

added advantage that it reorganizes the resummed series into a form that is consistent with

the logarithms present in the fixed-order result. The key feature is that order by order in

αs the limit µb → µF in the resummed cross section now exactly reproduces all the loga-

rithmic terms (and nothing more) that are present in the mb → 0 limit of the fixed-order
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cross section. In other words, the reexpansion of the resummed result to fixed order is sim-

ply given by setting µb = µF . This in turn means that for µb < µF the evolution factors

U
[5]
ij in this expansion precisely resum the singular logarithms present in the fixed-order

result. Hence, all that is missing in the resummed result compared to the fixed-order result

are purely nonsingular terms proportional to m2
b/m

2
H , i.e. terms that vanish in the limit

mb → 0 given by

σnons = σFO − σresum
∣∣
µb=µF

. (2.4)

The complete matched cross section is then simply given by adding the nonsingular fixed-

order terms to the resummed result,

σFO+resum = σresum + σnons = σresum +
(
σFO − σresum

∣∣
µb=µF

)
. (2.5)

By construction, it satisfies σFO+resum → σFO in the limit µb → µF where the resummation

is turned off, as required for a consistently matched prediction. On the other hand, it

reduces to σresum in the limit mH � mb. We emphasize again that this crucially relies on

the fact that the nonsingular terms vanish for mb → 0, which in turn relies on adopting

the perturbative counting for the resummed result described above.2 The corresponding

terms included in the matched result at each order are depicted by the rows (red boxes) in

figure 1.

As discussed in ref. [16], for the practical implementation, the nonsingular contributions

can be conveniently absorbed into modified gluon and light-quark coefficient functions,

C̄ij(mH ,mb, µF ), which now carry an explicit dependence on mb, convolved with effective

5F PDFs.3 The final matched result is then written as

σFO+resum =
∑
i,j=b,b̄

Cij(mH , µF ) f
[5]
i (mb, µF ) f

[5]
j (mb, µF )

+
∑
i=b,b̄
j=g,q,q̄

[
Cij(mH , µF ) f

[5]
i (mb, µF ) f

[5]
j (mb, µF ) + (i↔ j)

]

+
∑

i,j=g,q,q̄

C̄ij(mH ,mb, µF ) f
[5]
i (mb, µF ) f

[5]
j (mb, µF ) , (2.6)

where f
[5]
i,b are perturbative objects, and an expansion of Cij and C̄ij against f

[5]
i,b as discussed

above is implicit.

2Other approaches combining resummed and fixed-order expressions proceed similar to eq. (2.5). How-

ever, if a perturbative counting different from the one we use is adopted, the singular contributions that are

common to both cannot be obtained by simply setting µb = µF . In this case (see for example refs. [6, 10])

the singular terms can be computed by explicitly expanding the resummed result in powers of αs, but

only those terms which are present in the fixed-order result and would otherwise be double counted are

subtracted. The so-matched result will however not reproduce the fixed-order result in the limit µb → µF ,

since the resummed result and the singular subtractions will not cancel each other in this limit.
3Moving the nonsingular corrections underneath the 5F resummation corresponds to including some

resummation effects for power-suppressed terms, which is beyond the formal accuracy in either the 4FS or

5FS.
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The strict expansion of the coefficient functions against the individual terms making

up the b-quark PDF is quite inconvenient for the practical implementation, as it requires

performing the entire nf = 5 DGLAP evolution above µb by hand. However, as long

as we are only interested in the phenomenologically relevant region µb ∼ mb � µF ∼
mH , we can also keep formally higher-order cross terms in order to simplify the practical

implementation. Doing so allows us to use common preevolved 5FS PDFs, under the

condition that we count f
[5]
b ∼ O(αs) while the light quark and gluon PDFs are counted

as ∼ O(1). In addition, we have to use PDFs of sufficiently high order such that they

include all matching corrections required by our perturbative counting. Specifically, at

(N)LO+(N)LL this requires the use of at least (N)NLO PDFs. It was explicitly checked

in ref. [16] that for values of mb/mH . 0.1 this implementation gives practically the same

numerical results as the strict expansion. On the other hand, the strict expansion is

required if one wishes to explicitly study the limit µb → µF and obtain a smooth transition

of the matched result into the fixed-order result.

In summary, with this simplification, expanding the matched cross section in powers

of αs = αs(µF ), the following perturbative expansion is obtained

LO+LL σ = α2
sC̄

(2)
ij f

[5]
i f

[5]
j + αs4C

(1)
bg f

[5]
b f [5]

g + 2C
(0)

bb̄
f

[5]
b f

[5]
b

NLO+NLL + α3
sC̄

(3)
ij f

[5]
i f

[5]
j + α2

s4C
(2)
bk f

[5]
b f

[5]
k + αs2C

(1)

bb̄
f

[5]
b f

[5]
b

NNLO+NNLL + α4
sC̄

(4)
ij f

[5]
i f

[5]
j + α3

s4C
(3)
bk f

[5]
b f

[5]
k + α2

s(2C
(2)

bb̄
+ 2C

(2)
bb ) f

[5]
b f

[5]
b

+O(α5
s) . (2.7)

The factors of two and four account for the exchange of partons among the two protons and

(to a first approximation) the equality f
[5]
b = f

[5]

b̄
. A sum over light quarks and gluons is

implicitly assumed for repeated indices i, j, k. The superscripts on the coefficient functions

indicate the order in αs to which these are computed. The first two orders in eq. (2.7) are

illustrated by the red boxes in figure 1. As seen there, our perturbative counting implies

that we include bb̄, bg and gg initiated contribution consistently at the same order.

Finally, we note that the construction of the coefficient functions C̄ij is formally the

same as the corresponding construction in the FONLL approach [15] (and in a hypothet-

ical S-ACOT construction). There are, however, two main differences between these ap-

proaches. First, as explained above, we use the fact that the effective b-quark PDF counts

as an O(αs) perturbative object to construct the perturbative expansion of our matched

result. As a result, it contains the complete fixed-order result at each perturbative order,

and (with the strict expansion) smoothly merges into it. Secondly, as discussed further in

section 3, in our approach we explicitly distinguish µb and mb allowing us to include an

explicit estimate of the resummation uncertainty associated with the 5F resummation by

varying the (in principle arbitrary) matching scale µb.

2.3 Higher-order two-loop terms: NLO+NNLLpartial

At present, all coefficient functions in eq. (2.7) required up to NLO+NLL are known [19, 20,

22, 23]. Going to NNLO+NNLL is not yet possible and would require the full NNLO 4FS
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result, corresponding to the unknown C̄
(4)
ij and C

(3)
bk coefficients in eq. (2.7), together with

the three-loop matching coefficientsMij . The two-loop coefficients C
(2)

bb̄
and C

(2)
bb are known

from the NNLO 5FS result [19] and are part of the NNLL resummation in our counting.

Adding them to the NLO+NLL result provides a partial NNLL result, see figure 1, which

we denote as NLO+NNLLpartial. (In ref. [16], this result was called NLO+NLL+C
(2)

bb̄
. It

corresponds to what in ref. [15] would be called FONLL-B.)

Including the partial NNLL terms violates the exact correspondence between the re-

summed and fixed-order results. That is, the fixed-order limit of these resummed terms

are only reproduced by the mb → 0 limit of the fixed-order result at NNLO. Hence, in

the limit µb → µF these terms spoil the smooth matching of the matched result into

the fixed-order result. In this regard, these terms are analogous to the higher-order cross

terms that are kept when the strict expansion is not implemented. Therefore, whenever

the strict expansion is used these terms should also be consistently dropped. This is the

case when going toward larger values of mb/mH , where the logarithms become small and

fixed-order contributions become dominant, and the matched result is transitioning into

the pure fixed-order result.

For intermediate values of mH (small values of mb/mH) where our perturbative count-

ing is most appropriate, including these terms does not necessarily improve the overall

accuracy of the prediction, since other terms of the same perturbative order are not in-

cluded and including only a partial set of terms might bias the result in the wrong direction.

At the same time, their inclusion can lead to a reduced scale dependence, which would then

potentially underestimate the perturbative uncertainties. For these reasons, we do not take

the NLO+NNLLpartial prediction to be our default result. Nevertheless, we also provide

it in section 4, as it can provide an indication of the numerical size of the next-order cor-

rection. This can for example be an additional useful cross check on the estimate of the

perturbative uncertainties of the NLO+NLL result or alternatively guide the choice of the

central scales.

Finally, in the limit of very large mH (very small values of mb/mH), including these

terms becomes beneficial once the size of the resummed logarithms grows, αs ln(µ2
F /µ

2
b) ∼ 1,

and the original strict 5FS counting applies.

2.4 Fixed-order nonsingular YbYt contributions

At LO there is only a contribution proportional to Y 2
b . Starting at NLO, the cross section

receives contributions proportional to YbYt due to the interference of the Born-level gg →
bb̄H diagrams with diagrams where the Higgs is radiated from a closed top-quark loop;

some examples of the latter diagrams are shown in figure 2. The fixed-order (4FS) cross

section can be written schematically as

σFO = α2
s Y

2
b σ

(0) + α3
s

(
Y 2
b σ

(1)

Y 2
b

+ YbYt σ
(1)
YbYt

)
+O(α4

s) , (2.8)

where the interference terms are included in σ
(1)
YbYt

.

These top-loop diagrams have the same structure as the contributions that enter the

gg → H gluon-fusion cross section, so the YbYt interference contributions fundamentally

– 8 –



g

g
t

h

b

b̄

g

g

t

h

b

b̄

1

Figure 2. Sample 1-loop diagrams contributing to the YbYt interference contribution at fixed order.

correspond to an interference between the bb̄H and gluon-fusion processes. Since they

involve b-quarks in the final state, they are usually regarded as part of the bb̄H cross

section.

Curiously, these terms can be treated as purely nonsingular terms, even though they

may, at first sight, appear to contain large logarithms of mb/mH in the mb → 0 limit. On

closer inspection, these interference terms turn out to vanish to all orders in the mb → 0.

The reason is that in the interference between bb̄H-like and gluon-fusion-like diagrams the

Higgs boson must be attached to two different closed fermion lines. This requires a helicity

flip on the b-quark line, which is not allowed for mb = 0. Equivalently, for mb = 0, they

will always contains a trace over an odd number of Dirac matrices and thus vanish [19].

For the same reason, such terms are absent in the 5FS.

For us, this means that these terms are purely nonsingular and can be straightforwardly

added by including them in σFO in eq. (2.8), which then enters into the C̄
(3)
ij in eq. (2.7).

In practice, we extract the numerical result for σ
(1)

Y 2
b

and σ
(1)
YbYt

in the pole scheme from

Madgraph5 aMC@NLO [26] by generating the process pp → bb̄H at NLO with Yt turned on

and off. These are then used to construct C̄
(3)
ij in the MS scheme for the Yukawa couplings.

The YbYt interference terms have a noticeable numerical effect (∼ 5%) in the SM,

while in beyond-the-Standard-Model (BSM) scenarios such as SUSY with large tanβ their

relative effect compared to the dominant Y 2
b contribution tends to be much milder. In

section 4 we therefore provide the results both with and without the YbYt terms included,

which we denote as NLO[Y 2
b ] and NLO[Y 2

b +YbYt] in the following. For our choice of central

scales, the YbYt terms reduce the cross section for mH . 300 GeV and increase it for

mH & 300 GeV, see figure 4 below.

3 Estimate of perturbative and parametric uncertainties

We now turn to the discussion of the theoretical and parametric uncertainties. The estima-

tion of the perturbative uncertainties by variations of the hard scales µF and µR, and low

matching scale µb are discussed in section 3.1. The parametric uncertainty from the value

of the b-quark mass is discussed in section 3.2. In section 3.3, we discuss the PDF uncer-

tainty and the construction of modified PDF sets that are required to properly separate

the mb and µb uncertainties.
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3.1 Scale choices and perturbative uncertainties

As discussed in detail in ref. [16], we can distinguish two different sources of perturbative

uncertainties. One is an overall “fixed-order” uncertainty (within the resummed or matched

results), which can be estimated by exploiting the dependence on the hard matching scale.

The second is a “resummation” uncertainty related to the uncertainty in the resummed

logarithmic series, which can be estimated by exploiting the dependence on the low µb
matching scale.

In ref. [16] we considered a common hard scale. Here, we additionally study the

dependence of the cross section on the renormalization scale µR at which αs is evaluated

and on the renormalization scale µY at which the Yukawa coupling is evaluated. In this

case, the role of the hard matching scale in the resummation is played by the factorization

scale µF at which the PDFs are evaluated.

3.1.1 Central scale choices

For the factorization scale µF we use the central choice µF = (mH+2mb)/4, as is commonly

used in both the 4FS and 5FS calculations. This choice is motivated by the well-known

observation that in bb̄H such a small factorization scale leads to an improved perturbative

convergence, see e.g. [16, 27–30]. We point out that the matched NLO+NLL result turns

out to be significantly less sensitive to the central value of µF [16] than the 4FS and 5FS

results. The value of mb in the definition of µF is taken to be the central pole mass value

mb = 4.58 GeV (see section 3.2), and is kept fixed under mb variations.

For the renormalization scale we use a somewhat larger central value µR = mH/2.

This is motivated by the fact that kinematical arguments for a small scale ∼ mH/4 are

related to the collinear factorization (µF ) and not the renormalization (µR). On the other

hand, choosing µR = mH , which would be the canonical renormalization scale, produces

somewhat artificial leftover ln(µR/µF ) ' ln 4 terms in the cross section, which become even

larger under scale variations. The value µR = mH/2 is a reasonable compromise that lies

halfway between the standard 4FS and 5FS choices of µR = (mH + 2mb)/4 and µR = mH .

Also, at the Higgs masses of interest, the matched result is dominated by the resummation

contributions and as shown in ref. [30] the 5FS tends to favor µR values between mH/2 and

mH . Finally, this choice has the convenient side effect that the NLO+NNLLpartial result

turns out to be a very small correction over the NLO+NLL result.

The Yukawa couplings Yb(µY ) and Yt(µY ) are defined in the MS scheme are obtained

by evolving from mb(mb) = 4.18 GeV [31] and mt(mt) = 162.7 GeV [32] to the central

Yukawa scale µY with 4-loop evolution, while µY variations are computed using 2-loop

evolution. While both µR and µY are renormalization scales, they do not necessarily need

to be the same. It is always possible to evolve αs and the Yukawa coupling to different scales

using their own renormalization group evolution, compensated by including the appropriate

fixed-order logarithms in the partonic coefficients. In figure 3 we study the dependence of

the cross section on µR and µY at different orders, always keeping µF fixed at its central

value. We find that varying µR and µY together gives the largest scale variation, so for

our numerical results and uncertainty estimation we identify µY ≡ µR as is usually done.
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Figure 3. Dependence of the cross sections on µR and µY at LO+LL (dotted), NLO[Y 2
b ]+NLL

(dashed), and NLO[Y 2
b ]+NNLLpartial (solid) for mH = 125 GeV and 13 TeV. The blue curves show

the total scale dependence when setting µR = µY = µ, the green curves show the dependence

on µR = µ for fixed µY = mH/2, and the red curves show the dependence on µY = µ for fixed

µR = mH/2. In call cases µF is held fixed at its central value.

We also observe that at LO+LL and NLO[Y 2
b ]+NLL the renormalization scale dependence

comes entirely from the µY dependence, which reduces significantly at each higher order.

(This is also another motivation to choose a higher central scale for µR since mH is the

(only) relevant scale seen by the bb̄H vertex.) Note that at NLO[Y 2
b ]+NNLLpartial the µY

dependence reduces, which is precisely to be expected from the included two-loop virtual

corrections. On the other hand, the µR dependence for fixed µY at NLO[Y 2
b ]+NNLLpartial

actually increases, which could well be related to only including a partial set of higher-order

terms.

We note that this observed pattern for the µ dependence is somewhat changed by the

inclusion of the YbYt interference terms. This is not unexpected, since these terms introduce

new LO dependence on both µR and µY . However, since their absolute correction to the

cross section is small, we base our discussion of the scale choices on the pattern observed

without interference terms.

Finally, for µb we take the canonical central value µb = 4.58 GeV, which corresponds to

the central pole mass value we use, but importantly is kept fixed under mb variations. The

canonical scale choice µb = mb is appropriate in the resummation region where µb � µF ,

which is the case for all Higgs masses we consider in this paper. As explained in ref. [16],

for larger values of mb/µF & 0.3 (smaller mH) one enters the transition region, where the
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strict expansion should be used and µb should be chosen via a more general profile scale

to allow for a smooth turning off the resummation and transition into the fixed-order limit

mb ∼ µF .

3.1.2 Estimate of perturbative uncertainties

In ref. [16], µR = µY = µF were all varied together, which already yields an excellent

perturbative convergence. Here we follow an even more conservative approach and also

explore independent variations of µR and µF . We consider the usual 7-point variation

where the two scales are varied independently up and down by factors of two, excluding

the two cases where they are both varied in opposite directions. Whenever varying µF up

or down, the low matching scale µb is varied up or down by the same factor, such that

the ratio µF /µb and therefore the resummed logarithms remain fixed. As discussed in

ref. [16], this allows us to interpret the hard scale variations as an estimate of the overall

fixed-order uncertainty. The final fixed-order uncertainty is then obtained by the maximal

envelope, i.e., we use the absolute value of the largest deviation from the central value as

the symmetric uncertainty. Doing so explicitly avoids attributing any physical meaning to

accidentally small one-sided scale dependence (that would yield asymmetric uncertainties),

which just results from a nonlinear scale dependence as frequently encountered at higher

orders or near the points of minimal scale dependence.

Next, the resummation uncertainty is computed by varying the matching scale µb by

a factor of 2 up and down about its central value. For this variation we keep all the other

scales fixed (and also the value of mb). Doing so explicitly changes the ratio µF /µb and

thus directly probes the size of the resummed logarithms.

The fixed-order and resummation uncertainties are considered as independent uncer-

tainty sources, and the total perturbative uncertainty is obtained by adding them in quadra-

ture. A simple alternative approach, which however lacks the physical interpretation of the

source of uncertainty, would be to consider all possible independent variations of µF , µR,

µb by factors of two, eliminating all cases where the ratio of any two variation factors ex-

ceeds 2, and taking the total envelope. This turns out to be more aggressive and produces

a smaller total uncertainty, because some of the variations (the µb variations in particu-

lar) that in our approach are considered independent and added in quadrature, are simply

contained within the overall envelope and thus have no effect on the final uncertainty.

3.2 Parametric uncertainties due to mb

We now discuss the settings we use for the b-quark mass. The b-quark mass is most precisely

measured when defined in a renormalon-free short-distance scheme, such as the MS or 1S

schemes. As our starting point and central input value we thus take the measured value of

the MS mass mb(mb) = 4.18± 0.03 GeV [31].

In principle, the best option would be to always use a renormalon-free mass renormal-

ization scheme along with the corresponding measured value in all the places where the

mass appears. These are the Yukawa coupling Yb, the mb dependence in the nonsingular

parts of the coefficient functions, and the mb dependence of the PDF matching coefficients
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Mij(mb, µb) [see eq. (2.2)]. As mentioned in section 3.1 above, the Yukawa coupling is

renormalized in the MS scheme and is directly obtained by evolving from µ = mb to µR.

Unfortunately, most current PDF fits are performed with pole-scheme masses, includ-

ing all PDF sets that currently enter the PDF4LHC15 combination, which is what we will

utilize, see section 3.3 below. Furthermore, the fixed-order computations that we use as

input and hence our nonsingular coefficient functions are currently obtained in the pole

scheme. To be consistent, we thus also require mb in the pole scheme.

Since the pole mass has a leading renormalon ambiguity, the choice of its value is

somewhat delicate. To reproduce as closely as possible the renormalon cancellation that

would happen when properly translating the perturbative expressions from the pole scheme

to the MS scheme, we have to convert the mb input value to a pole-mass value at the

same loop order at which the perturbative series where mb appears (and that contains the

cancelling renormalon) is used. In our case, this means we should translate it at 1-loop

order because the proper NLO+NLL MS result would require an NNLO MS PDF set and

would be affected by the 1-loop pole to MS conversion,

mb(mb) = 4.18 GeV
1-loop−→ mpole

b = 4.58 GeV . (3.1)

To see this, note that the mb dependence of the fixed-order contributions first appears

at LO and we work to NLO, so the scheme translation requires the 1-loop conversion.

Equivalently, in the PDFs, the b-quark mass enters in the b-quark matching coefficient

Mbi(mb, µb), which first appears in the NLO PDFs, while the NNLO PDFs contain its 1-

loop correction. Note that here it is again important that in our perturbative counting the

fixed-order contributions and their singular limit contained in the resummed contributions

are consistently included at the same order.

As a cross check, we have explicitly verified that evolving (with APFEL [33]) the same

initial 4-flavor PDF set at NNLO using either the pole scheme with mpole
b = 4.58 GeV or

the MS scheme with mb(mb) = 4.18 GeV gives indeed very similar results.

To evaluate the parametric uncertainty due to the uncertainty in the measured value of

mb, we first note that the current world average for mb has an uncertainty of ±30 MeV [31].

Given the current tensions in different extractions of mb, this uncertainty might be con-

sidered too optimistic and one might want to consider the 2σ variation. For our purposes

however the resulting uncertainty in Yb is small compared to other uncertainties, and so

we will use the 1σ variation

4.15 GeV ≤ mb(mb) ≤ 4.21 GeV , (3.2)

which is directly translated into the variation of the MS Yukawa coupling.

Since the conversion to the pole scheme is performed at 1-loop, we also have to take

into account the intrinsic uncertainty in the conversion, which is much larger than the

uncertainty on mb itself. The 2-loop conversion yields 4.72 GeV, and we take the difference

of 140 MeV with respect to the 1-loop conversion as a reasonably conservative estimate

which should be sufficient to cover the uncertainties in mb and the conversion to the pole

– 13 –



scheme. Therefore, to estimate the parametric uncertainty in mb in our predictions we use

the variation

4.44 GeV ≤ mpole
b ≤ 4.72 GeV , (3.3)

where the lower (upper) variations on mpole
b are always used in conjunction with the lower

(upper) variation on mb in eq. (3.2). As we will see, the uncertainty due to mb will be

small.

Finally, as mentioned earlier, when varying mb, the b-quark matching scale is kept

fixed at its central value µb = 4.58 GeV and µF is also kept fixed at its central value

µF = (mH + 2mb)/4 with mb = 4.58 GeV.

3.3 Input PDFs and PDF uncertainties

As discussed in section 2, the resummation of collinear logarithms is entirely contained in

the evolved 5FS PDFs, and these carry a physical dependence on mb and an unphysical

dependence on the b-quark matching scale µb. When computing the cross section, it is

important that the input parameters used are consistent with the used PDF set. In partic-

ular, in our matched predictions we have to ensure that the value of mb in the computation

of the fixed-order contributions is equal to the one present in the resummed contributions,

i.e., in the PDF set, since otherwise the nonsingular terms would receive residual singular

logarithmic terms arising from miscancellations.

To be able to use in a fully consistent way all the values we want for mb and µb, for the

central value predictions as well as the uncertainty estimation, we require dedicated PDFs

that are not available by default. In principle, when changing the internal parameters of

the PDFs, they should be refitted. In practice, the chosen value of mb when fitting the

PDFs has a very small effect for all PDFs except for the b-quark PDF itself [34]. The

reason is that the presently fitted data provides only a very weak direct constraint on

the b-quark PDF or mb, which means that for all practical purposes the b-quark PDF is

essentially being calculated from the fitted gluon and light-quark PDFs at the low scale

µ0 < µb. Hence, we can also safely assume that refitting the PDFs for µb 6= mb will not

have much effect on the light-quark and gluon PDFs at µ0.

Given the above, we can take any PDF set with a given value of µb = mb, and re-evolve

it starting from a low scale µ0 < µb but using different values for mb, µb, and the mass

renormalization scheme. In other words, we use the light-quark and gluon PDFs at µ0 as

the input quantity and compute the b-quark PDF ourselves. (Note that this procedure is

also typically used by PDF fitting groups when constructing fixed-flavor PDF sets from the

fitted variable-flavor sets.) This approach is very useful because it opens the possibility of

using any desired values for µb and mb with any particular input PDF set.

Regarding the input PDFs at µ0, we use the combined PDF4LHC15 nnlo mc set [35–39].

All 101 PDF members are re-evolved from an initial scale µ0 = 2 GeV for all the values of

mb and µb that we need. This is done using the latest version (≥ 2.8) of APFEL [33].4 We

emphasize that re-evolving the PDF4LHC15 PDFs in this way is in fact more consistent

4In ref. [16] we had used a privately modified version of APFEL to allow for heavy-quark thresholds that

are different from the mass, µb 6= mb. This feature is now available in the latest version of APFEL.
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Figure 4. Matched bb̄H cross section as a function of mH , comparing different orders at LO+LL

(green band), NLO[Y 2
b +YbYt]+NLL (orange band), and NLO[Y 2

b +YbYt]+NNLLpartial (blue band).

The cross section is rescaled by (mH/125 GeV)3. The lower panel shows the ratio of the central

predictions NLO[Y 2
b +YbYt]+NLL over NLO[Y 2

b ]+NLL. The uncertainty bands are obtained by adding

the {µF , µR} and µb uncertainties in quadrature.

for the case of bb̄H than directly using the b-quark PDF from the combined set, because

the prior sets (MMHT2014 [38], CT14 [39], NNPDF30 [37]) from which the PDF4LHC15

set is constructed use different values of mb. The re-evolved PDF sets for various different

values of µb and mb are publicly available at http://www.ge.infn.it/∼bonvini/bbh.

To compute the PDF uncertainties we follow the PDF4LHC prescription [35], using our

re-evolved set with our central values for mb and µb. That is, we compute the cross section

for all 100 replicas, order the results in ascending order, and obtain a 68% confidence level

interval by using the 17th result as the lower variation and the 84th result as the upper

variation. We note that the distribution of cross sections we obtain is Gaussian to a very

good approximation.

4 Results for the 13 TeV LHC

In this section, we present our numerical results for the inclusive bb̄H cross section for

values of the Higgs boson mass in the range mH ∈ [50, 750] GeV. We also consider values
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NLO[Y 2
b ]+NLL

mH [GeV] σ(bb̄H) [pb] {µR, µF } [%] µb [%] mb [%] PDFs [%]

50 7.46× 10+0 ±20.0 ±7.2 ±3.0 +1.5
−3.6

75 2.57× 10+0 ±12.6 ±5.7 ±2.3 +1.7
−3.0

100 1.11× 10+0 ±8.7 ±5.5 ±1.9 +2.0
−2.6

125 5.52× 10−1 ±8.9 ±5.3 ±1.7 +2.1
−2.8

150 3.02× 10−1 ±9.0 ±5.1 ±1.7 +2.6
−2.4

175 1.78× 10−1 ±9.1 ±5.0 ±1.4 +2.2
−2.7

200 1.11× 10−1 ±9.2 ±5.0 ±1.4 +2.1
−2.5

225 7.23× 10−2 ±9.2 ±4.9 ±1.2 +2.5
−2.6

250 4.87× 10−2 ±9.3 ±5.0 ±1.3 +2.4
−2.6

275 3.38× 10−2 ±9.2 ±4.8 ±1.1 +2.6
−2.6

300 2.40× 10−2 ±9.2 ±4.7 ±1.2 +2.7
−2.9

325 1.75× 10−2 ±9.4 ±4.9 ±1.3 +2.2
−3.1

350 1.29× 10−2 ±9.4 ±4.8 ±1.2 +2.3
−3.3

375 9.67× 10−3 ±9.1 ±4.6 ±1.2 +2.4
−3.3

400 7.38× 10−3 ±9.2 ±4.4 ±1.1 +3.0
−3.3

425 5.71× 10−3 ±9.5 ±4.8 ±0.9 +2.7
−3.4

450 4.45× 10−3 ±9.4 ±4.7 ±0.9 +3.0
−3.6

475 3.51× 10−3 ±9.4 ±4.6 ±0.9 +3.6
−3.6

500 2.80× 10−3 ±9.7 ±5.1 ±1.1 +3.9
−3.7

525 2.24× 10−3 ±9.6 ±4.9 ±0.9 +4.3
−3.8

550 1.81× 10−3 ±9.4 ±4.7 ±0.9 +4.4
−3.8

600 1.21× 10−3 ±9.5 ±4.6 ±0.9 +5.3
−3.8

650 8.25× 10−4 ±9.8 ±5.1 ±0.9 +7.0
−3.5

700 5.75× 10−4 ±9.7 ±4.8 ±0.9 +6.2
−3.9

750 4.08× 10−4 ±9.7 ±4.8 ±0.8 +7.5
−4.1

Table 1. NLO[Y 2
b ]+NLL cross section predictions for the LHC at 13 TeV with individual error

estimates for {µF , µR}, µb, mb and PDF uncertainties. See text for further details.

of the Higgs mass different from mH = 125 GeV, as these are relevant for BSM scenarios

in which the Higgs coupling to the bottom quark is enhanced. For simplicity we always

use SM couplings – the cross section in many BSM scenarios can be obtained by rescaling

Yb by an appropriate model-dependent factor [40–42].

We always use the simplified implementation without the strict expansion, which

should still be valid at the lowest considered value of mH . The highest value is cho-

sen only semirandomly [43, 44]. The results for the cross section at NLO[Y 2
b ]+NLL,

NLO[Y 2
b +YbYt]+NLL, NLO[Y 2

b ]+NNLLpartial, and NLO[Y 2
b +YbYt]+NNLLpartial are given in

tables 1, 2, 3, and 4, respectively. The precise definitions of the different orders are dis-
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NLO[Y 2
b +YbYt]+NLL

mH [GeV] σ(bb̄H) [pb] {µR, µF } [%] µb [%] mb [%] PDFs [%]

50 7.00× 10+0 ±20.0 ±7.7 ±3.0 +1.6
−3.8

75 2.42× 10+0 ±12.8 ±5.9 ±2.6 +1.8
−3.2

100 1.05× 10+0 ±8.9 ±6.0 ±2.1 +2.2
−2.8

125 5.25× 10−1 ±7.7 ±5.8 ±1.9 +2.2
−3.0

150 2.89× 10−1 ±7.7 ±5.5 ±1.6 +2.7
−2.5

175 1.72× 10−1 ±8.0 ±5.3 ±1.7 +2.3
−2.8

200 1.08× 10−1 ±8.2 ±4.9 ±1.4 +2.1
−2.6

225 7.07× 10−2 ±8.4 ±5.1 ±1.3 +2.6
−2.6

250 4.79× 10−2 ±8.6 ±4.4 ±1.4 +2.5
−2.7

275 3.35× 10−2 ±8.9 ±4.9 ±1.3 +2.6
−2.6

300 2.40× 10−2 ±8.9 ±4.8 ±1.6 +2.7
−2.9

325 1.77× 10−2 ±9.4 ±4.8 ±1.5 +2.2
−3.1

350 1.32× 10−2 ±9.7 ±4.3 ±1.9 +2.2
−3.2

375 1.00× 10−2 ±9.9 ±4.1 ±1.9 +2.3
−3.2

400 7.79× 10−3 ±10.3 ±4.1 ±1.2 +2.8
−3.1

425 6.02× 10−3 ±10.5 ±4.7 ±1.1 +2.5
−3.2

450 4.72× 10−3 ±10.7 ±4.1 ±1.0 +2.9
−3.4

475 3.72× 10−3 ±10.5 ±4.1 ±1.1 +3.4
−3.4

500 2.96× 10−3 ±11.0 ±5.0 ±1.2 +3.7
−3.5

525 2.37× 10−3 ±11.0 ±4.9 ±1.1 +4.0
−3.6

550 1.91× 10−3 ±10.8 ±4.6 ±0.9 +4.2
−3.6

600 1.26× 10−3 ±10.4 ±4.2 ±1.3 +5.1
−3.6

650 8.58× 10−4 ±10.6 ±5.0 ±1.3 +6.7
−3.4

700 5.96× 10−4 ±10.6 ±4.8 ±1.0 +6.0
−3.8

750 4.20× 10−4 ±10.4 ±4.9 ±1.0 +7.3
−4.0

Table 2. NLO[Y 2
b +YbYt]+NLL cross section predictions for the LHC at 13 TeV with individual

error estimates for {µF , µR}, µb, mb and PDF uncertainties. See text for further details.

cussed in section 2. In the cross section tables we give the central value for the cross section

together with the full breakdown of the perturbative uncertainties due to {µF , µR} and µb
as well as the parametric uncertainties due to mb and PDFs.

For each of the fixed-order (µF and µR), resummation (µb), and parametric mb uncer-

tainties we use the absolute value of the maximum deviation from the central result as the

symmetric uncertainty. The PDF uncertainty is computed according to the PDF4LHC15

prescription as described in section 3.3 and is kept asymmetric. As discussed in section 3.1,

the full perturbative uncertainty is obtained by adding the fixed-order and resummation

uncertainties in quadrature. If one is only interested in the total bb̄H cross section, the

– 17 –



NLO[Y 2
b ]+NNLLpartial

mH [GeV] σ(bb̄H) [pb] {µR, µF } [%] µb [%] mb [%] PDFs [%]

50 7.53× 10+0 ±20.7 ±7.2 ±3.0 +1.5
−3.5

75 2.59× 10+0 ±13.2 ±5.7 ±2.3 +1.7
−3.0

100 1.12× 10+0 ±9.1 ±5.5 ±1.9 +2.0
−2.6

125 5.55× 10−1 ±6.9 ±5.3 ±1.7 +2.1
−2.8

150 3.04× 10−1 ±5.8 ±5.1 ±1.7 +2.6
−2.4

175 1.79× 10−1 ±4.5 ±5.0 ±1.4 +2.2
−2.7

200 1.12× 10−1 ±3.8 ±5.0 ±1.4 +2.1
−2.5

225 7.26× 10−2 ±3.4 ±4.9 ±1.2 +2.5
−2.6

250 4.89× 10−2 ±3.2 ±5.0 ±1.3 +2.4
−2.6

275 3.39× 10−2 ±3.2 ±4.8 ±1.1 +2.6
−2.6

300 2.41× 10−2 ±3.2 ±4.7 ±1.2 +2.7
−2.9

325 1.75× 10−2 ±3.4 ±4.9 ±1.3 +2.2
−3.1

350 1.29× 10−2 ±3.4 ±4.8 ±1.2 +2.3
−3.3

375 9.70× 10−3 ±3.2 ±4.6 ±1.2 +2.4
−3.3

400 7.41× 10−3 ±3.2 ±4.4 ±1.1 +3.0
−3.3

425 5.72× 10−3 ±3.6 ±4.8 ±0.9 +2.7
−3.4

450 4.46× 10−3 ±3.4 ±4.7 ±0.9 +3.0
−3.6

475 3.52× 10−3 ±3.4 ±4.6 ±0.9 +3.6
−3.6

500 2.81× 10−3 ±3.9 ±5.1 ±1.1 +3.9
−3.7

525 2.25× 10−3 ±3.8 ±4.9 ±0.9 +4.1
−3.9

550 1.81× 10−3 ±3.6 ±4.7 ±0.9 +4.4
−3.8

600 1.21× 10−3 ±3.6 ±4.6 ±0.9 +5.4
−3.6

650 8.28× 10−4 ±4.0 ±5.1 ±0.9 +7.0
−3.5

700 5.77× 10−4 ±3.8 ±4.8 ±0.9 +6.2
−3.9

750 4.10× 10−4 ±3.9 ±4.8 ±0.8 +7.5
−4.1

Table 3. NLO[Y 2
b ]+NNLLpartial cross section predictions for the LHC at 13 TeV with individual

error estimates for {µF , µR}, µb, mb and PDF uncertainties. See text for further details.

perturbative and parametric uncertainties can be added in quadrature. In a more compli-

cated setup, e.g., a global fit, the total perturbative, mb, and PDF uncertainties should be

treated as independent uncertainty sources (e.g. they correspond to independent nuisance

parameters). This allows one to properly take into account their correlations with other

predictions affected by the same physical uncertainty sources. For example, the paramet-

ric uncertainty due to mb or Yb should be correlated with the corresponding parametric

uncertainty when bottom loop effects are included in ggH.
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NLO[Y 2
b +YbYt]+NNLLpartial

mH [GeV] σ(bb̄H) [pb] {µR, µF } [%] µb [%] mb [%] PDFs [%]

50 7.08× 10+0 ±20.7 ±7.7 ±3.0 +1.6
−3.7

75 2.44× 10+0 ±13.4 ±5.9 ±2.6 +1.8
−3.2

100 1.06× 10+0 ±9.4 ±6.0 ±2.1 +2.1
−2.8

125 5.29× 10−1 ±7.5 ±5.8 ±1.9 +2.2
−3.0

150 2.91× 10−1 ±7.1 ±5.5 ±1.6 +2.7
−2.5

175 1.73× 10−1 ±6.1 ±5.3 ±1.7 +2.3
−2.8

200 1.08× 10−1 ±5.7 ±4.9 ±1.4 +2.1
−2.6

225 7.10× 10−2 ±5.5 ±5.1 ±1.3 +2.5
−2.6

250 4.81× 10−2 ±4.3 ±4.4 ±1.4 +2.5
−2.7

275 3.37× 10−2 ±3.9 ±4.9 ±1.3 +2.6
−2.6

300 2.41× 10−2 ±3.2 ±4.8 ±1.6 +2.7
−2.9

325 1.78× 10−2 ±2.8 ±4.8 ±1.5 +2.2
−3.1

350 1.33× 10−2 ±2.9 ±4.3 ±1.9 +2.2
−3.2

375 1.01× 10−2 ±2.9 ±4.1 ±1.9 +2.3
−3.2

400 7.81× 10−3 ±3.1 ±4.1 ±1.2 +2.8
−3.1

425 6.03× 10−3 ±3.4 ±4.7 ±1.1 +2.5
−3.2

450 4.74× 10−3 ±3.5 ±4.1 ±1.0 +2.9
−3.4

475 3.73× 10−3 ±3.3 ±4.1 ±1.1 +3.4
−3.4

500 2.97× 10−3 ±4.0 ±5.0 ±1.2 +3.7
−3.5

525 2.38× 10−3 ±3.9 ±4.9 ±1.1 +3.9
−3.7

550 1.92× 10−3 ±3.8 ±4.6 ±0.9 +4.2
−3.6

600 1.27× 10−3 ±3.4 ±4.2 ±1.3 +5.2
−3.5

650 8.61× 10−4 ±3.9 ±5.0 ±1.3 +6.7
−3.4

700 5.98× 10−4 ±4.0 ±4.8 ±1.0 +5.9
−3.8

750 4.22× 10−4 ±4.0 ±4.9 ±1.0 +7.3
−4.0

Table 4. NLO[Y 2
b +YbYt]+NNLLpartial cross section predictions for the LHC at 13 TeV with indi-

vidual error estimates for {µF , µR}, µb, mb and PDF uncertainties. See text for further details.

Our results are also illustrated in three figures. In figure 4, we show the LO+LL,5

NLO[Y 2
b +YbYt]+NLL, and NLO[Y 2

b +YbYt]+NNLLpartial cross sections as a function of the

Higgs mass. Here, the uncertainty bands show the total perturbative uncertainty adding in

quadrature the {µF , µR} and µb uncertainties. The important message that follows from

this figure is that we can see an excellent perturbative convergence between the orders.

Additionally, the band for the NLO[Y 2
b +YbYt]+NNLLpartial cross section is fully included

within the NLO[Y 2
b +YbYt]+NLL band, and the central values for the two results are almost

5The LO+LL result here is consistently computed with NLO PDFs.
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Figure 5. Comparison of the cross sections for mH = 125 GeV at the 13 TeV LHC at NLO[Y 2
b ],

NLO[Y 2
b +YbYt] without resummation and at NLO[Y 2

b ]+NLL, NLO[Y 2
b +YbYt]+NLL, and NLO[Y 2

b +

YbYt]+NNLLpartial. A full breakdown of the uncertainties at NLO[Y 2
b +YbYt]+NLL is also shown.
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Figure 6. Comparison of the cross sections for mH = 475 GeV at the 13 TeV LHC at NLO[Y 2
b ],

NLO[Y 2
b +YbYt] without resummation and at NLO[Y 2

b ]+NLL, NLO[Y 2
b +YbYt]+NLL, and NLO[Y 2

b +

YbYt]+NNLLpartial. A full breakdown of the uncertainties at NLO[Y 2
b +YbYt]+NLL is also shown.

identical, which is a nice feature of our central scale choices. This pattern also gives us a

good degree of confidence in the method we use to estimate the perturbative uncertainties.

These conclusions are unchanged when the YbYt interference terms are omitted. In

the lower panel of the figure we show the ratio of the central NLO[Y 2
b +YbYt]+NLL over the

central NLO[Y 2
b ]+NLL to illustrate the numerical effect of the YbYt interference terms on

the matched result. We see that the effect of adding the interference term is moderate

but clearly noticeable in the numerical results, giving a negative contribution for mH .
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Figure 7. Comparison of the cross sections for mH = 750 GeV at the 13 TeV LHC at NLO[Y 2
b ],

NLO[Y 2
b +YbYt] without resummation and at NLO[Y 2

b ]+NLL, NLO[Y 2
b +YbYt]+NLL, and NLO[Y 2

b +

YbYt]+NNLLpartial. A full breakdown of the uncertainties at NLO[Y 2
b +YbYt]+NLL is also shown.

300 GeV, and a positive one for larger masses. (The small fluctuations are due to the finite

integration statistics in MC@NLO when including the interference terms.)

Note that for large Higgs masses the uncertainties at NLO+NNLLpartial get signif-

icantly smaller than at NLO+NLL. As discussed in section 2.3, this is expected since

for large mH the 5FS perturbative counting is more appropriate and in this limit the

NLO+NNLLpartial formally improves the accuracy of the result, becoming as accurate as

the full NNLO 5FS cross section. For smaller values around the physical Higgs mass of

mH = 125 GeV, our counting is more appropriate, and only the full NNLO+NNLL should

be regarded as a complete next-order result. Therefore, in this region the larger NLO+NLL

uncertainty should be regarded as a safer estimate of the residual theory uncertainty. This

is also nicely confirmed by the fact that in this range the NLO+NNLLpartial uncertainty is

essentially as large as at NLO+NLL.

In figures 5, 6, and 7 we give a visual breakdown of the results for mH = 125 GeV,

mH = 475 GeV, and mH = 750 GeV. The matched results and uncertainty contributions

are equivalent to the numbers provided in the tables. In addition, we also give a comparison

with the corresponding pure fixed-order results at NLO with and without YbYt terms (green

points).6 By comparing the green NLO with the red NLO+NLL points we can see that the

effects of the resummation are significant, resulting in a ∼ 30% increase for mH = 125 GeV,

and even more at the higher Higgs masses, and moreoever this effect is not covered by the

fixed-order scale variation band. This clearly shows that the resummation of b-quark

6These are the fixed NLO[Y 2
b ] and NLO[Y 2

b +YbYt] results that are contained in our NLO+NLL result and

that would be obtained if we were to take µb → µF to turn off the resummation. These are still consistently

computed with nf = 5 running for gluon and light-quark PDFs and αs and are thus not numerically

identical to the usual 4FS result that uses nf = 4 running everywhere. The difference is however of higher

order in the 4FS expansion.
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collinear logarithms cannot be neglected for these mass values. Comparing the red points

for NLO[Y 2
b +YbYt]+NLL and NLO[Y 2

b +YbYt]+NNLLpartial we see the same features as we saw

in fig. 4.

The four points on the right of figures 5, 6, and 7 show the breakdown of the uncer-

tainties for our default result at NLO[Y 2
b +YbYt]+NLL. Clearly, the fixed-order uncertainty

estimated by the µF and µR variations is the largest source of uncertainty in the pre-

dictions, both for moderate as well as large values of mH . The orange points show the

resummation uncertainty estimated from the µb variation, which, although smaller than

the fixed-order uncertainty by roughly a factor of two, is nevertheless not negligible. We

also recall that at the lower LO+LL order the resummation uncertainty plays a significant

role, as was shown in ref. [16].

The parametric uncertainties due to mb (purple points) and PDFs (brown points) are

subdominant. The mb uncertainties are small around 2% and decrease for higher Higgs

masses to around 1%. The (asymmetric) PDF uncertainties, computed as described in

section 3.3, are around 4% and smaller than both the {µF , µR} and µb uncertainties.

One point to emphasize is that the uncertainty which is solely due to the parametric

uncertainty in mb is much smaller than the perturbative µb uncertainty, especially for

larger Higgs masses. This shows the importance of distinguishing these two effects. If we

were to identify µb ≡ mb, as is commonly done, we would be left to choose between two

undesirable options. Either we could vary their common value in the range eq. (3.3), which

would essentially set the µb uncertainty to zero. Or, we could vary their common value in a

much larger range to account for the µb uncertainty, which however would be unjustified for

mb and blow up the parametric mb uncertainty. In contrast, by identifying and separating

these two uncertainty sources, we are able to properly estimate each of them.

5 Conclusions

We have presented state-of-the-art predictions for the bb̄H cross section at 13 TeV ob-

tained from a matched calculation [16] that consistently combines the fixed-order (4FS)

contributions (which include the full b-quark mass dependence) with the all-order resum-

mation of collinear logarithms of mb/mH . We provide results with and without including

the effect of the interference of top-loop induced Higgs production process with the pure

bottom-induced production proportional to YbYt. We also study the effect of two-loop con-

tributions that formally contribute at NNLL order, finding that they are small and their

effect fully captured by the uncertainty of our default NLO+NLL result.

We perform a detailed study of several sources of uncertainty in our results, both

theoretical and parametric. The perturbative uncertainty from missing higher orders is

estimated by varying the hard scales µF and µR, as well as the resummation scale µb, which

represents the threshold scale at which 4FS evolution is matched to 5FS evolution in the

PDFs. We consider our resulting theory uncertainty as a reliable estimate, which is neither

aggressive nor overly conservative. Furthermore, the parametric uncertainties due to the

b-quark mass value and PDFs are evaluated. In particular, we discuss how to disentangle
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the unphysical dependence on the b-quark matching scale µb from the purely parametric

dependence on the b-quark mass mb, which requires the construction of dedicated 5F PDFs.

Our methodology to compute the matched prediction and to evaluate its uncertainties

can be readily applied to other heavy-quark-initiated processes at the LHC. The code

for our matched predictions will be available at http://www.ge.infn.it/∼bonvini/bbh.

Our results represent the currently most complete predictions for the bb̄H cross section

in the Standard Model and we are looking forward to a first measurement of this process

during the coming LHC Run 2.
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