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Abstract: In this work we present the results of a numerical investigation
of SU(2) gauge theory with Nf = 3/2 flavours of fermions, corresponding to
3 Majorana fermions, which transform in the adjoint representation of the
gauge group. At two values of the gauge coupling, the masses of bound states
are considered as a function of the fundamental fermion mass, represented
by the PCAC quark mass. The scaling of bound states masses indicates
an infrared conformal behaviour of the theory. We obtain estimates for
the fixed-point value of the mass anomalous dimension γ∗ from the scaling
of masses and from the scaling of the mode number of the Wilson-Dirac
operator. The difference of the estimates at the two gauge couplings should
be due to scaling violations and lattice spacing effects. The more reliable
estimate at the smaller gauge coupling is γ∗ ≈ 0.38(2).

1 Introduction

The long and short distance behaviour of QCD-like theories depends significantly on
the number Nf of fermion flavours and on the representation of the gauge group under
which the fermions transform. For sufficiently small Nf the β-function is negative and
the well-known scenario with confinement and asymptotic freedom occurs. However, for
large Nf above a certain limit Nu

f asymptotic freedom is lost, the β-function is positive
and has an infrared fixed point at the origin. The theory then has a scaling behaviour
like φ4-theory and is non-interacting in the continuum limit. Between these two cases
different interesting scenarios are expected. For Nf below the triviality limit Nu

f , the
perturbative β-function to two or three loops shows asymptotic freedom near the origin,
but develops an infrared fixed point, called Banks-Zaks fixed point, at a finite value
of the coupling [1]. If Nf is just below Nu

f , this fixed point is at weak couplings, and
the scaling behaviour can be obtained perturbatively. The theory is asymptotically free
at short distances, and shows conformal behaviour at large distances, i. e. it is infrared
conformal. For smaller Nf the IR-fixed point moves towards stronger couplings, such
that perturbation theory ceases to be reliable. Finally, decreasing Nf further below a
certain value N l

f , the IR-fixed point will disappear and the QCD scenario sets in. The
region between Nu

f and N l
f is the conformal window. Its upper edge can be estimated

perturbatively, but the determination of its lower edge is a non-perturbative problem.
For a theory with Nf below, but near to N l

f , the β-function is always negative, but
might approach zero near a certain finite value of the coupling, see Fig. 1. In this case
the coupling will not run, but evolve rather slowly in a certain range of distances or
momenta, respectively. Such a behaviour is called walking, and in the walking regime
the theory behaves approximately conformal [2].

For a given theory, the question to which of these scenarios it belongs, is of funda-
mental importance for its characteristic features. Based on the perturbative β-function
and approximate solutions of the Schwinger-Dyson equations, Dietrich and Sannino [3]
have mapped out the phase diagram for non-supersymmetric theories with fermions in
different representations of the gauge group SU(N) as a function of N and Nf . It turns
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Figure 1: Sketch of the β-functions for QCD-like, conformal, and walking scenarios.

out that for representations higher than the fundamental one, the boundaries of the
conformal window are expected to be at rather small values of Nf . In particular, for
the adjoint representation they might be near Nf = 1 and 2. To locate their true values
requires, however, non-perturbative methods. Therefore, in recent years the scaling be-
haviour of various theories has been investigated by means of Monte Carlo simulations
in the framework of lattice gauge theory.

SU(N) gauge theory with fermions in the adjoint representation has been studied for
Nf = 2 by various collaborations and appears to be IR-conformal, see e. g. [4] and [5, 6]
for reviews. A study of SU(2) with Nf = 1 fermion flavours [7] gives indications for
IR-conformal behaviour, too. The case of Nf = 1/2 describes one flavour of Majorana
fermions and corresponds to N = 1 supersymmetric Yang-Mills theory, which has been
studied by our collaboration, see [8] and references therein. This theory is QCD-like
concerning its scaling behaviour.

It is the purpose of this article to present results about SU(2) gauge theory with
Nf = 3/2 flavours of fermions in the adjoint representation of the gauge group, where
3/2 means 3 flavours of Majorana (or Weyl) fermions. Preliminary results have been
presented in [9]. We have investigated the masses of various particles, including mesons,
glueballs and spin 1/2 fermion-glue bound states, the string tension, and the mass an-
omalous dimension, in order to gain insights into the IR behaviour of the theory.

2 Gauge theory with adjoint fermions on the lattice

We consider SU(2) gauge theory coupled to fermions transforming under the adjoint
representation of the gauge group. In the continuum the covariant derivative acting on
a fermion field

ψ(x) = ψa(x)T a , (1)
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where T a = σa/2, a = 1, 2, 3, are the generators of SU(2), is given by

Dµψ(x) = (∂µψ(x) + i g[Aµ(x), ψ(x)]), (2)

with the gauge field Aµ(x) = Aaµ(x)T a.
The lattice formulation of the theory that we use employs the Wilson gauge action

built from the plaquette variables Up and the Wilson-Dirac operator in the adjoint
representation. The lattice action is

SL = β
∑

p

(

1 − 1

2
trUp

)

+
∑

xy,f

ψ̄fx(Dw)xyψ
f
y , (3)

where Dw is the Wilson-Dirac operator

(Dw)x,a,α;y,b,β = δxyδa,bδα,β

− κ
4

∑

µ=1

[

(1 − γµ)α,β(Vµ(x))abδx+µ,y + (1 + γµ)α,β(V †
µ (x− µ))abδx−µ,y

]

. (4)

Here β = 1/g2 is the inverse bare gauge coupling, and the hopping parameter κ is
related to the bare fermion mass via κ = 1/(2m0 + 8). The link variables Uµ(x) are
in the fundamental representation of the gauge group SU(2). The gauge field variables
Vµ(x) in the adjoint representation are given by [Vµ(x)]ab = 2 tr[U †

µ(x)T aUµ(x)T b].
The lattice extension in all spatial directions is denoted by the number Ns of lattice

points. In our simulations the extension in the temporal direction is always given by
Nt = 2Ns.

The number of fermion flavours is conventionally counted in terms of Dirac fermions.
Majorana fermions, satisfying the Majorana condition

ψ = ψTC, (5)

where C is the charge conjugation matrix, possess half the number of degrees of freedom
as Dirac fermions and are counted as Nf = 1/2. Consequently Nf = 3/2 is to be
interpreted as 3 species of Majorana fermions. In this case the index f in the lattice
action counts Majorana fermions and runs from 1 to 3.

In order to reduce lattice artefacts we use in our simulations an improved version of
the lattice action with a tree-level Symanzik improved gauge action and stout smearing
for the link fields in the Wilson-Dirac operator [10]. The stout smearing is iterated three
times with the smearing parameter ρ = 0.12.

For Majorana fermions the fermion integration

∫

[dψ] e− 1
2
ψDwψ = Pf(CDw) = ±

√

detDw (6)

yields the Pfaffian of the Wilson-Dirac matrix. With 3 Majorana fermion fields the
functional integrals contain a factor (detDw)3/2, which can be treated with the PHMC
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algorithm. The possible sign of Pf(CDw) has to be taken into account in the observ-
ables by reweighting. In simulations not too close to the critical hopping parameter κc,
negative signs are very rare and it was not necessary to consider them in the parameter
regions of our simulations for the determination of the masses.

In order to check the possible presence of a negative sign we have generated two runs
at the critical parameters corresponding to mPCAC ≈ 0 (runs R1 and R3, see Table 1).
The eigenvalue distribution for these runs does not completely match the bounds of the
polynomial approximation, but they can still be used to check the general properties of
the sign problem in this theory without determining the otherwise necessary correction
factors on the configurations. We observe that even at these critical parameters no
negative sign is obtained for the measured configurations and a gap in the imaginary
part Wilson-Dirac eigenvalues around zero appears. The general features of the spectrum
scale with the volume (see Fig. 2). Consequently the rather large finite size effects in
these runs are most likely preventing a fluctuating Pfaffian sign in this theory. We did
not observe such an effect in supersymmetric Yang-Mills theory.

−4
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−1

0

1

2

3

4

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

N
1
.4

s
ℑ
λ

N1.4
s ℜλ

Figure 2: The eigenvalues of the Wilson-Dirac operator for the near-critical runs R1
(Ns = 24) and R3 (Ns = 32), represented in the complex plane. The smallest
eigenvalues in a region around the real axis are determined. We observe a
good agreement between the two runs by rescaling the eigenvalues with N1.4

s .
This scaling of the eigenvalues is in accordance with the scaling by 1 + γ∗

investigated in [11], assuming γ∗ ≈ 0.4.

For generating field configurations on the lattice we have used the two-step polynomial
hybrid Monte Carlo (PHMC) algorithm [12]. It is based on polynomial approximations
of the inverse powers of the Wilson-Dirac matrix. The first polynomial gives a rough
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approximation that is corrected by the second polynomial. The polynomials were chosen
such that the lower bound of the approximation interval was about a factor 10 smaller
than the smallest occurring eigenvalues. The resulting two-step approximation is so
good that no further correction by a reweighting factor is necessary in practice.

3 Model parameters and continuum limit

In an asymptotically free gauge theory the lattice spacing a mainly depends on the gauge
coupling β. For increasing β the lattice spacing decreases exponentially. The size of a
in physical units can be fixed in terms of a dimensionful quantity like the Sommer scale
r0 or the string tension σ, which is used to set the scale.

In an IR conformal theory the situation is different. In the close vicinity of the fixed
point the coupling β is an irrelevant parameter and the model depends only weakly on it.
Due to the absence of a mass scale the size of the lattice spacing can only be compared
to the physical extent L = Nsa of the lattice, and the continuum limit has to be defined
in terms of the ratio a/L.

Nevertheless, away from the IR fixed point towards the Gaussian fixed point at g2 =
0 a relevant dependence on β is expected. The theory is asymptotically free in the
ultraviolet, and the continuum limit would be reached by sending β to infinity. Near the
IR fixed point the dependence on β appears as a correction to scaling.

In addition, the mass term in the action plays an important role. Non-zero masses are
relevant parameters that break conformal symmetry and imply corrections to scaling. In
the presence of mass terms the renormalisation flow doesn’t run into the IR fixed point,
but may pass close by. The running of β is then expected to be rather slow.

The dependence of particle masses on the renormalised fermion mass mr would be
quite different for theories in the different scenarios. In a theory above the conformal win-
dow, with confinement and chiral symmetry breaking, the mass of the pseudo-Goldstone
boson vanishes when the fermion mass mr goes to zero, whereas the other particle masses
approach a finite value, see Fig. 3.

0
++

√

σ

MPS

MV
M

mr→0 mr large

0
++

√

σ

MPS

MV

M

mr→0 mr large

Figure 3: Sketch of the mass spectrum as a function of the fermion mass mr for a QCD-
like (left) and a IR conformal (right) scenario. Indicated are the masses of the
pseudoscalar (PS) and vector (V) mesons, the scalar (0++) glueball and the
square-root of the string tension σ.
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In the IR conformal scenario all particle masses and the string tension would asymp-
totically scale to zero in the conformal limit according to

M ∝ m1/(1+γ∗)
r , (7)

where γ∗ is the value of the mass anomalous dimension at the fixed point [13, 14].
In this scenario the ratios of masses are approximately constant for small mr. These

ratios represent universal features of (near) IR conformal theories [15].
In practice, however, the limit of vanishing fermion mass mr cannot be reached in

numerical simulations. In a near conformal theory severe finite size effects would occur
for small mr, and have a substantial influence on the mass spectrum. Moreover, the
simulation algorithms slow down strongly at small fermion masses and in this way limit
the accessible parameter range.

In our simulations we have chosen two values of β = 1.5 and 1.7. We checked that
these inverse gauge couplings are above the value of the bulk (“finite temperature”) phase
transition. In order to control finite volume effects, lattices of size 163 × 32, 243 × 48
and 323 × 64 have been used for both values of β.

The renormalised fermion mass has been varied by a series of values for the hopping
parameter κ. As renormalised fermion mass mr we take the PCAC mass mPCAC, determ-
ined by means of the PCAC (partially conserved axial current) relation. The lattice
sizes and parameters for the ensembles with positive fermion mass are summarised in
Tab. 1.

The mass of the pseudoscalar meson in lattice units was in the range 0.13 to 1.0. Most
relevant for finite size effects are the lightest particle masses, which in our simulations
turned out to be the scalar glueball and the pseudoscalar meson. As the mass of the
pseudoscalar meson can be determined much easier and precisely, we consider this one
as a measure for the low mass scale.

Our results for the various masses show that at β = 1.5 ensemble A, and at β =
1.7 ensembles J and K have sizeable finite size effects, so that these ensembles are
usually discarded in the analysis, apart from the cases where finite size scaling effects
are included.

4 Scaling of the lightest particle masses

The spectrum of colour neutral particles in this model consists of bound states of gauge
bosons (“gluons”) and fermions. In addition to mesonic particles and glueballs, spin
1/2 bound states of gluons and fermions are possible due to the adjoint representation
of the fermions. In the mesonic sector we consider the scalar and pseudoscalar ones,
created by the operators ψ̄σaψ and ψ̄γ5σ

aψ, a = 1, 2, 3, respectively, and the vector and
pseudovector mesons, created by ψ̄bγkψ

c and ψ̄bγ5γkψ
c, respectively, where k = 1, 2, 3

is in the spatial direction. In addition, the scalar glueball and the spin 1/2 fermion-
glue bound state, represented by σµνtr [F µνψ], have been investigated. Apart from the
particle masses we have also calculated the string tension σ from the static quark-
antiquark potential, where “quark” means a particle in the fundamental representation

7



β Ns κ amPCAC

A 1.5 16 0.137 0.02270(18)
B 1.5 16 0.135 0.11604(44)
C 1.5 16 0.132 0.23236(83)
D 1.5 24 0.1351 0.10986(12)
E 1.5 24 0.134 0.15632(15)
F 1.5 24 0.133 0.19515(20)
G 1.5 24 0.132 0.23207(22)
H 1.5 32 0.1359 0.07380(07)
J 1.7 16 0.130 0.12890(77)
K 1.7 24 0.133 0.03360(30)
L 1.7 24 0.132 0.06628(08)
M 1.7 24 0.130 0.12882(15)
N 1.7 32 0.132 0.06635(12)
O 1.7 32 0.130 0.12910(04)
P 1.7 32 0.1285 0.17366(04)
Q 1.7 48 0.1322 0.05990(05)
R1 1.7 24 0.134 -0.00097(22)
R3 1.7 32 0.134 -0.00052(11)

Table 1: Parameters of the simulation ensembles.

of the colour gauge group. The square-root of σ has dimensions of a mass and scales as
a mass. Therefore we include it in our analysis of the scaling behaviour. The techniques
for the calculation of the propagators, masses and string tension have been explicated
in [4] and for details we refer to this article.

Fig. 4 shows the particle masses as a function of the fermion mass. All masses appear
to scale downwards towards the limit mPCAC = 0. The lightest particle, being well
separated from the rest, is the scalar glueball. So the overall behaviour indicates a
scenario different from the QCD-like one, where the pseudoscalar pseudo-Goldstone
boson is lightest particle. As expected for a theory in the conformal window, all masses
scale approximately in the same way and their ratios are constant as shown in Fig. 5.

In order to substantiate this impression we have investigated the scaling behaviour of
masses. To begin with, consider the pseudoscalar meson. In a QCD-like situation this
particle is the pseudo-Goldstone boson of spontaneously broken chiral symmetry, and
its mass vanishes with mr ≡ mPCAC according to the Gell-Mann-Oakes-Renner relation
mPS ∝ m1/2

r . On the other hand, in an IR-conformal scenario mPS would scale to zero as
mPS ∝ mk

r with an exponent k = 1/(1 + γ∗) that can be different from 1/2. In order to
determine the exponent k we fitted ln(mPS) as a linear function of ln(mr). As mentioned
above, ensembles A, K and J are omitted in view of finite size effects. Being even more
restrictive concerning possible finite size effects, one would also leave out the ensembles
N, L and Q with the smallest fermion masses at β = 1.7, remaining with M, O, P.
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Figure 4: Particle masses and
√
σ as a function of amPCAC for β = 1.5 (above) and

β = 1.7 (below).

The data points show a nice linear behaviour. For β = 1.5 the fit gives an exponent
k = 0.691(2), and for β = 1.7 we obtain k = 0.743(14) from ensembles (M, O, P). An
estimate of the systematic error is obtained by considering different subsets of ensembles.
For β = 1.7 we get k = 0.775(8) from the Ns = 32, 48 lattices (N, O, P, Q), and
k = 0.780(7) from ensembles L – Q. Thus the exponent is evidently different from 0.5,
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Figure 5: Particle masses and
√
σ in units of the pseudoscalar mass as a function of

amPCAC for β = 1.5 and β = 1.7.

indicating the IR-conformal scenario. In this case, the other masses should show scaling
with the same exponent. We considered the weighted average of the logarithms of the
other masses mS, mV, mPV, m0++, m1/2 and mσ =

√
σ, the weights given by the inverse

variances as usual, as a function of ln(mr). Again a nice linear behaviour can be seen.
From the linear fit we obtain k = 0.608(17) for β = 1.5 and k = 0.667(54) for β = 1.7,
ensembles M, O, P. These values are compatible with the ones from mPS and give clear
support for the IR-conformal scenario.

The overall estimate of the mass anomalous dimension is obtained by the same fit,
now including the pseudoscalar mass. For β = 1.5 this gives k = 0.675(24). The
corresponding number for β = 1.7, ensembles M, O, P, is k = 0.751(8). For comparison,
we get k = 0.817(36) from N, O, P, Q, and k = 0.817(24) from L – P. Fig. 6 shows the
averaged logarithmic masses for β = 1.7 and the fit with k = 0.751.

To conclude, the particle masses show scaling behaviour of the IR-conformal scenario
with an exponent k ≈ 0.67, corresponding to γ∗ ≈ 0.5, for β = 1.5, and k = 0.75(7),
corresponding to γ∗ = 0.33(13), for β = 1.7.

5 Mode number

An alternative method for the determination of the mass anomalous dimension is based
on the spectral density of the Dirac operator [16, 17, 18, 19, 20]. The mode number
ν(Ω) is defined to be the number of eigenvalues of the hermitian operator D†

wDw below
some limit Ω2. The mode number obeys a scaling law [17]

ν(Ω) = ν0 + a1(Ω
2 − a2

2)2/(1+γ∗) (8)

for sufficiently small values of Ω2 − a2
2, where a2 is proportional to mPCAC. Therefore, a

fit of ν(Ω) to this function in a suitable range [Ωmin,Ωmax] allows to estimate the mass
anomalous dimension γ∗.
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Figure 6: Weighted averages of the logarithms of the particle masses at β = 1.7 as a
function of ln(amPCAC), and the scaling fit with exponent k = 0.751. Note that
the second symbol from right stands for two close-by data points and the three
leftmost points are not included in this fit.

The choice of the fit range [Ωmin,Ωmax] is a sensitive issue. For a small fit range near
a scale Ω, the resulting value for the mass anomalous dimension can be considered as an
effective anomalous dimension γ(Ω), which approximates the corresponding renormalisa-
tion group function [18]. For large Ω it is expected that γ(Ω) decreases and approaches
its value zero at the asymptotically free UV fixed point. On the other hand, for small
Ω finite volume effects and effects of the non-vanishing fermion mass mPCAC will disturb
the scaling behaviour. Therefore the fit range should be located in an intermediate
regime, where the effects of the finite volume and non-zero fermion mass can be neg-
lected [17, 20]. For an infrared conformal theory the coupling runs very slowly for a
wide range of scales at low µ, and there the anomalous dimension γ varies slowly, too,
approximatively developing a plateau at the value γ∗. Investigations of the β-function
in the MiniMOM scheme for this theory [21] indicate that the Nf = 3/2 theory appears
to be close to the the edge of the conformal window.

The techniques and the code that we have implemented to compute the mode number
have been tested in the Nf = 2 case and presented in Ref. [9]. We have used different
methods for the non-linear fit to Eq. 8 including parallel tempering together with con-
jugate gradient techniques. The fit of a large number of data points requires particular
techniques for the determination of the correlated χ2 [22]. The results for the fits over
intervals of fixed length and varying lower end Ωmin are shown in Figs. 7 and 8 for the
runs at β = 1.5 and β = 1.7, respectively.
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At β = 1.5 we obtain reasonable fits with an acceptable p-value and a correlated χ2

per degree of freedom in a certain region of Ω values for the ensembles with the smallest
fermion masses. However, there is no pronounced plateau for the obtained values in this
range. The best fits are obtained at rather large values of Ω. Further in the infrared,
the correlated χ2 of the fit drastically increases, which is an indication of fermion mass
effects. We take the final value from the middle of the range where the correlated χ2

per degree of freedom is below 2.5 for ensemble H, and the width of this range as an
estimate for the error. This provides a rough estimate of γ∗ ≈ 0.5 ± 0.05.

In contrast to the case of β = 1.5, a considerable plateau of the fitted values is obtained
at β = 1.7 in the infrared region. The plots of the fit results agree in a large range of
Ωmin values for the ensembles Q and N. Hence they are quite insensitive to a change
of the fermion mass and the volume. Even the plot for ensemble R3, at approximate
zero fermion mass, agrees with these data. Due to the uncertainties originating from the
polynomial choices in the PHMC algorithm at ensemble R3, we have only considered
ensemble Q for the final fit. We obtain a value of γ∗ ≈ 0.377(3). Taking also the
uncertainties in the determination of the fitting interval into account, the estimate is
γ∗ ≈ 0.38(2).

We made a crosscheck of the obtained values of γ∗ with the hyperscaling of the mass
spectrum. As shown in Fig. 9, the agreement with the expected functional behaviour
is reasonable. We can also vary the exponents close to the measured values in order
to minimise the sum of the χ2 from the linear fits. In this way we obtain a minimum
around γ∗ ≈ 0.46(2) for β = 1.5 and γ∗ ≈ 0.37(2) for β = 1.7. This shows that the
values for the mass anomalous dimension obtained from the mode number are consistent
with the hyperscaling of the mass spectrum
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Figure 9: A cross check of the scaling exponents obtained from the mode number with
the scaling of the particle masses. These figures show a fit to the hyperscal-
ing hypothesis of the masses including volume scaling. The points with the
smallest values on the x-axis correspond to the ensembles B (β = 1.5) and K
(β = 1.7). The lines correspond to a linear fit, in case of β = 1.7 without the
data of ensemble K.
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6 Conclusions

We have analysed the spectrum of bound states masses in SU(2) gauge theory with
Nf = 3/2 flavours of adjoint fermions at two values of the inverse gauge coupling β = 1.5
and 1.7. The scaling of the masses as a function of the fermion mass mPCAC indicates an
infrared conformal behaviour of this theory. The fixed point value of the mass anomalous
dimension is estimated to be γ∗ ≈ 0.5, for β = 1.5, and γ∗ = 0.33(13), for β = 1.7. An
independent estimate has been obtained from the scaling of the mode number of the
hermitian Wilson-Dirac operator. For β = 1.5 we only get a rough estimate of γ∗ ≈ 0.5,
whereas for β = 1.7 a plateau shows up at a value of γ∗ ≈ 0.38(2).

For a conformally behaving theory in the infinite volume limit the value of γ∗ should
be independent of the gauge coupling. On the other hand, for a theory in the vicinity of
an IR fixed point, scaling violations are present, which increase towards the UV regime.
The fact that our estimates at the two gauge couplings do not exactly coincide indicates
the influence of scaling violations and cutoff effects.
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