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Abstract We calculate the critical exponents ω± in the d-
dimensional Gross-Neveu model in 1/N expansion with 1/N2

accuracy. These exponents are related to the slopes of the β -
functions at the critical point in the Gross - Neveu - Yukawa
model. They have been computed recently to four loops ac-
curacy. We checked that our results are in complete agree-
ment with the results of the perturbative calculations.

1 Introduction

The Gross - Neveu (GN) model, originally introduced in [1]
in 1974 as a toy model for a study of dynamical symmetry
breaking, found its application in many areas of physics. The
model describes a system of fermion fields with a quartic in-
teraction. It is renormalizable in two dimensions, asymptoti-
cally free and, moreover, admits an exact solution [2]. Above
two dimensions the N-component GN - model is renormal-
izable within the 1/N expansion technique. It possesses a
nontrivial Wilson - Fisher fixed point and gives an example
of a conformal field theory (CFT) in d-dimensions. Basic
critical indices of the GN model are available at 1/N2 or-
der [3–7] and the index η – the anomalous dimension of the
fermion field – at 1/N3 [8, 9]. These results were obtained
by methods of the self-consistency equation and conformal
bootstrap developed in [10–12]. A recent revival of interest
to this model is due to a relevance of fermionic systems with
quartic interactions to the description of the phase transition
in graphene [13].

The UV completion of the GN model contains an addi-
tional scalar field with a quartic self-interaction and is known
as the Gross-Neveu-Yukawa (GNY) model [14]. Moreover,
the chiral extension of the GNY model – the Nambu-Jona-
Lasinio (NJL) model – describes, for a low number of fermion
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flavors, a system with an emergent supersymmetry [15]. The
recent calculation of the corresponding renormalization group
(RG) functions with four-loop accuracy [16–18] confirms
the emergence of supersymmetry at the critical point.

The four–loop calculations are quite involved and car-
ried out with the help of computer algebra. The results avail-
able from 1/N expansion provide an additional check for the
perturbative calculations. The four loop RG functions ob-
tained in [18] are in a perfect agreement with the results of
1/N calculations [3–9]. In this paper we present 1/N2 ex-
pressions for the other two indices – the so-called correction
exponents that are related to the slopes of β functions at the
critical point and were known only with 1/N accuracy [19].

The 1/N calculations are usually done with the help of
the methods of the self-consistency equations or conformal
bootstrap [10–12]. These methods are very effective for the
calculation of the critical indices of the basic and auxiliary
fields, but are not very suitable in the case of local operators.
Therefore we use a different method developed in [20–22].
A detailed description of the method can be found in [22, 23]
and an application to the GN model in [24].

The paper is organized as follows: In sect. 2 we recall
the formulation of the GNY model and show that the slopes
of β functions at the critical point coincide with the critical
dimensions of certain operators of dimension four. In sect. 3
we review briefly the 1/N expansion technique for the GN
model and present the rules for calculating the anomalous
dimensions of local operators. Section 4 contains the details
of the calculation of the correction exponents at order 1/N2.
In Appendix A we collect expressions for relevant basic in-
dices. Appendix B contains details of the calculation of the
self-energy and vertex correction diagrams and in Appendix
C we collect results for the individual diagrams.
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2 Gross-Neveu-Yukawa model in d = 4−2ε dimensions

The Lagrangian of the GNY model in d = 4−2ε Euclidean
space takes the form

L =
1
2
(∂σ)2 + q̄/∂q+g1σ q̄q+g2σ

4, (1)

where q is the N-component fermion field and σ is a scalar
field. The model is multiplicatively renormalized [14]

LR =
Z1

2
(∂σ)2 +Z2q̄/∂q+Mε Z3g1σ q̄q+M2ε Z4g2σ

4. (2)

Here M is the renormalization scale and Zi are the renormal-
ization constants. In MS-like schemes the renormalization
factors Zi are given by a series in 1/ε , Zi = 1+∑k zk

i /εk.
The anomalous dimensions of the fields and the β func-

tions are defined as usual

γq = DM lnZq, γσ = DM lnZσ , βi = DMgi, (3)

where Zσ = Z1/2
1 and Zq = Z1/2

2 and

DM ≡M
d

dM
= M∂M +β1∂g1 +β2∂g2 . (4)

The GNY model possesses non-trivial fixed points

β1(g∗1,g
∗
2) = 0, β2(g∗1,g

∗
2) = 0. (5)

One of this points is infrared stable, i.e. the eigenvalues of
the matrix

ωik = ∂iβk
∣∣
g=g∗ (6)

are both positive. These eigenvalues, ω±, are called cor-
rection indices. The indices ω± can be identified with the
anomalous dimensions of certain composite operators that
will be discussed in the rest of this section.

The partition function Z(J) defined by the path integral

Z(J) =
∫

Dq̄DqDσ exp
{
−SR +

∫
ddx J(x)Φ(x)

}
, (7)

where J = { j,η , η̄} and JΦ = jσ + η̄q+ q̄η , is finite in per-
turbation theory. Moreover, derivatives of (7) with respect to
the renormalized couplings gi are finite, too. Thus one con-
cludes that

∂gkLR = ∑
a

ca[Oa]+∂B , (8)

where the sum goes over some set of renormalized operators
of the canonical dimension four with finite coefficients ca.
By ∂B we denote terms (not necessarily finite) which van-
ish after integration. Since

∂g1LR ≡Mε
σ q̄q+ singular 1/ε terms (9)

and similar for another derivative one concludes that

∂g1LR = Mε [σ q̄q]≡Mε [O1],

∂g2LR = M2ε [σ4]≡M2ε [O2], (10)

where we omitted terms with total derivatives.
Applying the operator (4) to both sides of Eqs. (10) and

taking into account that DMSR = DMS0 = 0 one derives the
RG equation for the operators [Ok]

(
δikDM + γik

)
[Ok] = 0 , (11)

where the anomalous dimension matrix γ has the following
form

γ =

(
ε +∂g1β1 Mε ∂g1β2
M−ε ∂g2β1 2ε +∂g2 β2

)
. (12)

Using the known lowest order expression for the beta-functions
(see e.g. ref. [18]) one finds that at the Wilson-Fisher critical
point the anomalous dimensions take the form

γ =

(
3ε 0
0 4ε

)
+O(1/N). (13)

resulting in the following scaling dimensions for the opera-
tors O±,

∆ = ∆can + γ∗

= d +

(
∂g1β1 Mε ∂g1β2

M−ε ∂g2β1 ∂g2β2

)
= 4+O(1/N). (14)

Diagonalizing the matrix ∆ one constructs two operators
whose scaling dimensions are given by the eigenvalues of ∆ .
Scaling dimensions of operators are physical observables
and do not depend on a regularization, expansion, subtrac-
tion scheme, etc. We use this property to calculate the anoma-
lous dimension of the operators [O±] in 1/N expansion.

3 Large N expansion for the GN model

The GNY model is critically equivalent to the d-dimensional
N-component GN model, i.e. critical indices in both models
coincide. In the GN model the indices can be calculated us-
ing the 1/N expansion. Below we briefly review the method
that we use for the calculation. A more extensive review of
the 1/N techniques including the self-consistency equations
and conformal bootstrap can be found in the book [25].

Let us write the action of the GN model in the form suit-
able for generating the 1/N expansion

SGN =
∫

ddx
[

q̄/∂q+σ q̄q− N
2g

σ
2
]
. (15)

Here q= {qi, i= 1, . . . ,N} is the N-component fermion field
and σ is an auxiliary scalar field which can be excluded by
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the equation of motion (EOM). At a certain (critical) value
of the coupling, g = g∗ the system undergoes a second or-
der phase transition. At this point correlators of the basic
and auxiliary fields q, q̄,σ exhibit power law behaviour and,
as it can be shown, the model enjoys scale and conformal
invariance [5].

It can be shown that in the infrared region (IR) the dom-
inant contribution to the propagator of the σ -field comes
from the fermion loop [14]

Dσ (x) =−
1
n

B(µ)/x2 . (16)

Here n = N tr1l, where the trace is taken in the space of d-
dimensional spinors and the normalization factor is

B(µ) =
4Γ (2µ−1)

Γ 2(µ)Γ (µ−1)Γ (1−µ)
. (17)

For practical calculations it is convenient to use a simpli-
fied (massless) version of the GN model which is critically
equivalent to (15). The action of the model is given by the
following expression [20, 25]

S′∆ =
∫

ddx
[

q̄/∂q− 1
2

σL∆ σ +σ q̄q+
1
2

σLσ

]
. (18)

The kernel L has the form

L(x) = trDq(x)Dq(−x) =−nA2(µ)/x2(2µ−1) , (19)

where Dq is the fermion propagator

Dq(x) =−
A(µ)/x

x2µ
, A(µ) =

Γ (µ)

2πµ
. (20)

The regularized kernel L∆ is

L∆ (x) = L(x)(M2x2)−∆C−1(∆)∼ x−2(2µ−1+∆) . (21)

The first two terms in (18) can be viewed as the free part
of the action, S0, and the remaining ones – as an interac-
tion. The last term in (18) cancels diagrams with insertions
of simple fermion loops in the σ -lines. As a consequence,
in the leading order the propagator of the σ field is given by
the inverse kernel L∆ . It this work we fix the constant C(∆),
which is arbitrary save the condition C(0) = 1, by the re-
quirement for the propagator Dσ to have the following form

Dσ (x) =−
1
n

B(µ)(M2x2)∆/x2 . (22)

The parameter ∆ should be considered as a regularization
parameter. The divergences in the correlators appear as poles
in ∆ and are removed by adding the counterterms to the ac-
tion (18). The renormalized action takes the form

S′R =
∫

ddx
[

Z1q̄/∂q− 1
2

σL∆ σ +Z2σ q̄q+
1
2

σLσ

]
. (23)

Fig. 1 The 1/n2 diagram σ3 7→ σ∂ 2σ which could contribute to the
element γ21 of the mixing matrix.

Though the model is renormalizable, the renormalization is
not multiplicative, i.e. S′R(q,σ) 6= S′(q0,σ0). Due to the non-
multiplicative character of the renormalization the anoma-
lous dimensions of the fields and operators cannot be, in
general, determined via the corresponding renormalization
factors. However, as it was shown in [22] this problem ap-
pears starting from 1/n3 order only. Up to the order 1/n2

the anomalous dimension of the operators can be obtained
via the renormalization factors as follows. First, one has to
modify the σ -propagator by multiplying it by some parame-
ter u, Dσ 7→ uDσ and determine the renormalization factors
calculating the corresponding diagrams with the modified
propagator. Let Oi be a system of operators mixing under
renormalization,

[Oi(Φ)] = (Z(u))ikO
B
k (Φ0) , Z(u) = 1+

∞

∑
a=1

Za(u)
∆ a , (24)

where Φ = {q, q̄,σ}, and OB
i are bare operators. Up to the

order 1/n2 the anomalous dimensions for the operators can
be obtained as follows [22]

γik = 2∂u(Z1(u))ik

∣∣∣
u=1

+O(1/n3) . (25)

We use this formula for the calculation of the anomalous
dimensions of the operators in question.

4 Correction exponents at 1/n2

In the perturbative expansion the correction exponents to the
scaling are related to the scaling dimensions of the opera-
tors σ4 and σ q̄q. The scaling dimensions of these operators
are ∆a = 4+O(1/n). Let us first identify the correspond-
ing operators in the 1/n expansion. There exist three scalar
operators of dimension four,

O = {σ4,σ∂
2
σ ,∂ 2

σ
2}.

The last one is a total derivative and can be neglected. Note
here that the operator σ q̄q in the 1/n expansion has the di-
mension 4− 2ε +O(1/n). Therefore it does not mix with
the above operators and has no relation to the correction ex-
ponents 1. Thus we need to find the anomalous dimension
matrix for the operators O+ = σ4 and O− = σ∂ 2σ .
1The universality hypothesis states that theories in the same univer-
sality class possess the same spectrum of scaling dimensions, but the
corresponding operators can have different implementation.
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Fig. 2 Feynman diagrams D1−D3 (first line) and D4−D7 (second line) contributing to the anomalous dimensions ∆γσ3

It is easy to see that the diagonal entries γ11, γ22 and γ12
of the anomalous dimension matrix are of order 1/n. At the
same time the anomalous dimension γ21 is of order 1/n3.
It happens because the only diagram which contributes to
this matrix element at order 1/n2, σ3 7→ σ∂ 2σ , see Fig. 1,
does not diverge. It can be checked by an explicit calcula-
tion. Also, the finiteness of this diagram is guaranteed by the
conformal symmetry. The arguments are exactly the same
as in the case of σ2 7→ ∂ 2σ transition in the nonlinear σ

model. An interested reader can find detailed discussions in
Refs. [23, 26]. Thus at the order 1/n2 one can neglect mix-
ing and calculate only the diagonal matrix elements.

We will use either upper or lower index for the coeffi-
cients of the 1/n expansion

γ =
∞

∑
k=0

γk/nk =
∞

∑
k=0

γ
(k)/nk (26)

trying to keep notations close to generally accepted. For the
reader’s convenience we collect 1/n2 expressions for the ba-
sic indices (η = 2γq, γσ =−η−κ and λ = (d−∆ [σ2])/2)
in Appendix A.

4.1 Operator σ `

Here we present our result for the anomalous dimension of
the operator σ `. The mixing affects the anomalous dimen-
sion of this operator only starting from 1/n3. Analyzing the
contributing diagrams it is easy to notice that the anomalous
dimension for the operator σ ` can be written in the form

γ
σ ` =−`(`−2)γσ +C`

2γσ2 +C`
3∆γσ3 +O(1/n3) , (27)

where C`
k are the binomial coefficients. The anomalous di-

mension γσ and γσ2 are known with 1/n2 accuracy [3–6],

see Appendix A. The last contribution starts from 1/n2. The
diagrams contributing to ∆γσ3 are shown in Fig. 2. Their
calculation is rather straightforward so we will not dwell on
it. We obtained the following expression for ∆γσ3

∆γ
(2)
σ3 = η

2
1

6µ2

µ−1

[
− (3µ−2)(2µ−1)

µ−1

+(3µ−1)
[
ψ
′(µ)−ψ

′(1)
]]
. (28)

Here ψ(x) is the Euler ψ function and an explicit expression
for the index η1 =−B(µ)/2µ can be found in Appendix A.
Thus for the correction index ω+ we find

ω+ = 2
(

ε−4γσ +3γσ3 +2∆γσ3 +O(1/n3)
)

= 2ε +
η1

n
4(2µ−1)(3µ−1)

µ−1
+ . . . (29)

The explicit expression for the 1/n2 correction, ω
(2)
+ , is rather

lengthy and will not be given here. Instead we present an ex-
pansion of the index ω+ around µ = 2− ε up to ε4 terms

ω
(0)
+ = 2ε ,

ω
(1)
+ = 120ε−212ε

2−26ε
3 +
(
−29+240ζ3

)
ε

4 ,

ω
(2)
+ =−5040ε +7380ε

2 +2
(
8767+6624ζ3

)
ε

3

+32(−392+621ζ4−2226ζ3−420ζ5)ε
4 , (30)

in complete agreement with the results of the four–loop cal-
culation [18].

4.2 Operator σ∂ 2σ

In this section we discuss diagrams contributing to the anoma-
lous dimension of the operator O− = σ∂ 2σ which, as usual,



5

can be split in two parts

γ− = γ̂ +2γσ . (31)

In the leading order in 1/n only the two diagrams shown in
Fig. 3 contribute to γ̂ .

Fig. 3 The LO diagrams contributing to the anomalous dimension γ−.
The circled cross denotes an operator insertion O−.

The first diagram has the symmetry coefficient Csym = 2.
The calculation of both diagrams is rather straightforward
and leads to the following expression

γ̂1 = 2η1(4α
2−1)/α, (32)

where we introduced the notation α ≡ µ − 1. Taking into
account that γ

(1)
σ =−η1(1+µ/α) one obtains for γ−

γ
(1)
− = η1

4(2µ−1)(µ−2)
µ−1

(33)

that agrees with the result of [19] derived with the help of
the self-consistency equations approach.

At the order 1/n2 there are in total 23 different diagrams
to be calculated. Namely,

– 4 operator vertex correction diagrams, Fig. 4
– 12 self-energy insertion and vertex correction diagrams
– 3 single box diagrams, Fig. 5
– 4 double box diagrams, Fig. 7

Before presenting our final answer for γ̂ we briefly discuss
the calculation of the diagrams.

= 2 +

Fig. 4 Operator vertex correction diagrams.

– In order to calculate the operator correction diagrams it
is sufficient to calculate the 1/n order diagrams up to
finite, O(∆ 0), terms. For the sum of the two diagrams
we obtained 2 D(∆) = u2D(∆)/∆ , where

D(∆) =− γ̂1

4

{
1−∆

[
2B3−

3µ(µ−1)(µ−2)
(2µ−1)(2µ−3)

C1

+
µ5−9µ4 +21µ3−9µ2−6µ +4

(2µ−1)µ(µ−1)(µ−2)

]}
, (34)

where we accepted the notations of [25]

B(x) = ψ(x)+ψ(x′) , Cx = ψ
′(x)−ψ

′(x′), (35)

Bk = B(k−µ)−B(1) and x′ ≡ µ− x.
The answer for the operator correction diagrams (DOC)

reads

KR′(DOC) = u4
(

D(∆)

∆

D(2∆)

2∆
− D(0)D(∆)

∆ 2

)

=
1
2

u4D2(0)
(
− 1

∆ 2 +
1
∆

D′(0)
D(0)

)
. (36)

– Instead of calculating separately each diagram of the
second group, that is not quite simple, we use the result
of [22] where it was shown that the contribution of all
such diagrams to the anomalous dimension can be ex-
tracted from the 1/n order diagrams with dressed propa-
gators and vertices. We discuss details of the calculation
in Appendix B .

– The single box diagrams shown in Fig. 5 as well as dou-
ble box diagrams, Fig. 7, have only a superficial diver-
gence.

Fig. 5 Single box diagrams SB1 - SB3.

After integration over the operator insertion coordinate
one gets a propagator type diagram,

Dk(x) = Ak(∆)/x2(µ+1−3∆) . (37)

The ∆ pole arises after the Fourier transform. For the
anomalous dimension it is sufficient to know Ak(∆) at
∆ = 0. Since in coordinate space the diagram is finite at
∆ 7→ 0, one can put ∆ = 0 from the beginning. It greatly

2We do not display factors like t∆ = e−∆ψ(1)+... which drop out from
the final answer.
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simplifies calculations since one can use the star - trian-
gle relation for the basic σ q̄q vertex, shown in Fig. 6.

α + 1 β + 1

γ

= πµa(α)a(β)a(γ)αβ

α′β′

γ′

Fig. 6 The star-triangle relation. The indices α,β ,γ satisfy the
uniqueness condition α + β + γ = 2µ − 1, a(x) = Γ (x′)/Γ (x) and
x′ = µ− x.

Next, multiplication by x2 makes the diagrams logarith-
mically divergent, i.e. the residue of the ∆ pole does not
depend on the external momenta. Thus one can use the
freedom to change the momentum flow through a dia-
gram to facilitate calculations [27]. For example, to cal-
culate the second diagram in Fig. 5 it is convenient to
choose the momentum flow (after a multiplication by x2)
through the vertices connected to the crossed circle (op-
erator insertion) and use the star-triangle relation for the
upper σ q̄q vertex. After this transformation the diagram
is calculated by consecutive application of chain integra-
tion rules.

– The calculation of the first three double box diagrams
which follows the same pattern is more involved and one
has to use many tricks like the integration by part [28],
the tetrahedron transformation [29], etc. A review of the
relevant multiloop calculation techniques can be found
in [25].

Fig. 7 Double box diagrams DB1 (top left) - DB4 (bottom right).

In principle the last double box diagram could be calcu-
lated in the same way. However it is more convenient to
apply an inversion transformation first, simplify the nu-
merators and use the star-triangle relation for the bosonic
triangle. As the result one gets a sum of three- and two-

loop diagrams whose calculation is more or less straight-
forward.

Finally, collecting contributions from all diagrams (see
Appendix C) we obtain for γ̂2

γ̂2 =η1

{
−8(2α−1)

(
2α3 +5α−2

)

(α−2)(α−1)α

+η1

(
−3
(
4α

3 +2α
2 +1−1/α

)
C1

+

[
32α

2 +
2

α2 +40α +
36

α−2
+

20
α−1

− 6
α
+40

]
B3

+8α
3 +

4
α3 −8α

2− 12
α2 −14α− 18

α−2

+
72

α−1
− 18

α +1
+

20
(α−1)2 +

10
α

+84
)}

. (38)

Thus for the second correction exponent we get

ω− = 2ε + γ−+O(1/n3) = 2ε +2γσ + γ̂ +O(1/n3) . (39)

Substituting the expressions for γσ and γ̂ and expanding
around µ = 2− ε up to ε4 terms one obtains

ω
(0)
− =2ε ,

ω
(1)
− =−24ε

2 +28ε
3 +22ε

4 ,

ω
(2)
− =174ε

2 +(432ζ3−293)ε
3

−2(1500ζ3−324ζ4 +419)ε
4 , (40)

that agrees with the results of [18].

5 Summary

We have calculated the correction exponents ω± in the GN
model with 1/n2 accuracy. These exponents are related to
the slopes of the beta functions in the critical GNY model.
Our results are in complete agreement with the expressions
for the perturbative four loop beta functions in the GNY
model obtained recently in [18]. For the calculation we used
the method developed in [20–22]. This method allows one
to use the standard RG technique and, at the same time, to
resum effectively a certain subset of diagrams reducing the
total number of diagrams to be calculated. Values for each
individual diagram are presented in Appendix C and will be
useful for calculations of the corresponding exponents in the
chiral versions of the GN model.

Acknowledgements This work was supported by Deutsche Forschungs-
gemeinschaft (DFG) with the grants MO 1801/1-2 (A.M.) and SFB/TRR
55 (M.S.)
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Appendix A: 1/n2 indices

In this appendix we collected the results for the basic indices
η , κ = 2χ and λ related to the anomalous dimensions of the
fields q, σ and the composite operator σ2

γq = η/2 , γσ =−η−2χ , γσ2 =−2λ , (A.1)

that can be found either in the original papers [3–7] or in the
book [25]. The leading order coefficients read

η1 =−
2Γ (2µ−1)

Γ (µ)Γ (µ +1)Γ (µ−1)Γ (1−µ)
,

κ1 = η1µ/(µ−1) ,

λ1 =−η1(2µ−1) (A.2)

and the 1/n2 coefficients take the form

η2 =η
2
1

(
1

2µ
− µ

2(µ−1)2 +
(2µ−1)

µ−1
B1

)
,

κ2 =η
2
1

µ

α

(
2µ−1

α
B1−3µC1−2µ− 6

α
− 4

α2 −1
)
,

λ2 =η1
µ

2α

{
8

(2−µ)2 +η1

[
4(3−2µ)µ

(
C2−µ −B2

2
)

2−µ

−
(

8µ
2 +

10
2−µ

+
2
µ
− 4

(2−µ)2 +
8
α
−2
)

B2

+µ

(
6α +

22
2−µ

−29
)

C1−
1

µ2 +8α
2

+
42

2−µ
+

4
µ
− 4

(2−µ)2 +
14
α
− 5

α2 −10
]}

. (A.3)

We remind here that α = µ−1, η = ∑i ηi/ni, etc.

Appendix B: SE and Vertex correction diagrams

It was shown in [22] that the contribution to an anomalous
dimension coming from diagrams with self-energy inser-
tions and vertex corrections to a LO diagram can be obtained
by evaluation the LO diagram with dressed propagators and
vertices. The dressed propagators have the form 3

Dq(x) =−
Â/x
x2∆q

, Dσ (x) =−
1
n

B̂
x2∆σ

(B.4)

where

∆q = α +η/2 , ∆σ = 1+ γσ = 1−η−2χ , (B.5)

3The expressions for dressed propagators given in the Appendix of
ref. [24] correspond to a different normalization condition for the prop-
agator of the σ field, and the expression for the fermion propagator
contains a typo.

and up to O(1/n2) terms

Â = A(µ) ·M−2γq

(
1− γq

µ

)
,

B̂ = B(µ) ·M−2γσ

(
1− γσ

(
B1−

1
µ(µ−1)

))
. (B.6)

The dressed vertex is shown in Fig. 8.

=

b− χ

a
+
1
+
χ a

+
1
+
χ

̂Z

Fig. 8 Dressed σ q̄q vertex.

Its form is fixed by the conformal invariance

V (x,y,z) =
Ẑ

(z− y)2(b−χ)

/x−/z
(x− z)2(a+1+χ)

/y−/y

(y− x)2(a+1+χ)
,

where

a = ∆q−1 = α +η/2 , b = 1−η , (B.7)

χ = κ/2 is defined in (A.1) and for the factor Ẑ we derived

Ẑ = π
−2µ M−2χ ·χ a2(1)(µ−1)3

(
1− γσ

µ−1

)
. (B.8)

In order to obtain the contribution to an anomalous dimen-
sion from 1/n diagrams,4 see Fig. 3, with all possible SE in-
sertions and vertex corrections (SEV) one has to replace all
propagators and vertices in the 1/n diagrams by the dressed
ones and introduce a regulator ∆ in one of the lines, e.g.
to shift the index of the fermion propagator, ∆q → ∆q−∆ .
The corresponding diagrams have only a superficial diver-
gence. Then the contribution to the anomalous dimension
reads [22]

γ1 + γ
(SEV )
2 =−2∑

i
ri, (B.9)

where ri is the residue at the ∆ pole of the dressed dia-
gram, Di(∆) = ri/∆ + O(∆ 0) and the sum goes over all
such diagrams (in the case under consideration i = 1,2).
Proceeding in this way one reduces the number diagrams
to be calculated. Moreover, individual vertex correction di-
agrams appear to be more complicated: all of them have a
divergent subgraph. The presence of the regulator ∆ breaks
the uniqueness condition for the basic scalar-fermion ver-
tices that rather complicates a calculation. On contrary, all

4The diagrams have to satisfy the condition NV = Nq = 2Nσ , where
NV is the number of the σ q̄q vertices, Na and Nσ are the numbers of
fermion and σ -propagators, respectively.
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∼ +
1− χ

1− χ
+

a +
1

a + 1

b

a +
1

a +
1

b

1− χ

1− χ

Fig. 9 An example of the calculation of the dressed diagram.

vertices in a dressed diagram obey the uniqueness condition
and a diagram can be transformed with the help of the star-
triangle relation. In order to further simplify the calculation
one can dress only part of the propagators and vertices. In-
deed, the residues ri depend on two parameters, η and χ ,
which we will, for a while, consider as independent param-
eters. Since ri is needed up to 1/n2 terms one can write

r(η ,χ) = r(0)+ηrη(0)+χrχ(0)+ . . . , (B.10)

where rη = ∂η r, etc. It means that up to 1/n2 terms the cal-
culation of the diagram D(η ,χ) is equivalent to the calcula-
tion of two simpler diagrams: D(η ,χ = 0) and D(η = 0,χ).
Note, that the parameter χ plays the role of a regulator in
the vertex V . It can be checked that in the limit χ 7→ 0 the
vertex reduces to the point-like basic vertex with unit coeffi-
cient. Thus the diagram D(χ = 0,η) coincides with the 1/n
diagram with modified propagators and point-like vertices.

Moreover, taking into account that contributions from
dressed vertices and propagators to an anomalous dimension
are additive (at the order 1/n2) one can, in order to simplify
a calculation, modify only part of the vertices and propa-
gators. A more general discussion of this technique can be
found in [30] while here we illustrate it on the example of
the calculation of the right diagram in Fig. 3.

The corresponding dressed diagram is shown on the l.h.s
in Fig. 9 – the fat lines stand for the dressed propagators and
the grey triangles for the dressed vertices. One needs to find
the corresponding residue, r(χ,η). Since we restrict our-
selves to the 1/n2 accuracy the corresponding result can be
extracted from another three diagrams, see Fig. 9. Namely,

r(χ,η) = r1(χ)+ r2(χ)+ r3(η)−2r(0,0) . (B.11)

The last diagram which is D(0,η) depends only on η . The
sum of the previous two diagrams gives D(χ,0)+D(0,0) up
to O(1/n3) terms. The white triangles stand for the dressed
vertex V |η=0 and lines without indices – for the bare propa-
gators.

Let us start the analysis from the last diagram, which
we denote by D3(a,b). Since the indices a = µ − 1+η/2,
b = 1−η obey the uniqueness condition 2a+ b = 2µ − 1
the diagram can be easily calculated. For the corresponding
residue we get

r3(η) = N2
η R(η) , (B.12)

where

Nη = Â2B̂
∣∣∣
χ=0

= A2B
(

1+η

(
B1−

1
µ−1

))
,

and

R(η) =
π4µ

Γ (µ +1)

(
Γ (a′)Γ (b′)

Γ (a+1)Γ (b)

)4
Γ (2b+1−µ)

Γ (2b′−1)

×
[

1− 2b+1−µ

b

(
1− 2a

b
a′

b′−1

)]
(B.13)

with x′ ≡ µ− x.
With the help of the star-triangle relation the second (four-

loop) diagram can be transformed (up to a prefactor) into the
diagram D3(aχ ,bχ), where aχ =α+χ and bχ = 1−2χ , that
gives for the residue r2

r2 =
π4µ

Γ 4(µ)

A2(µ)B(µ)Vχ R(2χ)

χ2(µ−1+χ)2 H(χ)/H(2χ) , (B.14)

where H(χ) = a2(1−χ)a(2µ−3+2χ) and

Vχ = Â2Ẑ2B̂
∣∣∣
η=0

=
χ2M−4χ

4

(
a(1)
πµ

)6

α
8B(µ)

×
(

1+2χ

(
B1 +

µ +α

µα

))
. (B.15)

The calculation of the first diagram follows the same lines.
Using the star-triangle relation one can show that

D1 ∼ D3(α +χ,1−χ) = D3(α +χ,1−2χ)
D3(α,1+χ)

D3(α,1)
.

It results in the following expression for r1

r1 =
π4µ

Γ 4(µ)

A2(µ)B(µ)Vχ R(2χ)

χ2(µ−1+χ)2 E(χ) , (B.16)

where the factor E(χ) = D3(α,1+χ)/D3(α,1)+O(1/n2)

has the form

E(χ) =
(

1+2χB3

){
µ2−4µ +2

µ−2
+χ(µ−1)×

[
3µ

2µ−3
C1−

2(µ2−4µ +6)
(µ−2)2

]}
. (B.17)

The calculation of the first diagram in Fig. 3 is much sim-
pler. The final answer for both diagrams with self-energy
insertions and vertex corrections are given in Appendix C.
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Appendix C: Results for individual diagrams

In this appendix we collect the expressions for all Feynman
diagrams needed for our analysis. We give the divergent part
of each diagram after subtraction of subdivergences, sym-
metry factors being already included.

For the diagrams in Fig. 2 we obtain

D1 =−
u3

∆
η

2
1 µ

2(2µ−3)/α ,

D2 =−
3u3

∆
η

2
1 µ

2C1 ,

D3 =−
u3

∆
η

2
1 µ

2C1/α , (C.18)

D4+5 =
3u4

2
η2

1 µ2(2µ−1)
α

{
− 1

∆ 2 +
2
∆

}
,

D6+7 =
3u4

4
η2

1 µ2(2µ−1)
α2

{
− 1

∆ 2 +
1
∆

[
2
α
+3α C1

]}
.

The diagrams in Fig. 4 give the following contributions

DOC =− u4

32
γ̂

2
1

{
1

∆ 2 +
1
∆

[
2B3−

3α
(
α2−1

)
C1

4α2−1

+
α5−4α4−5α3 +10α2 +8α +2

α(2α +1)(α2−1)

]}
.

For the single box diagrams we obtain:

SB1 =
u3η2

1
12∆

µα(2α−1)
α−1

,

SB2 =−
u3η2

1
3∆

µ(2α−1)
α(α−1)

[
−1+(α−1)2− 1

α2

]
,

SB3 =
u3η2

1
2∆

µ

α

[
(α2−α +1)C1

+
2
3
(2α−1)

(
α3−α2−α−1

)

α2

]
.

Finally, our results for double box diagrams (Fig. 7) are

DB1 =
u4

∆

µ(2α−1)
α(α−1)

η1

{(
2α4−4α3 +α2−2α +1

)

α +1

+η1

[(
2α3−7α2 +4α−1

)
B3

4α
−α

2− 1
2α2

+
11α

4
− 1

2(α−1)
− 1

4(2α−1)
+

1
α
−2
]}

,

DB2 =
u4

∆

µ(2α−1)
2α

η
2
1

{
2α4−α3−α2 +3α−1

α2(2α−1)

+
1
4
B+

7
4

C1−
2α3−α2−3α +1

2α(α−1)
B3

}
,

DB3 =−
2u4

∆
µα(2α−1)η1

{
− 2α2−2α +1

(α−1)(α +1)

+
η1

4α2

[
1
2

(
B+C1

)
+

3α−1
α(α−1)

B3

+
4α5−8α4 +α3 +12α2−10α +2

α(α−1)2(2α−1)

]}
,

DB4 =
u4

2∆
µα(2α−1)η1

{
2α
(
2α2−4α +3

)

(α−2)(α−1)(α +1)

+
η1

α2

[
1
4

(
B+C1

)
− 2(α−1)

α−2
B3

− 2α4−9α3 +14α2−10α +2
2(α−2)(α−1)2

]}
.

Here B = B2
3−C3−µ .

The contribution to the anomalous dimension from a di-
agram Da reads

γDa =−∂uD
(1)
a |u=1 , (C.19)

where D
(1)
a is the simple pole residue, Da = D

(1)
a /∆ + . . ..

Finally we give the contributions to the anomalous di-
mensions from the self-energy and vertex correction diegrams

γSEV 1 =
1
2

η
2
1

(
34α4 +5α3−55α2 +6α +4

α(α−1)

)
,

γSEV 2 = η
2
1

{
−3(α−1)(α +1)2

α
C1

− 2(10α6−7α5−27α4 +12α3 +6α2−α +1)
α3(α−1)

}
,

where γSEV1 , γSEV2 correspond to the left and right diagrams
in Fig. 3, respectively.
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