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Confining continuous manipulations of accelerator beamline optics
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Altering the optics in one section of a linear accelerator beamline will in general cause an alteration
of the optics in all downstream sections. In circular accelerators, changing the optical properties of
any beamline element will have an impact on the optical functions throughout the whole machine.
In many cases, however, it is desirable to change the optics in a certain beamline section without
disturbing any other parts of the machine. Such a local optics manipulation can be achieved by
adjusting a number of additional corrector magnets that restore the initial optics after the manip-
ulated section. In that case, the effect of the manipulation is confined in the region between the
manipulated and the correcting beamline elements. Introducing a manipulation continuously, while
the machine is operating, therefore requires continuous correction functions to be applied to the
correcting quadrupole magnets. In this paper we present an analytic approach to calculate such
continuous correction functions for six quadrupole magnets by means of a homotopy method. Be-
sides a detailed derivation of the method, we present its application to an algebraic example, as well
as its implementation at the seeding experiment sFLASH at the free-electron laser FLASH located
at DESY in Hamburg.

PACS numbers: 41.85.-p

I. INTRODUCTION

Many applications of particle accelerators require the
dynamic manipulation of the optical functions in certain
regions of the beamline during operation as, for exam-
ple, minimizing the β-function at the interaction point
of a collider experiment, or closing a variable-gap un-
dulator in a synchrotron light source or a free-electron
laser (FEL). Changing the optical properties of a beam-
line element, however, causes not only local changes in
the optics but has an impact on the optical functions in
all sections downstream of the adjusted element. Hence,
in many cases a manipulation will result in unmatched
optics in these sections and a correction is required to
rematch the optics.
Our approach is to completely confine the influence

of the manipulation to a region around the adjusted
elements, making the manipulation transparent for all
downstream sections. This can be achieved by appropri-
ately adjusting adjacent quadrupole magnets. Acceler-
ator simulation codes such as ELEGANT [1] or MAD-X [2]
can perform this matching and determine a suitable cor-
rection by numerically solving minimization problems.
Such an approach, however, is ill-suited for calculating
continuous correction functions, which are required to
compensate a manipulation that is being introduced con-
tinuously, as we will discuss later. In contrast to this, we
present an analytic approach that is based on the im-
plicit function theorem (compare for instance [3]) and
allows for the determination of correction parameters as
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a continuous function of the introduced disturbance.

Moreover, the implementation of this correction
method at the FEL user facility FLASH is presented.
As depicted in FIG. 1, FLASH features two parallel un-
dulator beamlines FLASH1 and FLASH2. Upstream of
the FLASH1 main undulator the sFLASH experiment is
located, which, since its installation in 2010, utilizes a
variable-gap undulator system to generate seeded FEL
radiation using different seeding techniques [4]. By clos-
ing this undulator in order to start seeded operation, the
optics in the following FLASH1 main undulator is al-
tered, which results in a deteriorated FEL performance.
The presented method was developed to provide the
means to correct the influence of the variable-gap undu-
lator and thus allow simultaneous operation of FLASH1
and sFLASH. Recently, the precise restoration of the ini-
tial optics could be verified by beam size measurements
along the FLASH1 main undulator, which are presented
in the final section of this paper.

FLASH2

FLASH1sFLASHAccelerator

FIG. 1: Schematic layout of the FLASH facility. The
superconducting linear accelerator delivers electron
bunches for the FLASH1 and FLASH2 undulator
beamlines and for the seeding experiment sFLASH.
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II. THE METHOD

In linear approximation the effect of a magnetic struc-
ture on the transversal phase space vector of a particle
can be described by a 4× 4 matrix M, called the trans-
port matrix [5]. It becomes apparent that any transport
matrix is bound to be symplectic, M ∈ Sp(4,R). Fur-
thermore it can be shown that the group of symplectic
2N × 2N matrices is a N(2N + 1)-dimensional mani-
fold [6],

dimSp(2N,R) = N(2N + 1), (1)

with N ∈ N. As a result of this, any symplectic matrix
can be uniquely defined by N(2N +1) of their elements.
A general transversal transfer matrix features therefore
10 independent elements. However, in many practical
cases the two transversal directions are decoupled. Then
M reduces to two symplectic block matrices,

M ∈ Sp(2,R)⊕ Sp(2,R),

each of which consists of 3 independent elements. De-
coupled transfer matrices hence can be fully defined by
a total of 6 elements.
Every beamline can be understood as a sequence of

P elements, each of which is represented by a transport
matrix Mn. In general, the optical properties of an ele-
ment can be altered during operation, e.g. by changing
the current of a quadrupole magnet. Formally, we will
therefore treat every transport matrix as a function of a
real experimental parameter ρn

Mn = Mn(ρn).

The total optical properties of a beamline are therefore
given by the product of its constituent’s transport ma-
trices

M =
P−1
∏

n=0

MP−n(ρP−n). (2)

A variation of a subset of S machine parameters

σ = σ(t) = (σ1(t), . . . , σS(t))
T , (3)

will therefore result in deviations from the initial opti-
cal properties of the beamline. Here, σ(t) denotes the
course of the disturbance parameters as a function of a
single real parameter t. In many experimental situations
such a disturbance is undesirable and the ability to freely
change certain machine parameters without influencing
the overall optical properties of a beamline section would
be of great benefit. To achieve this, the disturbance has
to be corrected by another subset of machine parameters
τ . These parameters will have to be controlled such that
they fulfill the condition

M(σ(t), τ (t)) = M(σ0, τ 0), (4)

where σ
0 = σ(0) and τ

0 = τ (0) denote the constant
initial machine parameters. If this condition is fulfilled,
the transport matrix of the beamline is constant and in
particular is not affected by the disturbances.
As we have seen, M is a symplectic matrix and there-

fore has a reduced number of independent elements. By
defining a vector-valued function B : R

P → R
N(2N+1)

with the components

Bi(σ, τ ) = Mi(σ, τ )−Mi(σ
0, τ0),

where the Mi are a set of independent elements of M,
equation (4) can be written as

B(σ(t), τ (t)) = 0. (5)

Even for simple beamlines sections, consisting only of
a few elements, B(σ, τ ) will be highly intricate function.
In general, it is therefore not possible to solve equation
(5) for τ (t) by algebraic means, given an arbitrary distur-
bance function σ(t). For a given set of numerical values
for the disturbance parameters it is, however, possible
to find a suitable approximation for correction parame-
ters by utilizing numerical minimization methods. This
approach is readily realized with the help of existing ac-
celerator simulation codes. To find a numerical approxi-
mation to the correction function using this method, one
would have to compute the correction parameters for a
number of disturbance values along σ(t) and interpolate.
However, two successive interpolation points are uncorre-
lated, as they were found by two independent numerical
processes. Hence, even with a high number of interpo-
lation points one can not expect that this method will
produce a smooth, well-behaved correction function. In
contrast to this, we will derive a method that yields con-
tinuous correction functions. Loosely speaking, our ap-
proach is to track how a known root of B evolves along
σ(t), rather than to recalculate the root for each step.
The mathematical foundation of this method is the im-

plicit function theorem Ref. [3]. It states, in short, that
equation (5) implicitly defines a unique correction func-
tion τ (t) in a neighborhood around those machine states
(σ⋆, τ ⋆), at which the Jacobian matrix is non-singular,

det
∂B

∂τ
(σ⋆, τ ⋆) 6= 0, (6)

and equation (5) is fulfilled

B(σ⋆, τ ⋆) = 0. (7)

For the implicit function theorem to be applicable B and
τ have to be of the same dimension. Only then the Jaco-
bian matrix in equation (6) is square and its determinant
can be formed. The number of disturbance parameters
σ, in contrast, is not restricted. In the case of uncoupled
matrices, this means that a disturbance in any number of
parameters may be corrected by adjusting only six cor-
rection parameters.
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Let us for the moment assume that for a certain σ(t)
the corresponding correction function τ (t) exists. By dif-
ferentiating equation (5) with respect to t

dB

dt
= 0 =

∂B

∂σ

dσ

dt
+

∂B

∂τ

dτ

dt
, (8)

an expression for the derivative of the correction function
can be obtained

dτ

dt
= −

(

∂B

∂τ

)−1
∂B

∂σ

dσ

dt
. (9)

This defines a system of coupled non-linear ordinary
differential equations for the components of τ (t). We
have therefore shifted the problem of algebraically solv-
ing the intricate system (5) for τ (t) to finding the solu-
tion of the even more intricate differential equations (9).
While it still will be unfeasible to find an analytic solu-
tion, this problem now lends itself readily to well-known
numerical approximation methods. This approach can
be considered a numerical homotopy method, which are
extensively treated in Ref. [7].
However, any iterative solution method will inevitably

fail at those points where the Jacobian (6) is singular.
If the correction function for a certain set of correction
parameters contains such a singularity, these parameters
are not suitable to fully compensate the disturbance. In
this case, another set of correction parameters has to be
chosen.

III. AN EXAMPLE

Symbolic transfer matrices of real-world lattices typ-
ically consist of long analytical expressions, which ren-
ders obtaining solutions to (9) very challenging. To pro-
mote better understanding of the proposed method we
shall nevertheless provide the reader with an algebraic,
worked out example of application. For this purpose, we
will apply our method to a beamline consisting of four
quadrupole magnets, each separated by a distance l. To
simplify the calculations in this example, we restrict the
problem to preserving the optical properties in just one
plane of motion and treat the quadrupole magnets as
thin lenses. The symbolic 2 × 2 transfer matrix M in
this plane of motion is given by

M = L(f4) · D(l) · L(f3) · D(l) · L(f2) · D(l) · L(f1),

where L(f) is the known transport matrix of a thin lens
with focal strength f , while D(l) represents a drift space,

L(f) =
(

1 0
f 1

)

D(l) =

(

1 l
0 1

)

.

Suppose the system is in an arbitrary initial configu-
ration fi = f∗

i
, as for example depicted in FIG. 2a. If

now the focal strength of one lens is altered, the resulting
optics will deviate from the initial case. The goal of this

example is to calculate functions for the focal strengths
f1, f3 and f4 that correct any influence variation of f2
has on the transfer matrix of the system.
According to equation (1), M has three independent

elements. Therefore, we can choose three arbitrary ele-
ments of M for the definition of B. We might choose

B = (M11,M12,M22)
T =





l (f2 (f3l + 2) + f1 (2f3l + f2l (f3l + 2) + 3) + f3) + 1
l (2f3l + f2l (f3l + 2) + 3)

3f4l + 2f3l (f4l + 1) + f2l (f3l+ f4l (f3l + 2) + 1) + 1



.

We define the correction parameters to be the focal
strengths of the remaining lenses

τ = (f1, f3, f4)
T .

In this case, equation (9) yields the following differen-
tial equations



















df1
df2
df3
df2
df4
df2
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− f3l + 2

(f2l + 2) (2f3l + f2l (f3l + 2) + 3)

−f3l + 2

f2l + 2

1

2f3l + f2l (f3l + 2) + 3



















.

(a) Exemplary initial configuration.

(b) Corrected state. Despite the change of sign of f2, the
overall optical properties are identical to the initial state.

FIG. 2: Schematic representation of the four-lens
system in different configurations.
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The solution to these equations for the initial conditions
fi(f

∗
2 ) = f∗

i are

f1 =
f∗

1
(f2l + 2)

(

2f∗

3
l+ f∗

2
l
(

f∗

3
l + 2

)

+ 3
)

−

(

f2 − f∗

2

) (

f∗

3
l+ 2

)

(f2l+ 2)
(

2f∗

3
l + f∗

2
l
(

f∗

3
l+ 2

)

+ 3
)

f3 =
f∗

2

(

f∗

3
l+ 2

)

+ 2f∗

3
− 2f2

f2l + 2

f4 =
f2 − f∗

2

2f∗

3
l+ f∗

2
l
(

f∗

3
l + 2

)

+ 3
+ f∗

4 .

For every value of f2 these functions yield values for the
remaing focal strengths, so that the optical properties of
the system are equivalent to those of the initial setting f∗

i ,
see for example FIG. 2b. It can be seen that the first two
functions have a pole at f2 = −2/l, independent on the
initial condition. At this point the Jacobian determinant
in equation (6) vanishes and no continuous correction
beyond this point is possible.

IV. IMPLEMENTATION AT sFLASH

The super-conducting linear accelerator FLASH at
DESY in Hamburg delivers trains of electron bunches
into two parallel undulator beamlines, FLASH1 and
FLASH2. While FLASH2 is currently being prepared for
user operation, FLASH1 has been delivering soft x-ray
photons for user experiments since 2005 [8]. Upstream
of the FLASH1 main undulator an experimental setup
for FEL seeding (sFLASH) is located, see FIG. 1. It fea-
tures four variable-gap undulator modules and thus is the
ideal test bench for the study of several different seeding
schemes [4].

Closing the seeding undulator intensifies its natural fo-
cusing effect and will therefore impact the beam optics
further downstream of this undulator and in particular
at the entrance of the main undulator. At lower beam
energies the change in the β-function can easily be in
the order of several tens of percent so that the match-
ing into the FODO structure of the main undulator is
corrupted. The result is a significantly deteriorated FEL
performance. Therefore, the disturbance introduced by
the seeding undulator has to be compensated by adjust-
ing the field strength of appropriate quadrupole magnets.

Initially, the presented method was developed to cor-
rect for the influence of the variable-gap undulator used
by the seeding experiment at FLASH. Due to their mag-
netic structure, planar undulators exhibit a systematic
focusing effect in the vertical plane (here, denoted by
y), perpendicular to their pole faces. For our purpose,
the additional weak defocusing in the horizontal direction
(x), stemming from the finite width of real-world undula-
tors, can be neglected. Employing the matrix formalism
introduced above, the effect of an undulator of length l
and undulator period λu on a particle’s trajectory vector

u = (x, x′, y, y′)
T
is represented by the transfer matrix

Mund =









1 l 0 0
0 1 0 0

0 0 cos
√
κl sin

√
κl√

κ

0 0 −√
κ sin

√
κl cos

√
κl









, (10)

where κ is the focusing strength

κ ≈ 2

(

K π

γλu

)2

, (11)

defined by the undulator parameter K and γ, the parti-
cle’s Lorentz factor [9]. By varying the value of the gap,
the K parameter of the undulator system used by the
sFLASH experiment can be set to a value between 0 and
2.72 [10], introducing the undesirable focusing effect. We
therefore identify K as the disturbance parameter.
Our implementation utilizes the computer algebra sys-

tem Mathematica [11], which allows for easily calculating
the required symbolic transfer matrix according to equa-
tion (2), as well as setting up the differential equations
(9), the numerical solution of which is then found by
means of a basic Runge-Kutta algorithm. There are 14
quadrupole magnets in the vicinity of the sFLASH undu-
lator (see FIG. 3) that are included in the Mathematica

model and are available as correctors. As our method
produces correction functions for exactly 6 parameters
there are

(

14

6

)

= 3003

combinations of corrector magnets to choose from. In-
vestigation shows that a lot of these combinations are
prone to produce solutions featuring impracticably high
changes in the quadrupole strengths or solutions contain-
ing a singularity, as mentioned above. However, we were
able to identify a set of known good corrector combina-
tions for optics similar to the standard optics used in
nominal SASE operation. An example of the correction
functions that are obtained by this method is shown in
FIG. 4.
Surely, for any given manipulation, correction func-

tions exist which involve more than six corrector mag-
nets. In that case, the solution of equation (5) is no longer
unique because, as we have seen, solutions can be con-
structed using any combination of six of the magnets and
leave the others constant, which results in our method
being not directly applicable. However, any number of
additional constraints, other than those given by the con-
stancy of the transfer matrix, can easily be incorporated
into our method by appending them to B in equation (5)
and selecting the same number of additional correction
parameters.
While our method assures the constancy of the transfer

matrix between the first and the last corrector magnet,
it however makes no statement about the behavior of the
optical functions within this correction section. Using the
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Beam

FIG. 3: Positions of the quadrupole magnets close to the SFLASH undulator. Note that the magnets in the SFUND
section can not be used as correctors. Magnets used in the example shown in FIG. 4 are highlighted in red. Drawing

not to scale.
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k
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−
2
]
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FIG. 4: Example of a correction function calculated
using the presented method. Here, the strengths k of

the six named quadrupole magnets are used as
correction parameters to compensate for the optics
disturbance caused by the sFLASH undulator being
closed from K = 0 to K = Kmax = 2.63 at a beam

energy of 693MeV.

particle tracking code ELEGANT, the optics can be checked
for unwanted features and the efficacy of the correction
can be verified, see FIG. 5.

V. MEASUREMENTS

Diagnostics in the FLASH1 main undulator area in-
clude wire scanners at the ends of the undulator mod-
ules. With the help of these devices the beam diameter
can be determined along the undulator. The relationship
between beam size σ and β-function in the vertical and
horizontal direction is given by the well known equation

σu(z) =
√

εu βu(z), u ∈ {x, y}, (12)

where z is the longitudinal position and εu denotes the
beam emittance. A successful correction can therefore
be verified experimentally, by comparing the beam sizes
along the undulator.
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FIG. 5: Development of the β-functions in dependence
on the longitudinal coordinate s. The undisturbed state
(dotted) is compared to the disturbed state with (solid
line) and without (dashed) application of the correction.
Grey areas in the upper plot mark the position of the
variable-gap undulator segments. In this example, a
different set of correction magnets is used. Their

positions are indicated in the lower plot. Note that at
the end of the beamline the corrected optical functions

agree with the open case.

The measurements presented in FIG. 6 have been con-
ducted with a 1.0-GeV-electron beam, while the distur-
bance was introduced by closing all four seeding undula-
tor segments to their lowest gap value.
As expected, closing the seeding undulator primarily

affects the beam size in the vertical direction. After the
optics correction is applied, the beam sizes correspond to
those measured with an open undulator within the range
of measuring accuracy. Thereby, it is shown experimen-
tally that our method is able to restore the initial course
of the optical functions in the main undulator with sat-
isfactory precision.
As mentioned above, the motivation leading to the de-

velopment of the presented method was to allow simulta-
neous operation of both the sFLASH and FLASH1 main
undulator. In recent efforts to establish procedures for
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FIG. 6: Transverse beam sizes measured using the wire
scanners between the six FLASH main undulator

segments (grey boxes in the middle). The dotted curve
shows the beam sizes at theory optics without any

disturbance. Measurements of the disturbed case, where
the seeding undulator is closed, are depicted by the
dashed curve. The solid curve shows beam sizes with
corrections applied. At the time of measurement, the
wire scanner between the last two undulator segments

was unavailable [12].

three beamline lasing (FLASH1, FLASH2, sFLASH) the
described method is in frequent use [13]. Once FLASH1
SASE operation is established, the sFLASH variable-gap
undulator segments are closed to their target gap values,
causing the SASE signal of the main undulator to vanish.
Subsequently, the calculated correction is applied to the
chosen corrector quadrupole magnets. This on-line pro-
cedure was able to recover 70% of the initial FEL photon
pulse energy with only a few orbit corrections applied.

VI. CONCLUSION AND OUTLOOK

We developed a novel approach to compensate for vari-
ations in particle beam optics that would otherwise dis-
turb the optics in other parts of the machine, if let un-
corrected. It produces continuous, numerical functions
for six machine parameters, compensating the unwanted
effect of an arbitrary number of disturbance parameters.
Because of the continuity of the correction function, it is
suitable to be applied simultaneously to the disturbance.
Effectively, this method allows to freely modify the op-
tics locally within a beamline section, without altering
the optics in the rest of the machine.
The method has been implemented at FLASH, with

the objective of compensating the influence of the
variable-gap undulator used by the sFLASH experiment
and is in frequent use. We showed measurements con-
firming the precise restoration of the initial optics.
A next experimental step will be to apply the cor-

rection steadily as the disturbance arises, which in the
end enables us to close the seeding undulator and start
seeding experiments without any notable changes of elec-
tron beam quality in the FLASH1 main undulator. This
compensation constitutes an important milestone for the
planned simultaneous operation of a seeding experiment
at FLASH1. The method will generally be useful for two
FELs operated independently of each other in cascaded
mode. Ultimately, it will be beneficial for all optics ma-
nipulations that need to stay restricted to a local section
of a long beamline.
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