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Abstract

We perform a quantitative comparison between N-body simulations and the Schrö-

dinger-Poisson system in 1+1 dimensions. In particular, we study halo formation with

different initial conditions. We observe the convergence of various observables in the

Planck constant ~ and also test virialization. We discuss the generation of higher order

cumulants of the particle distribution function which demonstrates that the Schrödinger-

Poisson equations should not be perceived as a generalization of the dust model with

quantum pressure but rather as one way of sampling the phase space of the Vlasov-

Poisson system – just as N-body simulations. Finally, we quantitatively recover the

scaling behavior of the halo density profile from N-body simulations.
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1 Introduction

The observation of baryonic acoustic oscillations (BAOs) in galaxy distributions [1–3] was

a milestone of modern cosmology. The use of BAOs as a standard ruler is undisputed and

will provide invaluable information on the expansion history of the Universe. In addition,

future galaxy clustering and lensing surveys will also provide detailed information on the

shape of the correlation function and the power spectrum with percent-level accuracy. This

can potentially reveal detailed information on the cosmological model and its parameters,

and for example be important to discriminate among various extensions of the ΛCDM model.

In order to optimally exploit these data sets it is desirable to improve and scrutinize our

theoretical understanding of all sources of uncertainty, starting from non-linear clustering of

dark matter (DM), that forms the basis for an accurate description. N-body simulations of

DM [4–8] are playing the major role in large scale structure formation and provide impressive

results. Still, systematic errors in the predicted power spectrum [9] might have to be improved

in view of the accuracy of upcoming surveys. In addition, the N-body technique by definition

samples regions of high matter density very precisely, while underdense regions are sampled

less accurately. For certain applications these can still be relevant, e.g. for the distribution

and shape of voids, see e.g. [10–13], and for extracting higher moments of the DM distribution

such as the velocity power spectrum [14]. The observational advance motivates to develop

additional independent tools to assess gravitational clustering on BAO scales.

In this work, we consider the Schrödinger-Poisson system as an alternative to N-body

simulations [15]. In this framework, the Planck constant ~ is not a physical quantity. The wave

equation describes wave packets that follow the gravitational dynamics and ~ delineates the

smallest unity in phase space in accordance with the uncertainty principle. Ideally, we would

like to take the limit ~ → 0, but reducing ~ implies more demanding numerical simulations.

This picture is very much in the spirit of the original work by Widrow and Kaiser [15] that

used the Schrödinger-Poisson system to describe DM for the first time.

Often, the Schrödinger-Poisson system is used to describe so-called scalar field DM or

fuzzy DM [16–30]. In these frameworks, the Planck constant is taken to be physical such that

the corresponding de Broglie wavelength is of astronomical size. Fuzzy DM may address some

of the small-scale issues of the cold dark matter paradigm, such as the core/cusp problem as

well as the missing satellites problem [20,21] (see e.g. [30] for a recent discussion).

The Schrödinger-Poisson system can be perceived as a modification to the dust model via

the Madelung representation [31]. The notable difference is then a quantum pressure term

that prohibits the formation of structures below the de Broglie wavelength. At the same

time, the evolution of the Schrödinger-Poisson system populates the higher order cumulants

after shell crossing [32] such that it has the required complexity to be equivalent to the full

solutions of the Vlasov-Poisson equations or at least N-body simulations. In the literature,

the Schrödinger-Poisson system has often been advocated as an N-body double [15, 32, 33]

but in fact there are good arguments why the Schrödinger-Poisson system can be directly

understood as the coarse grained limit of the Vlasov-Poisson system [34]. Physically, the
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classical limit ~ → 0 can be understood within the Schwinger-Keldysh formalism of non-

equilibrium quantum field theory [35,36]. In this formalism, the equation of motion describes

the evolution of n-point correlation functions. After a Wigner transformation [37], these

equations reduce in the classical limit ~ → 0 (and under the quasi-particle assumption) to

the Boltzmann equations. Analogously, two-point functions of the Schrödinger wave function

in Wigner space are expected to correspond to the particle distribution function for ~ → 0.

The main difference is that the Schrödinger-Poisson system only describes the wave function

of a one-particle state while in the Schwinger-Keldysh formalism the scalar field is still an

operator acting on the quantum state of the system 1. We therefore expect that when two

wave packets come close, the gravitational softening expressed in the Schrödinger-Poisson

system through the quantum pressure term does not actually reflect the true dynamics. Still,

in the limit ~→ 0 also this difference to the full system should cease.

The Madelung representation suggests that the Schrödinger-Poisson system coincides with

a pressureless perfect fluid for ~→ 0, because the quantum pressure term vanishes. However,

this naive expectation is jeopardized by singularities of the Madelung representation of the

wave-function, that occur whenever the density vanishes at a certain time and place. This

typically happens once shell-crossings start to play a role. The Schrödinger-Poisson equations

themselves are free of these singularities, and therefore can be integrated also after shell-

crossings occur. Therefore, the argument above suggests that the limit ~ → 0 needs to be

taken with special care within the multi-streaming regime.

The main aim of the present work is to scrutinize the hypothesis that the Schrödinger-

Poisson system is actually a double of the Vlasov-Poisson system. To do so, we consider the

simplest setting of halo formation in 1+1 dimensions. For this case, the Zel’dovich approxi-

mation is exact up to shell crossing, and becomes singular once the first shell-crossing occurs.

Detailed N-body simulations have been performed in this case [39, 40] and we will compare

our numerical solutions of the Schrödinger-Poisson system with these results.

The structure of the paper is as follows: In Section 2 we set up our notation and explain

how the Schrödinger-Poisson system is solved numerically. Then, in Sec. 3 we present our

numerical findings before we summarize in Sec. 4.

2 The Schrödinger-Poisson equations

We solve the Schrödinger equation

i~∂tψ = − ~2

2a2m
∆ψ +mV ψ , (1)

where the gravitational potential V is given by the Poisson equation

∆V =
4πGρ0

a

(
|ψ|2 − 1

)
. (2)

1For a second quantized approach to structure formation see [38].
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In the case of small ~, these equations reduce for the Madelung representation

ψ =
√
ρ exp (iφ/~) , (3)

and with the identification ~u = ∇φ/m to the fluid equations

∂tρ = − 1

a2
∇(ρ~u) ,

∂t~u = − 1

a2
(~u · ∇) ~u−∇V +

~2

2a2m2
∇
(

∆
√
ρ

√
ρ

)
. (4)

Unlike the case of fuzzy DM [16–30], we understand the Schrödinger-Poisson equations as a

tool to solve the fluid equations (or, ultimately, the Vlasov-Poisson equations) in the limit ~→
0. However, there is a crucial difference discussed e.g. in Ref. [32]: The fluid equations display

an ambiguity when ρ→ 0, which happens typically once shell-crossings occur. This ambiguity

is absent in the Schrödinger-Poisson system. Hence, it is expected that the Schrödinger-

Poisson capture the effects of shell crossing better than the fluid representation. This is

also supported by the relation between the Wigner transform of two-point functions and the

Boltzmann equation discussed in the introduction and the original work [15, 41, 42], as well

as the general arguments provided in [34].

The 1+1 dimensional particle distribution function is defined using the Wigner transfor-

mation

f(x, p) =

∫
dr

2π~
ψ∗(x+ r/2) exp

(
i p r

~

)
ψ(x− r/2) , (5)

and the first few moments of the particle distribution function are in turn given by the density

ρ = ψ∗ψ , (6)

the fluid velocity field u

u ρ ≡ j ≡ i~
2

[(∇ψ∗)ψ − ψ∗(∇ψ)] , (7)

and the stress tensor T

T ≡ (u2 + σ)ρ ≡ −~2

4
[(∆ψ∗)ψ − 2(∇ψ∗)(∇ψ) + ψ∗(∆ψ)] . (8)

In the case of an expanding Universe with scale factor a(t) and Hubble parameter H = ȧ/a,

one can rewrite the Schrödinger-Poisson system as an evolution equation in η = log a(t) in

the form

i∂ηψ = −κ
2

∆ψ + V̄ ψ ,

∆V̄ =
3

2κ

(
|ψ|2 − 1

)
, (9)

with

κ(η) =
~

a2mH
, V̄ =

mV

~H
, H2 =

8πG

3a3
ρ0 , (10)
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where we assumed a matter dominated cosmology with H2 ∝ a−3. The function κ(η) then

decreases during the expansion of the Universe.

On the other hand, for a static Universe the evolution equation can be formally written in

the same form as in (9), when identifying η → tH and κ→ ~/(mH) where H ≡ 8πGρ0/3 is a

constant related to the free-fall time. We stress that this is a formal correspondence, and H

is not related to the Hubble rate in the static case, which instead vanishes. In the numerical

analysis, the only difference between the two cases is that the function κ is constant. We also

performed simulations in the expanding case to check that our numerical solution reproduces

the analytically known Zel’dovich solution up to the first shell-crossing. However, since in

comoving coordinates the physical grid spacing increases quickly, static simulations are much

more accurate at late times, and we therefore focus on the static case in the following.

There are several approaches in the literature how to solve the Schrödinger equation

numerically. On the one hand side, one would like to have a discretized equation of motion

that is an implicit finite-differencing scheme. On the other hand, unitarity and stability of

the solutions are a concern. A common method is Cayley’s method that has been used for

example in [15, 43]. In the present work, solving the Poisson equation will involve several

Fourier transformations such that a run time of order N logN and not N (N is the size of

the discretizing grid) is no concern for us. We use a method that is implicit and stable and

very similar to the one used in [44].

Notice that the potential term is local in coordinate space while the kinetic term is local

in Fourier space. Hence, whenever only one term is present, the Schrödinger equation can

be trivially solved by integration resulting in space (or wavemode) dependent exponential

factors. To be specific,

ψ(η + dη, x) = ψ(η, x) exp

[
−i
∫ η+dη

η

dη′ V̄ (η′, x)

]
, (11)

and

ψ(η + dη, k) = ψ(η, k) exp

[
− k2 i

2

∫ η+dη

η

dη′ κ

]
, (12)

respectively. Notice that while the wavefunction ψ will oscillate rapidly, the potential V will

be a much more smooth and slowly evolving function. This means that the integration in

(11) can often be replaced by a multiplication with dη even for not so small dη.

According to the Baker-Campbell-Hausdorff formula, the full unitary evolution operator

will factorize into the two terms given by (11) and (12) as long as the exponents commute.

In particular, as long as one of the exponents is small, the resulting error is small. For the

numerical evolution of the system we hence use

ψ(η + dη) = UK UP ψ(η) ,

UP = exp
[
−i dη V̄ (η, x)

]
,

UK = exp

[
− i

2
κ dη k2

]
. (13)
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This expression can be a good approximation even in the regime where some of the phases

are much larger than unity. This allows us to use relatively large timesteps dη in particular

in the limit ~ → 0 where 1/κ becomes large and κ becomes small. In this regime, a simple

algorithm to determine a valid timestep dη is to ensure that dη maxx V̄ (η, x) < ϕmax � 1 is

much smaller than unity. We also checked that our results are independent of the choice of

ϕmax (see App. A).

The numerical complexity of these equations is very limited. A single timestep requires

three Fourier transformations. The run time of a simulation scales as NtNx logNx, where Nt

denotes the number of timesteps and Nx the number of grid points. For the numerical results

shown below we used Nx = 16384, boxsize Lbox = 20 Mpc, and κ = ~/(mH) = 0.01 Mpc2

unless otherwise specified.

3 Numerical results

The aim of the present analysis is to study the formation of halos and their properties in the

Schrödinger-Poisson system. The final halo in 1+1 dimensional simulations on a static back-

ground can typically be characterized by the inner slope ρ(r) ∝ r−γ of the density profile, with

γ ∼ 0.5, the halo mass and a cutoff beyond which the density is strongly suppressed [39].

Therefore, if the power-law scaling is assumed and the exponent would be known, the re-

maining two characteristics of the final halo can be predicted since in a static simulation total

energy

E =

∫
dx

(
~2

2a2m
∇ψ∗∇ψ +

1

2
mV ψ∗ψ

)
, (14)

and total DM mass

M =

∫
dxmψ∗ψ , (15)

are conserved. It turns out that for almost homogeneous initial conditions, the halo is barely

small enough to fit into the simulation volume. Hence, in order to avoid onerous boundary

effects, we start with a localized DM density distribution.

To be specific, we use two different initial conditions. In the first case, we use a Gaussian

distribution

ρGauss ∝ exp
[
−α(x− L/2)2

]
, (16)

that attains the value e−8 on the boundary compared with the maximum of the distribution

(α = 32/L2). This Gaussian curve is narrow enough to fit into the whole simulation after a

steady state is reached. As a second initial condition we use a box-like shape

ρbox ∝ tanh [β(x+ L/6)] + tanh [β(L/6− x))] . (17)

The box fills initially one third of the simulation volume with an inverse wall thickness of

β = 64/L. The initial densities |ψ|2 for both cases are normalized to unity and shown in the

top left and right panel of Fig. 1, respectively.
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Figure 1: The plot shows the DM density at different times in a static simulation without expansion.

The left plot shows a Gaussian initial distribution while the right plots show the box-like initial

distributions. The two upper/middle/lower plots show the simulation at η = 0, η = 10/3 and

η = 100/3. The shown region covers the full box.

In both cases, shortly after the first shell crossing, the system develops strongly fluctuating

features. For |ψ|2, these are indicated in the lower panels of Fig. 1 for two different times and

the two initial conditions, respectively. Our interpretation in terms of wave packets is the

following: Due to our initial conditions, the wave packets are highly correlated and form

one coherent field. Once the first shell-crossing occurs, the non-linearities lead to a strong

decoherence of the different wave packets that leads to the oscillatory features in the wave

function. In order to make the connection to the real phase space distribution of the DM

particles, some form of smoothing or coarse-graining is required [15, 32, 45]. This leads to a

hierarchy of length scales

agrid � λde Broglie � ∆x� Lphysics � Lbox . (18)

Here, agrid is the separation of grid points, λdeBroglie denotes the de Broglie wavelength of the
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wave packets, that is given by the uncertainty relation. Next, ∆x is the smoothing scale that

is applied, while Lphysics is the length scale of the observables one is interested in. Finally,

Lbox is the box size of our simulation. An added benefit of the Schrödinger-Poisson system is

that gravitational softening is already automatically implemented by the wave equations [15].

To be specific, we use for smoothing the Husimi representation that was already used

in [15]

ψH(x, p) =

∫
dy KH(x, y, p)ψ(y) , (19)

with the Husimi kernel

KH(x, y, p) =
exp

[
− (x−y)2

4∆x2
− i

~p y
]

(2π~)1/2(2π∆x2)1/4
. (20)

The coarse-grained particle distribution function is then simply given by

fH(x, p) = |ψH(x, p)|2 . (21)

This expression can then be used to evaluate the smoothed phase space distribution function

of the system. In the analysis of the higher moments we actually use a Gaussian smoothing

on (6) through (8) which is simpler numerically.

3.1 Higher order cumulants

At first sight it is surprising that the wave function (that only contains two real degrees of

freedom) should be able to represent the full dynamics. After all, the dust model contains two

degrees of freedom but does not carry any information about the cumulants of order larger or

equal to two. This conundrum is resolved by the fact that the observables are only obtained

after smoothing/coarse-graining over a scale that is significantly larger than the typical size

of a wave packet. Thus, the fact that each coarse-grained cell contains a significant number

of wave packets makes the prediction of higher order cumulants viable - just as for N-body

simulations.

Figure 2 shows the higher moments of the simulation for the Gaussian and box-like initial

conditions for the moments defined in (6) to (8). Naively, one would expect that the connected

pieces of the higher moments scale with higher orders of the parameter ~ [32], because the

Schrödinger-Poisson equation in the Madelung representation approaches the fluid equations

for the dust-model with vanishing quantum pressure for ~→ 0. For example, the connected

part of the second moment, i.e. the velocity dispersion, is given by

σ =
~2

4

((
∇ρ
ρ

)2

− ∇
2ρ

ρ

)
. (22)

However, the argument above has a loop-hole, which can be traced back to the singular

behavior of the quantum pressure term for ρ→ 0, that invalidates the naive scaling analysis

in terms of ~. As already noticed in [32] the Schrödinger-Poisson system resolves an ambiguity
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Figure 2: The plot shows the zeroth (ρ), first (j) and second (T ) moments of the DM distribution

function (from top to bottom) at late time (η = 100/3). The left (right) panel corresponds to the

Gaussian (box-like) initial distribution. The first moment (j) tends to zero at late time as is expected

from a steady-state solution. The lines are smoothed over 32 grid points (1/512 of the volume).

in the dust model that occurs whenever the density ρ approaches zero. In these points, the

Madelung representation (3) is not faithful since the angle that encodes the velocity field is

ambiguous while the wavefunction is still well-defined.

In particular, the scaling ∝ ~2 in Eq.(22) is compromised by the fluctuations in the higher

derivatives of ρ that grow when ~ becomes smaller. Therefore, it is possible that, after

smoothing, both effects compensate each other and σ approaches a finite limit for ~→ 0, as

one would expect for a steady-state halo.

Figure 2 shows the higher moments for both simulations with a static universe. While the

first moment (second row) j = uρ, that is proportional to the bulk velocity field u, vanishes

up to effects that are due to finite time and finite ~, the second moment T = (σ + u2)ρ, that

involves the velocity dispersion σ, does not. We checked that when varying ~ the (smoothed)

second moment indeed approaches a finite limit. This indicates that the Schrödinger-Poisson

system can account for the generation of higher moments in the distribution function, with

a well-defined limiting behavior for ~ → 0. This limit is illustrated in Fig. 3, where we
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Figure 3: The plot shows the first three moments ρ, j, T (top to bottom) for different values of

κ = ~/(mH) (left to right: 0.04, 0.02, 0.01 Mpc2). For all three values the simulation is already close

to virialization. The residual of the first moment (second row) is partially due to the finite time of

the simulation (η = 331
3) and partially due to the finite ~. All plots are smoothed over 1/128 of the

total volume.

display the first three moments for box-like initial conditions and three different values for

~. For relatively large values of ~, the size of the individual wave packets is larger than the

smoothing scale ∆x. Accordingly, additional features are visible in the different moments,

especially towards the halo center. As mentioned before, the first moment is expected to

vanish at late times for ~→ 0. The reduction for ~→ 0 can be observed in the second row of

Fig. 3. The residual of the first moment is partially due to the finite time of the simulation

and partially due to the finite ~.

Another way to state the above findings is the following: In the dust model, higher order

moments (starting from the second moment) vanish at all times if they are identical to zero in

the beginning. In the Schrödinger-Poisson system, on the other hand, higher order moments

are generated by the equations of motion even if the density and velocity fields behave close

to the dust model initially. This behavior is the one expected from the full Vlasov-Poisson

system, and observed also in N-body simulations. An obvious question is if the second moment

of the distribution function is consistent with virialization. This is discussed in the next section

in the context of phase space distributions.
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Figure 4: The plot shows the particle distribution functions for the Gaussian initial conditions

at the times η = {0, 1, 31
3
, 331

3
}. The distributions are smoothed over 32 grid points (1/512

of the volume) in coordinate and momentum space. In the first three plots the values are

clamped into [0, 1] while in the last plot they are clamped into [0, 0.1].

3.2 Phase space distributions

As another benchmark of the Schrödinger-Poisson system we use the smoothed phase space

distributions. In fact, we do not show the Husimi distribution fH(x, p) as defined in Eq. (21)

but smooth the Wigner transform in x- and k-space with a Gaussian that is narrower than

for the corresponding Husimi distribution. Figure 4 shows four snap shots of the phase space

distribution at four different times.

The pictures resemble the process of phase mixing and violent relaxation [46]. The strong

time-dependence in the gravitational potential makes it possible that matter is transported

towards the inner parts of the halo. A quantitative prediction of this scheme is that the

time it takes for the overall approach to a stationary halo should be of the same order as

the orbital time of the system. This is readily observed in our simulations. The first shell

crossing happens at around η ' 1 and the orbital time is in these units around ' 4. The time

for almost complete virialization seems to be a few times longer than this. The phase space
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Figure 5: The plot shows the combination −∇V̄ (x) ρ(x) (in blue) and the first derivative of the

second moment ∇T (x) (in black), both smoothed over 1/128 of the total volume. These quantities

should coincide in case the phase space density does only depend on
√
V + p2/2. Aside the center

of the halo, the agreement is quite good at late times (η = 331
3).

distributions show the folding sheets that are expected from N-body simulations.

In case the smoothed wave function is stationary, the phase space distribution fH(p, x)

should only be a function of the total energy (1
2
p2 +V (x))1/2. For the phase space distribution

one then finds the relations

∇fH = ∇V ∂E fH = ∇V 1

p
∂p fH , (23)

and hence for the moments the relation

∇T (x) = −∇V̄ (x) ρ(x) . (24)

This relation is displayed in Fig. 5 and it holds at late times quite well. This is actually

surprising, since the profile still shows features that indicate that the system is not very close

to its equilibrium state. We checked that these features are not due to finite grid size or finite

~. These features should be further damped by phase mixing and violent relaxation.

3.3 Halo density profile

In this section, we study the density profile of the halo at late times for the different initial

conditions. As we will see, not all initial conditions approach the same asymptotic behavior.

While the density profile ρ(x) features a strongly fluctuating behavior, the smoothed

profile, with fixed smoothing length, converges to a well-defined halo profile for ~ → 0.
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Figure 6: The three rows show the three fits A, B and C (from top to bottom) for the halo density

profile. In the left panels, the integrated density profile M(x) (black line) results from averaging

over five different times at η = {96..100}. The shaded region denotes the variance of this average.

The blue line denotes the best fit. The right panels show χ2 as a function of γ while minimizing

over all other parameters of the fit.
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fit A: ρ(x) ∝ |x|−γ exp(−(|x/x0|)(2−γ))

fit B: ρ(x) ∝ |x|−γ exp(−(|x/x0|)δ)
fit C: ρ(x) ∝ |x|−γ θ(x0 − x)

Table 1: The different fits used for the density profile ρ(x).

Alternatively, we consider the integrated profile M(x) =
∫ x

0
dx̃ρ(x̃), which we find to converge

to a well-behaved functional form for ~→ 0 even without applying any smoothing.

We employ three different families of functions ρ(x) to fit the corresponding integrated

density profile M(x). Table 1 summarizes the fitting functions we use. The first one, fit A, is

the one already used for N-body simulations in [40].

Shallow initial conditions reached some universal final distribution. At the same time,

the authors of [40] report that this distribution could not be reached with steeper initial

conditions. The interpretation of the findings is in essence that the system can transport

matter towards the center of the halo using phase mixing and violent relaxation. Transporting

matter from the middle of the halo to the edges seems much more inefficient and steep initial

conditions persist for long time in the halo profile. This agrees with our findings. In the case

of an initial Gaussian distribution, the final halo is considerably shallower than with box-like

initial conditions.

The density profile obtained from our numerical solution of the Schrödinger-Poisson equa-

tions is compared to the various fitting functions in Fig. 6 (left panel). When applying fitting

formula A, our results are consistent with the findings in [40] (γ ' 0.47) but also with a

scaling γ ' 0.5 [39]. Our simulations do not encompass a wide enough range to decide on

this issue. In addition, we note that the best-fit values for γ differ when applying fit B

or C, while the quality of the fit is comparable or even slightly better (see right panel of

Fig. 6). For small but finite ~, our results also indicate a flattening in the innermost region

x .
√
~/(mH) = 0.1 Mpc, as expected [20, 21] (these scales are not shown in Fig. 6). Alto-

gether, we find that the halo density profile obtained via the Schrödinger-Poisson equations

is consistent with N -body results for cold dark matter [39,40] in the limit ~→ 0.

4 Discussion

We presented solutions for the Schrödinger-Poisson system of halo formation in 1+1 dimen-

sions. Often the Schrödinger-Poisson system is thought to be an extension of the dust model,

including quantum pressure, via the Madelung representation, that would naively reduce to

pressureless perfect fluid equations for ~ → 0. However, the latter description becomes sin-

gular once shell-crossings occur. The Schrödinger-Poisson equations themselves are free of

such singularities, and therefore the limit ~ → 0 becomes non-trivial in the multi-streaming

regime.

Our findings provide quantitative support for the hypothesis that the Schrödinger-Poisson

13



system is rather an N-body double or even an independent sampling of the full Vlasov-Poisson

system. This is very much in the spirit of the original work [15]. This hypothesis is supported

by several findings. First, the Schrödinger-Poisson system allows solutions coming close to

those of N-body simulations and going beyond its interpretation in terms of the dust model by

generating higher cumulants even for cold initial conditions. Second, observables such as the

first few moments of the distribution function (i.e. density, velocity and velocity dispersion)

converge in the limit ~ → 0 when averaged over arbitrarily small, but finite regions. Third,

the velocity dispersion is related to the gravitational potential in a way that is consistent with

virialization after a few orbital times. Finally, the halo density profile exhibits a power-law

behavior with the exponent γ ' 0.5. These findings are in disagreement with the dust model

but coincide with N-body simulations.
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A Dependence on the time step size

In this appendix we present some results concerning the convergence of the wavefunction with

respect to the maximal phase ϕmax in the unitary operators in (13). When the maximal phase

is reduced below ϕmax ∼ 0.01, changes in the wave function are barely noticeable and are of

order 10−2, see Fig. 7. Accordingly, changes in the coarse-grained observables are even further

reduced.
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