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The dynamics of double hard scattering in proton-proton collisions is
quite involved compared with the familiar case of single hard scattering.
In this contribution, we review our theoretical understanding of double
hard scattering and of its interplay with other reaction mechanisms.

1. Introduction

The most familiar mechanism for hard processes in proton-proton collisions

is single parton scattering (SPS): two partons, one from each proton, un-

dergo a hard scattering that produces heavy particles or particles with high

transverse momenta. For the cross section one then has a factorisation for-

mula, containing a parton distribution function (PDF) for each proton and

a parton-level cross section for the hard subprocess. Double parton scatter-

ing (DPS) occurs if in the same proton-proton collision two partons in each

proton initiate two separate hard scattering processes. The corresponding

factorisation formula contains two parton-level cross sections and a double

parton distribution (DPD) for each proton. The two hard scatters are sep-

arated by a finite distance y in the plane transverse to the colliding proton

momenta, so that a DPD depends not only on the momentum fractions

x1 and x2 of two partons, but also on the transverse distance y between

them. Very roughly, DPDs should grow like the square of two ordinary

PDFs when x1 and x2 become small. The importance of DPS compared

with SPS is hence increased in this small x region, which for a given final

state becomes more and more important with growing collision energy.
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The single and double parton distributions just described are integrated

over transverse parton momenta; they are often called “collinear” distribu-

tions, and the associated formalism is called “collinear factorisation”. The

information on transverse parton momenta is retained in so-called TMDs

(transverse momentum dependent distributions). The corresponding TMD

factorisation formulae allow one to compute cross sections differential in

the transverse momentum q of a heavy particle (e.g. a Z or a Higgs boson)

in the region where q is much smaller than the boson mass. The TMD con-

cept can be extended to DPS processes, for instance to describe the region

of low transverse boson momenta q1 and q2 in W+W+ or HZ production.

This is especially valuable because the importance of DPS compared with

SPS is much higher in the cross section for measured small q1 and q2 than

it is in the integrated cross section.

Factorisation for SPS processes has been derived within QCD to a high

level of rigour, as reviewed for instance in Ref. 1. It is an ongoing effort

to bring factorisation for DPS to a comparable standard. In the present

contribution, we review the status of this effort. Note that we are discussing

so-called “hard scattering factorisation” here, which is based on separating

dynamics at different distance scales. This is distinct from “high-energy”

or “small x factorisation”, where the separation criterion is rapidity. Some

discussion of this concept in the context of DPS is given in Ref. 2.

2. Cross section formula

Let us start with a main theory result: the cross section formula for DPS.

Consider the production of two particles with invariant masses Q1, Q2

and transverse momenta q1, q2. We require that Q1 and Q2 be large and

generically denote their size by Q. Instead of a heavy particle, one may also

have a system of particles with large invariant mass, for instance a dijet.

Collinear factorisation allows us to compute the cross section integrated

over q1 and q2 :

dσDPS

dx1 dx2 dx̄1 dx̄2
=

1

C

∑

a1a2b1b2

∫ 1−x2

x1

dx′
1

x′
1

∫ 1−x′

1

x2

dx′
2

x′
2

∫ 1−x̄2

x̄1

dx̄′
1

x̄′
1

∫ 1−x̄′

1

x̄2

dx̄′
2

x̄′
2

×
∑

R

Rσ̂a1b1(x
′
1 x̄

′
1s, µ

2
1)

Rσ̂a2b2(x
′
2 x̄

′
2 s, µ

2
2)

×
∫

d2y Φ2(yν) RFb1b2(x̄
′
i,y;µi, ζ̄)

RFa1a2
(x′

i,y;µi, ζ) . (1)
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Note that we use boldface for any vector w in the transverse plane and

denote its length by w = |w|. There are strong indications3 that TMD

factorisation in SPS works only for the production of colourless particles,

so that we make the same restriction for DPS. The differential cross section

for transverse momenta |q1|, |q2| ∼ qT much smaller than Q reads

dσDPS

dx1 dx2 dx̄1 dx̄2 d2q1 d
2q2

=
1

C

∑

a1a2b1b2

σ̂a1b1(Q
2
1, µ

2
1) σ̂a2b2(Q

2
2, µ

2
2)

×
∫

d2y
d2z1

(2π)2
d2z2

(2π)2
e−i(q1z1+q2z2) Φ(y+ν)Φ(y−ν)

×
∑

R

RFb1b2(x̄i, zi,y;µi, ζ̄)
RFa1a2

(xi, zi,y;µi, ζ) . (2)

These formulae are quite complex. In the following we briefly explain their

different ingredients, and the physics behind them.

We begin with the simplest ones. The variables xi and x̄i are given by

xi = Qi e
Yi/

√
s , x̄i = Qi e

−Yi/
√
s , (i = 1, 2) (3)

where Yi is the centre-of-mass rapidity of the system i and
√
s the overall

collision energy. C is a combinatorial factor, equal to 2 if the systems 1

and 2 are identical, and equal to 1 otherwise.

The parton-level cross sections σ̂ are precisely the same as the ones in the

corresponding SPS cross sections, except for the superscript R in (1), which

will be explained below. They include the effects of hard QCD radiation

in the process. In TMD factorisation, σ̂ receives only virtual corrections,

since hard real radiation tends to knock qi out of the region qT ≪ Qi. As

a consequence, the momentum fractions of the partons entering the hard

subprocesses are fixed to xi and x̄i by external kinematics. In collinear

factorisation, σ̂ includes real emission, which allows for momentum fractions

x′
i ≥ xi and x̄′

i ≥ x̄i.

The joint distribution of two partons in a proton is quantified by the

DPDs F , which have two labels ai for the parton type, two momentum

fraction arguments xi, and two factorisation scales µi (they can be cho-

sen separately, which is useful if Q1 and Q2 are of different size). In

the TMD case there are two transverse position arguments zi, which are

Fourier conjugate to the transverse parton momenta ki. The structure∫
d2zi e

−iqizi F (x̄i, zi, · · · )F (xi, zi, · · · ) in (2) is the same as in the corre-

sponding factorisation formula for SPS – in momentum space it corresponds

to a convolution product
∫
d2ki F (x̄i, qi − ki, · · · )F (xi,ki, · · · ).
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As already mentioned, a DPD also depends on the distance y, which

in collinear factorisation literally corresponds to the transverse distance

between the two active partons in the proton, and thus to the distance

between the two hard-scattering processes. In the TMD case, y corresponds

to the average distance between the partons in the scattering amplitude and

its conjugate, as can be seen in (4) and (5) below. Notice that in the cross

section, y is not Fourier conjugate to any observable momentum, unlike zi.

q2

q1

k1 − 1

2
∆

k̄1 +
1

2
∆ k̄1 − 1

2
∆

k1 +
1

2
∆k2 +

1

2
∆ k2 − 1

2
∆

k̄2 +
1

2
∆k̄2 − 1

2
∆

(a) (b)

Fig. 1. (a) Tree level graph for the production of two electroweak gauge bosons by DPS
(often called double Drell-Yan). The blobs represent DPDs. The graph is for the cross
section, with the vertical line indicating the final state cut. (b) Graph for double dijet
production with DPDs for quark-gluon interference.

It is instructive to see how the distance y emerges from the analysis of

Feynman graphs in momentum space. The longitudinal momentum frac-

tions of each parton are fixed by the final state kinematics and thus must

be equal in the scattering amplitude and its conjugate. By contrast, the

transverse parton momenta can differ by an amount ∆ or −∆ as shown

in Fig. 1(a). The momentum mismatch for the first and the second par-

ton is opposite in sign, so that the transverse momentum of the specta-

tor partons is the same in the amplitude and its conjugate. Since this

momentum mismatch is not observable, one has an integral of the form∫
d2∆ F (x̄i,−∆, · · · )F (xi,∆, · · · ) in the cross section. A Fourier trans-

form from ∆ to y gives the form shown in (1) and (2). More detail on the

tree-level derivation of the factorised structure in collinear factorisation is

given in Ref. 4.

Let us now turn to the quantum numbers of the partons. Even in an

unpolarised proton, two extracted partons can have correlations between

their polarisations. The labels ai, bi in the cross section formulae refer not
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only to the type of the parton but also to its polarisation, and one must sum

over all allowed combinations. An example for a polarisation dependent

DPD is F∆q∆q, which corresponds to the difference of distributions for two

quarks with equal helicities and for two quarks with opposite helicities.

Not only the transverse momentum of a parton can differ between the

amplitude and its conjugate, but also its colour. The different possible

colour combinations in DPDs and the parton-level cross sections are speci-

fied by the label R. For the production of colourless particles there is only

one possible colour structure for σ̂, which hence requires no index R in the

TMD formula (2). Let us explain the meaning of R for the simplified setting

of the tree graph in Fig. 1(a). In each DPD, one can couple the two parton

lines with momentum fraction x1 (x̄1) to be in the colour representation

R = 1, 8, . . . (the two other lines then are in the conjugate representation,

because all four lines must couple to an overall singlet). In colour singlet

distributions 1F , partons with equal momentum fractions thus have equal

colour – this is the only possible combination for single parton distributions.

Colour non-singlet DPDs describe colour correlations. At the end of Sec. 6

we will see that they are suppressed by Sudakov logarithms if the scale of

the hard process is large.

Finally, there also exist DPDs describing the interference between differ-

ent parton types in the amplitude and its conjugate, be it between different

quark flavours, between quarks and antiquarks, or between quarks and glu-

ons. For ease of notation, they are not included in the cross section formulae

(1) and (2). An example for quark-gluon interference in double dijet pro-

duction is given in Fig. 1(b). Parton type interference distributions do not

have any dynamical cross talk with gluon DPDs, which have the strongest

enhancement at small xi. In many situations, one can therefore expect

them to play only a minor role. A detailed discussion of correlations in

DPDs can be found in Ref. 5.

DPDs can be defined via operator matrix elements, which provides a

solid field theoretical basis for their investigation. For a double quark TMD

one writes

RFa1a2
(xi, zi,y;µi, ζ) = 2p+

∫
dy−

dz−1
2π

dz−2
2π

ei(x1z
−

1
+x2z

−

2
)p+

× 〈p | Oa2
(0, z2)Oa1

(y, z1) |p〉 × {soft factor} , (4)

where we use light-cone coordinates w± = (w0±w3)/
√
2 for any four-vector

wµ. It is understood that p = 0 and that the proton spin is averaged over.

The bilinear operators O are the same as in the definition of a single parton
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TMD. They are given by

Oa(y, z) = q̄
(
y − 1

2z
)
W †

(
y − 1

2z
)
Γa W

(
y + 1

2z
)
q
(
y + 1

2z
)∣∣∣

z+=y
+=0

(5)

with a past-pointing light-like Wilson line

W (ξ) = P exp

[
ig ta

∫ ∞

0

ds nAa(ξ − sn)

]
, (6)

where P denotes path-ordering and n is a light-like vector (n− = 1, n+ = 0,

n = 0). The dynamical origin of this Wilson line is explained in Sec. 6.

Γa is a Dirac matrix and determines the quark polarisation. In particu-

lar, unpolarised quarks correspond to Γq = 1
2γ

+, and longitudinal quark

polarisation is described by Γ∆q =
1
2γ

+γ5.

The “soft factor” in (4) originates from soft gluon exchange in the phys-

ical scattering process and gives rise to the dependence on a parameter ζ, as

explained in Sec. 6. Such a dependence is already present in single parton

TMDs. Moreover, the operator (5) and the soft factor contain ultraviolet

divergences, which require renormalisation. This brings in the dependence

on the renormalisation scales µi. Finally, the dependence of the DPD on

R arises from the colour indices of the operators (q̄ W †)i′ and (Wq)i in (5)

and from the soft factor. Again, more detail is given in Sec. 6.

The preceding discussion can be repeated for antiquarks or gluons, with

different operators Oa. The definition of collinear DPDs Fa1a2
(xi,y;µi, ζ)

reads as in (4) but with zi = 0. Note that in the colour non-singlet case,

the soft factor and the dependence on ζ do not drop out in the collinear

case. Putting zi to zero introduces additional ultraviolet divergences, so

that the renormalisation and hence the µi dependence is quite different

between TMDs and collinear distributions, as we will see later.

The role of the function Φ in (1) and (2) will be explained in Sec. 4.

It is closely related to the fact that the cross section of a physical process

receives not only contributions from DPS, but also from SPS and possibly

other mechanisms. In the next section, we give an overview of these.

3. Power behaviour

The factorisation of cross sections into perturbative hard-scattering sub-

processes and nonperturbative quantities like parton distributions is based

on an expansion in the small parameter Λ/Q. Here Q denotes the scale

of the hard scattering and Λ a typical hadronic scale. For simplicity, we

treat the size of the transverse momenta q1 and q2 in TMD factorisation
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as order Λ here. The case where they are much larger than a hadronic scale

(but still much smaller than Q) is discussed in Sec. 8.

Dimensional analysis of the TMD factorisation formulae for SPS and

DPS reveals that the two mechanisms have the same power behaviour:

dσSPS

d2q1 d
2q2

∼ dσDPS

d2q1 d
2q2

∼ 1

Λ2Q4
. (7)

The situation changes if one integrates over q1 and q2. In DPS both are of

order Λ since they originate from the transverse momenta of partons inside

the colliding protons. In SPS this holds only for the sum q1+q2, whilst the

individual momenta q1 and q2 (and thus their difference) are only limited

by the available phase space and can hence be of order Q. One thus obtains

for the integrated cross sections

σSPS ∼ 1/Q2 , σDPS ∼ Λ2/Q4 , (8)

where DPS has become power suppressed because it populates a smaller

phase space. However, DPS can still be important in this case, for instance

if SPS is suppressed by coupling constants (the production of W+W+ or

W−W− is a prominent example). Generically, DPS is enhanced if the

momentum fractions x in the hard scattering subprocesses become small,

as already noted in the introduction.

There are further mechanisms that contribute at the same power to

the cross section as the terms in (7) or (8), as shown in Ref. 6. In TMD

factorisation, the leading power contributions are from SPS, from DPS and

from the interference between the two mechanisms. Example graphs are

given in Fig. 2(a), (b) and (c).

For the cross section integrated over q1 and q2, the only leading-power

contributions comes from SPS. Suppressed by Λ2/Q2 are two types of

graphs in addition to DPS:

• graphs with a collinear twist-two distribution (i.e. a parton density)

for one proton and a collinear twist-four distribution for the other

one, as in Fig. 2(d). We refer to this as the twist-four mechanism

in the following.

• graphs with a collinear twist-three distribution for each proton, as

in Fig. 2(e). This will be referred to as the twist-three mechanism.

As was already noted in Ref. 7 (see also Ref. 4), the integration over q1

and q2 forces all hard interactions to occur at the same transverse position

in the SPS/DPS interference, which thus becomes a special case of the

twist-three mechanism. By contrast, in TMD factorisation the graphs in
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(a) (b) (c)

(d) (e)

Fig. 2. Different contributions to the production of two electroweak gauge bosons:
DPS (a), SPS (b) and their interference (c). Graphs (d) and (e) involve higher-twist
distributions. Internal lines in the hard scattering are off shell by order Q. A vertical
line for the final state cut is not shown for simplicity.

Fig. 2(d) and (e) are suppressed by Λ2/Q2 compared with the SPS/DPS

interference in Fig. 2(c).

In an unpolarised proton, the number of possible collinear twist-three

distributions is severely restricted by helicity conservation, and only distri-

butions with a quark and an antiquark of opposite helicity are allowed.8

Such distributions do not have any cross talk with gluon distributions. One

can hence expect them to lack the small x enhancement of quark or gluon

DPDs, so that there is some justification for neglecting them (in the same

spirit as neglecting the parton type interference distributions mentioned

in Sec. 2). Notice that in TMD factorisation, the twist-three distribu-

tions occurring in the SPS/DPS interference are not subject to restrictions

from parton helicity conservation: since all three parton fields are at dif-

ferent transverse positions, orbital angular momentum can compensate a

mismatch of parton helicities in this case.

A special class of graphs for the twist-four mechanism, shown in Fig. 3,

has been associated with “rescattering” in Ref. 9 (see also Ref. 10). Each

propagator marked by a bar in the figure has a denominator of the form

ax − b + iǫ, where x is a loop variable and a, b are fixed by external kine-

matics. Keeping the pole parts of each propagators and neglecting the

principal value part of the integration puts the two lines on shell, and the

process looks like one 2 → 2 scattering followed by a second one. The cal-
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Fig. 3. A graph for three-jet production by the twist-four mechanism that has been
associated with “rescattering” in kinematics where the lines marked by a bar are on shell.
All three partons in the final state are understood to have large transverse momenta.

culation of this two-pole part in terms of two unpolarised 2 → 2 partonic

cross sections is indeed correct if in the twist-four distribution the quantum

numbers are coupled such that partons with equal momentum fractions are

unpolarised and form a colour singlet. However, it is not obvious that the

pole parts of the loop integrations should dominate over the principal value

contributions in general kinematics. This may happen for jets with very

large rapidities.11 We also emphasise that the partons marked by bars do

not physically propagate over distances much larger than 1/Q. Technically

speaking, their propagator poles can be avoided by a complex contour de-

formation in the loop integrals, and physically speaking one finds that the

“rescattering” of Fig. 3 does not correspond to a classically allowed scatter-

ing process.6 It is therefore inappropriate to associate final- or initial-state

parton showers to these partons.

4. Short-distance splitting and double counting

At small inter-parton distances, the dominant contribution to a DPD comes

from perturbative splitting of one parton into two, as depicted in Fig. 4(a).

Let us for now concentrate on collinear DPDs. At leading order in αs, the

contribution of the 1 → 2 splitting mechanism is easily computed and reads

RFa1a2
(x1, x2,y)

∣∣
spl,pt

=
1

y2
αs

2π2
RPa0→a1a2

(
x1

x1 + x2

)
fa0

(x1 + x2)

x1 + x2
, (9)

where fa0
is an unpolarised PDF and Pa0→a1a2

a splitting function. The

1/y2 behaviour can be deduced already by dimensional counting. Note that

this mechanism gives strong colour and spin correlations: chirality conser-
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vation for massless quarks results for instance in complete anti-alignment

of the quark and antiquark helicities in g → qq̄.

y + 1

2
z1

1

2
z2 −1

2
z2 y − 1

2
z1

(a) (b) (c)

Fig. 4. Splitting provides a short-distance contribution to DPDs (a) and gives rise to
1v1 (b) and 2v1 (c) graphs for the DPS cross section. The boxes represent double parton
distributions; partons emerging from them have virtualities much smaller than Q.

DPDs also contain an “intrinsic” short-distance part, where the two

partons may be thought of as part of the “intrinsic” wave function of the

proton. This part is related to a twist-four distribution and only diverges

logarithmically at small y. Finally, one may have a 1 → 2 splitting only in

the amplitude or only in its conjugate: this contribution involves a collinear

twist-three distribution and lacks small x enhancement, as discussed in the

previous section.

Inserting the short-distance form (9) into the cross section formula (1),

we see that without the function Φ the integral over y would be power

divergent. This power divergence is associated with so-called 1v1 (1 versus

1 parton) diagrams, in which there are 1 → 2 splittings in both protons

as shown in Fig. 4(b). Note that this is the same graph as in Fig. 2(b),

which represents a loop correction in the leading-power SPS mechanism.

The difference is that in Fig. 4(b) the quark virtualities are understood to

be much smaller than Q, whereas in Fig. 2(b) they are of order Q. The

small y divergence in the DPS formula without Φ is not present in reality: it

arises from using DPS approximations in the small y region where they are

not valid. It should hence be removed and replaced with the appropriate

SPS expression, in a manner that avoids double counting between SPS and

DPS. The analogous double counting problem for multi-jet production has

already been noticed some time ago.12

A short-distance divergence in the y integral also appears for so-called

2v1 (2 versus 1 parton) diagrams as in figure 4(c), where a 1 → 2 splitting

takes place in only one proton. This divergence is only logarithmic, and

it corresponds to the overlap of the DPS contribution with the twist-four
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mechanism shown in Fig. 2(d). The importance of the 2v1 mechanism has

been emphasised in Refs. 13–17.

In the following we describe a solution to these problems that was elabo-

rated in Ref. 8. Different approaches have been presented in Refs. 13–16,18,

the one of Refs. 13,14 being reviewed in Ref. 19. A detailed comparison

between them is given in Ref. 8. The formalism described here resolves the

double counting problem, retains the concept of double parton distributions

that have a field theoretic definition, and permits the study of higher-order

contributions in a practical way. The other approaches just mentioned do

not possess all these features.

The first step is to insert the function Φ(yν) into the cross section

formula (1). (We insert the square of Φ for consistency with the TMD

case). This function regulates the divergences just discussed by removing

the region y ≪ 1/ν from what we define to be DPS. It must satisfy Φ(u) →
0 for u → 0 and Φ(u) → 1 for u ≫ 1. Suitable forms are Φ(u) = 1 −
exp(−u2/4), or a hard cutoff Φ(u) = Θ(u− b0) with b0 = 2e−γE chosen to

simplify analytic expressions.

To avoid double counting between DPS and SPS, and between DPS and

the twist-four mechanism, we introduce subtraction terms in the overall

cross-section:

σtot = σDPS − σ1v1,pt + σSPS − σ2v1,pt + σtw4 . (10)

The subtraction terms depend on ν in such a way that the dependence

on this unphysical parameter cancels on the right-hand side (to the order

of perturbative accuracy of the calculation). Note that σSPS and σtw4 do

not depend on ν. In particular, σSPS is simply calculated in the usual

way with no modifications. The 1v1 subtraction σ1v1,pt is constructed in a

simple way by replacing the DPDs in the cross section formula (1) by the

perturbative splitting approximation (9) or its equivalent at higher orders

in αs. Similarly, σ2v1,pt is obtained by replacing one of the two DPDs

by its splitting approximation and the other one by its intrinsic short-

distance part. There are some subtleties in choosing adequate scales µ

in these distributions, especially if the scales Q1, Q2, Qh of the two DPS

subprocesses and of the SPS subprocess are very different, but we will not

dwell on this here.

An appropriate choice for the scale ν is the minimum of Q1 and Q2.

With this choice, σDPS does contain short-distance contributions for which

the DPS approximations are not valid, but these contributions are removed

by the subtraction terms in the overall cross section. This is quite similar to
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choosing factorisation scales µ ∼ Q in collinear PDFs and DPDs: the parton

distributions then contain virtualities up to the hard scale Q, but double

counting is avoided by subtractions in the hard-scattering cross sections.

Let us demonstrate how the prescription works. At small y ∼ 1/Q, one

has σDPS ≈ σ1v1,pt + σ2v1,pt by construction (the product of the intrinsic

parts of each DPD gives a power suppressed contribution at small y, so

that the absence of a subtraction term σ2v2,pt is no problem). One thus

has σtot ≈ σSPS+σtw4, as is appropriate for the short-distance region. The

dependence on the unphysical cutoff scale ν cancels between DPS and the

subtraction terms. At y ≫ 1/Q, the dominant contribution to σSPS comes

from 1v1 type loops in the region where the DPS approximations are valid,

such that σSPS ≈ σ1v1,pt. Similarly, we have σtw4 ≈ σ2v1,pt. As a result we

obtain σtot ≈ σDPS, as appropriate. The construction just explained is a

special case of the general subtraction formalism discussed in Chap. 10 of

Ref. 1.

For the scale choice ν ∼ min(Q1, Q2), one can show that the combina-

tion σtw4 − σ2v1,pt in (10) is subleading compared to σDPD by a logarithm

log(Q/Λ), where Λ is an infrared scale. This combination can hence be

dropped at leading logarithmic order, which is of great practical benefit

since the computation of the twist-four contribution is technically quite

involved. For the same scale choice, one finds that σDPD includes the ap-

propriate resummation of large DGLAP logarithms in the 2v1 graphs.

In order to estimate the theoretical uncertainty from missing higher or-

der terms in this framework, one can vary the parameters µ1, µ2 and ν,

similar to how one varies only µ in the single scattering case. Note that

the variation in ν of the DPS term alone provides an order-of-magnitude

estimate of SPS graphs containing a double box as in Fig. 2(b), since it

involves the same PDFs, overall coupling constants and kinematic region

(small y, corresponding to large transverse momenta and virtualities of in-

ternal lines). An alternative estimate is provided by the double counting

subtraction term σ1v1,pt. Therefore, a small ν variation of σDPS compared

to its central value indicates that σ1v1,pt and the corresponding loop con-

tribution to σSPS are negligible compared to σDPS. Several scenarios where

the ν variation is reduced in this way were found in Ref. 8, for instance

when the parton pairs in the relevant DPDs cannot be produced in a single

leading-order splitting (e.g. ud̄ ), or when low x values are probed in the

DPDs. In such cases, one may justifiably neglect the appropriate perturba-

tive order of σSPS, together with the 1v1 subtraction term. Such processes

and kinematic regions are the most promising ones to make useful calcu-
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lations and measurements of DPS, especially because there are only few

cases for which SPS is computed at the order containing the double box

(essentially only double electroweak gauge boson production).

Now let us turn to the TMD case, where the pattern of overlaps and

divergences is somewhat different. In particular, the ultraviolet divergences

in σDPS associated with 1v1 graphs become logarithmic rather than a power.

This is related to the fact that DPS and SPS have the same power behaviour

in the small qT region. The inter-parton distance y+ = y + 1
2 (z1 − z2) in

the amplitude and its counterpart y− = y − 1
2 (z1 − z2) in the complex

conjugate amplitude (see Fig. 4(a)) are independent variables now. When

one of these distances is small, the TMDs are dominated by perturbative

1 → 2 splitting for the corresponding parton pair. The divergent behaviour

of σDPS in the region where both y+ and y− go to zero corresponds to the

overlap of DPS with the SPS double box graph in Fig. 2(b). The region

where only y− goes to zero corresponds to an overlap with the SPS/DPS

interference graph in Fig. 2(c).

It is clear then that in this case the DPS term must be regulated when

either y+ or y− go to zero, as is done in (2). The SPS/DPS interference

terms must also be regulated for small y+ or y−, since they overlap with

SPS again. Subtraction terms must be included as appropriate to remove

the double counting, as elaborated in Ref. 8.

5. Collinear DPDs: evolution

The twist-two operators in the definition of DPDs contain ultraviolet di-

vergences that require renormalisation. This leads to the familiar DGLAP

evolution equations of ordinary PDFs, and to corresponding equations for

collinear DPDs. Taking different scales µ1, µ2 for the partons with momen-

tum fractions x1 and x2, we have a homogeneous evolution equation

∂

∂ logµ2
1

RFa1a2
(x1, x2,y;µ1, µ2, ζ) =

∑

b1

∫ 1−x2

x1

dx′
1

x′
1

RPa1b1

(x1

x′
1

;µ1,
x1ζ

x2

)

× RFb1a2
(x′

1, x2,y;µ1, µ2, ζ) (11)

in µ1 and its analogue for µ2. The two parton pairs with momentum frac-

tions x1 or x2 evolve separately. Note that in the colour singlet sector, both
1F and 1P are ζ independent, and 1P is the same DGLAP evolution kernel

as for ordinary PDFs.

The interplay of DGLAP evolution with the splitting mechanism de-

scribed in Sec. 4 has important consequences when one or both momentum
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fractions x1, x2 are small.8 It can change the 1/y2 dependence of the split-

ting contribution (9) into a much flatter y dependence, which increases the

contribution of the region y ≫ 1/ν in the 1v1 and 2v1 cross sections. The

size of the effect depends on kinematics and on the parton types involved.

The Fourier integral that converts F (xi,y) into a momentum space

DPD F (xi,∆) has a logarithmic divergence at small y from the splitting

contribution, which requires additional ultraviolet renormalisation.6 In the

following, we concentrate on colour singlet distributions (R = 1) and on

equal scales µ1 = µ2. One way to define F (xi,∆) is to perform the Fourier

transform inD = 4−2ǫ dimensions and use ordinary MS renormalisation for

the splitting divergence. The resulting evolution equation has an additional

inhomogeneous term, which at LO in αs reads

∂

∂ logµ2
1Fa1a2

(x1, x2,∆;µ) = {homogeneous terms}

+
αs(µ)

2π
1Pa0→a1a2

(
x1

x1 + x2

)
fa0

(x1 + x2;µ)

x1 + x2
, (12)

with the same kernel 1Pa0→a1a2
as in (9). The homogeneous terms have the

same form as in the evolution of F (xi,y), with y replaced by ∆. This inho-

mogeneous evolution has been discussed extensively in the literature.20–24

Whilst the scheme presented here requires position space DPDs F (xi,y)

for computing cross sections, the momentum space DPDs have a property

that makes their study worthwhile. At ∆ = 0, unpolarised momentum

space DPDs satisfy sum rules23 for the momentum and the flavour quantum

numbers of one of the two partons:

∑

a2=q,q̄,g

∫ 1−x1

0

dx2 x2
1Fa1a2

(x1, x2,0) = (1− x1) fa1
(x1) ,

∫ 1−x1

0

dx2

[
1Fa1q(x1, x2,0)− 1Fa1 q̄(x1, x2,0)

]
= Na1q fa1

(x1) , (13)

where Na1q is a combinatorial factor. The validity of these sum rules for

MS renormalised distributions can be shown to all orders in perturbation

theory.25 A relation between DPDs in momentum and position space can

be established by defining distributions

1FΦ(x1, x2,∆;µ, ν) =

∫
d2y ei∆y Φ(yν) 1F (x1, x2,y;µ) , (14)

where the logarithmic singularity at small y is removed by the same regu-

lator function Φ used in the cross section. These DPDs and the MS renor-

malised ones differ only by the treatment of the ultraviolet region, so that
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their difference can be computed in perturbation theory.8 To order αs, one

finds that 1F (x1, x2,∆;µ) − 1FΦ(x1, x2,∆;µ, µ) at ∆ = 0 is a calculable

function of x1/(x1 + x2) times the inhomogeneous term in (12).

We note that the factorisation formula (1) can be rewritten in terms of∫
d2∆ RFΦ(x̄1, x̄2,−∆)RFΦ(x1, x2,∆). This has been used to show that,

at leading logarithmic accuracy, the collinear 2v2 and 2v1 cross sections

given in Refs. 13–17 are consistent with the formalism presented here.8

6. Soft gluons and Sudakov logarithms

The proof of the DPS factorisation formulae (1) and (2) proceeds in close

analogy to the case of SPS. Here we only sketch the steps that lead to the

construction of DPDs and their evolution equations in rapidity, referring

to Refs. 26 and 27 for details. One starts by showing that graphs con-

tributing to the cross section at leading power in Λ/Q factorise into hard,

collinear and soft subgraphs, as depicted for the double Drell-Yan process

in Fig. 5(a). In the hard-scattering subgraphs H1 and H2 all internal lines

are far off shell, the subgraphs A and B involve only momenta collinear to

one of the incoming protons, and the subgraph S describes the exchange

of soft gluons between the right-moving partons in A and the left-moving

ones in B.

H1 H1

H2H2

S

A

B

(a)

B

A

S
j1

i1
i2i1

l1 l2
l1

k1

H1

H2

H1

H2

k1

j1

k2

j2

j2

i2

l2

k2

(b)

Fig. 5. (a) Factorised graph for double Drell-Yan production. (b) Graph for double
dijet production after the Grammer-Yennie approximation and Ward identities have
been applied. i1, i2, · · · , l2 are colour indices.
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To obtain a useful factorisation formula, soft gluons must be decoupled

from A and B. To achieve this, one performs a Grammer-Yennie approxi-

mation. For one gluon with momentum ℓ flowing from S into A, this reads

Sµ(ℓ)A
µ(ℓ) ≈ S−(ℓ)

v+R
ℓ−v+R + iǫ

ℓ−A+(ℓ̃) ≈ Sµ(ℓ)
vµR

ℓvR + iǫ
ℓ̃νA

ν(ℓ̃) , (15)

where vR = (v+R , v
−
R ,0) specifies a direction with large positive rapidity

YR = 1
2 log |v

+
R/v

−
R |. In the first step, we have retained only the largest

component of Aµ and replaced ℓ = (ℓ+, ℓ−, ℓ) with ℓ̃ = (0, ℓ−, ℓ) in that

factor, which involves plus momenta much larger than ℓ+. The second step

is more delicate and will be discussed in Sec. 7. One can now apply a Ward

identity to ℓ̃νA
ν(ℓ̃), which removes the gluon attachment from A. The soft

gluon emerging from S then couples to a Wilson line along the direction vR.

Naively, one would take vR lightlike, i.e. set v−R = 0, but this would lead to

so-called rapidity divergences of loop integrals inside S. Instead of a finite

rapidity YR, one may use other methods to regulate these divergences, two

of which have been applied to DPS in Refs. 28 and 29.

In full analogy, one can replace soft gluons coupling to B by gluons

coupling to a Wilson line along a direction vL with large negative rapidity.

The soft factor S can now be written as the vacuum expectation value of

Wilson line operators and is thus decoupled from A and B.

A similar argument is used for longitudinally polarised collinear gluons

exchanged between A and H1 or H2, removing them from the hard scatters

and coupling them to Wilson lines along vL. These Wilson lines appear in

the proton matrix element 〈p |Oa1
Oa2

|p〉 associated with the factor A. The

same steps are followed for gluons exchanged between B and H1 or H2,

resulting in Wilson lines along vR in the matrix element associated with B.

The factors in the cross section formula are tied together by colour

indices in a way that is shown in Fig. 5(b) for double dijet production. We

first discuss the production of colour singlet particles in H1 and H2. In this

case, the soft factor is contracted with δj1k1δj2k2 and analogous factors for

the index pairs on the r.h.s. of the final-state cut.

It is useful to project the collinear and soft factors on colour represen-

tations R, as was explained for DPDs in Sec. 2. The collinear factors then

become vectors RA, RB in the space of colour representations, and the soft

factor for colour singlet production becomes a matrix RR′

S. In the cross

section we have the combination
∑

RR′

RB RR′

S R′

A.

The soft matrix in the cross section depends on the rapidity difference

Y = YR−YL of the Wilson lines along vR and vL. This dependence is given
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by a Collins-Soper equation

∂

∂Y
RR′′

S(Y ) =
∑

R′

RR′

K̂ R′R′′

S(Y ) (16)

with a rapidity independent matrix K̂. Introducing an intermediate rapid-

ity YC between YR and YL, one can write S(Y ) as the product of two matri-

ces, one depending on YR−YC and the other on YC−YL. Combining one of

them with A and the other with B, one obtains DPDs FA(YC) and FB(YC).

In the DPDs, one can take the limits YL → −∞ and YR → ∞ without en-

countering rapidity divergences. The proton matrix element in (4) then

contains lightlike Wilson lines. The final cross section formula involves the

sum
∑

R
RFB

RFA with colour dependent DPDs, as anticipated in Sec. 2.

Note that A, B and S are nonperturbative quantities since they involve

low virtualities. Eliminating S by defining distributions FA and FB thus

represents a significant simplification.

The construction sketched so far is common to TMD and collinear fac-

torisation. However, ultraviolet renormalisation works differently in the

two cases, which we now discuss in turn.

TMD factorisation. It is useful to express the rapidity dependence of

the DPDs in terms of boost invariant quantities, ζ = 2x1x2(p
+)2 e−2YC for

FA and an analogue ζ̄ for FB . We concentrate on FA from now on and

omit the subscript A. Restoring the dependence on all other variables, we

have a Collins-Soper equation

∂

∂ log ζ
RF (xi, zi,y;µi, ζ) =

1

2

∑

R′

RR′

K(zi,y;µi)
R′

F (xi, zi,y;µi, ζ) (17)

with a matrix kernel K related to K̂ in (16). Its µ1 dependence is given by

∂

∂ logµ1

RR′

K(zi,y;µi) = − δRR′ γK(µ1) , (18)

whilst for the DPD we have

∂

∂ logµ1

RF (xi, zi,y;µi, ζ) = γF (µ1, x1ζ/x2)
RF (xi, zi,y;µi, ζ) (19)

with

γF (µ, ζ) = γF (µ, µ
2)− 1

2
γK(µ) log

ζ

µ2
. (20)

Here γK(µ) and γF (µ, µ
2) depend on µ via αs(µ). Analogues of (18) and

(19) hold for the µ2 dependence. Note that the kernelK and the anomalous
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dimensions γK and γF differ for quarks and for gluons, but are independent

of parton polarisation and quark flavour.

The system of evolution equations can be solved analytically (provided

the matrix K can be diagonalised analytically). The solution exponentiates

Sudakov double logarithms, controlled by γK , and single logarithms going

with γF and K. Except for the scaling of ζ by x1/x2 or x2/x1, the double

logarithms have the same form as for single TMDs. When FA is multiplied

with FB in the cross section, logarithms of ζ and ζ̄ turn into logarithms of

the invariant masses Q1 and Q2 in the two hard-scattering subprocesses.

Collinear factorisation. In collinear factorisation, the soft factor sim-

plifies considerably. Using colour algebra, one can show that the general

soft factor shown in Fig. 5(b) is the same as the one for colour singlet pro-

duction, which is contracted with δj1k1δj2k2 etc. Moreover one finds that

the soft matrix RR′

S is diagonal. The colour matrix algebra in the con-

struction of DPDs thus becomes trivial. The product of factors in the cross

section can then be written as∑

R

RH1
RH2

RFB
RFA . (21)

If a colour singlet state is produced, then all colour projections RH are

equal, otherwise they differ. Multiplying RH with a flux factor, one obtains

the subprocess cross sections Rσ̂ in the collinear factorisation formula (1).

Collinear DPDs depend on ζ as

∂

∂ log ζ
RF (xi,y;µi, ζ) =

1

2
RJ(y;µi)

RF (xi,y;µi, ζ) (22)

with
∂

∂ logµ1

RJ(y;µi) = − RγJ (µ1) (23)

and an analogous equation for the µ2 dependence. The DGLAP kernels in

the evolution equation (11) depend on ζ via

RPab(x;µ, ζ) =
RPab(x;µ, µ

2)− 1

4
δabδ(1− x)RγJ (µ) log

ζ

µ2
. (24)

The ζ dependence of the DPDs can be given in analytical form. It contains

exponentiated double logarithms controlled by γJ and single logarithms

going with the kernel J . In the colour singlet sector, the soft factor is

trivial, 11S = 1, and correspondingly one has 1J = 1γJ = 0. In physical

terms, the effects of soft gluon exchange cancel in this case. As a result,

colour non-singlet DPDs are suppressed by Sudakov logarithms, whereas

colour singlet DPDs are not.28,30
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7. Glauber gluons and factorisation

A crucial step in showing that soft gluon exchange between the subgraphs

A and B in Fig. 5(a) can be subsumed into the vacuum expectation value

of Wilson lines is to establish the absence of contributions from the so-

called Glauber region. In the following, we restrict ourselves to colour

singlet production, since it is the only context in which this issue has been

studied. The arguments apply both to collinear and TMD factorisation.

For gluons leaving the soft subgraph S in Fig. 5(a), there are in fact two

distinct momentum regions that contribute to the cross section at leading

power. The first one can be called the “central soft” region, where all

components of the momentum ℓ have comparable size, |ℓ+| ∼ |ℓ−| ∼ |ℓ|.
In this region, the second step of the Grammer-Yennie approximation (15)

is valid: we have ℓ−A+ ≈ ℓ̃νA
ν because ℓA is power suppressed compared

to ℓ−A+. The second one is the Glauber region, which is characterised

by |ℓ+ℓ−| ≪ ℓ
2. Gluons in this region mediate small-angle scattering of

a right-moving parton on a left-moving one. In the Glauber region, we

can have |ℓA| ∼ |ℓ−A+|, so that the Grammer-Yennie approximation fails.

This presents a serious obstacle to factorisation.

Of course, the soft momentum ℓ in a graph is not held fixed but inte-

grated over. For many types of soft gluon attachment, the integration over

ℓ+ or ℓ− (or both) can be deformed away from the real axis into the complex

plane in such a way that one has |ℓ+ℓ−| ∼ ℓ2 on the deformed integration

contour and thus avoids the Glauber region. This is only possible when

the poles in ℓ+ or ℓ− of the propagators depending on ℓ do not obstruct

the deformation. In such cases, the contribution from ℓ in the Glauber

region can be validly subsumed into the contribution from a collinear or a

central soft region, where Grammer-Yennie approximations can be applied

to achieve factorisation.

c1 c2 c3

ℓ1

ℓ2 ℓ3 ℓ4

Fig. 6. Graph for double Drell-Yan production with several soft gluons exchanged be-
tween left and right moving fast partons. The three possible final state cuts of the graph
are denoted by c1, c2 and c3.
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Examples of soft attachments for which we may deform the momentum

out of the Glauber region are given by the gluons with momenta ℓ1 and

ℓ4 in Fig. 6. In fact, for all of the “novel” types of soft attachment that

appear only when we consider DPS rather than SPS, such a deformation

in possible. Note that the sign of iǫ in the denominators of (15) is chosen

precisely such that it does not obstruct these contour deformations. As a

consequence, the Wilson lines in the construction of soft factors and DPDs

are past pointing (in light-cone coordinates), as in (6).

The one type of soft attachment for which the propagator poles obstruct

a deformation out of the Glauber region is exemplified by the gluons with

momenta ℓ2 and ℓ3 in Fig. 6. This is an attachment between a right-moving

and a left-moving spectator parton after the two hard scatters (where “af-

ter” refers to the topology of graphs and not to the time coordinate in some

reference frame). Of course, such exchanges occur already in SPS. As shown

for instance in Ref. 31, the contribution from the Glauber region cancels to

leading power when one sums over all final state cuts of a given graph. This

requires that the cross section is differential only in properties of the hard

scattering products, but fully inclusive over the remaining particles. The

same argument applies to DPS. The principle ensuring this cancellation is

unitarity: spectator scattering does affect details of the final state, but its

net effect is zero if the observable is not sensitive to the spectator momenta.

The DPS cross sections (1) and (2) satisfy this requirement. On the other

hand, one can show that Glauber gluon exchange does break factorisation

for observables depending on the momenta of the spectator partons (or

better, of the “beam jets” into which these partons hadronise).

The argument just sketched works for simple graphs, essentially at the

level of single soft gluon exchange. To demonstrate Glauber cancellation

at all orders, a more powerful technique is needed, based on the light-front

ordered version of QCD perturbation theory (LCPT). This argument was

given for DPS in Ref. 26, generalising the treatment of the SPS case in

Ref. 1. In the LCPT picture, one sees again that from the point of view of

the Glauber gluons, single and double hard scattering look rather similar,

and that the troublesome “final state” poles obstructing the deformation

out of the Glauber region cancel after the sum over of final state cuts.

Again, a unitarity argument is used to achieve this cancellation.



Double parton scattering theory overview 21

(a) (b)

Fig. 7. (a) Ladder graph for a DPD. (b) Splitting contribution for a twist-three TMD.

8. Perturbative transverse momenta

TMD factorisation is applicable when the typical size qT of the transverse

momenta q1, q2 is much smaller than the hard scale Q. This includes the

multi-scale regime Λ ≪ qT ≪ Q. In this situation, the small parameter in

the general power counting of Sec. 3 becomes qT /Q rather than Λ/Q.

The Fourier exponent e−i(q1z1+q2z2) in the TMD cross section (2) limits

the distances z1 and z2 to typical size 1/qT . Double TMDs can then be

computed in terms of perturbative subprocesses at scale qT and of collinear

matrix elements expressing the physics at scale Λ, which significantly in-

creases the predictive power of theory. The distance y is not restricted in

this way, and there are in fact two different regimes for DPS.

If y ∼ 1/Λ is of hadronic size, then the mechanism generating pertur-

bative transverse momenta is the emission of partons, described by ladder

graphs as in Fig. 7(a). For the DPDs we then have

RFa1a2
(xi, zi,y;µi, ζ) =

∑

b1b2

RCa1b1(x
′
1, z1;µ1, x1ζ/x2)

⊗
x1

RCa2b2(x
′
2, z2;µ2, x2ζ/x1) ⊗

x2

RFb1b2(x
′
i,y;µi, ζ) (25)

with convolution products ⊗ as in (11). This is the same mechanism as in

SPS (a prominent example is Drell-Yan production with Λ ≪ qT ≪ Q),

and the short-distance coefficients 1C are the same as the ones for single

TMDs. The relation (25) can be understood in terms of an operator product

expansion, with the operators in (5) being expanded for small z1, z2 while

keeping y large.

The second regime for DPS is when y is of the same size as zi ∼ 1/qT .

The operator product expansion for the double TMD then involves three

types of terms, already presented in Sec. 4. The four partons at small

relative distances can originate from a collinear PDF via splitting, as in

Fig. 4(a), from a collinear twist-four distribution without any splitting,

or from a collinear twist-three distribution with parton splitting only in
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the amplitude or its conjugate. As already noted, the latter case requires

chiral-odd distributions and lacks small x enhancement.

In the DPS cross section, we have 1v1, 2v1 and 2v2 contributions from

the four combinations of splitting and intrinsic contributions to the two

DPDs. It is important to note that these have different power behaviour in

qT , namely

Q4dσ

d2q1d
2q2

∼
yqT∼1





α2
s/q

2
T for 1v1

αsΛ
2/q4T for 2v1

Λ4/q6T for 2v2

Q4dσ

d2q1d
2q2

∼
yΛ∼1

Λ2/q4T , (26)

where we have also specified the behaviour of the contribution from y ∼
1/Λ. Although this contribution, as well as the 2v1 part at y ∼ 1/qT are

suppressed by Λ2/q2T compared with 1v1, it makes sense to keep them since

they have a stronger small x enhancement and involve fewer powers of αs.

Explicit expressions for the different terms, including the Sudakov factors

resulting from ζ evolution, are given in Ref. 27. We note that (26) holds

if |q1 + q2| ∼ |q1| ∼ |q2| are all of order qT . Other regimes have been

discussed in Refs. 6,13,14.

To obtain the physical cross section, one must combine DPS with SPS

and the SPS/DPS interference, as discussed in Sec. 4. The TMDs in these

contributions can be expressed in terms of collinear matrix elements as well.

For SPS, they are just the ordinary PDFs. For the interference term, one

has contributions with collinear twist-three distributions (lacking small x

enhancement) and contributions with a PDF and a short-distance splitting

only on one side of the final state cut, as shown in Fig. 7(b). Overall,

one thus finds that – if collinear twist-three distributions are neglected –

the only parton distributions needed for TMD factorisation in the regime

Λ ≪ qT ≪ Q are collinear DPDs and ordinary PDFs.

9. Status of factorisation

Significant progress has been made towards establishing factorisation for-

mulae for DPS processes at the same level of rigour as for SPS. In fact,

many of the results we have sketched can even be extended to the case of

three or more hard scatterings in a rather straightforward manner. How-

ever, a description of the colour structure becomes rather cumbersome in

this case, as does the discussion of perturbative splitting and double count-

ing with other mechanisms. To conclude this overview, we list what in our

opinion are major remaining open issues in DPS factorisation.
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No all-order proof is available for the nonabelian Ward identities re-

quired for decoupling soft gluons from the collinear factors (see Sec. 6).

Examples at lowest order have been given in Ref. 6. It may be possible to

adapt the proof of the corresponding Ward identities in single Drell-Yan

production32 to DPS, but this has not been worked out.

A crucial ingredient for constructing DPDs is the evolution equation (16)

of the soft matrix S, for which no general proof has been given yet. For small

distances y and zi, one can calculate S in perturbation theory and easily

finds that (16) is valid at one loop.6 Its validity at two loops is corroborated

by the calculation in Ref. 29 (which uses a different regulator for rapidity

divergences). An all-order proof has recently been put forward in Ref. 33,

but it is currently not clear whether it applies to the rapidity regulator

employed in the present work. We also note that the construction sketched

below (16) requires S to be positive semidefinite. There is no general proof

for this, but it can be motivated by perturbative arguments.27

A technical problem in the construction of soft factors are gluons that

couple only to Wilson lines along one direction. Such so-called Wilson line

self-interactions are divergent for Wilson lines of infinite length. It is easy

to see that they cancel in the cross section by construction, but one must

also show that they cancel in the individual parton distributions in the

factorisation formula. Some discussion for SPS is given in Chap. 13.7 of

Ref. 1, but it would be desirable to have a more explicit solution to this

problem, before applying it to the case of DPS.

Finally, the cancellation of Glauber gluon exchange has only been shown

for DPS processes producing colourless particles.26 An extension of this

argument to the production of coloured particles, relevant e.g. for jet pro-

duction, has not even been worked out for SPS, as far as we know. Such

an extension may be possible for collinear factorisation, whereas for TMD

factorisation there are strong arguments that this cannot even be done for

SPS.3

Many of the subtleties in DPS factorisation, such as the presence of

parton correlations and the perturbative splitting mechanism, are by now

quite well understood on the theory side. Their phenomenological impor-

tance, however, remains to be quantified for many interesting cases. This

opens a wide field of studies for the future.
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