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We show that the dynamics responsible for the variation of the Yukawa couplings of the Standard Model
fermions generically leads to a very strong first-order electroweak phase transition, assuming that the Yukawa
couplings are large and of order 1 before the electroweak phase transition and reach their present value af-
terwards. There are good motivations to consider that the flavour structure could emerge during electroweak
symmetry breaking, for example if the Froggatt-Nielsen field dynamics were linked to the Higgs field. In this
paper, we do not need to assume any particular theory of flavour and show in a model-independent way how the
nature of the electroweak phase transition is completely changed when the Standard Model Yukawas vary at the
same time as the Higgs is acquiring its vacuum expectation value. The thermal contribution of the fermions cre-
ates a barrier between the symmetric and broken phase minima of the effective potential, leading to a first-order
phase transition. This offers new routes for generating the baryon asymmetry at the electroweak scale, strongly
tied to flavour models.

I. INTRODUCTION

While the Higgs sector has started to be well measured
at the LHC, the nature of the electroweak phase transition
(EWPT) still remains very poorly constrained. In fact, it de-
pends only weakly on the value of the Higgs mass which is
only one parameter of the Higgs potential while the nature
of the EWPT depends mainly on the Higgs cubic and quar-
tic couplings and/or on the Higgs couplings to other scalar
fields. In the Standard Model (SM), the EWPT is a rapid
crossover [1] but minimal extensions of the SM can make it
first-order. The second run of the LHC is going to be an inter-
esting step in providing new probes of models leading to first-
order EWPT, which would have dramatic implications for EW
baryogenesis and therefore our understanding of the origin of
the matter antimatter asymmetry of the universe [2]. The EW
baryogenesis framework relies on the existence of a strongly
first-order EW phase transition [3, 4]. The baryon asymme-
try is produced in the vicinity of the EW symmetry breaking
bubble walls [5] where all three Sakharov conditions [6] are
at work. Particle distributions depart from thermal equilib-
rium and CP-violating currents are converted into baryons by
sphalerons [7, 8].

A variety of mechanisms leading to a first-order EWPT
have been proposed. Only one of them has been severely con-
strained by Higgs measurements. This concerns extensions
of the Standard Model (SM) where the barrier separating the
symmetric and broken phase minima is thermally generated
due to loops of new bosonic modes in the Higgs effective po-
tential, e.g. charged scalars from a non-minimal Higgs sector
or top squarks in the supersymmetric extension of the SM [9].
In contrast, a model where the Higgs potential is modified at
tree level due to the couplings of the Higgs to an additional
singlet, leading to potentially a 2-step EWPT is a very simple
scenario which remains difficult to test, e.g. [10, 11]. Finally,
another interesting class of models leading to a very strong
first-order phase transition which can be probed in the near
future are models where EW symmetry breaking is induced
by a dilaton [12–14], with couplings similar to the Higgs, al-
though relatively suppressed.

We present a different path here. We show that if the
Yukawa couplings yij in the interactions between the SM
fermions and the Higgs boson, yijf

i

LΦ(c)f jR, vary during
the EWPT, from a value of order 1 at the beginning of the
EWPT to their present value at the end of the EWPT when
〈Φ〉 = v/

√
2, this can lead naturally to a very strong first-

order PT.

II. EMERGING FLAVOUR DURING EW SYMMETRY
BREAKING

A variation of the Yukawa couplings during the EWPT
is actually well-motivated when considering how the flavour
structure and fermion mass hierarchy of the SM may emerge.
There are three main mechanisms to describe fermion masses
mf = yfv/

√
2: spontaneously broken abelian flavour sym-

metries as originally proposed by Froggatt and Nielsen [15]
(FN), localisation of the profiles of the fermionic zero modes
in extra dimensions [16] and partial fermion compositeness in
composite Higgs models [17]. The last two scenarios may
be related by holography [18, 19]. The scale M at which
the flavour structure emerges is not a-priori constrained. In
FN constructions, the Yukawa couplings are controlled by the
breaking parameter of a flavour symmetry. A scalar field χ
carrying a negative unit of the abelian charge develops a vac-
uum expectation value (VEV) and

yij ∼ (〈χ〉/M)−qi+qj+qH , (1)

where the q’s are the flavor charges of the fermions and the
Higgs. For an appropriate choice of flavour charges and with
〈χ〉/M ∼ 0.22, measured masses and mixings can be well
described. In most FN constructions, the prejudice is that the
scale M is very high, close to the GUT or Planck scale. How-
ever, it could be lower, and even close to the EW scale [20–
29].

While there is a huge literature on models advocated to ex-
plain the fermion masses [30], there is no study on the asso-
ciated cosmology. On the other hand, in all flavour models,
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Yukawa couplings are controlled by the VEV of some scalar
fields (the so-called “flavons”) and it is natural to wonder
about their cosmological dynamics. Our working assumption
is that the flavon couples to the Higgs and therefore the flavon
and the Higgs VEV dynamics are intertwined, motivating the
possibility that the Yukawas vary during the EWPT. The vari-
ous implications of this framework for electroweak baryogen-
esis will be presented in a series of papers. We will in particu-
lar discuss the CKM matrix as the unique CP-violating source
[31] as well as specific models of varying Yukawas [32, 33].

In this letter, the key point we want to make is that we do not
need to specify the dynamics responsible for the evolution of
the Yukawas to derive the nature of the EWPT. In fact, even if
the dynamics of the scalar potential of the flavon-Higgs cou-
pled system would correspond to a second order EW phase
transition when ignoring the variation of fermion masses, the
fact that the Yukawas of the SM were large during the EWPT
is enough to completely change the nature of the EWPT, while
relying only on the SM degrees of freedom (dof).

III. EFFECT OF FERMIONIC MASSES ON THE EWPT

The physics of the effect of varying Yukawas is related to
the contribution of effective relativistic dof g∗ to the effec-
tive potential Veff ⊃ −g∗π2T 4/90. Regions in Higgs space
in which species are massive correspond to a decrease in g∗
and hence an increase in Veff . The effect of species coupled to
the Higgs is therefore to delay and hence strengthen the phase
transition. In the usually assumed case where the Yukawas
have the same values during the EWPT as today, all Yukawas
except the one of the top quark are small and therefore al-
most all fermions are light even in the broken phase during the
EWPT. Therefore there is no significant change in g∗ during
the EWPT and the effect of the light fermions is negligible.
Crucially, the contribution of bosonic species to the finite-T
effective potential also includes a term cubic in the mass and
hence bosonic dof not only delay the phase transition but also
create a barrier between the two minima. However, the effect
of the SM bosons is insufficient to provide a strong first-order
phase transition [1]. Thus, the common lore consists of adding
additional bosonic degrees of freedom to strengthen the phase
transition. As mentioned in the introduction, this has been
severely constrained at the LHC.

On the other hand, it was shown in [34] that adding new
strongly-coupled fermions with constant Yukawa couplings
can also help to strengthen the EWPT. Though these do not
create a thermal barrier on their own, they can lead to a de-
crease in g∗ between the symmetric and broken phases and
hence delay and strengthen the phase transition. However,
these models are far from minimal. They suffer from a vac-
uum instability near the EW scale due to the strong coupling
of the new fermions and new bosons are also needed to cure
this instability.

In our approach of varying Yukawas, these problems are
alleviated. We are interested in models where the variation
of the Yukawa couplings is due to the VEV of a flavon field,
coupled to the Higgs, whose VEV therefore also varies during

FIG. 1: The mass of a fermionic species as a function of φ for a
constant Yukawa coupling, n = 0, and varying Yukawas. In the
constant Yukawa case we take y(φ) = 1. For the varying Yukawa
cases we take y1 = 1 and y0 = 0 (see Eq. 2).

the EWPT. If the Yukawa couplings decrease with the Higgs
background value φ, the SM fermions can be massless both
in the symmetric phase, at φ = 0, as well as at φ ∼ v due to
the falling couplings, but be massive somewhere in between,
i.e in the region 0 < φ < v. This raises the potential in this
area and can therefore create a barrier. The quantitative size of
this effect is encoded in the effective potential which we shall
study below.

We stress that this does not mean that the Yukawa couplings
are controlled solely by the Higgs field, i.e. the Higgs need not
itself be the flavon (such a scenario is strongly constrained by
various Higgs and flavour measurements, see [20, 21, 26, 27]).
The variation of the Yukawas is related to the variation of the
Higgs VEV during the EWPT (during which the flavon VEV
may also change) but the Yukawas today do not depend on
the Higgs VEV v = 246 GeV nor are the Higgs-fermion cou-
plings sizeably affected. Model-dependent implementations
will be presented elsewhere [32, 33].

The aim of this letter is to stress the model-independent
features of the physics of Yukawa variation. We will therefore
present results using the following ansatz for the variation of
the Yukawa related to the variation of the Higgs VEV itself:

y(φ) =

{
y1

(
1−

[
φ
v

]n)
+ y0 for φ ≤ v,

y0 for φ ≥ v.
(2)

The mass of the fermion species is given by

mf =
y(φ)φ√

2
(3)

and we illustrate the dependence of mf on φ in Fig. 1. Equa-
tion (2) just expresses the fact that before the EWPT, the
Yukawas take values y1 and after the EWPT they take their
present value y0. The power n is just a parametrisation of how
fast the variation is taking place and is therefore encoding the
model dependence. Depending on the underlying model, the
Higgs field variation will follow the flavon field variation at
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FIG. 2: The evolution of the effective potential with temperature
in the SM (top) and with varying Yukawas (bottom). The vary-
ing Yukawa calculation includes all SM fermions with y1 = 1,
n1 = 1 and their respective y0, chosen to return the observed fermion
masses today (for the neutrinos we have assumed Dirac neutrinos and
mν = 0.05 eV). In the varying Yukawa case we find a first-order
phase transition with φc = 230 GeV and Tc = 128 GeV (second
order transition at Tc = 163 GeV for the constant Yukawa case).

different speeds. Large values of n mean the Yukawa cou-
pling remain large for a greater range of φ away from zero.
We will see that large n strengthen the phase transition.

We study the strength of the EWPT for different choices of
n, y1 ∼ O(1) and the number of degrees of freedom, g, of the
species with the φ-dependent Yukawa coupling. The results
do not depend strongly on the choice of y0 as long as y0 � 1.
The top Yukawa is assumed to be constant and take its SM
value.

Of course, in a realistic model the different fermion species
will take on different values of n, y1 and y0 (also the underly-
ing model determines whether only quarks, only leptons or all
fermion masses are controlled by the same flavon). Our aim
here is to simply illustrate the effect through a simple ansatz
and an overall variation of n, g and y1.

The possibility that the Yukawa couplings could change
during the EWPT was raised in [35] but the impact on the na-
ture of the EWPT was ignored, the emphasis was on the pos-
sibility to get large CP violation from the CKM matrix during
the EWPT. We show in the next section the three main effects

FIG. 3: Solid lines: Contours of φc/Tc = 1 for different choices of
y1 and y0 = 0.02, areas above these lines allow for EW baryoge-
nesis. Dashed lines: areas above these lines are disallowed (for the
indicated choices of y1 and y0) due to the EW minimum not being
the global one.

that Eq. (2) has on the Higgs effective potential.

IV. EFFECTIVE HIGGS POTENTIAL WITH VARYING
YUKAWAS

We consider the effective potential given by the sum of the
tree level potential, the one-loop zero temperature correction,
the one-loop finite temperature correction and the daisy cor-
rection [36]

Veff = Vtree(φ) + V 0
1 (φ) + V T1 (φ, T ) + VDaisy(φ, T ). (4)

In the framework we have in mind, this potential depends
as well on the additional flavon field(s) coupling to the
Higgs. However, for the generic points we want to stress,
we should ignore the flavon(s) degrees of freedom and take
the SM tree level potential. We study the evolution of the
effective potential with temperature numerically, including
the SM fermionic dof with varying Yukawas, in addition to
the usual bosonic SM fields. An example of the evolution of
the effective potential with varying Yukawa couplings, with a
comparison to the SM case (constant Yukawas), is shown in
Fig. 2. We next scan over n and g for different choices of y1

and find the strength of the phase transition, as characterised
by the ratio of the critical VEV to temperature, φc/Tc
(successful EW baryogenesis requires φc/Tc & 1 [37]).
Our results are summarised in Fig. 3. Below we discuss
the different terms of the effective potential and identify the
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FIG. 4: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: barrier
contribution from the fermions with varying Yukawas using the high
T approximation for δV in Eq. (9). Long dashed line: barrier contri-
bution using the full numerical calculation for Jf (x2) in (7).

contributions leading to a strong first-order phase transition.

1) Effects from the T = 0 one-loop potential: The one-
loop zero temperature correction is given by

V 0
1 (φ) =

∑
i

gi(−1)F

64π2

{
m4
i (φ)

(
Log

[
m2
i (φ)

m2
i (v)

]
− 3

2

)
+ 2m2

i (φ)m2
i (v)

}
, (5)

where gi are the SM degrees of freedom, F = 0 (1) for
bosons (fermions) and we have ignored the contribution of
the Goldstone bosons (gi does not strictly correspond to the
degrees of freedom present, hence both the longitudinal gauge
boson dof and the Goldstones should be summed in the Lan-
dau gauge, however, their contribution is subdominant and we
therefore neglect them [38]). The field dependent gauge boson
masses are M2

W (φ) = g2
2φ

2/4,M2
Z(φ) = (g2

2 + g2
Y )φ2/4,

where g2 (gY ) is the weak isospin (hypercharge) gauge cou-
pling.

It is clear from (5) that the effect of a large fermionic
mass is to significantly lower the potential between φ = 0
and φ = v. This can lead to weaker – rather than stronger
– phase transitions for increasing y1 or n in some areas of
parameter space. In addition, it can lead to the EW minimum
no longer being the global minimum. Note the effect grows
logarithmically as y0 decreases. The regions of parameter
space in which the global minimum is not the EW one are
shown in Fig. 3.

2) Barrier from the T 6= 0 one-loop potential: The one-
loop finite temperature correction is given by

V T1 (φ, T ) =
∑
i

gi(−1)FT 4

2π2
× (6)∫ ∞

0

y2Log
(

1− (−1)F e−
√
y2+m2

i (φ)/T 2
)

dy.
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FIG. 5: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: the Higgs
boson daisy contribution, showing its effect of lowering the barrier at
φ = 0 compared to the potential at φ 6= 0. This delays and strength-
ens the phase transition. Long dashed line: the potential without the
Higgs boson daisy contribution (but still normalised to 0 at φ = 0),
showing the phase transition would have occurred earlier without the
daisy contribution. Our calculation returns φc = 242 (240) GeV,
Tc = 111 (128) GeV with (without) the daisy contribution.

We focuss on the fermionic contribution,

V Tf (φ, T ) = −gT
4

2π2
Jf

(
mf (φ)2

T 2

)
, (7)

where Jf (x2) has a high-temperature expansion for x2 � 1,

Jf (x2) ≈ 7π4

360
− π2

24
x2 − x4

32
Log

[
x2

13.9

]
. (8)

The first term in this expansion is constant in φ and has no
effect. The third term is higher order ∼ φ4 and can be ig-
nored for the purposes of our discussion here. The second
term is crucial as, for decreasing Yukawas, it leads to a barrier
between the symmetric and broken phases,

δV ≡ V Tf (φ, T )− V Tf (0, T ) ≈ gT 2φ2[y(φ)]2

96
. (9)

This leads to a cubic term in φ, e.g. for y(φ) = y1(1− φ/v):

δV ≈ gy2
1φ

2T 2

96

(
1− 2

φ

v
+
φ2

v2

)
(10)

giving a barrier for the potential. We show the contribution
of Eq. (9) to the barrier height at Tc in Fig. 4. This is dif-
ferent from the effect noted in [34] which assumed constant
Yukawas. The distinct effect here is that the decreasing
Yukawas actually create the barrier on their own as they
lead to effectively massless fermions, mf (φ) � T , not only
around φ = 0, but also at φ ≈ v. In constrast, for usual
mass terms, i.e. linear in φ, only bosonic fields create thermal
barriers as the finite-T expansion for bosonic fields contains
a cubic term which the fermionic function lacks.
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3) Effects from the Daisy correction: The daisy correc-
tion comes from resumming the Matsubara zero-modes for
the bosonic degrees of freedom: [39–41]

VDaisy(φ, T ) =
∑
i

giT

12π

{
m3
i (φ)−

[
m2
i (φ) + Πi(T )

]3/2}
(11)

where the sum runs only over scalars and the longitudinal de-
grees of freedom of the vector bosons (ḡi ≡ {1, 2, 1} for the
φ, W± and Z bosons) and the Πi denote the thermal masses.

We consider the contribution from the Higgs,

V φDaisy(φ, T ) =
T

12π

{
m3
φ(φ)−

[
m2
φ(φ) + Πφ(φ, T )

]3/2}
,

(12)
where the Higgs boson thermal mass is [9]

Πφ(φ, T ) =

(
3

16
g2

2 +
1

16
g2
Y +

λ

2
+
y2
t

4
+
gy(φ)2

48

)
T 2.

(13)
The novelty is the dependence of the thermal mass on φ,
which comes from the φ-dependent Yukawa couplings (these
do not enter into the thermal masses for the W and Z bosons
at this order). The effect of this term is to lower the effective
potential at φ = 0, with respect to the broken phase minimum,
as long as Πφ(0, Tc) � Πφ(φc, Tc). This is shown in Fig. 5.
By lowering the potential at φ = 0, the phase transition is
delayed and strengthened.

V. SUMMARY

In summary, we have shown how varying Yukawas during
the EWPT change the nature of the EWPT due mainly to three
effects on the Higgs effective potential: 1) The first effect
comes from the T = 0 one-loop potential. Large Yukawas
in the symmetric phase can lead to a significant decrease of
the potential in the region 0 < φ < v. This can weaken
the phase transition. 2) The T 6= 0 one-loop contributions
from the fermions create a barrier between the 〈φ〉 = 0 and
〈φ〉 6= 0 minima. This can result in a first-order phase tran-
sition. 3) Large Yukawas at φ ∼ 0 significantly increase the
Higgs thermal mass, which, through the Daisy resummation,
lowers the potential close to the origin φ ∼ 0, delaying the
phase transition and thereby increasing φc/Tc. Note that ef-
fect (1) scales as y4

1 , effect (2) as y2
1 and effect (3) as y3

1 . The
net result of these three effects is to give a strong first-order
phase transition in large areas of parameter space, while not
being disallowed by creating a deeper minimum than the EW
one.

The physics of varying Yukawas during the EWPT has im-
portant implications for electroweak baryogenesis with rich
phenomenology. In addition to its effects on the nature of the
EWPT, this has dramatic effects on CP violation [31]. It will
be very interesting to identify realistic models and their exper-
imental signatures [32, 33].
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