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Abstract

With the recently emerging global interest in building a next generation of
circular electron-positron colliders to study the properties of the Higgs boson, and
other important topics in particle physics at ultra-high beam energies, it is also
important to pursue the possibility of implementing polarized beams at this en-
ergy scale. It is therefore necessary to set up simulation tools to evaluate the
beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo
simulation of the equilibrium beam polarization based on the Polymorphic Track-
ing Code(PTC) (Schmidt et al., 2002 [1]) is described. The simulations are for a
model storage ring with parameters similar to those of proposed circular colliders
in this energy range, and they are compared with the suggestion (Derbenev et
al., 1978 [2]) that there are different regimes for the spin dynamics underlying the
polarization of a beam in the presence of synchrotron radiation at ultra-high beam
energies. In particular, it has been suggested that the so-called “correlated” cross-
ing of spin resonances during synchrotron oscillations at current energies, evolves
into “uncorrelated” crossing of spin resonances at ultra-high energies.

∗To be published in Nucl. Instrum. Meth. A.
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Introduction

With the discovery of the Higgs boson by the ATLAS and CMS experiments at
CERN’s Large Hadron Collider(LHC), it becomes natural to measure its properties
as precisely as possible, at the LHC or future electron-positron colliders. Besides
the International Linear Collider, there is an alternative possibility, namely to
build a circular electron-positron collider, with the merit of a higher luminosity-
to-cost ratio, and the potential that it be upgraded to a proton-proton collider
later. Currently, there are two major design studies of such a circular electron
positron collider in the world, the CEPC [3] and the FCC-ee(TLEP) [4]. These
designs open the possibility of precision measurements at the Z pole, at the WW
threshold, at the HZ cross section maximum, and even at the tt̄ threshold, with an
unprecedented accuracy. Then it is natural to pursue the possibility of implement-
ing polarized electron and positron beams at these ultra-high beam energies, for
precision beam energy calibration with transverse beam polarization, or colliding-
beam experiments with longitudinal beam polarization.

The motion of the spin expectation value (the “spin”) ~S of a relativistic charged
particle traveling in electromagnetic fields is described by the Thomas-BMT equa-
tion [5, 6],

d~S

dθ
= ~Ω(~u, θ)× ~S

~Ω(~u, θ) = ~Ω0(θ) + ~ω(~u, θ), (1)

where θ is the azimuthal angle, ~Ω0 is due to the fields on the closed orbit, and ~ω is
due to the fields at the beam coordinates ~u = (x, px, y, py, z, δ) with respect to the
closed orbit, where x, y and z represent the horizontal, vertical and longitudinal
displacements, px and py are horizontal and vertical canonical momenta, and δ =
∆E/E0 is the relative energy deviation. As we shall see, it is often necessary to
describe spin motion with the help of a unit vector field n̂(~u, θ) (the ”invariant
spin field”, or ISF for short) [7]. This satisfies the Thomas-BMT equation along
particle trajectories and it is periodic: n̂(~u; θ) = n̂(~u; θ + 2π). On the closed orbit
n̂ is denoted by n̂0. In the rings treated here, n̂0 is nominally vertical in the
arcs. The rate of precession of spins around n̂ is characterized by the amplitude
dependent spin tune νs [7]. This reduces to the closed-orbit spin tune, ν0, on the
closed orbit. In a perfectly aligned planar ring, ν0 = aγ0, where a = 0.00115965219
for electrons(positrons), and γ0 is the relativistic factor for the design energy. At
orbital tunes for which constituent terms in the perturbation ~ω stay coherent
over long periods with the basic spin precession, n̂(~u; θ) can deviate strongly from
n̂0(θ). This phenomenon is called spin-orbit resonance (which will simply call ”spin
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resonance” or “resonance” here) and the condition is

νs = k + kxνx + kyνy + kzνz, k, kx, ky, kz ∈ Z . (2)

where νx, νy and νz are the orbital tunes. We expect that if, for some reason, a
particle suffers large uncorrelated jumps in its orbital phases, the coherence is lost
and the resonances can be suppressed.

In storage rings, electron and positron beams become spontaneously polarized
due to the spin-flip synchrotron radiation, this phenomenon is called the Sokolov-
Ternov effect [8]. On the other hand, the stochastic (synchrotron-radiation) photon
emissions modify the trajectories and thus the ~ω along the trajectories. Then spin
diffusion and thus depolarization can occur [9]. The polarization is therefore a
balance between the Sokolov-Ternov effect and the radiative depolarization effect.
In the seminal paper of Derbenev and Kondratenko [10], they derived the renowned
formula of the equilibrium beam polarization in an electron (positron) storage ring,
which is along the direction of n̂ at each point in phase space, and with a magnitude
of

Pdk = − 8

5
√

3

α−
α+

α− =

∮
dθ〈 1

|ρ|3
b̂ · (n̂− ∂n̂

∂δ
)〉

α+ =

∮
dθ〈 1

|ρ|3
[1− 2

9
(n̂ · β̂)2 +

11

18
(
∂n̂

∂δ
)2]〉, (3)

where ∂n̂/∂δ is the so-called spin-orbit coupling function, which quantifies the
depolarization, and which can be very large near spin resonances. β̂ is a unit

vector along the direction of particle motion,
˙̂
β, the slope of β̂ is therefore along

the direction of acceleration, and b̂ = β̂× ˙̂
β/| ˙̂β|. The brackets 〈〉 denote an average

over phase space at azimuth θ. The term with ∂n̂/∂δ in α− accounts for the so-
called kinetic polarization effect. In rings where n̂0 is nominally vertical in the arcs
this term is negligible. Following the definitions used in Ref. [2], the polarization
build-up rate is

λdk = λp + λ0d, (4)

where λp and λ0d are the rates of the Sokolov-Ternov effect and the depolarization
effect, respectively,

λp =
5
√

3

8

reγ
5~

me

C

2πc

∮
dθ〈

1− 2
9(n̂ · β̂)2

|ρ|3
〉

λ0d =
5
√

3

8

reγ
5~

me

C

2πc

∮
dθ〈

11
18(∂n̂∂δ )2

|ρ|3
〉, (5)
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where re and me are the classical radius and mass of electron, ~ is the Planck
constant, c is the speed of light, and C is the circumference of the storage ring. Note
that λp and λ0d are dimensionaless, but that one can also define the characteristic
time of the Sokolov-Ternov effect τp = C/(2πcλp) and of the depolarization effect
τ0d = C/(2πcλ0d), which can be compared with the beam lifetime and aid the
analysis of beam polarization. For later use we also need

λ̃p =
5
√

3

8

reγ
5~

me

C

2πc

∮
dθ

1

|ρ|3
,

but since the term with 2
9(n̂ · β̂)2 makes a negligible contribution for the rings

considered here, λ̃p ≈ λp.
A prerequisite for estimating the attainable beam polarization in an elec-

tron (positron) storage ring is a detailed knowledge of the contributions to the
depolarization. For that a simulation code must be established and that code can
then serve as a guide for the design and optimization of the ring. Two classes of
methods [11] have been developed for evaluating the equilibrium polarization in
electron storage rings.

One class computes n̂ and ∂n̂/∂δ around the ring and applies Eq. 3 to obtain
the equilibrium beam polarization. Various codes of this class are listed in [11],
and they differ in the degree of linearization of the spin and orbit motion, as well as
being perturbative or non-perturbative. The codes that handle linearized spin and
orbit motion, for example SLIM [12], only describe the first-order spin resonances,
namely those with ν0 = k + kxνx + kyνy + kzνz for which, |kx| + |ky| + |kz| = 1,
while higher-order spin resonances, namely those with |kx|+ |ky|+ |kz| > 1 are not
taken into account. Note that higher-order spin resonances stem from the three
dimensional nature of spin motion and that they can be driven by linear orbital
motion. This is ultimately due to the fact that successive spin rotations around dif-
ferent axes do not commute. This is illustrated in the SMILE formalism [13] which
evaluates the equilibrium polarization of Eq. 3 using a perturbative calculation of
n̂ and ∂n̂/∂δ in power series of the orbital amplitudes. The SMILE formalism
also illustrates how to identify the sources of resonances and, importantly, how to
classify them. Note also that for perturbative calculations it is ν0 that appears
in the expression for a resonance, not νs. The normal form analysis in PTC can
also be used to compute n̂ on particle trajectories perturbatively [14]. However,
these perturbative approaches have convergence problems for the calculation of
synchrotron sideband resonances for high beam energies [15].

Synchrotron sideband resonances are those resulting from the modulation of
the rate of spin precession around n̂0 due to the energy oscillations inherent in
synchrotron oscillations. For example, for first-order parent νx or νy resonances
the sideband resonances satisfy the condition ν0 = k + kxνx + kyνy + kzνz for
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which, |kx| + |ky| = 1 with kz 6= 0. The occurrence of extra resonances is easy
to understand when it is recalled that the modulation of a base frequency always
introduces sidebands into the frequency spectrum. The modulation of the rate
of spin precession around n̂0 due to energy oscillations mostly occurs in the arcs
where n̂0 is nominally vertical and where particles experience a contribution to
their horizontal motion in the quadrupoles due horizontal dispersion and energy
oscillations. A modulation also occurs due to horizontal betatron motion in arc
quadrupoles. However, betatron tunes are large so that the average modulation
over one turn is small and then the corresponding sidebands are insignificant. In
contrast, synchrotron tunes are very small so that the average modulation cannot
be ignored. In any case we focus here on synchrotron motion because it is this
motion that is in first instance affected by photon emission.

SODOM [16] treats linearized orbit motion and three-dimensional spin mo-
tion. The field n̂ is computed non-perturbatively and a first-order difference of n̂
at several nearby phase space points is used to compute ∂n̂/∂δ. In principle, other
non-perturbative algorithms for calculating n̂ can be used in a similar way, for ex-
ample the stroboscopic averaging method [17]. These non-perturbative algorithms
can treat the synchrotron sideband resonances correctly.

The other class simulates the depolarization due to non-spin-flip synchrotron
radiation using a Monte-Carlo technique to compute the depolarization rate λd,
and it is a good approximation to ignore the tiny effect of kinetic polarization
and estimate the equilibrium polarization in an electron (positron) storage ring
following

Peq ≈ P∞
1 + λd/λp

P∞ ≈ − 8

5
√

3

∮
dθ 1
|ρ|3 b̂ · n̂0∮

dθ 1
|ρ|3 [1− 2

9(n̂0 · β̂)2]
(6)

where P∞ is the equilibrium polarization taking into account the orbital imper-
fections, but disregarding the depolarization effects due to stochastic emission of
synchrotron radiation. This term can be computed using a linear code like SLIM
[12].

In this approach, the first-order and higher-order spin resonances are automati-
cally handled since it is based on three-dimensional spin motion. The Monte-Carlo
method does not rely on calculating n̂ and its derivative and in any case it is valid
independently of whether Eq. 3 or some other description of spin diffusion is valid.
It can thus be used to check the theoretical models of the equilibrium beam po-
larization.

SITROS was the first code to use this pragmatic approach. It was first devel-
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oped by Kewisch [18, 19] and later upgraded by Boge [20] and Berglund [21]. It
divided a storage ring into sections, and the break points were bending magnets
where generation of ”big photons” was simulated, and interaction points where
weak–strong beam–beam interactions were included. Particles were transported
using second-order transfer maps which included chromatic effects and the effects
of sextupoles but which were not exactly symplectic. SITROS was used for HERA
and LEP. Barber’s SLICKTRACK [22] code also implements the ”big photons”
between sections, but transports particles between these break points with the
thick-lens symplectic transfer matrices of SLIM. Implementation of the nonlinear
orbital motion is one of its upgrade plans. Currently SLICKTRACK is well main-
tained and widely used, for example in the design study of electron–ion colliders
and ILC damping rings.

With the great development of computing power since SITROS was first de-
veloped, it is now possible to implement such a Monte-Carlo simulation in a more
”natural” way, namely with distributed generation of synchrotron-radiation pho-
tons in each integration step. Moreover, nonlinear orbital motion can be taken
into account with the implementation of symplectic integrators in modern track-
ing codes. PTC is a tracking code developed by E. Forest [1], which was designed
to model various geometries of particle accelerators, and do symplectic tracking
of the orbital motion and length-preserving transport of spin [23]. Particle coor-
dinates and Taylor maps can be tracked in a polymorphic manner, and the latter
enables the normal form analysis of the one-turn map using FPP [24]. PTC is
now embedded in MADX [25] and BMAD [26], and some of its functionalities can
be called in MADX and BMAD as a library. On the other hand, complicated
operations like implementation and correction of machine imperfections can be
done using MADX or BMAD, and the lattice is then dumped to an input file for
PTC. Tracking studies can be carried out inside PTC afterwards. Therefore, PTC
has an ideal framework for the implementation of a Monte-Carlo simulation of the
equilibrium beam polarization in electron storage rings.

The implementation of a Monte-Carlo simulation in PTC is described in section
1 together with its benchmarking against SODOM [16]. In section 2, we review
the theory of beam polarization for ultra-high beam energies. In section 3, a case
study of the beam polarization at ultra-high beam energies is presented using this
Monte-Carlo approach for a model storage ring, and compared with the theory.

1 Code implementation and benchmarking

When a particle (or a Taylor map) is tracked through an element in PTC, a step
of integration is called an “integration node”. There are five different types of
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integration nodes, describing the entrance patch, the entrance fringe field, the
body of an element, the exit fringe field and the exit patch. Here, patches connect
the local coordinates of adjacent elements. The body of an element can be split
into a number of integration nodes. A schematic diagram of the integration nodes
inside an element is shown in Figure 1.

Figure 1: A schematic diagram showing the tracking scheme in PTC. The
top part shows the integration nodes inside an element [38], while the bottom
part shows the scheme of symplectic integration in a body integration node,
and photon emission.

In this context, synchrotron radiation effects are only taken into account for
the integration nodes in the body of bending magnets. When a particle is tracked
through an integration node of a magnet body, the miniscule Stern–Gerlach effect
is neglected and the orbital transfer map is sandwiched in between two spin kicks
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in equal amounts, and they together form a second-order symplectic integrator for
the particle motion and a length-preserving rotation for the spins. The kick due to
photon emission is placed next to the spin kick, and they commute with each other,
as the spin-dependent synchrotron radiation is not taken into account. Therefore
the synchrotron-radiation process is also concentrated before the entrance and after
the exit of the orbital map in equal amounts. The transport of orbital coordinates
in each integration node can be chosen from the second-order, the fourth-order
and the sixth-order symplectic integrators. In this simulation study, we choose the
second-order symplectic integrator. Because the quadrupoles are split into many
integration nodes to ensure the accuracy of spin tracking, and dipoles are also split
so that the number of photons emitted in each integration step is small, and the
desired accuracy of orbital motion can be achieved without going to a higher-order
symplectic integrator. The tracking scheme for an integration node of the body of
a magnet is shown in Figure 1.

In each integration step, the local radius of curvature is computed for each
tracked particle, as well as the critical energy uc. The number of emitted photons
nγ is first randomly generated with a Poisson distribution. Let the energy of an
emitted photon be u0, then the relative energy ξ = u/uc is stochastically generated
following the algorithm implemented in GEANT4 [29], which is quite fast and
more precise than former implementations [28]. The stochastic energy kick before
or after the orbital kick is

δ → δ −
nγ∑
1

ξuc/Ebeam. (7)

A bunch of particles are launched on the closed orbit with spins initialized along
the n̂0, and are then tracked for several damping time. The beam polarization P (t)
as the ensemble average of these particle spins, is computed during the tracking.
The depolarization rate is fitted following

P (t) = exp(−2πct

C
λd), (8)

and Eq. 6 is then used to compute the equilibrium beam polarization.
The calculations with this method are benchmarked against SODOM [16] for

the same model storage ring (Model 1) as described in Ref. [16]. Model 1 consists
of 128 identical FODO cells and four FODO cells with vertical bends (four upward
bends and four downward bends with a bending angle of 0.017453 rad, to introduce
vertical dispersion). All the dipoles are 6 m long, the quadrupoles are 1 m long
with inverse focal lengths of kf = 0.18243216 m−1 and kd = 0.16763610 m−1,
respectively, and the cell length is 16 m. A half ring consists of an upward-bend
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cell, 32 FODO cells, an RF cavity (zero length), 32 FODO cells and an upward-
bend cell. In the other half ring, the upward-bend cells are replaced by downward-
bend cells. The parameters are listed in Table 1. No machine imperfections are
introduced in this study.

Table 1: The parameters of Model 1 storage ring

Parameter Value

Circumference(m) 2112
Beam energy(GeV) 20.736

νx/νy/νz 33.265/28.380/0.0623
Relative energy spread 1.13× 10−3

Damping time(turns) 620/620/310
Emittance(mm·mrad) 6.03× 10−2/2.38× 10−4/7.42

Sokolov-Ternov time(τp)(minute) 8.6
Rms spin precession frequency spread (σν) 0.053

Modulation index(α) 0.732
Correlation index(κ) 0.012

The first step is to check the evolution of the beam’s eigen-emittances [30]
computed using the tracking data of a beam of 9600 particles. These are then
compared with the analytical solutions, where the beam envelope formalism [31]
is used to compute the equilibrium beam emittances. As shown in Figure 2, the
fitted equilibrium emittances and damping times differ from the analytical results
by just a few percent. The equilibrium polarization is calculated for the energy
range of 20.71–20.84 GeV, where several synchrotron-sideband spin resonances are
visible. The expectation number of the emitted photons is ∼ 11 for the main
dipole. Therefore, the number of integration steps is chosen to be 10 and it is
unlikely that a large number of photons are generated at each integration node. It
takes around a minute to track a particle for 3000 turns (5 damping times) using
CPUs of the Hopper cluster at the National Energy Research Scientific Computing
Center (NERSC), and the tracking of different particles can be parallelized. Several
simulations with the same number of particles can be launched. The depolarization
rate is the average of the results of these simulations, and the statistical error can
also be calculated. A comparison of the Monte-Carlo result with 50 particles and
SODOM is shown in Figure 3. The results are consistent with each other.

There are several possible issues for this Monte-Carlo simulation. First, if the
depolarization rate is very low then it would take an impractically long time to
reach an accurate estimation of the depolarization rate and hence the equilibrium
beam polarization. Second, since the particles are launched on the closed orbit, it
takes many turns for particles to diffuse to large amplitudes, and the contribution
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tracking results

fitted curve: ϵx0=(6.113±0.002)*10
-8,τx=623.1±1.4

analytical curve: ϵx0=6.027*10
-8,τx=619.8
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(a) horizontal emittance

tracking results

fitted curve: ϵy0=(2.531±0.001)*10
-10,τy=638.9±1.9

analytical curve: ϵy0=2.378*10
-10,τy=619.8
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(b) vertical emittance

tracking results

fitted curve: ϵz0=(7.51±0.02)*10
-6,τz=300.4±1.2

analytical curve: ϵz0=7.420*10
-6,τz=309.9

� ���� ���� ���� ���� ���� ����
�

��×��-�

��×��-�

��×��-�

��×��-�

�������� �����

��
�
�
���
�
��
�
�
�
�
���
�
�
�
�
(�

·�
�
�
)

(c) longitudinal emittance

Figure 2: Evolution of eigen-emittances of a beam of 9600 particles in the
Monte-Carlo simulation for Model 1. The evolutions of the emittances are
fitted following εi(t) = εi0(1 − exp(−t/τi)), i = x, y, z. Comparison of the
fitted parameters and the analytical solutions are also shown in the figures.
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Figure 3: Comparison of the computed equilibrium polarizations for Model
1. ”SODOM” is taken from the Yokoya’s paper [16] with his permission.
”Monte-Carlo” is the Monte-Carlo simulation result with 50 particles, the
statistical error is calculated with 20 such simulations. The agreement is
good.

from phase space with large amplitudes is likely to be underestimated. To solve
this problem, the beam can be given a Gaussian distribution at the start [19].
Note that the particle spins should then be initialized to be parallel to the ISF.
In addition, it is arguable whether implementation of nonlinear orbit motion and
photon emission at each integration step are necessary for all practical simulations.
However, it is not trivial to turn off the nonlinear orbit motion in the tracking.
Then the linear transfer matrices obtained by tracking the first-order Taylor map
could be used instead and the algorithm of SLICKTRACK then realized with some
effort. Moreover, the number of integration steps of bending magnets can be easily
set in PTC, and computing time can be reduced when needed.
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2 Further details of the theory

Electron (positron) polarization has been observed and studied in several storage
rings [32, 33] and the polarizations attained have been broadly in line with the
expectations of Eq. 3. In storage rings with relatively low beam energies, the first-
order spin resonances of Eq. 2 dominate together with their synchrotron sidebands.
Resonances can have several origins including transverse coupling, lack of so-called
spin transparency in regions where n̂0 is horizontal due to the use of spin rotators,
and indirect effects resulting from orbital imperfections. Various spin matching
schemes [11] have been studied and implemented in several machines to weaken
the first-order resonances and these schemes bring improvements in the achievable
equilibrium polarization. In high energy storage rings, it is generally believed
that the synchrotron sideband resonances are the most important family of spin
resonances.

We have already described how synchrotron sideband resonances have their
origin in the modulation of the spin precession rate due to synchrotron motion.
We now look in more detail.

As mentioned earlier, near spin-orbit resonance, n̂ can be strongly spread out
away from n̂0. Then, even in the absence of radiation, the maximum attainable
equilibrium polarization of the beam, 〈n̂〉, can be be small. In particular, in the
case of synchrotron sideband resonances, n̂ can vary strongly as a function of the
synchrotron phase with the same orbital actions and this can contribute to making
the spin-orbit coupling function large. Then the radiative depolarization can be
strong and lead to small equilibrium beam polarization according to Eq. 3. Here,
we have used a standard picture in which we treat the betatron and synchrotron
motion on an equal footing. However, we can gain extra insight by treating the
betatron and synchrotron motion separately and by noting that if the modulation
of the spin precession rate causes an initially vertical spin to cross a parent betatron
spin resonance, the spin can be strongly disturbed and might even flip over as
expected from the Froissart-Stora formula [34] and as illustrated in [35, pp.74-75].
Although this argument is heuristic in that it likens the modulation of the spin
precession frequency to a modulation of the closed orbit spin tune ν0, it contains
the essentials. Note that in this description the typical rate of resonance crossing
increases with νz. Both of these pictures assume long-term coherence or near
coherence between relevant terms in ~ω and the basic spin motion.

Note that the introduction of Siberian snakes [36, 37] might reduce the depen-
dence of spin transport on the energy oscillations of synchrotron motion so that
the mechanism could be suppressed [39]. This topic is beyond the scope of this
paper.

The synchrotron sideband resonances of an integer resonance are ν0 = k+mνz,
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with the contribution to λ0d/λ̃p [40]

λ0d
λ̃p

= A
∞∑

m=−∞

[
∆ν

(∆ν +mνz)2 − ν2z

]2
e−αIm(α), (9)

where ∆ν is the distance between the closed orbit spin tune and the parent reso-
nance, say ∆ν = ν0−k, |m| is the order of the sideband resonance, Im is a modified
Bessel function, σε is the rms relative energy spread, and α = (ν0σε/νz)

2 the tune
modulation index. A is a constant that relates to the width of the first-order
synchrotron sideband resonance, because if we set α = 0, then

λ0d
λ̃p

∣∣∣∣∣
α=0

=
A∆ν2

(∆ν2 − ν2z )2
. (10)

The synchrotron sideband resonances of an isolated horizontal parent resonance
are ν0 = k ± νx +mνz, with the contribution to λ0d/λ̃p [40]

λ0d
λ̃p

= B

∞∑
m=−∞

{
e−α

(∆ν +mνz)2
×[

JxIm(α) + Jz
α

2
(Im−1(α) + Im+1(α))

]
+

e−α

(∆ν +mνz)

mJz
νz

Im(α)

}
, (11)

where ∆ν = ν0 − (k± νx), Jx and Jz are the horizontal and longitudinal damping
partition numbers and B is a constant that relates to the width of the horizontal
parent resonance. If we set α = 0, then

λ0d
λ̃p

∣∣∣∣∣
α=0

=
BJx
∆ν2

. (12)

The result for synchrotron sidebands for an isolated vertical parent resonance can
be obtained by replacing x by y in Eq. 12. The equilibrium polarization can then
be estimated as

Peq ≈
P0

1 +
∑
νk

(
λ0d
λ̃p

)
νk

, (13)

where νk = k0 + kxνx + kyνy + kzνz is the location of a parent resonance. There-
fore, once we have computed the equilibrium polarization using a linear formalism
like SLIM, the widths A and B of the first-order (betatron and synchrotron) spin
resonances can be fitted and the equilibrium polarization taking into account the
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synchrotron sideband resonances can then be estimated analytically using Eq. 13.
Note, however, that the nearby first-order horizontal and vertical parent spin res-
onances might not be well separated and that resulting interference effects are not
included in Eq. 13.

Note that these calculations of the strengths of the synchrotron sideband res-
onances are based on evaluation of the spin–orbit coupling function in Eq. 3 and
that assumes that the synchrotron motion is well defined so that the synchrotron
phases are strongly correlated from turn to turn. However, it has been suggested
that for ultra-high beam energies, it is possible to enter a new regime whereby the
successive passages of spin resonances during synchrotron oscillations are uncorre-
lated [2] and that this can modify the rate of depolarization.

In fact in Ref. [41], it was argued that Eq. 3 should be generalized when the
system is very close to a spin resonance. In particular, following the heuristic
physical explanation in Ref. [42], very close to a spin resonance, stochastic photon
emissions should contribute a depolarization rate of

λ′d = π
∑
k

〈|ωk|2δ(νs − νk)〉. (14)

So an additional term was added to α+ in Eq. 3 when evaluating the equilibrium
beam polarization to give

α+ =

∮
dθ〈 1

|ρ|3
[1− 2

9
(n̂ · β̂)2 +

11

18
(
∂n̂

∂δ
)2]〉+

8

5
√

3

2πc

C

me

reγ5~
π
∑
k

〈|ωk|2δ(ν − νk)〉. (15)

where the perturbed spin precessing frequency is ν = ν0 + ∆ν with ∆ν due to the
energy oscillation, νk = k+kxνx+kyνy+kzνz is the location of a spin resonance, and
ωk is the amplitude of the Fourier component for the first-order spin resonances.
The average in the additional term is taken over the beam distribution.

In summary, it was suggested that the total depolarization rate should be
λd = λ0d + λ′d. The additional term should not be important if the spread of the
spin precession frequency is small, because we do not run a machine very close to
a major spin resonance.

Now let us estimate the spread in the spin phases with synchrotron oscillations
and stochastic photon emission. Following the derivation in Ref. [43], the variation
of the spin precession phase Φ can be expressed as

dΦ

dθ
= aγ = aγ0(1 + δ), (16)
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Let ∆δi be the change of δ due to the emission of a photon at θ = θi. Then the
spin phase will be shifted by the amount

aγ0∆δi

θ∫
θi

cos νz(θ
′ − θi)dθ′ =

ν0
νz

∆δi sin νz(θ − θi), (17)

at the azimuthal angle θ after the emission. Then summing up all the effects of
photon emissions between θ′ = 0 and θ′ = θ, the total variation of spin phase is

∆Φ(θ) =
ν0
νz

∑
0<θi<θ

∆δi sin νz(θ − θi). (18)

Averaging (∆Φ(θ))2 on all the emissions that occur between θ′ = 0 and θ′ = θ,

〈(∆Φ(θ))2〉 = (
ν0
νz

)2〈(∆δi)2〉
dN

dθ

∫ θ

0
dθ′ sin2 νz(θ − θ′). (19)

Here dN/dθ is the mean number of emitted photons during one radian of θ. Since
[44]

dN

dθ
〈(∆δi)2〉 =

11

9
λ̃p, (20)

we then get the spread in spin phase in a synchrotron oscillation period

〈(∆Φ)2〉 =
11

18
(
ν20
ν3z

)λ̃p. (21)

We define the correlation index as κ = 11
18ν

2
0 λ̃p/ν

3
z . If κ � 1, the spread of

spin phase is small, then the successive passages of the spin resonance due to
synchrotron oscillation are correlated.

Otherwise, if the rms spread of the spin-precession frequency σν = ν0σδ�νz,
the crossings of resonances during synchrotron motion are completely uncorrelated.
It is claimed that in this regime the synchrotron oscillation plays the role of SR
photon emission in driving the uncorrelated resonance crossings, and that the de-
polarization rate is described by Eq. 14. Moreover, the spin resonances completely
overlap and are unavoidable. Then it is not clear to us whether the analytical
calculation of Eq. 3 for λ0d is still applicable and, if it is not applicable, it is not
clear to us what prescription would be used instead. Furthermore it is not clear
to us whether the total depolarization rate can be obtained by simply adding λ0d
and λ′d together.

In Ref. [2], it was suggested that when σν � 1, λ′d and λ0d would be comparable,
and should be added together to obtain the depolarization rate λd. Moreover, in
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Ref. [2] only the contributions from the parent resonances were used to calculate
λ0d. When σν � 1, λ0d is negligibly small and it was predicted there there would
be no resonant dependence of spin diffusion on energy, and that beam polarization
would increase with energy.

The above idea was applied to the LEP storage ring [45] and it was shown that
the depolarization should have entered the uncorrelated regime for LEP above
60 GeV. A new optics was implemented in LEP which facilitated establishing po-
larization at 60.6 GeV [46], whereas a beam polarization of below 1% was measured
at 70 GeV, 92 GeV and 98.5 GeV, in qualitative agreement with Eq. 3. So the
hypothetical increase of polarization at high energy was not observed.

3 Simulation study of a model storage ring

For this study we adopted a simplified version of the CEPC lattice (Model 2). It has
a periodicity of P = 4, with one superperiod shown in Figure 4. The arc sections

Figure 4: A schematic plot of a superperiod of the Model-2 storage ring. ARC
sections 1 and 2 are identical. Therefore two identical straight–arc–straight
sections are connected with a section with 2π phase advance.

are composed of FODO cells with 60◦ phase advance in both transverse planes
and they have dispersion suppressors with missing dipoles. The simplified straight
sections are composed of FODO cells without taking the injection insertions into
account. Identical RF cavities of zero length are placed in the center of each
straight section. The ”2π phase advance” section occupies the space left for the
final focus insertion. Four identical thin skew quadrupoles are inserted at the
center of each superperiod and the transverse emittance ratio is tuned to 0.003.
No orbit imperfections are added in the simulations, and the first-order synchrotron
sideband resonances are generally weak. For a four-fold symmetric ring the parent
betatron spin resonances are in principal located at

ν0 = 4k ± νj , j = x, y and k ∈ Z. (22)

In this section, two cases of different energy ranges will be studied around
120 GeV and 150 GeV, respectively. The parameter list relevant for this study is
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shown in Table 2. Note that for these parameters we take into account the effect
of the sawtooth shape of the closed orbit caused by synchrotron radiation in the
dispersive regions of the ring.

Table 2: The parameters of Model 2 storage ring

Parameter Case 1 Case 2

Circumference(m) 54752 54752
Beam energy(GeV) 120 150

νx/νy/νz 193.084/193.218/0.181 193.088/193.216/0.162
Relative energy spread 1.3× 10−3 1.64× 10−3

Damping time(turns) 80/80/41 41/41/21
Emittance(mm·mrad) 6.26× 10−3/1.92× 10−5/2.8 9.78× 10−3/2.92× 10−5/4.9

Sokolov-Ternov time(τp)(minute) 21.4 7.0
Rms spin precession frequency spread(σν) 0.358 0.560

Modulation index(α) 3.921 11.986
Correlation index(κ) 0.174 1.160

The equilibrium polarization has been computed in three different ways which
are compared with each other. First, the Monte-Carlo approach described in
section 2 has been used to calculate the equilibrium polarization for aγ0 between
267.5 and 275.5 for Case 1, and between 338.5 and 346.5 for Case 2, the step size
for both cases being aγ0 = 0.01. The expected number of emitted photons in a
main dipole is ∼ 8 for 120 GeV and ∼ 10 for 150 GeV, therefore, the number
of integration steps is chosen to be 10 and it is unlikely that a large number of
photons are generated at each integration node. Sixty particles are tracked for
each energy point, and each particle is tracked for 10 damping times, which takes
around 4 minutes for 120 GeV using the CPUs of the Hopper cluster at NERSC.

Second, a first order Taylor map is tracked for one turn and ∂n̂/∂δ is computed
with a normal form [14]. Then the equilibrium polarization is calculated using
Eq. 3 with only the first-order spin resonances. Following the theory of synchrotron
sideband resonances in the correlated regime, the constants A or B for each first-
order spin resonance are fitted using Eq. 10 and Eq. 12. Since the widths of some
first-order spin resonances are very small, and thus their synchrotron sidebands
are even narrower, these resonances and their synchrotron sidebands contribute to
the equilibrium beam polarization as very narrow dips. Since the step size of the
Monte-Carlo simulation is aγ0 = 0.01, some of these very narrow dips are beyond
the resolution of the Monte-Carlo simulation, and thus they are irrelevant for our
comparison between different methods. As shown in Fig 5, only the resonances
with A(B) > 10−5 are retained in the fitting, and no first-order synchrotron spin
resonance qualifies for Case 1 and Case 2. Note that for Case 1 near aγ0 = 269,
and for Case 2 near aγ0 = 341, the two nearby first-order spin resonances overlap
with each other, so that there is some discrepancy between the fitted curve and
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(a) Case 1

(b) Case 2

Figure 5: Scan of the equilibrium polarization versus beam energy (closed
orbit spin tune) with only first-order spin resonances. The dashed line shows
the equilibrium polarization computed with a normal form in PTC and the
solid line shows the curve fitted using Eq. 12. Here, only the betatron spin
resonances with B > 10−5 are retained in the fitting and their locations
are indicated at the bottom of the plots. Note that there is no first-order
synchrotron spin resonance with A > 10−5. The locations of some first-order
synchrotron spin resonances are also marked in the plots in green and with
arrows. 18



the simulation result. Then the equilibrium polarization taking into account of
the synchrotron sidebands is calculated following Eq. 11 and Eq. 13 including only
the first-order betatron spin resonances with B > 10−5.

Third, following the theory of spin diffusion in the uncorrelated regime, the
strengths of the first-order resonances ν0 = k ± νx and ν0 = k ± νy are computed
with PTC using a normal form [14]. For each of these first-order resonances, the
strength scales with the square root of the particle’s action, and when applying
Eq. 14 to calculate the depolarization rate λ′d, an average is taken over the equi-
librium beam distribution. Assuming that the beam has a Gaussian distribution,
Eq. 14 becomes

λ′d
λ̃p

=
∑
k

2
√
π|ωk0|2

σν λ̃p
e−(ν0−νk)

2/σ2
ν , (23)

where ωk0 is the strength of resonance ν0 = νk of a particle whose actions corre-
spond to the equilibrium emittances. It is easy to see from the known dependences
of λ̃p, ωk0 and σν on the beam energy that λ′d/λ̃p decreases strongly as the beam
energy increases. The ωk0 of the first-order resonances in the two energy ranges
are shown in Figure 6. Since it is not clear to us whether λ0d should be added to
the depolarization rate as well, we just ignore its contribution in this method.

Results for the three methods are shown in Figure 7 for both cases. For Case
1, the correlation index is 0.174, much smaller than 1, and the Monte-Carlo result
is more consistent with the expectation for correlated regime, where fine resonance
structures are observed. For Case 2, the correlation index is 1.160, and according
to the criterion, it is regarded as being in the uncorrelated regime. The Monte-
Carlo result does not show clear synchrotron-sideband structures, and it looks
more consistent with that of the uncorrelated regime. The discrepancy between the
result of the Monte-Carlo simulation and that for the ”uncorrelated regime” might
be due to the ignored contribution from λ0d. This needs further verification and
that requires a code to evaluate the spin orbit coupling function non-perturbatively.
SODOM and stroboscopic averaging are two possible options, but their application
in such ultra-high beam energies also needs justification. This is beyond the scope
of this paper.

In any case, so far, and without misalignments, the results of the simulations
support the theory of the uncorrelated resonance crossing in synchrotron oscil-
lations. In addition, it also indicates Eq. 3 is not applicable for evaluating the
equilibrium beam polarization in the uncorrelated regime.
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(a) Case 1

(b) Case 2

Figure 6: The spectrum of the first-order resonance strengths computed with
a normal form in PTC. The resonance strengths are for particle actions cor-
responding to the equilibrium beam emittances. The solid and dashed lines
represent the horizontal and vertical spin resonances, respectively.
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(a) Case 1

(b) Case 2

Figure 7: Comparison of the equilibrium polarizations computed by the three
different methods. The first method is the Monte-Carlo simulation. The
second method first fits the widths of parent spin resonances using Eq. 12,
and then computes the synchrotron sideband resonances following Eq. 11,
and it is labeled as ”correlated regime” in this figure. The third method,
referred to as ”uncorrelated regime” in this figure, computes the strengths
of nearby first-order spin resonances using a normal form, and then applies
Eq. 23.
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4 Conclusion

This paper presents Monte-Carlo simulations of the equilibrium beam polariza-
tion in electron storage rings, on the basis of the PTC code, which treats non-
linear orbit and three-dimensional spin motion, and which generates synchrotron-
radiation photons at each integration step. The simulations are benchmarked
against SODOM [16], and limitations are also discussed. Monte-Carlo simulations
are launched to study a model storage ring with parameters similar to those of
the proposed CEPC, and the results are consistent with the suggestions for the
correlated and uncorrelated regimes of beam depolarization at ultra-high beam
energies.

In particular, the results are consistent with the notion that already at 150 GeV
more polarization is attainable than that predicted by Eq. 3 with the analytical
solution for synchrotron sideband resonances. This is obviously very important.
Nevertheless, we feel that the notion of uncorrelated resonance crossing should
be put on a firmer mathematical basis. A good starting point would be rigorous
solution of the evolution equation for the polarization density [47]. In any case, the
simulations suggest that use of a Monte-Carlo method is the most effective way to
proceed at present. As far as we are aware this is the first serious numerical study
of this kind for ultra-high beam energies.

At this stage of our studies our models do not have misalignments and the
resulting distortions of the closed orbit. However, the simulation of realistic mis-
alignments and the modeling of the correction of the orbital imperfections are very
important for beam polarization at ultra-high beam energies. These topics will be
studied in the future on the basis of this simulation framework, and will be an
integral part of investigation of feasibility of attaining high beam polarization at
CEPC. Nevertheless our current results are not just of academic interest.

For the attainment of polarized beam at not-so-ultra-high beam energies (for
example 120 GeV), it appears to be necessary to find some way to reduce the spread
in the spin-precession rate. It has been suggested that this could be achieved by
manipulating the dispersion functions [48] or by reducing the energy spread with
the aid of special nonlinear wigglers [49, 50]. However, it is far from clear that
such schemes are practical. An alternative would be to introduce two Siberian
snakes. For this, n̂0 points upwards in one half ring and it points downwards in
the other half so that Sokolov-Ternov effect is suppressed. This could be overcome
by having short strong dipoles in one half ring and weak long dipoles in the other
half. A simulation on this at lower energies [39] has already shown a suppression
of synchrotron sideband resonances.
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