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Abstract

Our goal is to develop a more general scheme for construgtiegrable lattice regulari-
sations of integrable quantum field theories. Considetiegffine Toda theories as examples,
we show how to construct such lattice regularisations usgiagepresentation theory of quan-
tum affine algebras. This requires us to clarify in partictlee relations between the light-
cone approach to integrable lattice models and the repessm theory of quantum affine
algebras. Both are found to be related in a very natural waygessting a general scheme
for the construction of generalised Baxter Q-operatorse @frthe main difficulties we need
to deal with is coming from the infinite-dimensionality ofetihelevant families of represen-
tations. It is handled by means of suitable renormalisapi@scriptions defining what may
be called the modular double of quantum affine algebras. fidnisework allows us to give a
representation-theoretic proof of finite-difference dpres generalising the Baxter equation.
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1 Introduction and conclusions

1.1 Motivation and background

Integrable quantum field theories offer a unique theorktataoratory for the exploration of
several non-perturbative phenomena in quantum field thegaying full quantitative control
about the spectrum or even expectation values in a quantldritieory paves the way towards
detailed investigations of non-perturbative effects tike existence of dual Lagrangian descrip-
tions in different regions of the parameter space.

However, up to now there are only a few examples where thidbas realised. Many two-
dimensional quantum field theories of interest are confedtuo be integrable, but this has
rarely been fully demonstrated. Exact results have beepogerl on some of these quantum
field theories, but in most cases we do not know how to derigedhesults from first princi-
ples. It would be desirable to have a more systematic frame®o constructing and solving
integrable quantum field theories.

Exploiting integrability in a quantum field theoretical d¢ert is not easy. One of the main
problems is to regularise the UV-divergencies in such a wway integrability is preserved. If
this is possible, one may indeed hope that the enhancedotpntvided by integrability can

lead to a precise understanding of the dependence of phygiaatities on the cut-off, and
how to remove it in the end. Lattice regularisations havenhesed to reach this goal with
some success. Prominent examples are the massive ThiiBing/Gordon models for which
some exact results have been obtained by using the XXZ or ¥i& $pin chains as a lattice
regularisation.

Up to now there does not seem to exist a systematic proceoiuceristructing integrable lattice
regularisations for a given Lagrangian field theory. A pregdan this direction was made
in [RIT]. This proposal was inspired by the well-known rédais between integrable lattice
models and the representation theory of quantum groupsilesopes that relations of this
type may hold even in a quantum field theoretical context apparted in particular by the
works [BalLZ3/BaHK] where beautiful relations between theegrable structure of conformal
field theory and quantum group representation theory waredoStarting from a Lagrangian
description of the field theory of interest it was proposefRIiT] to

¢ identify the relevant quantum group using the algebra @frattion terms in the light-cone
formulation of the dynamics,

e and construct the main ingredients of integrable lattiquil@isations like Lax-matrices
and R-matrices from the representation theory of this quargroup.
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The feasibility of such a program was illustrated by coriing integrable lattice regularisa-
tions of some Lagrangian field theories on the kinematiaadlleTaking into account the form
of the Lax matrices expressing integrability on the clesdevel leads to almost unique answers
for R- and Lax-matrices defining the integrable lattice tagsation quantum-mechanically. A
more general approach to identifying the quantum algelstaicctures behind integrable per-
turbations of conformal field theories was proposed in [BuR]

Our goal in this paper is to illustrate how the crucial negpstin this program can be performed:
the definition of an integrable time-evolution and the congion of Baxter Q-operators.

1.2 Approach

To reach our goals we will use the light-cone approach t@natele lattice models introduced
in [FaV9Z], and further developed in [BaBR], see in partaayBaS15] for recent developments
of this approach. It has been pointed outin [RiT] that thiprapch is particularly well-suited
for using quantum group representation theory to consintegrable lattice regularisations of
more general Lagrangian field theories. A new feature intced in [RiT] is the possibility
to have a natural relation between light-cone directiortssBorel sub-algebras of the relevant
guantum groups. Previous versions of the light-cone mftiemalism used a slightly different
formulation in which this is not manif&tThis feature is important for the further development
of the formalism as it leads in particular to a very naturdtien between the lattice time-
evolution operators and the universal R-matrix.

For simplicity we will focus on the affine Toda theories whé#te relevant quantum groups are
the quantum affine algebrég(glM), but we expect the resulting scheme to be of much wider
applicability. The integrable field theories related to mpuan affine super-algebras discussed in
[RiT], for example, should be within reach.

For the cases of our interest we will explain how to consttime-evolution and Baxter Q-
operators from the universal R-matrix of the relevant quamgroups. Our main tool will be
the product formula for the universal R-matrix found in_[K32]. The main difficulties in
constructing time-evolution and Baxter Q-operators frbmuniversal R-matrix are due to the
fact that we need to evaluate the R-matrix in infinite-dimenal representations. This feature
appears to be inevitable if one wants to have tailor-madiedadiiscretisations of field theories
having non-compact target space. The product formula septs the R-matrix as an infinite
product over factors which are infinite sums over powers@fnerators of the quantum affine
algebra. It is therefore not obvious how to produce wellrsdi operators from the product
formula for the universal R-matrix if the representatiohgterest are infinite-dimensional.

1See RemarKkl1 in Sectién 3.2.1 for a comparison
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Our approach to handle the resulting difficulties is basethanmain elements:

e We will observe that the representations needed to gettighé Lax matrices and evolu-
tion operators from the universal R-matrix have a remaskabbperty: The infinite prod-
ucts resulting from the product formulae for the universahRtrix truncate automatically
to finite products. The use of the light-cone lattice apphoherefore allows us to solve
one of the two problems coming from the infinite-dimensidyadf the relevant represen-
tations.

e The infinite-dimensional representations that we needdogoals have the useful feature
that the generators of the quantum affine algebras are esyessby positive self-adjoint
operators. This feature will allow us to replace the infisitiens over powers of the genera-
tors appearing in the product formula by well-defined opmrainctions. We will demon-
strate that this replacement preserves the validity ofeddviant relations satisfied by the
universal R-matrix in the representations of our interest.

Our choice of representations is motivated by the fact thatpositive self-adjoint operators
representing the quantum group generators correspondsitiveajuantities in the affine Toda
theories.

1.3 Conclusions

The main conclusions we’d like to draw from our results are fitllowing: Combining the
light-cone lattice approach with the representation thewrquantum affine algebras gives
us a systematic way to construct integrable lattice disagbns of the affine Toda theories.
Non-compactness of the space in which the fields take valo¢isates us to consider infinite-
dimensional representations of the relevant quantum affigebras. However, we only need
to consider the simplest nontrivial representations of tipe. Infinite-dimensionality can be
handled by expressing the main objects (time evolution-@faperators) in terms of the non-
compact quantum dilogarithm function. One thereby getstarabrenormalisation of the for-
mal expressions obtained from the universal R-matrix,ifegatb fairly simple explicit formulae
for the time evolution- and Q-operators. The relevant prioge (Commutativity, functional re-
lations) all boil down to known properties of the non-compgeantum dilogarithm. Verifying
this in some detail accounts for a fair amount of the work tinatt into this paper, but once this
is understood in these cases it should be possible to gesgeoalr approach to wider classes of
theories without excessive efforts.



1.4 Summary of main results

As our paper is quite long, we will now offer more detailed wwews over the main results.

We lay the groundwork for solving the affine Toda theoriesigs lattice regularisation. This
includes explicit constructions for the time evolution cggers and the Baxter Q-operators.

As indicated above, one of our main goals is to clarify thatieh between the universal R-
matrix of i/, (E[M) and the Baxter Q-operators from which the evolution opesaoe recovered
by specialising the spectral parameter. It will be obtaibga variant of the scheme proposed
in [BaLZ3]. The necessary modifications are two-fold. Thacel of the infinite-dimensional
representations of the Borel sub-algelgéb®) of L{q(sA[M) of g-oscillator type employed in
[BaLZ3] in auxiliary space will be taken by representatiovisich are neither of highest nor
lowest weight type. This appears to be inevitable in ordegeboperators with favourable
analytic properties. In quantum space we will use represients ofuq(sA[M) that can be rep-
resented as tensor products of the same type of represaistas used in auxiliary space. The
tensor products display a staggered structure reflectiagtarisation of the monodromy matrix
into factors associated to light-like segments.

Our main results include a derivation of generalised Bakt€rrelations. The Baxter equations
are found to follow from the reducibility of certain tensaoducts of representation at partic-
ular values of their parameters, in this respect resemignegious derivations of functional
equations for transfer matrices from the representatiearthof quantum affine algebras given
in [BaLZ3,/AF]. Two features of our derivation appear to bevn®ur derivation on the one
hand uses an interesting finite-dimensional representatastructed from fermionic oscilla-
tors. This allows us to leads to simplify algebraic aspeéthe derivation. We furthermore
need to handle the additional issues originating from tloe thaat our representations do not
have extremal weight vectors.

We furthermore find fairly simple explicit formulae for therkels representing the Baxter Q-
operators. The formulae are simplest when a variant of tlaatgun affine algebrblq(EIM) is
used for the construction of integrable lattice models th#iérs from the standard one by a
Drinfeld twist. The resulting expressions resemble thenfdae found in[[BaKMS, DJMM]
for the transfer-matrices of generalised Chiral Potts M&deaving explicit formulae for the
kernels of the Q-operators should allow us to determineriag/tic properties of these operators
by generalising the results of [ByT1]. Our results theredyythe foundations for future analytic
studies of the spectrum of the affine Toda field theories.
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1.5 Mathematical aspects

As indicated above, one of our main tasks is to give a sensketdormal expressions ob-
tained by evaluating the product formula for the universah&rix in the infinite-dimensional
representations of our interest. These representatiens aome respects similar to the repre-
sentations of g-oscillator type employed/in [Bal.Z3, BaHKhe terminology pre-fundamental
representations was introduced(in [HJ] for a family of reprégations of the Borel sub-algebras
of quantum affine algebras generalising the representatibn-oscillator type considered in
[BaLZ3,BaHK]. As opposed ta [BalLZ3, BaHK, HJ] we will here beerested in represen-
tations of the g-oscillator algebra that have no extremagkte This being understood we
will adopt the terminology "pre-fundamental” for the sireplepresentations of the Borel sub-
algebras that will be used as building blocks for the claggpfesentations of our interest.

What will allow us to regain mathematical control in the alseof extremal weights is the fact
that the generators are represented in terms of positifr@adjelint operators. This implies that
our representations behave in some respects similar tepiesentations of the modular double
of U,(sl,) introduced in[[PT99, Fa99]. The terminology modular douklers to the fact that
these representations are simultaneously represergatitime algebra obtained by replacing the
deformation parameter= ¢~™** by the parametef = ¢~™/**. Taking tensor products of pre-
fundamental representations will generate various otbperesentations including evaluation
representations of modular double type.

We will observe that the special features of pre-fundameefaesentations of modular dou-
ble type allow us to define a canonical renormalisation offtiimal expressions obtained by
evaluating the universal R-matrix in such representatiortse infinite products representing
the universal R-matrix get automatically truncated to adiproduct when evaluated on pre-
fundamental representations. Most of the remaining facdoe expressed in terms of the quan-
tum exponential function. Replacing this function by thenvtmmpact quantum dilogarithm
preserves the relevant algebraic properties and produgeessions that are well-defined in
representations of modular-double type. The most del@aspect is to find renormalised ver-
sions of the contributions of the imaginary roots in the prddformula. This is crucial in
particular for giving representation-theoretic proofsggeheralised Baxter equations. We will
show that there is an essentially canonical renormaligdtio these contributions as well. In
order to see this, it will be necessary to study some aspédtedehaviour of the product
formula under the action of the co-product that do not seebetdiscussed in the literature.
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1.6 Relations to previous work

The affine Toda theories have been extensively studieddglréalot is known about the affine
Toda theories in infinite volume including factorised S-ntats [AFZ /BCDS$] and form-factors
[Lu97,/AL]. This can be used to predict the ground-state gynén the finite volume via the
thermodynamic Bethe ansatz [FrKS].

The full finite-volume spectrum is not easily accessiblénis tvay, motivating the use of lattice
regularisations. Lattice Lax-matrices and an integradditecke dynamics have been proposed in
[KaR]. A Lie-theoretic framework for constructing disceetersions of the Toda flow on the
classical level was presented in [HKKR].

The connection to the quantum affine aIgeZbg(aE[M) implies relations to spin chains of XXZ-
type on the algebraic level. Operators that are similar ®@roperators constructed in our
paper have been introduced in the study of generalised &otes model in[[BaKMS, DIMM].
The Q-operators to be studied in our paper may be seen asomgpact analogs of those from
[BaKMS,[DJMM].

1.7 Perspectives

It should be possible to generalise the approach descrnilkiki paper to the models related to
guantum affine super-algebras studied in [RiT]. A produntiiala for the universal R-matrices
of these quantum groups is known [Ya]. We may furthermore ribat the representations
defined in [RiT] are of a similar type as the prefundamentplresentations studied in this
paper. Renormalised versions of the universal R-matrixe leaen studied for representations
of modular double type of the quantum super-algelgy@sp(1|2)) in [IpZ]. This work gives

a first hint that the renormalisation of the universal R-mcas can be carried out for quantum
affine super-algebras in a similar way as done in this pages. gives us hope that evolution and
Q-operators can be constructed for the lattice models aeimiRiT] by using a generalisation
of the techniques developed here.

We have found reasonably simple formulae for the kernel eBhaxter Q-operator which are
natural generalisations of the formulae found in [ByT1]isI$hould allow us to deduce the an-
alytic properties of the Q-operators by generalising tlgeiarents from|[ByTL]. The informa-
tion on the analytic properties of the Baxter Q-operatomsefithe space of all solutions to the
generalised Baxter equation which can correspond to egees of this operator. Baxter equa-
tion and analytic properties represent the pieces of inddion that completely characterise the
spectrum. It should be possible to translate this desonif the spectrum into equivalent for-
mulations described either in terms of non-linear integralations or using partial differential
equations, generalising the results known for the Sinhd@omodel[[Z00, Lu00, ByT1, LuZ].
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Our results finally suggest that the representation thebguantum affine algebras may have
a mathematically rich and interesting extension to certaitegories of infinite-dimensional
representations. In the finite-dimensional case it wasrgbdan [ByT3] that the R-operator
of the modular double d¥,(s/(2,R)) [Fa99] may be seen as a "more universal R-matrix” in
the following sense. The representations of the modulableéoof ¢/, (s/(2, R)) considered in
[PT99,Fa99, ByT3] have dual representation that are ezhtis certain spaces of distributions.
The dual representations contain highest weight reprasens as sub-representations. It was
verified in [ByT3] that the action of the R-matrix defined ina¥9] on tensor products of the
dual representations restricts to the action of the usuaktsal R-matrix on tensor products
of highest weight representations. The R-operator of thdulaw double is therefore "more
universal” than the universal R-matrix in the sense thanifies the R-matrices defined on
finite- and certain infinite-dimensional representatioftswould be interesting to make this
point of view more precise, and to extend it to the case of yaraffine algebras.

1.8 Guide to the paper

The paper is quite long. However, there are some importants @& our story that can be
understood without having digested all of our paper. To hiegreader finding the parts of
most immediate interest we will here offer a brief overvieventhe sections. The introduction
of each section contains a slightly more detailed desonptf its contents.

Section 2 reviews some basic background on the classicaithed possible approaches to the
guantisation of the affine Toda theories.

The following Section 3 develops the light-cone lattice raggh introduced in the pioneering
papers([[FaV92, FaV94, BaBR]. In order to have manifest lpgalve are working with a
slightly redundant parameterisation of the degrees otifsee A gauge symmetry is introduced
allowing us to identify the physical degrees of freedom agyganvariant combinations of the
basic variables.

Section 4 offers a review of the basic background on quantifimeaalgebras together with a
short summary of the available hints indicating that thegnability of the affine Toda theories
can be understood using the representation theory of gueadfine algebras.

Section 5 describes first steps towards the definition antuledion of Lax-matrices and R-
operators based on the universal R-matrix of quantum affgebeas. The main tool for this
purpose are the formulae representing the universal Rboestran infinite product going back
to Khoroshkin and Tolstoy. We start explaining how to renalise the formal expressions
obtained by evaluating the product formula in the infinibeveinsional representations of our
interest in the case &f, (2[2).
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This analysis is generalised in the next Section 6 for the oayq(EIM). We describe how to
obtain the fundamental R-operators for the lattice affindalmodels from the representation
theory oleq(sAIM). Different types of explicit representations for the funaantal R-operators
are derived. For a twisted version of the quantum affine alggetve find a particularly con-
venient representation, leading to useful representfmrthe generalised Baxter Q-operators
constructed from the fundamental R-operators as integeiators.

For the derivation of functional relations satisfied by the@ggrators like generalised Baxter
equations it is crucial to analyse the contributions coniiogn the factors in the product for-
mula involving imaginary root generators. Such an analigscarried out in Section 7 for the
case of on/{q(gAIz). A uniform prescription is found for renormalising the cobtitions asso-
ciated to imaginary roots for a large family of represewotadi including the representations
relevant for the lattice Sinh-Gordon model. We verify tha@sigtency of this prescription with
taking co-products, and use all this to give a derivationhaf Baxter equation valid for the
infinite-dimensional representations of our interest.

The generalisation of this analysis to the caSéI(;:QEAIM) is presented in Section 8. We begin
by describing a fairly simple representation-theoretiogbrof generalised Baxter equations
which is valid provided the renormalisation prescriptiaeserves the relevant properties of
the R-operators under the co-product. The fact that it deegiified afterwards, studying
the fairly intricate mixing between real and imaginary ahder the co-product. Our results
also allow us to derive functional relations of quantum Wlaan type. Together with the
analytic properties of the kernel of the Q-operators we lilageeby obtained all the information
necessary to study the spectrum of the lattice affine Todaiggegeneralising the case of the
Sinh-Gordon model studied in [ByT1].

Various more technical details are deferred to appendidppendix[G in particular contains
a detailed comparison with previously known results on thh-&ordon model and to the
Faddeev-Volkov model.
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2 Background

Our main example in this paper will be the affisig;-Toda theories, which are classically de-
fined in the Hamiltonian formalism by introducing fietd(x, t), canonical conjugate momenta
I1;(z, t) and Poisson brackets

{¢i(x,t), dj(z/, 1)} = 0
Wi(z,), 92’ 1) } = moi;6(w — '), 2.1
{ (2, ), ¢;(2, 1) } ( ) (Lot (1)) — 0. (2.1)

The dynamics is generated by the Hamiltonian

H — /d2 Z < (8,6:)° ) + M€2b(¢i¢i+1)) ) (2.2)

The resulting equations of motion for := ¢, — ¢;.1 can be represented in the form
(07 — 02) ¢y = —2mbu (2”7 — *P9ivt — 2i1) (2.3)

As the motion ofp(z,t) = S°M . ¢;(x,t) decouples(d? — 82)¢ = 0, it is possible to impose
the condition that(z, t) = 0.

2.1 Classical integrability

The starting point is a zero curvature representation ofldmsical dynamics, taken to be of the
form
[0: — Aus(AN), O — A(N)] = 0. (2.4)

We may here takel,(\) = A (\) — A_(N\), Ay(N) = A (\) — A_(N), where

M
= Z 8+¢Z i T meb((m div1) E +1) )
=1 (2.5)

M
Z d)z Em - meb(d)l ¢Z+1)E 1+1 z) )

=1

using the notationg, = %(8,f + 0,). The zero curvature condition_(2.4) will reproduce the
equation of motion(2]3) provided that? = 7ub?.

Integrability of the classical dynamics is closely relatedthe existence of infinitely many
conserved quantities which can be constructed from the dronoy matrix

M(X) = Pexp (/OR da Am()\)> . (2.6)
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as the trace
T(A\) = Tr(M(N)). (2.7)

The Poisson structure of the field theory implies PoissonKatarelations of the form
{ M) M)} = [r(Mp), M(A) @ M(u)], (2.8)

with () being a certain numerical matrix. These relations im@y\), 7'(1)} = 0. As the
HamiltonianH appears in the asymptotic expansion\éf)) at infinity it follows that7'(\) is
conserved for all values of € C.

2.2 Light-cone representation

It is also possible to take the values of the basic field sl to the light-like segments as
Cauchy-data. Let us define the “saw-blade” contalys= |J)_, Ci U C;, whereCE are the
light-like segments

Chr={(kA+u,t+u) : 0<u<A/2},

Cr = {(kA+v,t+A—0v) : A)2<v<A) (A = R/N). (2.9)

In the light-cone picture for the classical dynamics, onesathe values of the field on the
two light-like segments of
¢f (2u) = ¢i(u,u) and ¢; (20) = ¢i(§ —v, § +v),  O0<uv< g, (2.10)

as initial values for the time-evolution from which(x,t) can be found for al: andt by
solving the equations of motion. The dynamics may still hgresented in the Hamiltonian
form by using the Poisson structure

{65 (), 6f ()} = Taysenplu—u), {67(0), 67 ()} = 70 senplv =) (211)

on the light-cone data;” and¢; defined on segments" andC, , respectively. The evolution
of 0, ¢™ (x, ) in thex_-direction can now be represented in the Hamiltonian form as

af(aJrgb:_) = { Hi ) a+¢z+ } ’ (212)
where
R M
H = ,u/ dx Z 2007 ~6) (2.13)
0 i=1

A very similar equation of motion obtained by exchangingrhles of; and¢; governs the
evolution ofd_¢~ (z_) in thez -direction.
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Vanishing of the curvature of the Lax-connection allowsadéform the contour in definition
of the monodromy matrix, leading to a representationVf\) as an integral over light-like
segments. The zero curvature conditionl(2.4) implies that

R e
M(\) =Pexp (/0 dr Ax(z,t; )\)) = Pexp </c ds dd—SAa()\)) : (2.14)

for any contoul that can be deformed inth = {(z,t) : 0 < = < R}, preserving the start and
end points. This allows us to rewrife (\) as

M(A) = Ly(NLy(A) -+ Ly (AL (A), (2.15)
where
LE(\) :=Pexp (/c+ dx, A+()\)), L. (\):==Pexp (/c— dx_ A()\)). (2.16)

WhenA — 0, N — oo with R = NA finite one expects to be able to approximate the fields
by piecewise constant values alo@ig. The representatio (2]15) 8f (\) suggests a natural
lattice discretisation resembling a staggered spin chain.

2.3 Continuum approaches

A very useful approach to the quantisation of such an intdgraystem is provided by the
guantum inverse scattering method (QISM). A central objethis approach is the so-called
quantum monodromy matrill (), the matrix formed from the operators that are obtained by
quantising the matrix elements of the classical monodrorayrimA/(\). If it is possible to
construct a matrixM () out of the quantised degrees of freedom of the field theorptefést

in such a way that the Poisson bracket relatidng (2.8) gettepeal into quadratic commutation
relations of the form

R/ ) MA) @1) T M(p) = T M(u)) (M) @1) R(A/ 1), (2.17)
one would get the conserved quantities of the quantizedtfieldry from
T(A) = Tr(M(N)). (2.18)

However, this dream is hard to realise in practise. In cat@mjuantisation it is by no means
straightforward to construct an operator-valued mati}d) out of the quantised local fields
that would satisfy nice quadratic relations of the form .1t is furthermore not clear which
numerical matrice®?(\) could appear in the relations (2117). Even though) is severely
restricted by the Yang-Baxter relation

Ria(A 1) Riz(Av) Ros(p/v) = Ras(p/v) Ris(A/v) Ria(M 1) (2.19)
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following from the consistency of (2.17) with the associdyi of operator products, one still
has a large supply of possible choices /it\) to consider.

The situation appears to be slightly better in the lightecogpresentation. Following [Bal.Z4]
let us note that the Poisson brackéts (P.11) are those aanadste field. The quantization is
therefore standard. Let us write the expansion;ofr_.) into Fourier modes in the form

2w
¢ (24) = q; + R Pt + <Z>Z~i,<(ﬂfi) + ¢Z-i7>(56i), (2.20)
where . '
?:<($:I:) _ Z la?:ne_QWinmi/R, Z;t>(l,i) — Z la,?:ne_Qﬂinxi/R_ (2.21)
b n ) Pl n 5
n<0 n>0

The modess, (¢ = £), q; andp; are required to satisfy the canonical commutation relation

1

[qia Pj} = i@j, [a;m, 3§:n} = 1 m5m+n,0 5ij Ocer - (2.22)

Quantum analogs of the exponential functieffs?:” are then constructed by normal ordering:
: emwii(”) . =exp (2aigbf<(xi)) 20i(dit+2mpizs/R) exp (2az~¢>f> (xi)) (2.23)

The quantum Hamiltoniand, andH_ corresponding td7, and H_, respectively, will simi-
larly be defined by normal ordering.The quantum equationatfen for an observabl®.. built
from 0.¢* (z.) can then be represented in the form

M
—10:0 = [H:, 0], He=n) QF (2:24)
=1
where the so-called screening charge operd@re defined as
R
Q= / duVi(z),  Vi(a) = : P00 = (2.25)
0

If the parameteb = i3 is purely imaginary, it should be possible to define a natcaadidate
for the quantum monodromy matri¥(\) by following the approach of Bazhanov, Lukyanov
and Zamolodchikov. Fa# in a certain range of values it would allow us to define quantun-
odromy matrices associated to the segméjitef the saw-blade contour as series of ordered
integrals over products of normal ordered exponentiale®frtee fields.

Such an approach has not been developed in full detail yestn Evt were, it could not easily
be generalised to the casec R of our main interest. The UV-problems are more delicate for
b € R, causing serious problems for the definition of the quantwnadromy matrices along
the lines of [BaLZ1, BalL.Z3, BalL.Z4].
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2.4 Lattice regularization

Another method to treat these problems is the lattice digatéon. The initial value®'(z) =

O (2, )]0, I'(z) = T(z,t)],_, Of the fields at timg = 0 are replaced by variables,, IT/,

defined on a one-dimensional lattice which hésites labelled by the index. The variables
¢, I, may be thought of as averages of the initial values,

1 /(n+1)A A 1 (DA

P = — dw ¢'(z), 1T dx T (z). (2.26)

A A n E nA
The quantization of these variables will yield operatorsoltsatisfy the commutation relations

i1 = Lsii
(6 1,] = 56700 m. (2.27)
The space of states of the regularized model may therefoidebéfied with asZ?(RYY).

A regularized versioM y () of the monodromy matri# (\) may be constructed as a product
of local Lax matrices
Mn(A) = Ly(N)Ln-1(A) - L1(A), (2.28)

where the lattice Lax matrice§, (\) are to be constructed from the discretized variables
(8, I1%). It will be shown that the matriced/ y(\) can be constructed in such a way that
they satisfy the algebra

RO/ p) MyN) @) (I My(p) = 10 My (1)) ( My(N) @) RO /),  (2.29)

with coefficientsR(\/u) that are independent éf andA. If the continuum limitV. — oo of
My () exists in a suitable sense, the relatidns (2.29) will entaethe monodromy matrix
M()\) defined by that limit satisfies the crucial algebraic refai@.17).

In the case of the Sinh-Gordon model correspondingy/te= 2 it was shown in|[ByTL, ByT3]
that the lattice discretisation leads to exact resultshferenergy spectrum. The excellent agree-
ment with results from the thermodynamic Bethe ansatz amm the existing relations with
Liouville theory [ByT3] indicates that the lattice apprdais indeed suitable for the construc-
tion and solution of the affine Toda theories.

3 Integrable light-cone lattice models — algebraic framewrk

The use of the lattice light-cone approach is inspired byiptes works [FaR, FaV92, FaV94,

BaBR, [KaR] on the lattice light-cone discretisation of thees and Sinh-Gordon models. In

order to maintain manifest locality it will be useful to paraterise the degrees of freedom in
a somewhat redundant way. The physical degrees of freedorbecalentified using a gauge-
symmetry. We describe how to define a natural time-evoldbogauge-invariant quantities.
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3.1 Overview on the light-cone lattice approach

It turns out to be very useful to preserve a certain demociratiye treatment of spacial and
time-like directions by working on a rhombic space-timeitat

I' ={(o,7)|0c €Z/NZ, T E€Z,0+T even}. (3.1)

This lattice is generated by the vecters = (1,1) andv_ = (—1, 1) which connect nearest
neighbor sites, see Figure B.1.

XA

Figure 1: Light-cone lattic&'.

.....

defined below is attached to each vertexr) of the dual latticd™ defined by the conditioa -+

7 odd. For each vertex df a relation between the variablg§T associated to the neighbouring
faces is required to hold. Such relations are caljedntum discrete equations of motiasthey
reduce to the equations of motidn (2.3) in the classicalinaom limit.

Let us describe the dynamics more explicitly. The algebrabservablesd,, y will be gener-
ated by invertible elements

Xim i € Z/JMZ, m € Z/2NZ. (3.2)
satisfying certain relations. The only non-trivial comiatitin relations are

4 2c¢; . —2¢i;
Xiz2a—1Xj2a = 4 7 Xj2a Xi2a—1> Xiz2a Xj2a+1 = 4~ Xj2a+1 Xi,2a > (3.3)

wherec;; = — (d;; — 0;;+1). In this paper we are mostly interested in the dase= 1. In this
case the generatogs,,,, will be realized as positive self-adjoint operators.

We will introduce two automorphisms. of the algebrad,, x such that upon defining

XiU:I:LT—f—l = T+ (Xf)-,fr) ) (34)
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with initial conditionsx5, ¢ = Xiz2a—1, X5a1 = Xiz2a» the following quantum equations of
motion are satisfied

L+ g2 X T+ a7 w2 o,
L+g w2 x oy, T+ q w2 X,

q2 XZ',T X(ir,TJrl = Xi’*l,T Xi+1,7’ (35)

These equations allow to define the values of the variatfleson the entire lattice from the
initial values associated to the faces nearest to the beldrs&igure[3.1. It is easy to check
that the evolution equation (3.5) reproduces the equationation (2.3) if one identifiesgfw
with e20#i(A2.A7) gnd takes the limig = e~ — 1 andA — 0 with s = mA andy; fixed.

The equations of motion above will be shown to follow from #ego curvature condition

9;+1,T+1()‘) 9:+1,r()‘) = g;_,r—f—l()\) Q;T(A) o+ T even (3.6)

for certain operator valued matrixes attached to the edfyieedatticel’. This is a quantum
discrete analogue df (2.4) encoding quantum integralufithe time evolution defined above.
The relation[(3.6) corresponding to each face in the thieétt, see Figureé 3|1, can be depicted
as follows

(o, 7+2) (o, 7+2)

(0—1,7+1) (0+1,7+1) (0—1,7+1) (0+1,7+1)

(o,7) (o,7)

Notice that the matriceg’, (A\) andg, .()) represent parallel transport on the lattice fram-
1,7)to(o,7+ 1) and(o,7) to (¢ — 1,7 + 1) respectively. It follows that

9ar(N) is defined foro + 7 odd, 3.7
9,-(\) is defined forr + 7 even. '

The rule to associate an operator valued matrix to a patheiattice follows from the basic
property of the path ordered exponentigl, i. .2, ., = 2.,Q2,, when the final point of the
path~, coincides with the initial point ofj,.

The explicit form of the Lax operators of discretized affgig -Toda theory will be

(ujl E; + q_% kA Vi Eii+1> )
(3.8)
(Ui_l E“ — qié /‘€>\+1 V; Ez’+1i> )

gt = Z
g (\) = Z

19



whereE,;; are the matrices having a non-vanishing matrix elementleéquane only in thei-
th row andj-th column,x = mA and we suppressed the explicit dependence; of, on o
and 7. This choice of quantum Lax operators is motivated by thenforf the classical flat
connection in light-cone coordinates, compare[io](2.5). Wilklater see that the matrices
g*(\) satisfy quadratic relations of the forfn (2117) with(\) replaced byy*(\) relations iff
the commutation relations af, v; are

upju; = u;u; ViVi = V;V; upVv; = ¢“v;u;, (3.9)
wherec;; = —(0;; — d;541). We further imposg [, u; = [],v; = 1 as they are central. We call
W, the algebra generated hy, v; and their inverses.

In this description, the quantum algebra of observablesy emerges as a quotient of the
enlarged algebraly, v = (Wy)“*", associated to the saw-blade contour in Figuré 3.1, by
certain gauge transformations. One may get rid of gaugendahcies at the price of giving up
ultralocality, which is the requirement that at fixedhe matrix entries of;! . commute with

the matrix entries o@;?w wheno; # o3.

3.2 The monodromy matrices
3.2.1 An alternating spin-chain

The monodromy matrixM () of the lattice model is constructed as a product of local Lax
matrices as

M) = LyAN)Ly_1(N) - L1(N). (3.10)
In the lightcone representatiaf), (\) takes the factorized form
LoV = L@ w0 L3, (g2, (3.12)
where
L (q2s7'A) == g (V) L(g3™A) == (1= 'AM) (g (V) (3.12)

with g%()\) given in [3:8). The scalar factor multiplying—())) "' in 3:12) can be identified
with the quantum determinant g-det ()\)) as defined in AppendixJA. The definition (3]12)
may be written more explicitly as

M 71
[_<)‘) = _1)‘M Z . Ezz - q_l )\Vz Ez+1z) ) (313)
M -
|_+()\) = Z (U;rl E” -+ )\71 V; Eii+1) . (314)

i=1
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The monodromy matriXx(3.10) is the operator-valued massoa&iated to the bold path in Figure

B upon settingy, ; := g5, andgy, := ga, - The indexm ong;; denotes the embedding of

W, in them-th thensor factor o(WM)®2N. It is thus clear that the matrix entries of quantum
Lax operators associated to different sites of the chainmaota.

The algebra/V,, admits a simple realization ih?(R*) given as follows
u; = e 2P v; = em(@i—airy) [pi,q;] = (2mi) 10y (3.15)

with ¢ = =", The quantum space on which the matrix entries of the momogmmatrix

act may be taken to bgl), y = L2(RNM), Alternatively one may impose the constraint

Zf”il p; = 0 for each spin-chain site, leading to a representatio/ah a subspacé,, y of
v isomorphic toL? (RN 1)),

Both Lax matrices*()\) andL~ () satisfy relations of the form

RAwW(ZN 1) (1o L) =(102LW) (LN 1)RA, p1), (3.16)
with the same auxilliary R-matriR(\, 1) given as
M
R()\,,u) = Z EZZ (29 EZZ + v Z EZZ X Ejj + Z Kf(i—j)M Eij X Eji7 (317)
i=1 i#] i#]
o pM — M e ¢ ' —q" Mt \E

T gL M = LM — q+1>\M'u

where(i — j),, denoteg: — j) moduloM. The monodromy matrix constructed in_(3.10) there-
fore satisfies the relations (2129), as desired. This impligoarticular that the one-parameter
family of operatorsT (\)

T(A) = Tren(M(N)), (3.18)
is mutually commutative

[TA),T(w)] =0. (3.19)

The family of operatord (\) will represent conserved quantities for the time-evolutiefined
above.

Remarkl. In the case ofl, one hasi, = u;' = u,v, = v;' = v and the definition[(3.11)

reads
-1 +1,,—1
L+(>\):( v V), [-(\) :( b v ) (3.20)

Aty ot Ay
Our formulation of the light-cone lattice approach is instbase similar to the one described
in [FaV92,[Fav94[ BaBR]. An important difference is due te tlact thatL—()) is taken to
be equal toL*(\) in [FaV92,[FaV94[ BaBR]. The two formulations are equivaliEm even
N, as will be discussed in Sectibn 3.2.2 below. The relatiotis thie representation theory of
guantum affine algebras appear to be more natural in our fation.

21



Remark2. The inverse of the matrik—()) given in [3.18) can be written more explicitly using

the following observation: For any matrix of the foffi(a) := 1 — Zﬁl a; E; 115, One has

(1—an - asar) (F(a))™" = <1 + Y (aim1aiy -+ ay) Ei,j> . (3.21)

i#]

Norice that in order to derivé (3.21) no commutation relati@tweeru, have been used.

3.2.2 Relation to XXZ-type spin-chains
It will be useful to note that there is a closely related Laatrix which is defined as
M
LX) = LNT,  T=> Ei. (3.22)
=1
The Lax matrixC*¥**()\) satisfies the same equatidn (3.16) that is satisfied loy), as follows

from the fact thaR(\, ) commutes witif @ T. It furthermore has a dependence on the spectral
parameten of the form

)+ > (MR Eq i+ N Eji Eaig) - (3.23)

1<j

a,it

M
LY\ = Eal&,, + AVE,
i=1

It follows from (3.16) together with the forni_(3.23) that theatrix element<;; generate a
representation of the quantum grolf(sl,,), as will be further discussed in Sectibn 613.4
below.

Note furthermore that
TLNT = Q7L £5%()) - Q, (3.24)

where() is the automorphism of the algebra of generated by the meleixents ofCX**(\)
defined as
Q;l N ga,i,j . Qa - ai—1,7—1 - (325)

The automorphisni), allows one to relate the monodromy matiix () to the monodromy
matrix T~ MXX2()),

M) = LFHNLFAA) - LT (3.26)

The automorphisrfl, has ordenV/, (Q,)" = id. If N is divisible by M, the spectral problem
for T(\) therefore becomes equivalent to the spectral problem¥of(\) = Trea (M*¥%()N)).
The close relation between spin chains of XXZ-type anddattegularisations of the affine
Toda theories will make it natural and often useful to disdusth of them in parallel.
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3.3 Light-cone time-evolution

We will now derive the quantum equations of motién [3.5). Teeivation will be based on
an explicit construction of the light-cone evolution ogeraU=, see[(3.4). The latter will later
be shown to belong to a large family of commuting operatorgragted as transfer matrices in
Sectior 3.4.

Before proceeding to the derivation an important remarkisrder. The zero curvature con-
dition (3.6) can not specify by itself a unique time evolatior the variablesufm, vfw. The
reason is that iﬁj;T satisfy the zero curvature condition, then also

(97)" = Dort195,0.2 - (95,)" = Do-rirt1 95, Dyt (3.27)

do. In (3.27)D, , are taken to be diagonal matrices in order to preserve tine dxblgng given

in (3.8). We refer to the transformatiorns (3.27) as gaugssfoamations. The transformations
(3.27) reflect the transformation properties of the patrepekponential), — Dy Q, D,
where is a path connecting the poirtto the pointB. It will be shown that the zero curvature
condition specifies a unique time evolution for the gaugaiiant sub-algebra c(ﬂ/VM)®2N.

3.3.1 Identification of physical observables

We first want to clarify how the quantum algebra of observablg; y emerges form the en-
larged algebré&V,,)**" generated by the operatars., v;,,i=1,..., M, r=1,...,2N.

Consider the products,, (1)L, _,(v) andLj, ()L, (1), which may be represented as

M -1
Lga(M)L;afl(V) =(1- q_lﬂM) (1 — K ZY;Q(I Ei+1,i) (3.28a)
i=1 Y
“A(ugqUoe—1)| 1+ = YT E..
(u2qu2 1)( T3 ; i2a—1 z,z+1)
M
+ | — 1 v+

o1 (V)Log(p) = | 1+ > ZYz‘,Qa—f—l Eiiv1 | A(u2aq1uza) (3.28b)

i=1

M -1
S(1—g7 ™) <1 —H ZY;,Qa EiJrl,i)
i=1

whereA(z) .= 2™ ; E; and

ir ot i+1,rVir inr " 4,7 VT )
i - 1 (3.29)
Yir = VigUiy, Yip = Viplipy, -

The group of gauge-transformations on a time slice is géa@faom the transformations

. { L;ra71<)\) — D;alfl L;a1<)\)} G . { L;afl()q — L;ra71<)\) DQa} (3 30)
2a—1 _ — % — o .
Loy (A) = Lou(A) Dy Lo, (A) — DQal Lo, (A)

23



Using the factorised expressioiis (3.28) it is easy to seevthaand Y, are invariant under
Gy,_1, While Y andY;, are invariant undef,,. Note furthermore that the combinations
U, 5,U; 9, ; Which arenotinvariant under=,, , donotappear in the produdt, (AL, ,(A). A

4,2a "%,2a—
similar statement holds for the combinatians,. ,u;,, Which arenotinvariant undeiG,,.

The next step will be to identify operators that implememetgiauge transformatiords,, , and
G,, within the chosen Hilbert space representationAgf . To this aim let us introduce the
operators

N

_ 1
Ci2a—1 = (ui,QaVi,2aVi,2a—1ui+1,2a—1) )
1

2

(3.31)
Ci2a = (ui+1,2avi_,21avi,2a+1ui,2a+1)

It is easy to see that,,, , commutes withY;’ andY;,, but it does not commute with

iﬁzauijgla_l. This allows us to identifyogc; ,, ; as an infinitesimal generator fat,, ;. By

very similar reasoning one may identikye c; ,, as an infinitesimal generator féi,,. Having

relatedc, , with the generators of the gauge symmetry motivates us toeldfe algebrad; v

of "physical” observables to be the sub-algebradgf  generated by the operators commuting

with all c, ., more precisely

u

7,7

Apy = {0 €My vi (,)° 0 (c;,) " =0 (3.32)

Vi=1,....,.M,Vr=1,...,2N, VseR}.

Itis easy to find an explicit set of generators by, y: It is given by the operators

R —1
Xi2a—1 ‘= ui,QaVi,QaV_ifa—luz’+1,2a71 (3.33)
Xi2a *= Vi2aYi+1,2a% 2a41Vi2a+1 -
One may easily check that the operatgys defined in[(3.38) commute witt) . for all allowed

values ofi andr, and satisfy the commutation relatiofis (3.3).

One may note that the operatoys, andc;, with r = 2a — ¢ either odd { = 1) or even

(e = 0) generate commutative subalgebrasAgf .. They can therefore be simultaneously di-
agonalised, leading to representations where statesesented by wave-functions(z, c),
with = andc being vectors with components, andc;, fori = 1,...,M anda = 1,..., N,
respectively. The representations are defined such that

Xi,2afew,(xv C) = xi,aw,(‘ra C) ) Ci72a7677/)/($, C) = Ci,aw,(xv C) . (3.34)

Whenever a physical operatdds can be represented as an integral operator, one may assume
that this representation takes the form

(0 (z,¢) = / de' Ko (e, 257 (x, ). (3.35)
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The kernelKo (x, 2';.) may depend on the values of the central elements that the algebra
generated by the, , has.

One may then define a natural projection sending:, c¢) to ¢ (z) = ¢'(x,1), wherel has
components; , = 1fori =1,...,M anda = 1,..., N. Physical operators are projected to
the operators

(01/1)(5’3) = /dx/ K0<x7 x/)w(ﬂf) ) K0<x7 ZC/) = KO’(xvx/; 71) : (336)

3.3.2 Hamiltonian formalism

In a Hamiltonian framework one may describe the time evotutf arbitrary observablas,, -
by means of operatots®, see[(3.4), which generate the light-cone evolution by ane step
in the following sense:

OrJrl,TJrl = (U:)_l ’ OT,T ’ U: ) OT‘*l,Tﬁ*l = (U;)_l ' OT‘,T ' U; : (337)
The corresponding discrete time evolution oper&kprs given as
U. = U, U =U!U.. (3.38)

Notice that this operator shifts the time variabley two units. The main ingredient to construct
the light-cone evolution operators will be an operam()\, v) that satisfies

(X)) LA L) b (v) = L) L (V). (3.39)

m

The motivation for introducing the notatioh will become clear in the following. Having such
an operator we may construdt in the following form

N N
U: = [ H rQ_aTQafl(ﬂv M)] ) Codd ) U; = [ H r2_a—j_2a71(:a7 :u)] ' C;/in : (340)
a=1 a=1

wherex? = p~1ji. The operator€, ., andC..., are defined such that

Codd . 02a+1 == OQa—l ° Codd ) Codd . 02(1 == 02a . Codd 9

(3.41)
Ceven . 02(1—1 = 02(1—1 : Ceven ) Ceven . OQa = 02(1—2 : Ceven )

for all operator€),, which act nontrivially only on the tensor factor with labelin (W;,)**" .

It follows that(U;)~'U; generates space-shift of two lattice units, as it shoulik then easy
to show that the zero curvature conditién (3.6) will be $&tikin the time evolution generated
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by UZ:

[2_a+1,’r+1(la) L;—a,’r-l—l(u) =
DU L (1) Ly (1) - U

@0) _ o - _

Codld (r2a o1 (1))~ ! |—2aT(M) L;afl,r(,“) : r2a—,’—2a71(u7 1) - Coaa
@39

Cod{i L;—a 17( ( ) odd

)L
) L ().

The fact thafl (\) give in (3.18) generates quantities conserved in this gwaution,
(U™ T -Ug =T, (3.42)

may now be checked directly usirig (3.39), (3.41) and theiaygbt the trace.

3.3.3 Evolution of physical degrees of freedom

We will now derive the evolution equatioris (B.5) from the Hiéomian point of view. To do so
we will use an explicit solution of (3.39):

r2a+2a 1 :u7 = [H \7/{ Xz 2a—1 ] t2a’2a_17 (343)
whereqgte:22-1 js the operator
1 M
t24,20-1 = (702)2 ;log(ui,za) log(ui24-1) (3.44)

while 7, (z) is a special function satisfying the functional relation

J.(g 'z
7”(6"“ ) = 1+ r’x. (3.45)
Jx(qttz)
Note thatg'2+2a-1 satisfies
t2a,2a—1 —t2a,2a-1 _
q Vi,2a—1 q uz 2a uz+1 2a Vz 2a—1>» (3 46)
t a,2a— —t a,2a— J— '
gt Vi2a 4 el = ui+1,2a—1 U; 20—1 Vi 2a 5

and commutes with; »,, u; 2,—1. The fact that the operator defined[in (3.43) satisfies (388)
be verified by straightforward calculations. As we will seeSectioni 5.4 the functional relation
(3.45) supplemented by the requirement that the time aeolus unitary will determine a
solutionJ,(x) of (3.48) almost uniquely.
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From the explicit form ofr—* (i, 1) given in [34B) it is easy to derive the quantum discrete
equations of motion. Let,(z) := (U¥)™". z- U£. Using the definitions{3.43)[(3.46), the
algebral(3.8) and the functional relatién (3.45) one olstain

T (Xi2a—1) = 7= (Xi2a41) = Xi2a» (3.47a)

T (Xi2a) = T- (Xi2at2) = (3.47b)
14+ q A Xir12a 1+ ¢ K Xi 12042
L+ qtk? Xiga 1+ q K2 Xi2ar2

Y

= Xi2a X;21Q+1 Xi,2a+2
which implies the discrete time-evolutidn (B.5). Note hetmore that

Ty (Ci2a—1) = T- (Ci2a41) = Ci2as T4 (Ci2a) = T— (Ci2at2) = Ci2aq C;21a+1 Ci2a+2 (3.48)

This means that the evolution of the unphysical degreesetiivm represented by the operators
c;» decouples completely from the evolution of the physicakobablesy; ,.

One may notice that the equatidn (3.39) does not specifyuniquely, see Sectidd 6 for more
details. This is related to the fact that the zero curvatereiion does not specify a unique
time evolution for the enlarged aIgeb(‘aVM)@N. However, the ambiguity left by equation
(3.39) does not affect the time-evolutidn (3.5) of the pbgkdegrees of freedom.

3.4 Fundamental R-matrices and Q-operators

One of the simplest possible ways to make integrability rfieshiis realised if the operators
U* for the light-cone evolution are obtained from a family ofmmuting operator®. (1)), by
specializing the parametarto a certain value)* = [Q, (A\F)]™" for a certain\* € C. This is
achieved naturally when the model is defined by an altergaiin chain as the one introduced
in Sectior{3.211, seé [FaR, FaVv92].

We will later see that the operato@s. () are natural generalizations of the Baxter Q-operators,
as the notation anticipates.

3.4.1 Fundamental R-matrices

A standard tool for the construction of local lattice Hamiltans are the so-called fundame@'tal
R-matrices which are defined by the commutation relations

(Rap (i, 5 7, V))_lﬁA(%M)LB(Da V) Rap(ft, p;7,v) = L0, v)L4(f1, 1) - (3.49)

2The name fundamental refers to the fact that they play a fmeddal role in the integrability of the model. It
should not be confuses with the adjective fundamental usattributed to the fundamental representation.
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In our case we are dealing with lattice Lax matrices thaoiant as

L4, p) = Lg (LT (), (3.50)

wherey = q%f(l)\ andpg = q%/ﬁl)\. This factorized form implies in particular that the
fundamental R-matrices can be constructed as

Rap (i 1:7,v) = rig (1 0) i (mv) v (1, 7) 2 (B, v) (3.51)
provided that be operatorg* (i, v) satisfy the relations
L () Ly () 1 () =1t () L () L () (3.52a)
LG L) 0 ) =t () L (0) L (), (3.52b)
Lo (1) Ly () T (11 2) = (112) Ly () L (1) (3.52¢)
Lo () Loy () . (s v) = 0 (s ) L () L () (3.52d)

The regularity property for the fundamental R-operate, iR 45 (&, 14; ji, t) = Pap, which is
often used to construtdcal conserved charges from the fundamental transfer matrikhaid
if the conditions

() = Prs, () =Py () (o p) = 1, (3.53)
are satisfied, wher®;; is the operator of permutation of the tensor factors witlelaband;.

We will later discuss how operators; (1, v) satisfying [3.5R) and(3.53) can be constructed
using the representation theory of quantum affine algeltrasll turn out that the dependence
on the spectral parameters is of the form

() = nl2 (). (3.54)

In Sectior 3.2.2 we had introduced the Lax-matri€g8*(\). It is easy to see that the funda-
mental R-operators

X%Z(ﬂn“v D? V) = QA 'RAB(ﬂvﬂ; Da V) 'lev (355)
will satisfy the commutation relations (3149) withreplaced byC**#,

Our next goal is to show that the operatefs 1., v) allow us to construct generalized commut-
ing transfer matrices which are conserved in the time esaiut

3.4.2 Q-operators
We may then use the fundamental R-matrices to define geseuldliansfer matrices as
T (s s v, v) = TI'H(;@H:{(RON(,H’N? v,v) o Ry (B, 137, V)) : (3.56)
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It follows from (3.51) that[(3.56) factorizes into the pradwf two more fundamental transfer
matrices as

T (i, psv,v) = Qp(p;v,v) - Q- (5 v,v), (3.57)

where
Q (wv,v)="Tr é(r();;]\/(lua D)ro;,zJFN—l(Ma v) ... r(];;(:uv )r01 (1)) - (3.58)
Qi (7, v) =Try, (rozN(Ma D)loan—1(k.v) - r02 (1, D)5 1 () ) - (3.59)

Each of the operator@, (\; i, i), e = + will generate a mutually commutative family
Qe (15 iy 1) - Qey (Mo 1, 1) = Qg (Mo s 1) = Qey (M1 i, 1) (3.60)
of operators provided that the constituent R-operatofs satisfy the Yang-Baxter equations
O S T e (e ) = e (e s s (36D)

where we have used the so-called difference propertyl(3.54)

Recall thatii =t = «? is a fixed parameter of the model. It follow from the explicitfigition
(3.58) and from the properties (3153), that the transfericest Q. (\; i, 1) for special value of
the spectral parametarsatisfy

Qi (usjip) = (V).  Q (isjup) = Uy, (3.62)

whereU= are given in[(3.40). It follows from{(3.60) th&. (v; i, 1) commute withUZ, and
therefore represent conserved quantities for the evolg@merated by them.

We will later see that the operato@. (\) = QL (\; 1, 1), defined in[(3.58) satisfy finite dif-
ference equations constraining thelependence which generalise the Baxter equations. This
motivates us to call these operators (generalised) Baxtgpepators.

It is useful to note, however, that multiplying the familyaferators_. () by an operator that
is not \-dependent will yield another solution of the generalisedtBr equations. It may, for
example, be useful to consider

Quvy(N) = T A v,v) = Qu(Xv,v) - Q (3 7,v), (3.63)

as an alternative definition of (generalised) Baxter Q-afpes. The operatoQ; » . () repre-
sent another useful family of conserved quantities. Sona¢wtrprisingly we will find kernels
representing the operatog; ., (\) that are simpler than those we could £ ()).
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4 Background on quantum affine algebras

This section first reviews the basic background on quantdimeaflgebras used in this paper.
We then summarise the available hints that this algebraictsire is the one underlying the
integrability of the affine Toda theories.

4.1 Quantum affine algebras

To begin with, let us briefly review the necessary backgroomduantum affine Lie-algebras.

Let g be the (untwisted) affine Kac-Moody algebra associatedesiimple Lie algebrg. We
let » denote the rank of and assume, for simplicity, that all the real rootgjdfave the same
length (this is the only case that will concern us). The quem&ffine algebré/, (ﬁ) may then
be defined([Drl,1J] as the Hopf algebra generated by the elsmdthe unit),e;, f;, k; = ¢'*

(i =0,1,...,r), andq”, subject to the following relations:
Ay —Ay ki — k!
kie; = q"V ek, kifj = a7 fiki, eifj — fiei = %W’ (4.1a)
¢"ei = q"%eiq”,  kikj=kiki,  ¢"ki=kid”,  ¢"fi=q¢™fid”,  (4.1b)
1-Ayj 1-Aq;
AZ ] n Azg*n - AZ j n 7A¢jfn
> (= { } eree; Z { ] FEETYTTZ 00 (a.1c)
n=0 q n= q
Here, A is the Cartan matrix of and we use the standagehumber notation
m [m],! ¢ —q"
_ | — ~11 .- = 4.2
|j”L:| . [n]q| [m o n]q!7 [n]q [n]q [n ]q [ ]q ) [n]q q— q—l ( )

Equation [4.1c) is known as the Serre relations. This is lempented by a coprodudt given
by

A(f)=fel+ktef, A () =q¢" ®q". (4.3b)

There is also a counit and antipode, though their explicin®are not important for us, except
in noting that there exist Hopf subalgebtagb™) andi{,(b~) generated by the;, k;, ¢” and
the f;, k;, ¢©, respectively. These are the analogs of Borel subalgebchwa will refer to them
as such. The subalgebrids(n™) andif,(n~) generated by the; and thef;, respectively, will
be called the nilpotent subalgebras. They are not Hopf gebghs.

As in the classical case & 1) above, we will generally be interested in leVekpresentations.
Because of this, we will often denote a quantum affine algbprzaq(ﬁo), understanding that
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the linear combination of Cartan generators giving thellbas been set t0. As the level is
dual to the derivatio under the (extended) Killing form, it is therefore oftenafgermissible
to ignoreD in our computations.

The quantum affine algebmq(sA[M), which will be the main focus of this paper, is defined
as above upon taking the Cartan matrix todg = 26, ; — 6,11, — 6; ;+1, Where indices are
identified modula\/. The finite grouf,, is realized as automorphisms of the Dynkin diagram
of s,,. We denote by the corresponding generator. Due to their central roleerfollowing
analysis we report the form of the Serre relations in thicspease {/ > 2)

622 €it1 — (q+ qil) €; €i+1 € T €11 6? =0, (4.4)

€€ = €€, |f’l§£j:|:1, (45)

and similarly forf;. Notice that the Serre relations are unchanged upderg—!. The quantum

.....

4.1J) as
k; = qH" = ¢fiE (4.6)

The generatof := Zﬁl € Is central. If it is set to zero we recovag(sA[M). Notice that the

simple roots ofl,,, see Appendik C111, satisty;(«;) = A;;. This follows forme;(e;) = §;;
and justifies the notation.

Finally, we remark that the automorphigirof the Dynkin diagram oél,, induces an automor-
phism on/lq(sAIM)

Q o (e, fi, ki) = (eaqu), fou): ko) - (4.7)

whereQ(i) =i + 1.

4.2 Universal R-matrix

The physical relevance of quantum affine algebras stemstheraxistence [Dr86a] of the so-
called universal R-matri¥#Z. This is a formally invertible infinite sum of tensor prodsiaf
algebra elements

R= a; @b,  a;b €U(3), (4.8)
which must satisfy three properties:

AN () = AP (z)Z  forallz € U,(3), (4.9a)
(A X ld) (L@) = %13%23 and (ld ®A) (%) = %13%12. (49b)
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Here,A% () denotes the “opposite” coproductidf(g), defined ag\°?(z) = o(A(z)), where
the permutatiomr acts as
olr®y)=y®ux. (4.10)

We have also used the standard shorthaghd= >". a0, ® b, ® 1, %13 = >, 0, ® 1 ® b; and
9?23:2@1@)&2@1)2
Quantum affine algebras have an abstract realisation instefra so-called quantum double
[Dr86&] which proves the existence of their universal Rnas. This realisation moreover
shows that these R-matrices can be factored so as to isb&tmntribution from the Cartan
generators:

R=qR,  t=> (A7) HioH, (4.11)

irj

Here, A denotes the non-degenerate extension of the Cartan mattinetentire Cartan sub-
algebra (includingD). This is achieved by identifying this matrix with that ofetl{appro-
priately normalised) standard invariant bilinear form be Cartan subalgebra. The so-called
reduced R-matrixZ is a formal linear combination of monomials of the fol} @ F; :=
€€y @ fin fi, U =Hir, ... ik}, J = {j1,...Je}). Itis worth noting [KhT92] thatZ is
already uniquely defined up to a scalar multiple[by (4.9a)@nqtl).

We note that a second solution to the defining propeitie$ (g diven by [Dr86a]
R = (o (%), (4.12)
This alternative universal R-matri€~ is then of the form
R =K% q ", (4.13)

in which Z~ is a formal series in monomials of the fofly ® E;. In order to emphasise the
symmetry between the two universal R-matrices we shall@dsahe notatio?* := Z. #+
andZ~ may also be related by the anti-automorphisgiven by

Cle:) = fi, C(fi) = ei, C(H;) = H; (D) =D, Clg)=q" (4.14)
This action can be continued to tensor productsVia® y) = ((z) ® ((y). In terms of¢, we
can represen¥?— as#Z~ = ((Z").

In order to get an idea how property (4.9a) determines theeusal R-matrix let us first note
thatq' satisfies the equations

¢ (fiel)=(fiek')d, d0ef)=Fk"'®f)d, (4.15)
¢ (e®1) = (k") ¢, ¢ (1we) = (kK'®e)d, (4.16)
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The intertwining property({419) implies the following rétans for the reduced R-matriceg*
%" [io1] = (ki fi) Z"— 2% (k7' @ fi) | (4.17)
(% e 1] = (koe) Z# —% (k' ®e) . (4.18)

These equations can be solved recursively in the order oghthreomialsE; ® F; orF; ® E;,
the first few terms forZ— bein

7~ = 1+Z _QZ fz@ez _'_Z 1)2 612 ® fi2 (420)

" ; q(a'“f —q oy (€ eiej—eje) @ fif;+
i#]

Notice that the quadratic Serre relatieye; = e;e; for (a;, ;) = 0 follows as a necessary
condition for the existence of the universal R-matrix.

For the case ctt{q(gA[M) of our main interest we may note that introducing the Cartamegators
€; simplifies the expression farentering the universal R-matrix as

M-1 M .
= “Z:l (Afl)ij (H; ® H;) = ; 6 RE — ME@E. (4.21)

Note furthermore that in the casesz(gT[M) the universal R-matriceg* areZ,,-symmetric,
Q®Q) o Z#* = %*. (4.22)
as follows from the uniquen&ef the universal R-matrix.

It finally follows from the defining properties (4.9) thatt and%~ satisfy the abstract Yang-
Baxter equations

Ry Ry Rgy = Ry By B (4.23a)
Ry Ry Ry = Ry Frz Ky Ry Rry Rory = Ryy Bys Kns (4.23b)
Ry Ry Ry = R R By, Ry Ry Ry = By R, Ry (4.23c)
Ry Ry Ry = Ry, Ry Ry - (4.23d)

3 We obtained this expansion fof,(g(A)), whereg(A) is the Kac-Moody algebra associated to the (sym-
metrizable) generalized Cartan matrx In this case the relatiof (4]1a) generalizes to

k:_

—1 >

Q 7

kiej = ¢ ek, kify =q7 %) fiky, eif; — fiei = 51] (4.19)
where(a;, oj) = (a;, o) and the Serre relations take the same form dsinl(4.1c) wétiCtrtan Matrix given by
Aij = 2655

4The automorphisnf? does not alter the ansatz for the universal R-matrix thatrerthe uniqueness theorem
in [KhT92].
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The equations (4.23) will imply in particular the crucialatons [3.16) when evaluated in
suitable representations.

4.3 Drinfeld twist
One may modify the defining data of the quantum affine algeyaseans of Drinfeld twists,
represented by invertible elemen#s € U, (g) ® U, ()

Alx) = F7'A@)F, VYeecA, Z=0FHRF. (4.24)

We will only consider element& preserving co-associativity of the co-product (cocyclésy
a very particular choice o we will later find useful simplifications in the expressioos the
fundamental R-operators. This choice#s= o(¢~/), where

1., 2
f=—5Xs&a®e&, Xy =700~ Jmoan - (4.25)
Useful properties of the coefficients;; are
2
Xip1j — Xij = +M — 20i41,5 9
Xij+1— Xig = VAl 20;
We may furthermore note that (4126) implies that
¢ o(d’) = ¢ (4.27)
This identity allows us to writeZ* and#~ in the forms
#* = ¢ o(gNF o(¢7)], (4.28)
K- = [qf R q’f] o(qg?y. (4.29)
These formulae, together with
o(@) (e;® f)o(qF) = g™ @ g (4.30)
¢ (fiwe)g! = fig g Te, (4.31)

are useful for computing the Lax- and R-matrices from thet®d universal R-matrices.

Remark3. Parts of the literature use conventions whéfe is factorised as#+t = #*' ¢,
compare to[(4.11). The facte#*' is constructed from the generatets= e;k; ' andf; = k;f;.
We have

Ale) = €@ ¢ i +qi “@¢, (4.32)
A(f)) = fl@ g+ 4 ¢f w1 @ f7 (4.33)

indicating that our choice# = o(q~/) is indeed a particularly natural one to consider.
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4.4 Relevance for affine Toda theories

Before we continue with more formal developments let us paosreview some important
hints indicating that the representation theory of quanaifime algebras will be the proper
framework for establishing and exploiting the quantumgnaility of the affine Toda theories.

4.4.1 Continuum approaches

One of the key observations [BoMP] pointing in this direntig the fact that the screening
charge) generate representations of the the nilpotent sub-algéhta-), U, (n™),

W:F(fl) = ng_ 1 Q;ra 71-F_F(ei) = QQL_ Q; (4.34)

Indeed, it can be verified by direct calculations that theeSezlations are satisfied |[BoMP,
BalZ3]. This observation relates the interaction termshim light-cone Hamiltonians to the
representation theory of the quantum affine algél;)(aA[M). It can be used to construct the local
conserved charges of the affine Toda theories in the lighé-cepresentation [FeF1, FeF2].

The representations;, can be extended to representations of the Borel sub-algébta)
U,(6™) by setting
o 2

2 (Pi — Piy1), Tep(hi) == —3(Pz‘ — Pit1) - (4.35)

A beautiful observation was made in [BaLZ3] and [BaHK] in tteesesM = 2 and M = 3,
respectively: It is indeed possible to evaluate the unaldRsmatrix in the tensor product of
representations’ ® 7., wherer, is the free-field representation defined above, ahdis
defined as

W:F(hl) :

7T§(€z‘) = ! Ei,i—i—la Wi(fz‘) = )\Ei-i-l,ia Wi(hi) = Ei,i - Ei+1,i+1; (4-36)

the matrice<;; are the matrix unit&;; E,; = J;; E;;. For a certain range of imaginary values
of the parameter = i3, the matrix elements of

MT(\) = (7} @ 7t ) (%), (4.37)

represent well-defined operators on the Fock space undgrtyie representation.. The
matricesM™ () represent quantum versions of the monodromy matrices septieg the in-
tegrable structure of the massless limit of the affine Todmiles. These results were later
generalised td/ > 3 in [Kaq].

The massless limit decouples left- and right-moving degy&efreedom. By a careful anal-
ysis of the massless limit it was shown [n_[RiT] that the mamwody matricesM*(\) and
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M~(\) := (m} ® 7)(%~) describe the decoupled integrable structures of the rigid-left-
moving degrees of freedom, respectively. This means tleaetis a correspondence between
light-cone directions and Borel sub-algebras. This olztem will be very useful for us.

For the cases = i it might be possible to define monodromy cases for the masisaaies
by considering
M(A) = M~ (A)MT(N), (4.38)

as suggested by the representation (2.15) of the classmabanomy matrix forN = 1. Un-
fortunately it is not straightforward to generalise (4.8Y}jhe cases of our interestc R. The
short-distance singularities are more severe in theses cdismay nevertheless be possible to
define monodromy matrice®l(\) by using a renormalised version of the right hand side of
(4.317). They key observation that (4134) defines reprefentof i, (n"), U,(n~) remains
valid, after all. However, this approach has not been dpezlyet.

4.4.2 Lattice discretisation

In order to gain full control, we will instead employ a lagicegularisation. As will be discussed
in more detail below, it is then possible to obtain the latfi@ax matrices from the universal R-
matrix in a way that is quite similar t6 (4.87),

1
+ - f +
LT(A) = m[(ﬂ @ 7, ) (#)ven »
1 (4.39)
SN .
L™(A) = m[(ﬂ @ 7 ) (Zs)ven »
where the representation$ and7~ are defined as
+ A -1 + -1
5N (fz) = q—q2 u;, Vi, T (kz> = U Uy, (4.40)
-1
ﬁ;(ei) = m V; UZ‘+1 s ﬁ';(kﬁl) = Ui_l UZ‘+1 . (441)

{vi,u;}i=1.. v generate the algebrd/, see[(3.D). It is easy to verify thdt (4140) and (4.41)
satisfy, respectively, the defining relationsiéf(b™) and{,(b~). The notation. ..],., indi-
cates the application of a certain renormalisation proegdwhich will be necessary to get
well-defined results in the cases where the representatiorare infinite-dimensional. The

normalisation factoréd ™ (Au 1))t and(6~(An~')) ! in (4.39) are proportional to the identity
operator and will be fixed later.

We get another strong hint that the representation theoguahtum affine algebras is well-
suited for our purpose by observing that it gives us a verynaatvay to obtain the light-cone

36



evolution operator from the universal R-matrix. We had obseé above in order to build an
evolution operator we need to find an operator(;/)\) satisfying

(P (/N) " LE )L () - 1 (/) = L () L* (V). (4.42)

A solution to this equation in the sense of formal power seiethe parameterg, A can be
obtained from the universal R-matrix,

(/N = (m @ w, ) (#), (4.43)

as follows by applyingr} ® 7,", ® 7,1 to the Yang-Baxter equation (4.23b). We will later
discuss the renormalisation of}, ® 7,-1)(#") needed to turm™— (u/A) into a well-defined
operator. The definitiori_(4.89) realises the link betweghtlicone directions and Borel sub-
algebras ouq(sA[M) observed in[RiT] within the lattice discretisation. It irucial for making
the relation between the evolution operator and the urav&smatrix as direct as possible.

5 R-operators from the universal R-matrix - case Oﬁ/{q<;\[2>

5.1 Overview

We had observed in Sectibh 3 that basic building blocks o€&M are the operators: (1, v)
which are required to be solutions to the RLL-relations

(res () Le(LS () v (ov) = LS )LE(p) 6 =+ (5.1)

The operatorsjj(A, w) are in particular needed for the construction of an intelgraime-
evolution.

The framework of quantum affine algebras will allow us to sgsatically obtain solutions of

the equationd (5l1) from the universal R-matrix of the quanaffine algebraialq(glM). This

fact is known in the case of spin chains of XXZ-type, wheresisufficient to evaluate the
universal R-matrices in finite-dimensional or infinite-&insional representations of highest or
lowest weight type. The main issue to be addressed in oura&geates from the fact that
some of the relevant representations will not have a highreatlowest weight. On first sight
this causes very serious problems: Evaluating the univBrgaatrices in infinite-dimensional
representations will generically produce infinite serresyonomials of the operators represent-
ing the generators dflq(sA[M). These series turn out not to be convergent in the cases of our
interest.

It will nevertheless be found that there exists an essénitanonical renormalisation of the
universal R-matrices. The main tool for establishing th&ne will be the product formulae
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for %* found by Khoroshkin and Tolstoy. The product formulae ardgipalarly well-suited
for our task: They disentangle the infinity from the infinitdension of the root system from
the infinite summations over powers of the root generators.will identify simple represen-
tations such that only finitely many real root generators el represented nontrivially. More
general representation of our interest can be construgtéaking tensor products of the simple
representations, curing the first type of problem. The sgdgpe of divergence can be dealt
with for representations in which the root generators apeesented by positive self-adjoint
operators. Replacing the quantum exponential functiopeafng in the product formulae
by a special function related to the non-compact quantuogdiithm produces well-defined
operators which will satisfy all relevant properties oneuwdonaively expect to get from the
evaluation of the universal R-matrices.

A review of the product formulae will be given in Subsectia® Below. We then start dis-
cussing how to renormalise the expressions obtained byawvad) the the product formulae in
the representations of our interest. In order to disen&ddficulties of algebraic nature from
analytic issues we will begin discussing the necessaryrneaigsation for the case @fq(g[g).
The Caseélq(EIM) will be discussed in the next section. Some of the factoraiobd by eval-
uating the product formulae will be proportional to the itignoperator. These contributions,
associated to what are called the imaginary roots, will Isewdised later in Sectiohs 7 dnd 8
below.

5.2 The product formula for the universal R-matrix

In this section we begin by reviewing the explicit formula the universal R-matrix obtained
by Khoroshkin and Tolstoy. We will follow the conventions[lKhT2]. A guide to the original
literature can be found in Sectibn 5.2.3 below.
5.2.1 Construction of root generators
Recall thatA , (g) = A™®(g) U A™M(g) where
AS(@) = {7+ kély e Ai(g), k€ Zxo} U{(0 —7) +kd|y € A(g), k € Zz0} (5.2)
AT(G) = {kd |k € Zso} (5.3)

The first step of the procedure is to choose a special ordarifg (g). We say that an ordex
onA, (g) is normal (or convex) if it satisfy the following condition:

(a,ﬁ)e(A+xA+)/(ATxAT), a<p, a+peA, = a<a+pf<5 (54)
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This definition can be applied to any Kac-Moody Lie algebrar fihite dimensional Lie alge-
bras there is a one to one correspondence between normad arttereduced expressions for
the longest element of the Weyl group, see ¢.g/ [CP]. Forigted affine Lie algebras a convex
order splits the positive real roots in two parts: those #natgreater that and those that are
smaller thany, see([lto] and appendix C.1.1. Without loss of generaldyghly up to the action
of the Weyl group ofy, we further impose

Y+ Zs0d < Zsod < (0 —7)+Zx0, v e Ai(g). (5.5)

In applications we will as well use the opposite ordering paned to[(5.5). From the definition
it is clear that given a convex ordering the opposite ordgisnconvex as well. This ordering
reflects a triangular decomposition @f(n*) ~ U (<) ® U (~) @ U} (>) (see e.g.[[Lus]
40.2.1), and is manifest in the the structure of the prodochiila for the universal R-matrix
given below.

The second step of the procedure is to construct the genem@iaesponding to the positive
roots ofg, where imaginary roots are counted with multiplicitiegrfr the generators corre-
sponding to the simple positive roats, = es_g ande,,. The procedure goes as follows

1. Leta, 8,7 € A™(g) withy = o + S anda < v < 3 be a minimal sequence, i.e. there are
no other positive roots’ andj’ betweem andj such thaty = o/ + 3/, then we set

e, = [ea,eﬂ]q_l = eqe3 — g P egéq - (5.6)

Notice that when, for a fixed normal order, the minimal se@ees not unique, the root
vector does not depend on the choice of minimal sequence. iFleinsured by the Serre
relations. In this way one construct all root vecteyse;s_.,, for v € A, (g).

2. Next, set
= [ea,;, €5— O41] , i=1,...,rankg), (5.7a)
Cains = [(o, aq)], " (= Adje ) C €ay s (5.7b)
e5-an) ks = [(i, )] " (Ad] e esars (5.7¢)
6;9(5) = [eai+(k—1)6,€5—ai]q,1 - (5.7d)

In the case in which the Cartan matrix is symmetric one(hasy;) := a;/™ = 2.

3. Construct the remaining real root vecters ;s ande_)1xs forally € A (g), k > 1
using the same procedure as step one.

4. Define the imaginary root vecto&fég from e;(? as follows:
Ei(z) = In(1 + E(2)) (5.8)
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where

Ei(z) = (¢ =) Y edz™ Bl = (¢ —q™M) DY ey (5.9)
k=1

k=1

The root vectors corresponding to the negative roots am@rdd with the help of Cartan anti-
involution (4.14). Notice that once we fix the normal ordgras in [5.b) the root vectoéj),
Caitk sy €(5—a;)+k s Are independent on the specific choice of root ordering,BamE].

The constructed root vectors satisfy a number of remarkatdperties. Among others, the
following property explains the attributmnvexassociated to the constructed basis. &ot 3,
o, € A, (g) one has

acs —q “Pege, = Z ¢y (k) (671)k1 e (ew)k[ (5.10)

a=y1 ==Y <
wherec, (k) are rational function of non vanishing only forv + 5 = Zfﬂ ki ;.
An other important property of the imaginary root generatsee/[Dam?], is the following
A(Ei(2) = Ei(2) @1 —-1® Ei(2) € UTN(=) U UT(+). (5.11)

We will discuss the coproduct of imaginary roots in greattads in Section 813.

For the case cﬁ{q(a[M) a distinguished normal order and the explicit definitionahe relevant
root vector are presented in AppenfixCl1.2.

5.2.2 Statement of the product formula

The expression for the univers@tmatrix has the form

R =R G = Ry R R (5.12)

-

The quantity%~ is an infinite ordered product over the positive rodts(g). The order of
factors is the same as the convex order used in the definifisaod vectors. The infinite
product decomposes into three parts as follows farml (5.6) emmphasized i (5.12) by the
notation< ¢, ~ 4, = §. To each real positive root we associate the factor

%y_ = €XDPgvm ((q_l - Q) 37_1 fv ® 67) v E A[f(/g\) ) (513)

with exp, (z) the quantum exponential

o) =S =2 =L ) = (1,2 (). (5.14)

0 (n)q!



The quantities., in (5.13) are determined by the relation

¢ —qh

ey, J5] =54 q—q

whereh, =Y. k;h; if v =) k;a;. In the casgy = sl we simply haves., = 1.

The contribution of positive imaginary roots is given by

#y=ew (=) X Y o), (5.15)

meZy i,j=1

wherer is the rank of the Lie algebrg and the quantities,, ,;, m € Z., are the elements of
the matrixu,, inverse to the matrix,,, with elements

bm,ij = (—l)m(l_éi‘i)m_l[maij]q, (5.16)
entering the commutation relations
[ea;+ms, 6,(1]5) | = th.ij Cait (min)s- (5.17)

In the casgy = sl,,, the coefficients.,, ;; appearing in[(5.15) can be represented explicitly as

m
Um,ij =
" [M m],

[M — max(i, j)]gm [Min(i, j)]gm (1)), (5.18)

where miri, j), maxi, j) denotes the minimum and maximum value améagd;.

While the root generators and their algebra depend on theebbconvex order, the universal
R-matrix is independent of this choice. This is a non-ttifaat that follows from the uniqueness
(under certain assumptions) of the universal R-matrix esge[KhT92].

5.2.3 A guide to the literature on the product formula

In the following we collect some references that should biedanterested reader in understand-
ing the origin of the product formula for the universal R-mat

An explicit formula for the universal R-matrix éf,(sl,) was presented by Drinfeld in [Dr86b].
Shortly after it was given fot/,(sl,,) in [R0], for any finite dimensional simple Lie algebra in
[KiR], [LS] and for finite dimensional Lie super-algebras[KkhT91b] and [Y] . In the affine
case, both twisted and untwisted, an explicit expressiortHe universal R-matrix has first
been given by Khoroshkin and Tolstoy in [KhT91a], [KhT92]daater in [LSS] (foruq(sAIQ))
and [Dam2], [DamB] using different techniques. Productfolae for quantum affine super-
algebras were presented|in [Ya].
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Using Drinfeld double construction [Dr86b], the problemfwfding explicit expressions for
the universal R-matrix reduces to the determination ofsafi/, (b¥) which are orthonormal
with respect to the standard pairing betweérib™) andi/,(b~). The key idea is to find a
convenient basis, with simple properties under productaptoduct, that simplifies the cal-
culation of the pairing. In parallel to thg = 1 case, one construct so called (convex) basis
of Poincaré-Birkhoff-Witt (PBW) type as ordered produ€taot vectors. Thus, one must first
define analogues of root vectors associated to non-simpte ofg. There is an elegant con-
struction of such root vectors. §fis finite dimensional all roots are in the trajectory under th
Weyl group of a simple root. As the Weyl group can be be extdnde braid group action on
U,(g) [Lus] one can construct non-simple root vectors from sinaples following this observa-
tion, see[[CP]. In the affine case the situation is more iredls imaginary roots, by definition
[Kac], are not in the orbit of simple ones under the Weyl grolipe construction of imaginary
root vectors in this case has been carried over in [Dam1]S[LBel], [Be2], [Dam?2]. While
explicit proofs in the literature concerning propertiesP®W basis use techniques connected
to the braid group action, in the following we will use a difat construction.

Convex bases in the affine case have also been constructdaljn [KhT91d], [KhT934a]
[KhT93h]. In these references the braid group action is gsetlland explicit proofs are mostly
omitted. The construction of root vectors, referred to agabaWeyl basis, is guided by the au-
thors experience with so called extremal projectors, seR[.TThis construction of root vectors
is convenient when dealing with representations and willded in the following. We remark
that the root vectors constructed by this procedure areslgloslated to the quantum current
type generators appearing in the Drinfeld’s second redizaf /,(g) [Dr87], see [KhT93a]
and [Bel].

5.3 Simple representations Ot/[q(g[g)

5.3.1 Evaluation representations

To begin with, let us recall that there is a well-known way & gepresentations of the loop al-
gebrasuq(sAlz)o from representations of the quantum gras(,). It is based on the following
homomorphism of algebras: Lit (sl,) be the algebra generated ByF andK*! with relations

KE = ¢"'EK, K2 _ K-2
1 B, F] =22 (5.19)
KF = ¢ 'FK, q—q
then
evi(e) = N2 KIE,  ew(er) = AL KTLF,  ew(k) = K2,
,\( 1) q A( 0) q ,\( 1) (5.20)

ev(fi) = AT KTF, ew(fo) = AT P KTIE,  ew(ky) = K2
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satisfy the defining relations @‘fq(f/!\[2>0. This claim can be verified by a straightforward calcu-
lation. The center a¥/,(sl,) is generated by the Casintrdefined as

qK2+q71K72_2 _ q2x+q72m_2
(¢—q')? (¢—q)

The last equality in this equation is a convenient paramaion of the Casimi€.

C .= FE+

(5.21)

There are two types of representationg/fsl,) that will be relevant for us: The usual finite-
dimensional representations labelled oy %ZZO and certain infinite-dimensional representa-
tions for whichE, F andK are realized by positive self-adjoint operators. Let usubs them

in more details.

Finite-dimensional evaluation representations. We denote the(2j + 1)-dimensional
representation of/,(sl,) by 7r§-d~ where j € %ZZO. In this caseK has spectrum

{q¢77, ¢, ... ¢}, ¢’} and the parametegris related to the Casimit defined in[(5.211) as
241 4 g=2%-1 _ 9
(g—q1)?

We further definer}4 = 7} o evy. Of particular importance will be the fundamental repre-
sentationr! corresponding tas’;, j = 1/2, where we may take

0 1 0 0 gt: 0
w5 (E) = (0 0), ms (F) = (1 0>, T (K) = ( . q_%). (5.23)

71_f'.d. (C) — q

J

(5.22)

The representatiorvs&fj- for j > 1/2 can be generated fromi by taking tensor products and
guotients.

Evaluation representations of modular double type. We will also be interested in infinite-
dimensional evaluation representationfg’, s € R, of modular double type wheifg F andK
are realized by positive self-adjoint operators. A repnésgon?P; of I, (sl;) can be constructed
using self-adjoint operatogsandq satisfying[p, q] = (27i)~! as follows,

cosh wb(p — s)

4 (E) = e, 1= ™™

+mbq
s € )

sin b2 m.d. b
T (K) = kg 1= e™P. (5.24)
_bq cosh wh(p + s) — (K)

md(F) = f, =
T (F) € sin b2

)

These operators satisfy the relations (5.19) witk: e~™**. The operators,, f, andk, are
unbounded. There is a canonical subspBeef L?(R) representing a maximal domain of
definition fort/,(sl;). The terminology modular double type refers to the fact fuitivity of
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the operators,, f, andk, allows us to construct operatais f, andk, from e, f, andk, which
generate a representationlef(sl,) with § = e~™/**, see also RemafR 4 below.

The CasimirC of ¢, (sl,) defined in[(5.2]1) is now represented as

g Q) =

s

R s L (M)z (5.25)

(¢—q')? sin(mb2)
The middle equation makes it manifest that for this repregEm¢=2* — —e*27, Notice that

7r§j~sd- = 74 o evy corresponds to positive self-adjoint operatorsfoe R.

5.3.2 Prefundamental representations

For our physical application we introduce representati:qj?mf the Borel-subalgebrds, (b™)
of uq(sAIQ) such that

+ u ATV 1 £ N
F0 = (i ) = e @ . 620

0+(X)
whereu, v are operators satisfyingy = ¢~'vu, andp*(\) is proportional to the identity op-
erator. The notation . .] ., indicates that the formal expressions following from théversal
R-matrix will require a certain renormalization.

It is easy to see that we need to have

A A _
T (f1) = = uTtv, 7 (fo) = = uvt, wf (k) =u =7y (k'), (5.27)
At 1 At 1 2
o m (eg) = viu, w (k) =u?=xf(k"). (5.28)
= x (€o) = » (ki) (ko)

T (€e1) =

In order to see that these definitions are indeed necessgey torelation of the forni (5.26), let
us first considet ~(\) and remind ourselves that— = 1 + Y@ =g (fi®e)+... upto
higher order terms, which implies that

(@) (&) = (Avlu_l A"l_l“) (; u?l) o). (5.29)

The case of. " ()\) is very similar.

The representations;” will play a fundamental role for us. They are the simplestneptes
of what is called a prefundamental representation in [H@]mbtivate this terminology let us
anticipate that all representations of our interest wilidaend within the tensor products of such
representations. We may therefore regard the represamtag? as elementary building blocks
for the category of representations we are interested in.
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One of the most basic and fundamental observations is teatgbrators; := 7, (f;),7 = 0,1
satisfy the relations of a g-oscillator algebra,
)\2
fo f1 — (]_2 fl fo = 1 (530)
q9—4q

This implies that the operator representing the imagirmyelemenp”(s(l) is proportional to the
identity operator. It follows immediately from the itenagi definition [5.7), that the operators
representing the higher real root generaifrs s vanish identically. This observation will later
be very useful.

Remark4. For |¢| < 1 one may consider representations of highest or lowest wejgk, as
done in [BaLZ3]. In this paper we will mainly be interestednfinite-dimensional representa-
tions whereu andv are realized by positive-selfadjoint operators, for ex@mp

u=e™, v = X, [x,y] = . (5.31)

2w

The positive-selfadjointness of the operatoendv implies a remarkable duality phenomenon:
Using the operator§ := ub%, andv := Vb%, and replacing; = e ™* by § = ¢ ™" one
may use the formulae above to realise representations &dtel subalgebras, of uq(E[Q)
on the same space on whi¢h are realised. This has profound consequences, as was first
observed in[PT99, Fa99] for the similar caséffsl,). Representations exhibiting this duality
phenomenon will generally be referred to as represen@tbdbmodular double type.

5.4 Evolution operators from the universal R-matrix

In order to build an evolution operator we need to find an dpera—(;./\) satisfying

(F = (/X)) L) L () - 7= (/A) = L () L (V). (5.32)

A formal solution to this equation is given ky", ® w;_l)(%—). Indeed, formally applying
m®7, ., @7, tothe Yang-Baxter equation (4.23b) seems to indicate(that @7, )(% )
solves[(5.3R). However, it is far from clear how to make semseof (7}, ® m,1)(Z%") due

to the infinite summations over monomials of generators ohefithe universal R-matrix. Our
main goal in this paper will be to generalise the definitioriheff universal R-matrix in such a
way that evaluations likér)”, ® m,-1)(#") become well-defined and satisfy all the relevant
properties. The product formula will be very useful for thisn. In this subsection we will
describe a first step in this direction.

We had observed in Sectién 5.8.2 that(f., 1x5) = 0fori = 0,1, & > 0. This implies
immediately that the infinite products represenitig, ® =, )(%s) and (7, ® 7, )(%Z.s)

>To simplify the following formulae we rewritér}" , ® T (Z7) = (m @ ) (%)
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truncate to a single factor. We furthermore observed afieaton [5.3D) that the imaginary
roots are represented by central elements in the repréissista’ andr, . We conclude that
the product formuld (5.12) yields a well-definftmal series in powers g/ \ of the form

Formar (1) A) = p(11/A) €q(=77 1 @ e1) (=75 fo @ e0) ¢, (5.33)

wheref; := mf (f;) ande; := 75 (e;) fori = 0,1, ¢ == (7y ® m,)(¢™"), and7, = ¢ — ¢ ".

The functione,(w) is related to the quantum exponentialsgéw) := exp,((¢ — ¢~ ') 'w)
introduced in[(5.14). It can be written as

(5.34)

gq(w) := exp(fq(w)), 0y (w) = Z k

The factorp(p/A) in (5.33) is a central element collecting the contributicoming from the
imaginary roots,
pli/N) o= (m} @ 73 ) (%) (5.35)

By means of a straightforward calculation one may checktti@éxpression (5.83) will satisfy
(5.32) in the sense of formal power series thanks to the fett}(w) satisfies the functional

relation
_&qlqw)

=(q-Tw0) =14+w. (5.36)

Our ultimate goal, however, is to construct@peratorrepresentingr,” @, )(%~) on the vec-
tor space carrying the representatigh® =, of U, (b~) @ U,(b*). One of the main ingredients
in the definition of the product formula is the functief(x) which is well-defined fotq| # 1.
We are here interested in the case ¢ ™°, b € R. The functione,(z) can not be used in this
case: The serieE(5134) defining ) is clearly singular for all rational values &, and has bad
convergence properties otherwise. However, in order tegove the most important properties
of the universal R-matrix after renormalisation it will befficient to replace the function,(z)

by a new special function which is well-defined fpr= e="*, b € R, and which has all the
relevant properties, (=) has.

5.4.1 Canonical solution

We had seen above that the functional equafion (5.36) pldey aole for ensuring that the
product formula satisfies the defining properties of the ensial R-matrix. We therefore need to
find a function&,: (w) that is well-defined fofq| = 1 and satisfies the functional equatidn (5.36).
The physical application we have in mind forces us to impessheer important requirement:
We want that the operater — (/) is unitary for real. /A, which is necessary to get a unitary
time evolution operator. Unitarity will hold if the functiog,:(w) replacings,(w) in (5.33)
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satisfies| &z (w)| = 1 for real positivew. We are now going to explain that unitarity fixes a
unigue solution to the functional relatidn (51 36) wHeh= 1.

It is by now pretty well-known how to find such a functiéi(w): A good replacement for
g4(w) will be the function&,: (w) defined as

L dt —2itx
Ep(w) = exp (Op (55 log(w))), Op(z) := /]RJrz‘O yr sinh(bj) Snh(i/D) (5.37)

The function&,: (w) defined in[(5.3]7) is easily seen to fulfil the requirementsiigiated above.

It is closely related to the functioa(z) := &:(e*™**) called non-compact quantum diloga-
rithm in [Fa99]. References containing useful lists of s and further references include
[FaKV, ByT1,\a]. The functional relatior (5.36) is equiealt to the following finite difference
equation for0: (),

D02 (2) := Opz(z +ib/2) — Opa(z —ib/2) = —log(1 + *™*), (5.38)
which has a canonical solution obtained by Fourier-tramséion

O (x) = — Dy Hog(1 + &*™7) = (5.39)

B D—l/ @ e—Qitx B / @ €—2ita:
b Jriio 2t sinh(t/b)  Jroso 4t sinh(bt) sinh(t/b)
The second equality in the last equation can be verified byrsagover residues.

We will now argue that replacing,(w) by &, (w) is the essentially unique choice that not only
solves the functional relation (5.136), but is also unitary.

Note that[(5.3B) is formally equivalent fe,(u)) " - v* - £,(u) = v* + vuv for any operators,
v satisfying the Weyl-algebrav = ¢~'vu. We are going to argue th&t: (w) is essentially the
unigue function ofw which satisfies&,: (w)| = 1 for w € R and

(Ep(u) ™t -v2 - Ep(u) = v +vuv, (5.40)

for positive self-adjoint operatorns, v satisfying the Weyl-algebrav = ¢~ !vu. As the function

&2 (u) defined in[(Z.17) is unitary, it follows froni (5.40) thet + vuv is self-adjoint. Working in

a representation in whichis diagonal, one may us®&:(u) to mapv? + vuv to diagonal form.

Unigueness of the spectral decomposition of the self-atlperatorn? 4 vuv implies that the

most general operator which satisfies (5.40) is the forrs ¢g(v)&2(u). The only operators
depending only om which do this job are scalar multiples & (u).

5.4.2 Minimality of the renormalization

To round off the discussion, we are going to argue that rémdag (w) by &2 (w) is in a precise
sense theninimal subtractiorof the divergencies,(w) has whery approaches the unit circle.
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Let us note that,:(w) can be analytically continued to complex valueshpéllowing us to
define it in the case whete| < 1. We may then compar€:(w) to ¢,(w) in this regime. The
integral definingd,2(w) may be evaluated as a sum over residues in this case, giving

e

Er(w) = g4(w)eg(w), Gi=e Y = wiE, (5.41)

This means thaf,: (w) ande,(w) differ by quasi-constantfunctionsf (w) of w which satisfy
f(¢*w) = f(w). Such quasi-constants represent an ambiguity in the salofithe difference
equation[(5.36) that needs to be fixed by additional requérgs) in general.

The particular choice of quasi-constants appearing inlfj>cdn be seen as tmeinimal mod-
ification of the functiore,(w) which is needed to get a function well-defined for @ibn the
unit circle|¢| = 1. In order to see this, let us consider the functipfw) introduced in[(5.34)
as function of the complex parameterWe will be interested in the behaviour &f(w) when
g = e ™ 1> = k/l + ie. The terms withh, = 7/ in the sum defining, (w) will be singular for

e — 0. They behave as
(1)) 5 4
~ a(rl)e v (542)
The terms withn = 7k in the series defining;(w) will similarly behave forg = emiv B2 =

l/k +i€as
(—1)7 0+

 (rk)2e
The divergent pieces i (5.42) arid (5.43) will exactly camaxh other ifiv = wi? andé =
—el?/k?, as is necessary to haté = b2 + O(¢?). We thereby recognise the factay()
in (5.41) as a minimal choice of a quasi-constant that canaklthe divergences thaf,(w)
develops whem approaches the unit circle.

Wt (5.43)

Taken together, the observations above motivate us t&géll) thecanonical renormalisation
of the functione,(w) which is defined forlq| = 1. The considerations above motivate us to
regard the operator

() = (M (N) = (\) == Ep (M) 5b2(A/f;)e%1°g““°g“s, (5.44)

wheref !, := u~lv v, !, as arenormalisedversion of the formal expressiafi__ (\/u). The
definition of the scalar factas,.,(\) will be discussed later. And it is indeed straightforward
to check that the evolution operator constructed frgm(\) reduces to the one constructed

previously in Section 3.3.3.

5.5 Building R-operators

We've seen that the renormalization of the universal R-ixatovides us with™—(\/u), the
main ingredient for the construction of the time-evolutmperator. In order to build the Q-
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operators we need a second ingredient, the operatdn /). There is a fairly easy way to get
rtT(A/p) fromrt=(X/u). Note that

Lo(p) = Ft-p L (p)or - Fr (5.45)

T T

whereo; = (‘1) 5), and.F, is the operator of Fourier-transformation which maps

Flo -F=v'  Fl'v -F =u. (5.46)

Observing that, L (1), = F? - L} (1) - F,-2 one may easily check that
PO = Foorlm V) F2 R (5.47)
will satisfy the defining relation$ (3.52).

It is furthermore not hard to show that the most general dpesatisfying[(3.52) can be written
in the formr " (\/u)H(z,), wherez!, := u.v v u,. The choice of the functiod/ (z) will
turn out to be irrelevant for our applications to the lat&eh-Gordon model, and may therefore
be fixed by the convenient normalisation conditigifi (1) = P..

In order to get useful explicit formulae for—(\/u) andr™*(\/u) we may start from(5.44).
An alternative representation will be particularly useful

rfs (A) = P ol 8) - Fr T (5.48)
using the notationg,, := u,v, v, 'u;!, and
pw)  paw) =m0 g ) Ep ()
p)\(wvz) = ’ __i_( 2 (549)
po(2) po(2) = e ez 108

In order to derivel(5.48) one may use the identity
ez logurlogus 55 ((loggrs)?—(log f%)%) | P,. F.F., (5.50)
which can be verified by computing the matrix elements.

By combining [5.417) and(7.31) one finds immediately that(\) = P, p\(f%,z',),where

r8)TTrs

fr.=F -fL-F ' =u,v,uyv;!, noting that, := F, - g, - 7, '. We may now conclude that

r'r-s's ! r

() = P (). (5.51)

rs

is the unique solution of (3.52) which satisfies the nornadils conditionr; " (1) = P,,. For
the case o, (2[2) we have thereby completed the calculation of the main ingréslneeded to
construct fundamental R-operators and the correspondangfer matrices. The development
of the theory in this case is continued in Apperldix G whers $tiown how to reproduce the Q-
operators for the lattice Sinh-Gordon model previouslystarcted in[[ByT1] by other methods
from our formulae for™— andr™* found above. In the main text we shall continue with the
generalisation of these results for the caquQi?IM).
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6 R-operators from the universal R-matrix - case qu(sT[M)

We now generalise the discussion of the renormalisatiome@fréal root contributions to the
cases of/,(sly;). To begin with, we explain how to obtain the evolution operdtom the
universal R-matrix. One of the new issues that arises\for- 2 is due to the fact that we will
need to consider a slightly larger family of representatioimstead of the representations
we will need to consider pairs of mutually conjugate repnésgons(7*, 7+) and (7, 7).
In Subsection 6]3 we will explain how the factorised repnésigons for the fundamental R-
operators like[(3.51) follow from the representation ﬂyecofruq(f,AIM).

In the rest of this section we derive useful explicit repréaBons for the resulting R-operators,
including a representation as an integral operator withxatict kernel. The kernel becomes
simplest when we consider a variant of the lattice modelinbthfrom the twisted universal
R-matrices#= introduced in Section 4.3. The fundamental transfer mafris shown to be
a physical observable in the sense defined in SeCtionl 3.8dlthe projection to the physical
degrees of freedom is described precisely as an integrehtmpevith explicit kernel.

6.1 Representations in quantum space

The connection between the integrable model defined in@g8tand the representation theory

of uq(;T[M) is encoded in the following relations
N N S T SR
L ()\/J ) = ‘9_'_()\”_1) [(W)\®7T,u) (% )}ren (6 1)
N 1 - - .
L ()\/J 1) = m [(W§\®7Tu) (‘@ )}ren

whereL*()), L~(\) = L~()\) were defined in Sectidn 3.2.%~ are two universal R-matrices
given in Sectio 5]2 ané*(z), #~ (=) are certain scalar factors. The relevant representations
entering[(6.11) are defined as follows

Wf\(ez’) =\! Ei,i+17 7Tf\(fz) = )\E¢+1,z'7 7T§\<hi) = Ei,i - Ez’+1,z’+1a (6-2)

wherek;; are the matrix unit§;; E;; = 0, E; and

A _ _
7Tj\L(fz) = q—q! u; v ) Wj\L(kZ) = U Uz‘+11 ) (6.3)
. A1 .
7T>T (61) = q_l s ViUiir, W;(l{?z) = U;l Ujiq . (64)

{vi,u; };i=1,. v generate the algebid/, see((3.D). It is easy to verify that (6.3), (6.4) satisfy,
respectively, the defining relationsif(b~), U, (b"), seel(4.1). In particular the Serre relations
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(@.4), [4.5) follow from the exchange relations
wr (fify) = ¢tOaTn D b (f f) . m (eiey) = ¢ O () . (6.5)

We postpone to Sectidn 8.2.2 the derivatioriofl(6.1) by applthe relevant representations to
the infinite product formula for the universal R-matrix givim Sectiof5.2. A simple way to
verify the identification[(6.1) is to notice that

M
(Wf\ ® 7:) (QH) = Z Eiiu = (Wf\ & 7?;) (qit) (6.6)

and check that the image of the reduced R-matrix satisfiesetagons [(4.117),[(4.18). As op-
posed to the direct evaluation of the product formula forthiwersal R-matrix, this procedure
does not allow to determine the scalar factbréz), 0~ ().

The relations[(3.16) follow from the universal Yang-Bax¢guation[(4.23) upon noticing that
the matrixR(x, y) is obtained from the universal R-matrix as explained in Agpe[E.5.

6.2 Light-cone evolution operator from the universal R-matix

After we have identified the relevant representations imtjura space, see equatiofns (6.3),
(6.4), we will show how to obtain the operatofs? from the product formula for the universal
R-matrix. In order to clarify certain features of such exgsien for the infinite dimensional
representations we are considering, we will focus our atermon

r+é()\,ufl) - m |:(7T;\r ®7r;> (L@*)Len. (6.7)

As in the previous section, the notatign. .., indicates the use of a certain prescription for
defining the infinite sums in the definition &f*. The operator~* can be obtained in a similar
way, or just using the relatiOtr'r+o—(r+;) = 1, whereos exchanges the tensor factors. The case
€1 = €5 requires further considerations as both tensor factorespond to the same Borel half.
This case is considered in some details in Se¢tion 6.4.

The expressiori (6.7) provides us with a formal solution ®rations[(3.52) which charac-
terize the building block for the light-cone evolution ogtr. The key relatior (3.52) follows
directly from the special case

Ry iz Ry = Rz Ry

of the universal Yang-Baxter equatiofis (4.23) by applyihg =", ® w;_l to this relation. In
order to obtain the generators of the discrete time-evaiuior the lattice models fron (8.7),
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it is crucial thatL* andL~ are obtained vid {6l1) from®~ andZ*, respectively. This fact re-
flects the respective orientations in the integration agéitilike segments defining the classical
counterparts of* andL—, as was observed i [RiT].

As summarized in Section 5.2, the evaluation of the univ@&®saatrix consists of the following
three steps: fix a convex orderd]m(sA[M), evaluate root vectors and finally substitute the root
vectors in the product formul@a (5112). This procedure isightforward upon following the
instructions in Section 5.2.1 and Appenfix Cl1.2. We prdqeerforming the first step.

6.2.1 The image of root vectors underr* and 7~

A key observation is that for the representatiaris 7~ most of the root vectors, for a specific
choice of convex order of positive roots, evaluate to zerthe case ofr™, using the root
ordering specified in Appendix C.1.1, the only non-vanighoot vectors are given by

7T+(f6¢*6¢+1) = fi, (6.8)
7T+(f6*(€ifﬁjw)) - (q - q_l)i_l fio... 6 fo, (6-9)

B _1)k+1 1
r(f) = ch. 6.10
( kS ) k q o q,l —+ ( )

wherec, = ¢ (g — ¢ )M fy ... f; = M is central. Forr~, using the shorthand notation
e, = 7 (e;), one obtains that the non-vanishing root vectors are giyen b

ﬁ_(egi_gj) = (q_l — q)j_i_l éj—l .8, 1< j , (611)

™ (66—(51—5j)) = (qil — q)Mﬁj ey - - .éj , (612)

ey = EDT L 6.13

T (ens) . q—l—qcf' (6.13)
wherec_ := q(¢! — ¢)M ey ... &, = A"M is central. Notice that we suppressed the depen-

dence on the spectral parameter from the notationm .

The equations above immediately follow from the exchantioms [6.5) and the definition of
root vectors given in Sectidn 5.2.1 and Apperidix G.1.2.

6.2.2 The image of the universal R-matrix underr™ @ 7~

The representationst, 7~ posses the remarkable feature that the imaginary root reeate
central. As a consequence, the contribution from the pesithaginary root to the universal
R-matrix is a scalar factor given by

PO = [(w; ® w;) (92;5)]“3”. (6.14)
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We postpone the discussion about the renormalisation®&ttpression fog on the unit circle,
which is the case of interest to this paper, to Sedtion 8.

Concerning the contribution of real positive rogtse A:S(gA[M), compare to[(5.13), the results
of Sectior 6.211 immediately imply

fiwe Ify=aicq,.

(W;\r ® ﬁ;) (fy®e) = ) (6.15)
0 otherwise
Moreover, these operators commute among themselves
Xi Xj = Xj Xi » Xi=—(—q¢')five. (6.16)
It follows that
(mF @ @) (B7)]en = P ) (FOX) T, (6.17)
where
M
(FO) " =[] €nl),  gF = domvetosuim?, (6.18)
=1

where as in Sectidn 5.4 we todk: (w) = [g4(w)], oy With E2(w) given in (537) and,(w) =
exp,2((¢—¢q ')~ 'w). Letus compare this expression with (3.43). Using the dedm{6.7) and
the result[(6.117) one finds

A = [0 ()] = PR (6.19)

where

!/

Xi = U(C]TXz‘ q_T) = AM_l (Uz‘Vz‘ ®Viuz’_+11) : (6.20)
The expressior (6.19) coincides with (3.43) upon takifigr) = [£.(x22)] . The fact that

the renormalized expression (6.17) satisfies the intemginelation [3.5R) follows from the
fact that [3.4B) does. Notice thg} is a positive self-adjoint operator foy:~! positive.

6.3 Fundamental R-operator from the universal R-matrix

After having constructed the evolution operator, the nesq ss to construct the fundamental R-
operators. Our goal in this section will be to elaborate @r#presentation-theoretic meaning
of the factorised form(3.51) for the fundamental R-opemtibserved in Sectidn 3.4. It will
be useful to first conside#z™*** which turns out to have the most direct relation to the ursiaer
R-matrix. The fundamental R-operat@t*” can then be obtained simply via (3155).
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6.3.1 More Lax-matrices

First, let us note that***(\) admits a factorisation similar to (3/11). We shall représba
matrix L™ (\) T appearing as a factor i***(\) in the form

LfN)T = AP FL-() F T (6.21)

whereT = Y. E;;1,, the automorphisn¥ is defined via ! (u;, v;) F = (v;_1, u;), and

M

L=(A) = Y (wEi + AviEipa) . (6.22)

=1
We note that the matriX is the generator of the automorphigty, in the fundamental repre-
sentation(),, := F? represents the same generatoZef on W.

Let us consider, a bit more generally
Li%(ap) = L7(A)LZ (1) € EndCY)@WeW, aec{+ +. -~} (623

whereL*()\) andL—(\) = L~()\) were defined in[(3.14) an@ (3]13), respectively, while and
L~ (\) andL*()\) are introduced as

M -1

LT(\) = (1—gA™) {Z (U7 B — g A "iEiin) | (6.24)

i=1

The Lax operators—()\) andL*()) can be obtained from the universal R-matrix as

j - f
) = ey O ) e (6.25)
oy 1 £ N
L™ (A 1) - m [(W)\@Wu)(@ )}ren, (6.26)
where
. A . B
T (fi) = 7= g1 VirVi my (ki) = u;uily, (6.27)
- At -1 - -1
m(e) = ——viu; Ty (ki) = u; Ui (6.28)
9 —4q
In order to find a relation betweefy;* and£,~ let us note that
T (\) = AF-LT(\)-F (6.29)
L=(ANT = —gA " F-LT(\) - F 1, (6.30)
whereF andF are the automorphisms &% defined as
Fou-Fl=vy, Fou - Fl=vl,
(6.31)

—1 r —1 -1
Fovi- F = Ui, Fovi- Fo =
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It follows thatEj*(/], 1) andLAf*(ﬁ, w) are related by a similarity transformation,

L3 (i p) = —quii™" FaFu- L3 (0 p0) - (FaFa) ™" (6.32)

This implies thatR*}7 can be obtained from an opera®f;}/ satisfying

Lt (i ) L™ (0, 0) RS (s 0, v) = RESEH i, 115 0,v) L~ (0,0) L5 (i) . (6.33)

simply by applying the similarity transformatiof, := F,F,.

6.3.2 Factorisation

As observed previously we may get operat®s** satisfying [6.3B) from the universal R-
matrix in the following form

R, p; v, v) = [PXXZ(ﬂaN? v, V)}il [(7?:,1 ® 77;;1) ® (T, ® W;l) (‘% ) ]ren (6.34)

The product of Lax-matrices appearing in the factorisa{@23) represents the tensor prod-
uct of representations, @ m; of the Borel-subalgebra/,(b*). It then follows from
(A ®id) (Z) = H%13%23 and(id RA) (Z) = %13%1- that the operatoR"*** can be factorised
as

IXXZ

S 57, v) = v, p) e (v () iy (), (6.35)
with factorsr'2(u, ) all obtained from the universal R-matrix by evaluation iitalle rep-
resentations as

1

51 €2
(Ma ) pqu(lu,lV)

[(7‘(‘;1 ® 7T;2) (%_)Len, 6 €{+,+}, ec{-—-}. (6.36)

The factorised representatidn (6.35) 8%} implies similar representations fa@’yy7 and
R 45, as anticipated in (3.51).

Remarks. The representations™ andn— can the considered the conjugate of each other in the
following sense:
7+ 1, (a) = (wi(Y(a)))* (6.37)
—q— 1) A )

where. is the antipode

S (e;) = —eikit, L(f;) = =k fi, S (ki) = kit (6.38)

)

and the involution is the anti-automorphism of the algebnadefined by(u;, v;)* = (u; ', v;).

Notice that in[(6.37) we introduced the representationrelevant for the following sections.
In the case of/,(sl,) one hast;, = =y, ©{ = 7. One may further notice that! (f;) =
Ty (ed), (k) = 7 (k7).
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6.3.3 Decoupling

The representation, w; is reducible, as can be formally expressed as
(T ® W;_l)A(a) = (7™ @700 Aa), a €U, (b)), (6.39)

wherer™" and™ are defined via

-1 1

VZ (kU + kU7 V2 aT(gR) = U7 (6.40)

7

7Tmi: €;) =

A, ( ) q_1 —q
7Ttriv<€i) _ 0’ 7Ttriv<q€i) — Cfl7 (6.41)

provided that we define

Cl = uv,®@uv; ", (6.42)

ko= (ap )2 . (6.43)

2

U2 = uv! ®
1
2

Note that the operatots;, V; satisfy the commutation relations of the algebva wile C? are
central in the algebra generated B, V2 andC?. The relation[(6.39) can be easily verified on
the generators;, ¢“ using the definition of the coproduct and the representation— given

in (6.4), (6.28).
The factorisation[(6.39) can alternatively be shown in #rgliage of Lax matrices as follows.
It is straightforward to see thadl, (z, ) can be factorised as

L3 (f,p) = L™, 1) A(C) (6.44)

where

-1
L™ (2, ) = (1 — q_lﬂM) |:Z(Em — UV, Ei+1,i):| Z(EzzUz‘ —pViEiy1,), (6.45)

% 7

using the definitions above. The fact that there exi%t4 \) such that

Lmin('a’ 'u) - pmi:()\) [(ﬂ{ ®7T;\Tji:) (‘%7)}ren (646)

K

can either be verified directly, or follows more elegantlgnir the observations made below
in Subsectioh_6.314. Keeping in mind that matrix multiptioa represents the action of the
co-product one may dedude (6.39) frdm (6.44).

The factorisation[(6.39) will be the representation theom®ot of the decoupling of "unphys-
ical” degrees of freedom observed in Secfion 6.9.2. It wilply that the operatoR"}/ con-
structed in the factorised form (6135) admits a similardasition into two factors acting non-
trivially only in w;"g‘ andr™, respectively, as will be verified by explicit calculatioalbw.
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6.3.4 Relation to evaluation representation

It is useful to notice that the representatiof" can be extended to a representation of the full
affine algebrzuq(gA[M), as can be seen in the following way. Note that the spectrainpeter
dependence of the matrix entriesld"(ji, 1) takes the following form

M
Lmin(ﬂnu) = Z Eii (I—zz + MﬂMﬁl[“)

=1

1

y 2 y L / ..

vt (5) Z (ﬂf%ﬂw Eiy Ly + a2 i/ Ej, Lij)
i>7

(6.47)

wherel;;, L;; and L;; are operators independent of the spectral parametek dngdis central.
The fact that the representatioff}” extends froni/,(b™) to a representation Mq(gTIM) follows
from the known fact that Lax matrices satisfyifig (3.16) whitave the form(6.47) with central
q" := L;L;; one may get a representationLQf(gT[M) by setting
M) = DLl w0 = — L'l (649)
g —q - q9—dq
'(¢%) = L;". (6.49)

(22

The extension of the representatimgj}” to all of L{q(gIM) is thereby recognised as a patrticular
representations’ of evaluation type.

Remark6. By a similar analysis as the one presented in Se€fion|6.&B&#sy to argue that

(rf @ @mf )AM = (7™ g 1M cev)A, (6.50)

M(M—1)

wherer™(f,) = 0 and 7", denotes a representation if(sl,;) on LR~ = ). If the
parameterg \;} are generic, this is an irreducible representation.

6.4 ™" from the universal R-matrix

In order to construct fundamental R-matrices and Q-opesatee Sectioh 3.4, we need to
determine the other building blocks. We shall start with

) = (w3 ® ) (%) (6.51)

erf()\lufl) ren’
appearing in the expressidn (61.35) for the fundamental &aiprR 7 (i, ; v, v)

In the following we obtain a regularized version(aft @ 7—)%~ from the product formula for
the universal R-matrix and show explicitly that™ (\) satisfies the intertwining property (3152).
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In the case ofr—, using the root ordering specified in Appendix Cl1.1, theyordn-vanishing
root vectors are given by

1

_ g MAT
Ty (Ceimeinn) =0 € = T —q Yi 1yi+17 (6.52a)

_ , . ¢IMAT
T (€5—(ci—enr) = (4 P leger ey = myM1 Yis (6.52b)

k+1
T ) i S . e
= : .52¢c
™ (ers ) [ — c_ ( )
wherec. = q(¢ ' —q)Me;...epr = A" M is central.

As in Sectiori 6.2]2 the contribution form the positive imragly root to the universal R-matrix
is a scalar factor given by

pt ) = [(7f @ m, ) (% )]ren . (6.53)
The renormalization prescription and its explicit form digecussed in Sectidn 8.

Concerning the contribution of real positive rootse A[ﬁ(gA[M) the result of Sectioh 6.2.1
together with[(6.52) immediately implies

W; ify=cq;, i€{l,...,.M -1}
(my @) (fy®ey) = =72 ¢ g ... Wiy Ify=0—(e—ey),i€{l,....,M—1}
0 otherwise
(6.54)
Wherer, = ¢ — ¢~ andw; := —Tq2 f; ® e; satisfy the abelian current algebra on the lattice, see
e.g. [FaV93]
W; Wj — q2(5i+1,j*5i,j+1) \7\/]’ W; (6_55)
It follows that
M —1 factors
+ - N — () € (W X )
[(7?/\ ® 7TH) (% )]ren— P (AT ) Epe (W) .. Ep2 (W) X (6.56)

X SbQ (qziMVV\IO A VV\I]\J,Q) . SbQ (Wo) qiT

J

TV
M —1 factors

whereq? is given in [6.17) and the renormalization prescriptiontfar quantum exponential is
the same as il (6.17). Notice that= A\ ~'u; 'v, ® v,u; * are positive self adjoint operator for
A~ ! real and positive.

6.5 Intertwining properties and useful expressions for™

We now consider the operator™ (\) appearing in the factorised representation (3.51RgF.
The case of () is very similar. We first introduce an operatodr™ () related to the operator
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rt~(\) constructed in the previous subsection as
rH) = (1F)-rt~(\)-(QeF)t. (6.57)

Our next goal will be to verify that our renormalisation preption for the universal R-matrix
guarantees that the intertwining relatiohs (8.52) aresBati. To this aim we shall identify
conditions that ensure that an operatoy ()., \,) represents a solution of

[FEE O 2o) ] TLEOW) L) ri s de) = L () LE (M) (6.58)

a a

whereL™()\) is defined in[(3.14). It will then be easy to verify that the mgerrt* given by
(6.51), [6.56) satisfies these conditions. It will be congahto introduce

=P, (6.59)

We temporarily suppress the dependence on the spectrahetma), , in our notations. The
intertwining relation[(6.58) implies the following comnation relations

[Fz;, Vi+1,avi,b] = 0 s [FZ;, ui,au@b} = O s (660)
(A Viplisia + N uipvia) FiE = R (A vistiine + AL Uipvia) (6.61)
In order to solve[(6.60) we define
w; = vz_b1 ViaUip ul-jrlm , (6.62)
N = Vip vl_i Ui p Uz‘_+11,a ) (6.63)

One may put extra b indices onw, n, this will not be done here as no ambiguity arises. These
variables generate the subalgebraf W that commutes with;, 4 ,v;, andu; ,u; ,, compare

to (6.60). They give rise to two mutually commutative copéthe U (1) current algebra on the
lattice, compare td_(6.55), with opposite charge,

wiw, = q72(5i,j+1*5i+1,j) Wi W (6_64)
nn; = q+2(5i,j+1—5i+1,j) 05 M s (665)

Any function of the operators;, n; will satisfy (6.60). Turning our attention to the condit®n
(6.61), let us note that these equations can be rewritten as

(Vi,b ui—i—l,a) FZZF (Vi,b Ui—l—l,a)_l = (Z + qu‘)_l FZZ (1 +z qu) ) (6-67)

wherez := A\ 1. Noting that(vi, ui1.q) w; (Vi Uitra) = ¢*i~%+15)w; one recognises
(6.67) as a difference equation restricting the dependeficg” on the operators;.
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6.5.1 First formula for ¥+

In this section we will show that any expression of the form

— h(zwi") h(zwiy) o h(z Wf_l(M—1)>
@b O(wi)  O(wi_2) O(wi_(ar-1)) (6.68)
X h(zM*1 Wi_(M-1)) - - h(z*wy o) h(zwy),

will represent a solution of (6.67) provided that the fuanth () satisfies the relations
h(gt'z) = h(qg'z) (1 +2), 0(x) := h(z)h(z™!). (6.69)

In (6.68) we have been using the notations; := ¢~/ w; w; 41 ... w;. Notice that the; power
in front of this expression is such that ; = eXi-i leewr One furthermore ha(qtlz) =
z0(q 'x). Itis manifest that fo: = 1 one has!} = 1. The fact that[(6.68) solveE(6167)
for i = 1 is immediately verified by using the propertiés (6.69) ansesbing that the products
wy_j are invariant under the conjugation in the left hand sid&dJ{) for2 < & < M. In order
to complete the proof that (6.68) provides the desired &wilt is enough to show that it is
cyclic invariant, i.e. it does not change upon substitutgvith w;_ ;. In order to do so we find
it convenient to rewrite

FZ: = Twh(zwy) h(zws) ... h(zwyy) h(zM_1 Wl_(M,l)) . h(z2 wi_o)h(zwy), (6.70)

where

1 1 1 1 1 1
T, = . = . ) 6.71
Own) Bwia) B ) Owarr) " Bws) O(wy) 6.7

The quantityY,, is cyclic invariant by itself. This can be shown moving the thst factor on
the right of [6.71) to the left and using basic propertieshef functiond(z). In order to show
that the remaining factor if_(6.170) is cyclic one uses thegmon relation

h(y) h(x) = h(x) h(g*'xy) h(y),  xy = ¢ *yx. (6.72)

Details are left to Appendix H.1. We have thus singled bud9pand [(6.7R) as the properties
of the special functiork(z) necessary in order for (6.68) to solve (6.67). These prigseatre
satisfied by&,:(z) [Fa99, FaKV,[ Vo], so we will set(x) = &e(z). The functione,(z) =

& (™) satisfies the inversion relation

ep(z)ey(—1) = ™ Gy = ez ®*+07%) (6.73)
which implies that(e?™2) = ¢, ™",
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6.5.2 r*t via the Universal R-matrix: comparison

One should note, however that equation (6.58) can not deter}y uniquely. Recall that the
variablesy commute with the variables and satisfy[(6.60). They furthermore commute with
VibUit14- Multiplying a given solutionr!; of (6.58) by any function of the operatons will
therefore give us another solution bf (6.58).

In Sectio6.511 we demonstrated that the operdtp(), 1) defined using(6.68) il (6.59) is a
solution to [6.5B). We expect that the operator (u\~!) defined by a suitable renormalisation
of the formal expression following from the universal R-main Sectior 6.4 represents another
solution to [6.5B). We shall now clarify the relation betweke two operators. It is expressed
by the following formula

FEFuAY) = rt O ) T, (6.74)

where Y, takes the same form &6, defined in[(6.71), with the functiof((z) replaced by
its inversed—!(x). It follows immediately from relation (6.74) that the optrnar’ ™+ indeed
solves the intertwining relation (6.68), as expected. Ttes@nce of the factdf, reflects the
ambiguity in the solution of(6.58) noted above.

Proof of (6.74): It follows from [6.57) and (6.56) that

Pabr/;rlj(:u)\il) = Nab Sab F<VAV)S¢;717 (675)

where
F(W) = 5[72 (Wl) ce 5[72 (Vv\ljw_l) 5[72 (qQ_JMVVVQ Ce WM_Q) ce 5[72 (Wo) (676)
Nab = ]P)ab fb qiTab ‘FI;1 le ) Sab = Qa fb q+Tab ) (677)

andw; = pA~tu; v, ® v,u; ', In order to derive[(6.74) froni(6.¥5) we need to take two $emp
steps: (i) Study the action of the similarity transfofiy, and (ii) derive a useful expression for
the operatoiV,;,. Concerning point (i), it is easy to show that

S b \IVVZ Sci)l = ZWit1, (678)

a

wherew; is defined in[(6.62), while = ; A~!. For taking the second step (ii), it is useful to
note the following identity
Na = T Ty, (6.79)

whereY,, is defined in[(6.7]1) andl,, takes the same form &5, with the functiord(z) replaced
by its inversef~1(x). This identity can be shown by computing the matrix elemeiitsoth
sides. One may further notice th#t ,, satisfy the relations

Tow; T8 = wil, Tom Tt = (6.80)

)

The relation[(6.74) simply follows froni (6.75), (6178),18) and [(6.70). O
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6.5.3 " satisfies the Yang-Baxter equation

We have seen that the intertwining relatidn (6.58) does rét fi uniquely. Here we adress the
natural question of whether the Yang-Baxter equatiorrforfixes this ambiguity. A solution

of (6.58) is given by
rj;j()\a? Ab) = IP)Cbb pz<Wab> fz(ﬁab) ) Z = )\;1)\5 . (681)

Herew,, andn,, are defined in(6.62), (6.63), moreoyefw,;) is defined by[(6.70) and. (1.5)
is any function ofy. The Yang-Baxter equation fer* can be brought to the braid-type form

J2(m1) p=(W1) fouw(M2) P (Wa) fuo(m1) pu(wi) =

(6.82)
= fuw(2) pu(Wa) fou(m) pzw(Wi) f2(02) p=(Wa2),

wheren; = Npe, W1 = Wpa, 72 = Nepy W2 = W The important observation to be made is
thatn,, ws; = wg;n.: Wherea, = 1,2. For this reason the braid relation above can be
disentangled into two relations

f(m) faw(m2) fu(m) = fu(n2) fow(m) f2(m2) , (6.83)
P=(W1) Pzw(W2) pu(W1) = pu(W2) pow(Wi) p2(W2) . (6.84)

We conclude that a solution t6 (6158) of the forim _(6.81) $iaisthe Yang-Baxter equation
provided thatf, andp, satisfy the braid relation§ (6.83), (6184). In the discossabove we
took f.,(n) to be eitherl or proportional toY',,, see[(6.80). One may observe thatY,, Y, =
Y., Yo Yoo In AppendiXE.2 we verify[(6.84) directly.

The considerations above imply in particular that the ndised R-operator™* satisfies the
same Yang-Baxter equation as the R-operetor coming from the universal R-matrix.

6.6 Another useful expression forr+
We are now going to derive another expression for the operajothat will be very useful for
deriving representations as integral operators. The operg can be represented as

M
fiy = / ds pit(s)w(s), ds= d(sw) [[dsi,  w(s) = eZFrsiloewi - (6.85)

i=1

.12
Wherestot = Zi\il Siy 2 = e27rbv’ q= eflﬂb and

M rip? MM =1)
5 (s) = N, DSk jor1 — Ny=o 6.86
p2 " (s) kl;[l Sp(ibsk k1 — 0 + ), y—y (6.86)
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using the notations; ; = s; — s;, v = (27b)'log 2. The special functios,(z) is a close
relative ofe,(z) defined as

2

sp(z) = G % e

N

i
21‘

In order to derive[(6.85), let us introduce the notatign = (27b) tlogw;, and x;_; :=
(27b) tlogwy_r = x; + - - - + xz. From the exchange relatioris (6.64) it follows that

1
[Xz‘, Xj] = 2—7rz (5z‘+1,j - 5z‘,j+1) ) (6.88)

where the indices are taken modul6. Consider[(6.68) and rewrite each term using [FaKV]

h(Z Wl_lk) eim}26727rivx1_k . / o, R
=3 = = duy, €™ (ey(v —up — ¢ e TRk - (6.89
Q(Wl_k) eb(Xl_k _ U) CO R k ( b( k b)) ( )
h(Z*wi i) = ey(kv +xi) = / dvy, e ey(cp + vy) e Zroku XL (6.90)
R

where¢, = ¢"(1-4)/12 The next step is to group the non-commuting exponentiais@.the
relatione” e? = A+ ¢3l4.8] when|A, B] is central) as follows

(e—Qﬂ'lxl Ll. . 6—271'ZX1_JM,1 LJV[,I) (6—27'(2 X1_M—1 RJ\/Ifl. . 6—271'ZX1 Rl) —

i1 6.91
_ 6—27rb2£1:1 Zi Sit1,M W(S) ’ ( )
Wherezi = (Lz — Rl)/Q andLi + R; = ’lb(Sl — SZ'+1) with Zz]‘il s; =0 andSi,j = 8; — ;. With
this change of variables we rewrite

-1

6.68) = /Hd8i5(5tot)w(s) H

[GQWikU (ak*Cb) / dZ w eizﬂiz Pk s (692)
k=1 R

eb(bk — Z)
where
. b .
U = Co + i3 Skt by =v — 15 Skk+1 7 G P = —tbsp v —kv. (6.93)

Notice that the integration has decomposed into the integravers and the product o/ — 1
integrals over the variable These integrals can be done using [FaKV, ByT1]

/‘ y M 6_2mwy B Sb(U — U — Cb)sb<w + Cb) e—m‘w(u-ﬁ-v) ) (694)
o e(u—y) sp(v—utw=c)

Note that the term in parenthesis[in (8.92) can be simplifiedding the identity

M-1 . . y
St (b 8,k+1 +10)Sp(b sark + thv) 1 |

7 i+ TS So(b skps1 +0). 6.95

/H Sp(bsarpr1 +i(k+1)v) S, (iMv) 191_[1 b(D Sk py1 + V) (6.95)

which holds for any functior8,(z). The relation [(6.85) immediately follows upon setting
Se(z) = sp(ix + ).
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Let us finally note that_ (6.85) gives us a convenient way tprme that?ilg satigfies[]BIG?).
Inserting [6.85) into[(6.67) one finds th& (6.67) will hofdki, (s) := ¢ 2 i *iissi 5+ (s)
satisfies

0=K.(s)(zt? = 1)+ K.(s — 0 + ) (1 —2¢°t ), t; = g% (6.96)

wherev, = %(1, 1,...,1) andé; is a M-vector with zero everywhere exept at positionn
deriving (6.96) we made use of the following propemiys + «vvy) = w(s) for an an arbitrary
constanty. This will be the case if

M

Ko(s) =[] £-(tD), (6.97)

i=1

provided thatf, (z) satisfiesf.(¢ > x) = (1 — zx)f.(z), as is clearly the case whefy(z) is
chosen a¢.(t2) = (£3(—qzt2)) ",

6.7 The twisted story

We had previously observed the possibility to modify thesarsal R-matrices by using Drinfeld
twists. It is natural to ask what is the integrable latticedeloconstructed from the twisted
R-matrice@. We will consider the simple twist introduced in Sectlonl4Some remarkable
simplifications will later emerge in this case.

Let us first considefr’ @ =) (%), and(x' @ 7~ )(Z). The resulting Lax matrices are

M
- 1
(a0 = A@ (1405 Y v B (6.98)
i=1
. ) M -1
Lo () = (1 —q ™) (1 - q_ﬁﬂz Viz2a Ei—l—li) A(T) (6.99)
=1

wheret andu’ are defined as
U201 = [ J(Ujzact) ™9, Wy = [J(ujea) ™. (6.100)
j j
andX;; is given in (4.25). The only non-trivial commutation retais involving the variables

above are given by

2 2
~ 295, ~ ~/ 28 i1 —2 ~/
Ui2a—1Vj2a—1 = g™ “Vjoa-1Ui2a—1, UiogVi2a = ¢ 7 MVjoqU; o, (6.101)

6 The same twist has been used(in [[S03].
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The algebra generated by the matrix element§(@f. 1) = L~ (71)L* (1) has generators

2 2 )

Vi,a = W 2qVi2q Vi2a—1Y5+1,2a—1 5 U — .0 6.102
- ia = UjgqUi20-1- (6.102)
Ci,a = Vi24Vit1,2a-1>

The physical degrees of freedom are conveniently repreddiy

—_— - 2 -2
Xi,2a = Vi,2a+1Vi,2a 5 Xi2a—1 = Ui 24V 24 Vi2a—1Yi11,24-1> (6103)

they satisfy the same algebrayas,. The light-cone evolution operators are now found to be

N M
UF = Coua [[ > [[Te(Rea), Uy = UfC1, (6.104)
a=1 1=1
where .
fab = —W ; lOg(UZ"a) Xij lOg(Uj7b) . (6105)

The equations of motio_(3.5) are unchanged. This meanghbantegrable lattice model
constructed from the twisted universal R-matrices is aslgm®a regularisation of the affine
Toda theory as the original one.

In order to clarify how much replacing the universal R-mat@ by % modifies the integrable
lattice models constructed using these universal R-neatriet us temporarily consider more
general twist elements of the for#i = o(¢~/) with matrix X;; appearing in[(4.25) left arbi-
trary. The Lax matrices obtained fragd always take the form

M
L (1) = Ay") CAY") = Z (af Eii + b Eii1)
=1

7

B (6.106)

M
Z ((a;) 'Eiy — by Ei—l—l,i)] ,
i=1

L™ () = AG") PAG™) = (1— ¢ i)

where

M-1

M M -1
(=1+q ™ — Z Eiivt, (=1—q g™ (1 - Cfﬁﬂz Ei+1,i> . (6.107)
i3 i=1

The dependence on the twist is encoded in the form of thehlasg”, y2, yF, y2 in terms ofu;,
v;. The explicit expressions will not be used in the followifigne gauge invariant combinations

are . . ,
Xi2a-1 = (T VZR) (yiLL—) ~ (bf a[) (bT T) :
y 2a y 2a0—1 2a 2a—1

) A .
- 1 1 - 1”1 (6.108)

S oL R - b +

Xiz (y yiL)ga (yy) (3:005),, (5700 ),

2
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It is not hard to see that the algebraic relations and theatsequation of motion satisfied by
the y; , are independent oX;;;. Let us furthermore note that for genef¢; we have

T =TW)|. . (6.109)

X=X

whereT()) is the monodromy matrix defined fromi(y) in the same way a&(\) is built from
L*(u). In order to verify [[6.100) it suffices to note that

M) = Ay TTMNAGYE), M) =AMy Aoy 1 £ ... AL, (6.110)

where

Moa = AY5o1952)» Ava1 = A(Yah Youoy) - (6.111)
Notice that the matriced, contain only gauge invariant combinations. Moreover, oae c
verify that the effect of the similarity transform(yZ) on the transfer matrix is the same for
any value of the twist. We conclude that the twist only moditige way the variableg,; , are
constructed out of the basic variablgg andyv; ;. It will turn out, however, that some choices
of X;; are more convenient to work with than others.

6.8 Assembling the fundamental R-operators
6.8.1 Preparations

We had previously observed that the Lax-matrices of ouréstecan be represented in a fac-
torised form,£4(\) = L ()L} (). We are using the notatiah = (@, a) and will denote the
Hilbert space the matrix elements 6f,;(\) are realised on b4, = H, ® H;. It follows that
the corresponding fundamental R-operators can be obt&ioed

Rap(fi, 1;7,v) = vl (o/u) eyt (/) v (0/0) g (v/i1) . (6.112)

Our goal is to find more explicit representations for the apmsR 4 5. We begin by displaying
the structure of the ingredients in a convenient form:

() = (0, (Xe)) "t g e () = Py pt T (wa) ,
a.bJr( ) (tl/u(Xlia)) q a;b;( ) abpz/;;(7 b) (61138.)
rab (V) =dq ab ﬁu(Xab) ) rag (V) = ]P)af)p (WEJ)) )
whereyas, w,, andw,; denote the collection of operators
) -1 -1
Wap = (Vi u; )a (Vi Ui) ) i _
» - . 711’ Xop = (ui+1vi)a (v; u; 1)b : (6.113b)
Wy = (v; ui+1)a (vi ' u; )5 ’
We may thereby represeRt, 5 in the following form:
_ _ —1 __
RAB(M) wiv, V) = Pagp - [ﬁu/D(ZAB)} ' p:_/—;(XAB)pD/ﬁ(yAB) ! ﬁﬁ/u(ZAB) ) (6114)

66



where
XfaxB =gt 'szb gt = (Vi Uz‘_+11)a (“z'_+11 Ui)a (Vz'_l Ui)b )
Yap = ¢ " W ¢ = (vuyp), (i), (uvi )y
andz.p = Y',. It will be useful to observe that the operatets;, y', ; andz}, ; can be expressed
in terms of operator8’,, V', Uz andV’; defined as

(6.115)

(UZ)Q = (u;v;), (Vi Ui_+11)a> Vi = ( f4)_1 f47

% _
. -~ - i B i Vf4 = Uj+1,a Uit+1,a - (6116)
(Ch)? = (Vi ! “z’)@ (uz’Jerz')a ) Vp = (Cgl) Vi,

Notice that the operatoiG), are central in the algebra generated by the combinatiof&§}5.
while Uy, V¢, satisfy the defining relations of the algebf,.

The result is most conveniently expressed in the form
Zyp = ULV (ViEH 71U (6.117)

This representation makes clear that the opemRitigfR 45 commutes withC’, andC’;. Noting
thatCy, = C,, | if A = (a,a) ~ (2a,2a — 1), it becomes easy to see that the fundamental
transfer matrice¥' (i, y1; 7, v) defined asl' (i, p1; 7, v) = C- T (l, ; 7, v), whereC is the shift
operator, commute with}, ;.

In order to show that the fundamental transfer matri@®g, 1; v, v) also commute with
Ci, let us note that the cyclic symmetry of the trace allows usewrite the definition of
T (@, p; 7,v) in terms of the fundamental R-operatdis, ; associated to the Lax-matrices

L',(\) =L ()L7 (). The corresponding fundamental R-operady, may be represented as
Riun (s 0, 0) = vt (o)) vy (v/ 1) v () 0 (/) (6.118)

A straightforward generalisation of the analysis abovelseto the conclusion thd&,sR'
commutes withC% andC;, defined as

Ch = (vuy), (vi! Uz‘+1)a ’ Ch = (v;u,), (vi! Uz‘+1)5 : (6.119)

Noting thatCi, = Cj, if A = (a,a) ~ (2a + 1,2a) leads to the conclusion that(f, y; 7, v)
commutes withCi . Taken together we have shown that the fundamental tramsdénx is a
physical observable.

XXZ-type chains. One may also consid&’} defined as

X (0, v) = 1 (0t (/) vy (0/0) vy (v/ ). (6.120)

67



with 1,7 (1) = Pu, r (1) = Py The operatoR%y is related to the lattice affine Toda
fundamental R-operatd®’’; = Rap Vi

i (v, v) = Qo (FaF) ™ R (i, v, v) - (FoF) - Q' (6.121)
It follows that R*{%7 takes the form{6.114) with

(XaB,YAB; ZaB) " = S (XaB,Yap, zap) S, S =0y (F.F)". (6.122)

6.8.2 Twisted lattice affine Toda

One may easily carry out the same analysis for the R-oparatoning from the twisted univer-
sal R-matrices#=, see[[4.28). The formulae for the ingredients are very simil

P () = W1 (X)) a7 W) = Py (W)
ab 1/v\Aba ) ab ab Py ab) »
=t o - i B D (6.123a)

Fab (V) =dq ﬁy(Xab) ) raE (V) - PaE Py (Wab) 5
whereya, w,, andwg; are now given by the expressions

i -1 -1 -1
. w = (u; V. U, V.,
Xap = ViaVip> “ ( L ZH)a ob (6.123b)

-1
ab — Via (u; v, ui)B

The rest of the analysis proceeds as before. The resultingufa for the operator
Rag(fi, u; 7, v) is very similar to formula[{6.117), the only changes beinat thne needs to
replace the expression fef; ; in (6.117) by

_2‘7

w

Zyp = Vi (VEH ™, (6.124)
and that one now needs to define
Uy)? = U?Vz' 3 Vz'U‘_z ) Vi = Via>
( ;4)2 (1 )a( 1 1)a v? ;1 (6125)
(Ch)" = Via Vitl,a> Vi = Vijip-

This innocent-looking modification has important consewpas. For application to integrable
lattice models it is helpful to have a formula for the kerneRo 5 (12, 14; 7, v) that is as simple as
possible. Such a formula will be derived shortly for the @perR 4z (ji, iu; 7, v) obtained from
the twisted R-matrice, , taking advantage of the fact thét,; is diagonal in representations
whereV’, andVy, are diagonal.

We may observe, on the other hand, that it is impossible @odialise the families of operators
{U,Vi;i = 1,..., M} and {(V)~'US! i = 1,... M} simultaneously as the operators in
these families do not mutually commute for different valoéshe index:. This means that
it will be much more convenient to work with integrable lagtimodels build from the twisted
universalR-matricesZ.. rather than the original ones.

" This equation differs froni(3.55) by a similarity transfoomginating form the definition of£ *X%, see[(3.22).
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6.8.3 Factorization from the universal R-matrix.

In all the cases above were able to express the R-operattasns of the operatofs; . V; g,
C..r, R = A, B generating a sub-algebra of the algebra of all operatonsgaon H 4 ® Hpg
which has a center generated by the operdiprs We will now see that this phenomenon has
a natural representation-theoretic explanation.

We had observed in Sectibn 6.3.3 that the tensor producd 7T;2 Is isomorphic to the tensor
product of a representation of evaluation type with a ttikepresentation. A similar statement
holds for the tensor produet], @ 7} . The precise statement is

(v} @7 )A@) = (Mo 7™) Ala),  a€U(b7), (6.126)
wherer™" and7™ are defined via
M) = VUL U VE A = UL (6420)
V() =0, 7™ = C, (6.128)
provided that we define
U2 = uv, L ®u v, g, V, =u'®v;-Cy, C? =uv, ,®u,v; Y, (6.129)
A= g (MAe)? k= (A AN (6.130)

The isomorphismd (6.89) and _(6.126) implies, upon assuittiagralidity of [(4.9b), that the

R-operatorR"(3 (i, p; v, v) has besides (6.85) another factorisation of the schenutit f
roa R%n)@;(mm) R(mm)@(trlv)RS%V)@(mm) R(trw)®(trW)_ (6.131)

Rewriting R'%%Z in the form [6.1311) will allow us to extrad® [ ™™ from R/%32.

This is done as follows. Let us start from (6.35), repeated F@ convenience:

= )y ()l () vy () (6.132)
Introducing the notation
Ao = REQEED Y, A= (R ere),  (6139)

and moving the factorg v to the right we see th&R'%}/ can indeed be written in the form
6.131) with
min)®(min — i LN _ _
RGO = v (Frep )t (Flep) Fy (Fleg) v (fiep) g e (6.134)
where we used the notation

fia =V, AUZ+1A7 f;;rA =UiaVia, e;B =U,pVip, ep=V, BUsz (6.135)
and the relation

q*(taEthabthaEthab) _ *tAB R(mln ®(triv) R/E;V )®(min) R(trlv ®(triv) . (6136)
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6.9 Representation as integral operators

The generalized Baxter equation to be derived in the nexioselbecomes an efficient tool for
the calculation of the spectrum of the affine Toda theoriesanis supplemented by certain
informations about the analytic properties of the Q-opegatin order to derive this information
it will be useful to represent the Q-operators as integraragrs, which will allow us to deduce
the relevant information from the analytic properties of #ernels representing(\), as was
done in [ByT1] for the Sinh-Gordon case.

Our first goal is therefore to present a representation of ftrelamental R-operator
R.s(1, u; v, v) as an integral operator.

6.9.1 Kernel of fundamental R-operator

We shall now compute the kernel &% (fi, u; 7, v). This operator may be represented as in
(6.114), where now
2y = Vi (V)7L (6.137)
Let RN (i, p; 7, v) = Papg RS2 (1, s 7, v). AsRES? commutes withC’, andCi, it suffices to
conS|der the operatd, ; obtained fromR*}Z by replacing the representation for the operators
4y U, VZA andVy, following from (6.125%) by a representation where these ajaes act on a
Hilbert space spanned by states z’ | such that

<:L’,y\\A/Z = (x,y|¥mbriiet <x,y\\v/i = (x,y|e* ¥ (6.138)

using the notations; ; := x; — ;. Our task is thereby reduced to the calculation of the matrix
elements of the operatp[f/y(xAB) P/ (Yap), Where

NJ\»—‘

Kap = (Zap) 2 (VW)™ (Zap)”

. . L (6.139)
Yap = (ZAB)Jr§ (UZH) (ZAB)Jr .

NI

Itis useful to represent the operators, (x,5) andp;, ,(v.45) USing @ non-commutative gener-
alisation of the Fourier transformation in the form

o) = [ o) B X, X = e Zszlogx/w),
. (6.140)

i Gas) = [ Al i YO, Y=o ZtlogyAB)

using the notatiomly(s) = Hf‘il ds; 6(2?11 s;). Working in a representation whetg, and
U5, are represented as operators generating shiftsatly, respectively, leads to the following
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form for the matrix elements of(s)Y (),

(z,y [ X(s)Y(t) [2",y") = (6.141)
= Ha(% —8; — x3)0(y; +t; — ;)

> efﬂisi(mfy)i,iﬂ e*ﬂisi(f*y/)i,iﬂ €+7riti(:v*y)i71,¢ eJrﬂ'iti(x/*y/)i—l,i
= Ha(% + 85— 2)0(y; +t; — vp)
' w e~ m@—z)i(e+a")iiv1 omily—y)i(y+y )io14 2Ty 0 o 2TTY]
Thanks to the delta-functions in(6.141), the kernel of theratorR 45 (ji, 11; 7, ), defined as

Rﬁ,u;ﬂ,l/(x7 3/|37/7 y/) = <.T, y | RAB(/._L, ,ua D7 V) ‘ .',U/, 3//> I (6142)
becomes fully factorised,

Riyuwi@,yl2y) = (6.143)

=0z — )5 — §) Wy () W, (2,2 ) Wy (.4 ) W, (2 )

using the notatiowr = Zﬁl x; for the sum of the components of a vecioe R, and

Wy (x,2') =W, (o, 2) = e P@YV (2 — 2, (6.144a)
- - -1 TiP(z
Wy (z,y) = (Win(ey) =@V, (@ —y); (6.144b)

We are using the notatioR(z,y) = Ef‘il(:ciym — yiwi1) andw = 5 log A. The explicit
formulae for the functions appearing in these expressions a

M 1
Vo (5) = e 2 Mw? 6.145a
w(8) 3 S ( )
M
V.(s) = Ny H Sp(w — Sii401 + ) - (6.145b)
=1

The resulting expression resembles the one found for thergksed chiral Potts models found
in [BaKMS|,[DIMM].

Using (3.55) it is easy to get the kernel®Bf (i1, 1; 7, v) from the kernel ofRY3 (12, p; 7, v).

6.9.2 Fundamental transfer matrices

Having the kerneR 45 (i, u; 7, v) it is straightforward to compute the kernel representirgy th
fundamental transfer matric8< i, iu; v, v) in an auxiliary representation féf = ®ZLV:1 Hoo @
Hq,—1 that is defined as follows. Let us introduce the operathis= u; 2,U; 2,1 cOmmuting
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with C; , = c; 5, ;- The operator§; , andV; , = (de_l)% satisfy the defining relations of the
algebrayy. We may furthermore introduce the operatbrs, := (u;2,) u; 2,1 cOmmuting
with U; , andV, ,. The representation &#,; @ W), defined on a Hilbert-spadg, ~ L2(R2M)

in terms of the operatons o4, V; 24, Ui 2.—1 andv; o, is then unitarily equivalent to a represen-
tation on a Hilbert space represented by wave-functiofis, ¢,) € L?(R*) such thaty, ,,
V.. Ci,andD,, are represented as

Ui,a @Z)(yaa Ca) = QZ}(ya + ibEZ—, Ca) ) Ci,a @Z)(yaa Ca) - Ci,a ¢(yaa Ca) ) (6 146)
Via ¥ (Ya, ca) = €W ¥ (y ¢0) . Dia¥(Ya, Ca) = ¥ (Ya, Ca + ibe;) '
wheree; is the vector inRM with j-th component being, ; — ﬁ The vectors inH =

®flv:1 Haa ® Hae—1 Will accordingly be represented by wave-functioh§y, ¢) € L*(R*MY),
wherey = (y1,...,yn), c = (¢1,...,¢cn).

If Rw;g,u(x, y|2’, ) is the kernel representiri@(jz, .; 7, v) we may represent the fundamental
transfer matrix7 (i, i1; 7, v) as an integral operator of the form

(T(lau 5 D7 V>\I[) <y7 C) = / dMN(Z/) Tﬁvﬂ;ﬁ,u<y7 y/) \I[<y7 C) ) (6147)

with dyy (y) = [T, du(ya), and the kernel, ..., (y, v/') given as
N
Tﬁvﬂ;ﬁ,l/(y7 y/) = / d:uN(x) H Rﬁvll;f/,u(xcﬂrb ya‘xZN y;) . (6148)
a=1

It is finally not hard to see that the same kerfig),.;., (v, v') can be used to represent the projec-
tion T (i, p; v, v) of T (1, u; v, v) to the physical Hilbert space defined in Secfion 3.3.1. Iddee

T (@, uv; 7, v) is a physical observable and there exists a representdttbe @rm (3.35). Such

a representation is related to the representation defineeeah (6.146) by a gauge transfor-
mation¥’(y, c) = e"¥9W(y, c), in general. Such a gauge transformation modifies the kernel
Ta oy, 9) IO Ty 1 (y, ) el - The projection defined in Sectign 3.8.1 then
has kernell}; ..., (y, y')e!™¥ - V=1w1)  The factore!¥ 1)=14:1) can be removed by another
gauge-transformation, if necessary.

7 Imaginary roots and functional relations |

Let us now consider the definition of the imaginary root cimiiions to the R-matrices. This
turns out to be more delicate than the case of the real rodtibotions. The formulal(5.15)
does not seem to have a natural renormalized counterparstasifjht. We are going to argue
that the decisive requirement determining a canonicalrrealisation of the imaginary root
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contributions will be the consistency with taking tensavgscts, or equivalently the validity of
the conditions

R =R R ,
nemi T RIS Ruw = (v © mw)(@) (7.1)
RV17V2®V3 = RV1,V3 RV1,V2 .
obtained by evaluating the representation ® my, ® my, on (A ® id)(#) = Z13%»3 and

(id @A) () = H13%12, respectively.

Our renormalisation prescription can be directly appliedoth sides in[(7]1) whenever the
infinite products representing the universal R-matricesdate to finite ones in the given repre-
sentations. This happens when one of the representatiphis@fo the universal R-matrix is of

prefundamental type. A natural strategy to construct f@sibf operator&y,y satisfying [(7.1)

is of course to start by identifying a class of basic repreg@ms from which more general

ones may be constructed by taking tensor products and qimtidaving define®y.y for V,

W taken from the class of basic representations one may singgl§7.1) recursively to extend

the definition to more general representations. Wheneveremormalisation prescription can

be applied to define all representations appearinig_in (hié)needs to check explicitly that the
relations following from[(7.11) are satisfied.

We will apply this strategy using as basic representatibaptefundamental representations of
modular double type on the one hand, and the finite-dimeaki@presentations on the other
hand. It turns out, in particular, that the renormalisapoescriptions for the basic representa-
tions are strongly constrained by the already chosen defisifor the real root contributions.
The co-product mixes real and imaginary roots. This impleg a part of the imaginary root
contributions inRy, gv, v, IS given by the real root contributions Ry, v, andRy, v,, and simi-
larly for Ry, v,&1,. The renormalisation prescriptions for real and imagimaots must there-
fore be related to each other. Consideration of tensor tsd finite- and infinite-dimensional
representations similarly implies relations between tlesgriptions adopted in the two types
of representations, respectively.

It may furthermore happen, for example, that the tensoryrbdf representations becomes
reducible for certain values of the relevant parametenstaioing basic representations in sub-
representations or quotients. Whenever this happenspiigarelations between the imaginary
root contributions to the respective R-matrices, as wilkbewn explicitly in some relevant ex-
amples. These relations take the form of certain functioglations restricting possible renor-
malisation prescriptions for the imaginary root contribos considerably.

These considerations will lead us to a uniform and unamhiguwescription for the renor-
malisation of the imaginary root contributions for the wédamily of representations of our
interest. Most important for applications to integrabkti¢® models is the observation that the
proper treatment of the imaginary root contributions padegi the basis for the representation
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theoretic derivation of the Baxter equation, generaligimg approach of [BalLZ3, AF] to the
case of representations without extremal weight.

In order to make the overall logic transparent we will in théstion restrict attention to the case
of Uq(s,AIQ). In the general case a’)fq(sA[M) one is facing a higher algebraic complexity which
will be dealt with in the next section.

7.1 Imaginary roots for basic representations

To begin with, we shall compute the imaginary root contridms for the basic representations
of finite-dimensional or prefundamental type.

7.1.1 Prefundamental representations

As a warm-up, let us consider the cake = 2, where the imaginary root contribution to the
universal R-matrix, se€ (5.115), (5118), simplifies to thiéofeing form

'@:5 = exp ( Z 5 ®e ))7 (7.2)

=1

An important feature of the representationsis the fact thate,%) and f,g(ls) get represented by
central elements. The corresponding currents take the form

/ . 0 (1A%
T+ E(2) =1+X720 o mi(ey) = P (7.3)
(1) ( )k‘-i—l )\—}—2/{:
1+ Fl(2) = 1+ 2727 & 1 (fy) = — & (7.4)

These equations follow straightforwardly from the defonis [5.27), [(5.28) and the iterative
construction of imaginary root vectors given in Secfion®.For|q| # 1 we therefore get

T = (e m ) —exp< Zk g% i% (‘2_) ) (7.5)
= (g2(=A?/AH) !

compare to[(5.34). Following the discussion in Secfion 5e4ocan immediately suggest the
following renormalized version of this special function,

Pren M) = (13 @ T (B ) en = (a2 (=X° /%)) 7, (7.6)

where

dt wo
Enlw) := exp (/R—i—io 4t sinh(ht) smh(t)) ' (7.7)
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Note that&,,(w) is not single-valued imw, it is better understood as a functionlog(w). The
definition (7.6) therefore needs to be supplemented by acehafi the logarithm of-)? /2.
This is a subtle issue that will be resolved in Section 7. dWwel

7.1.2 Evaluation representations

By means of straightforward computations one may show tmatrhage of imaginary root
currents under the evaluation map introduced in Se€tiod $akes the form
(I+gz A2q™)(+q2" A 2g ™)
(14q 1zt A 2gK2)(1+ gt 271 A2 ¢ K2)
(1 + qfl Zfl )\2 q+2:v)(1 + qfl Zfl )\2 q72m)
(1 + q—l Z—l )\2 q—l K—Q)(l + q+1 Z—l )\2 q—l K—Q) '

We recall that®*, wherez is defined up to a sign, parametrizesfj¢sl,) Casimir as in[(5.21).

ew(l+ E1(2)) = (7.8a)

evy(1+ FI(2)) = (7.8b)

Considering finite dimensional representations of evauaype one may note that the imag-

inary root currents forr} take the form [(Z.8a) withy** and K replaced byq**' and

k; = diag(¢’,¢’*,...,q7"" ¢77) respectively. Taking the second tensor factor tore

one could proceed along the lines of Secfion 7.1.1, leading t

(4 & ) (o = A ) B ),
’ Eap(—q 72N [ p?) Eqpe (= N/ 11?)

If we further specialize[{7]9) to the case of spia- 1/2 we find

(7.9)

Egp2 (—a~ " N2 /p?) 0 1 0
f - - _ | Expr(=attX2/p?) _
[(ﬂ-)\ ® ﬂ-u )('gngg)]ren - 2 0 Egp2(—q™1 X2 /p?) - 0()\/”) (0 1 — q1>\2,u2> .

Egp2(—q322/p?)

(7.10)
Apart from defining the special functiatiz), the second equality in this equation follows from
the relationfye (¢%z) = (1 + x) Ex2 (g 2x) applied in the case when= —¢~'\? 2. Let us
observe that
_ pfeﬁ(eﬁ?) 7 (7.11)
Pren (472A)
wherep (A) is given in [Z.5). Another example that will be useful in tiodldwing is

B B 1—Ap2gK? 0
[(ﬂ-i\ ® evﬂ)(‘@wé)]ren = pev(>\,u 1) < (1—)\2u*2 q+2z)(1—)\2u*2 q*%) (712)

0 (1-X2p=2¢71K2)

where
el = E AN ) S (N g )
ev Eopp (= X212 q2H28) Egpp (— N2 =2 2~ 22)

ligy — 1, _
= 0(q= " Au™) 0(g> M)
(7.13)
This result can be easily specialized to the modular dowse asr™d(¢**) = —e*7s,
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7.1.3 L*()) from the renormalized universal R-matrix

Let us now complete the derivation started in Sedfion b@dbtainL*(\) from the renormal-
ized product formula for the universal R-matrix.

As explained in the following section, the real root conitibn is not affected by renormal-
ization in this case as the corresponding root vectors alezeel by nilpotent operator in one
tensor factor. The observations in Secfion 5.3.2 togetfitarthve calculation[(7.10) then gives

(M @ TNZ )] 0n = 2a(=75 A(18) &1) - [(7h @ 77 )R )] ren + 0T,

= 0()) (Avlu—l (1]) ((1) 1— 3‘1)\2) <(1) Avl_lu)
— o\ <A“V Au\i_ll).

For completeness let us recall the evaluation of the uré&smatrix forri ® ey, and how it
is affected by the regularization. The infinite product aflm®ot vectors gives

ren

1 0
(7T§\ & eVM)(%;(S) == ( )\u—l(q—liq) ) s (715)

1
Lie—1
17)\2“—2 q—l K2 q2 K E 1

T-22,2¢TIK?

) | (7.16)

1 2ell-g) Ik+IE
(7} @ ev) (Zy) = ( ! .

Together with[(7Z.12) this implies that

K =M\ gK ' (g™ — )¢5 F
f'2ev ) (% = pev( At - 7.17
[(ﬂ-)\ & M)( )]ren peV( M ) )\Mil(qil N (]) q+% E K+1 _ )\2[/172 q Kil ( )

whereE = K-'EK~, F = Kt! FK*! andpe,(Ap ) is given in [Z.IB).

7.2 Rationality of currents

The examples above lead us to a useful observation: An impbrdle is played by the gen-
erating functiond + E}(z) and1 + F{(z) that will be called currents. The currents generate
a commutative algebra for the level zero representationaneeconsidering. Whenever the
currents get represented by rational functiong tiiere exists a natural prescription for turn-
ing the formal series following froni.(7.2) into well-definegerators. We are now going to
show that the operators representing F'(z) and1 + Fj(z) will be rational functions of:

for all representations of our interest. More precisely Wallsshow that for any tensor product
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™ =m ® - @ my of basic representations &f, (b™) we have

- / o (L+27"Ny)
T (1+ Ej(2) =
( &) Hg;(l z7'Dy)

whereN,, D, are mutually commutative operators. A very similar statent®lds for tensor
products of basic representationgffb~).

(7.18)

In order to derivel(7.18), let us consider the monodromy ixatr
M) = (rl @7 ) (%Z). (7.19)

It follows from the product formula fa%Z— that we may represeM () in the form

0= (e )50 ) o TG )

whereK, () are the eigenvalues ¢ff @ =) (#Z_;) onu.,

Ki(A) = exp ((q_l —q*) Z U, 11 F,E,ng),i 7T+(€£r13;))> (7.21)

m€Z+

where the numberFT(nl(;i are the eigenvalues @f&(fsg) on the two basis vectors, of C?,
i ( ffrfg) Uy = F(lg, . uy. It follows straightforwardly from[(7.8a) that

m

FL) = F = () (=g 2™ (7.22)
This implies that
_ B K_(\)
7 (1+ E(—g)\7?)) = . 7.23

We may note, on the other hand, that for any basic represemtat the matrix L,,(\) =
(7f @ 7,) (%) takes the fornp,,(\) L., ()\), with L'()\) polynomial in)\. It follows thatM()\) =
M'(A) T2, pu(A), where

MO = Ly - 250) = (£ D) (7.24)
is @ matrix of polynomials in such thatA(\) = k! +O()), D(\) = k+ O(N), B(A) = O(N),
C(\) =O(N).

It remains to observe that bokh, (\) andK_(\) can be expressed as a rational function of the
matrix elements oM(\), leading to the expression

Ko _ a-de(M (g =)) |
KO\ AN A(g~A) ’

(7.25)
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where g-detM’())) is defined as
g-detM'(A)) = A(g 2A\)D(g2A) — C(g 2 A)B(g2\). (7.26)
In order to obtain formula(7.25) we used the commutatioatiehs satisfied by the matrix

entries ofM’(\). Equations[(7.25) and (7.23) imply that (1 + E%(z)) is a rational function
of \ of the form claimed in[(7.18). O

With these observations in mind, let us formulate the pipson: for representatioar® of
U,(b™) such that

v (T+27"N)) v (1+27"Ny)

+ / o - ' _
' (1+ F{(z)) = ?L(l b , ®™ (1+Ej(2) = ?;1(1 b)) (7.27)
let us set
[ (ﬂ.+ ® 7‘.7) 7 ] — Zlil H?/;1 52b2(_DZ ® NZ) 221 Hgf;1 52b2(_NZ ® DZ/) (7 28)
~odren T Tz Eae (=N @ N [T, T10, € (=D} @ D) "

where&y,z (w) is defined in[(Z17) below. Notice that the unrenormalizedsioer of (7.28) is the
same expression witf, (w) replaced by (w). Above we used the notatiar™ in order to
avoid confusion with the prefundamental representatighsvhich are a special case of*.

As we will see, after we fix a prescription of the form (4.27],28) for the prefundamental
representations;’, the validity of the relations following fromi(7.1) impli¢kat the same pre-
scription [7.27),[(7.28) needs to be used for represemsbbtained by taking tensor products.
The fact that this is a consistent prescription is not obside will show in all relevant cases
that consistency follows from the basic functional relaisatisfied b2 (w).

7.3 Co-product of imaginary roots

We have proposed a definition for the imaginary root contitlns to the universal R-matrix
for the basic representations of our interest. We will naavtsinalysing in some detalil if this
definition is compatible with the relatioris (¥.1). To thisaive will now derive useful identities,
formulae [Z.3D) and_(7.41) below, satisfied by a generatimgtion for the imaginary root
generators from the basic relatiofid RA)(%#~) = X13%,, and(A @ id)(Z ™) = K13HK 55

As a useful generating function for the imaginary root gefs let us introduceZ;(\) via
1@ A5\ = (my @id)(Z ) - (7.29)

This definition makes sense a$ (/) are complex numbers. For the time being we shall
continue to work with formal series ik. We are going to prove the identity

A(AEN) = (1@ AL5(N) (1)) %er @ eokn) (AN @ 1), (7.30)
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giving a useful representation of the co-product of the imagy root generators. The contribu-
tion containing real root generators is clearly visiblelia argument of the function, ().

As a preparation let us note that *;()\) appears in
(mf @id)(Z7) = eq(—Tifi®er) (1@ AI5(N)) eq(—75 fo @ o) A (u), (7.31)

whereA=1(u) = e~ loeu@@—@) f, .= 7 ¥(f,), 7, = ¢ — ¢~'. This may be rewritten as

(rf ®@1d)(#7) = Aly) (L@ 47 (N)) A7 (y)A™ (u), (7.32)
MTN) = gg(Ney) M 5(N)ey(Neo) (7.33)
wherey := u~zvuz, A(y) = ez'8¥®(E-&) and) := —7, ¢z \. It seems remarkable that

there is a similarity transform (y) so that the first tensor factor ih (7132) is the identity. This
follows from the identities

(q—q D) i (f)®e = AgZ Aly) (1@ e;) A N(y). (7.34)

The rewriting [Z.3R) will be particularly useful in the highrank case discussed in Secfiod 8.2.
Proof of (Z.30) The starting point of our derivation is the identity

(ry © A) %) = (75 ©1)(%5) (xf © 1)(#5). (7.35)
Inserting the form[(7.32) into this equation and simplifyiine A factors we obtain
A(#TN) = (1o (N) g (AN @1)q ", (7.36)

where we have cancelled the first tensor factor being priagpaitto the identity. The contribu-
tion ¢* originates from reordering the factors &f It acts as;'(e; ® 1)¢" = e; ® k;. The left
hand side of[(7.36) contains termg\' A(e;)), i = 0,1, A(e;)) = e; ® k; + 1 ® e; which may
be further factorized using

gq(U)eg(V) = ¢,(U+V), (7.37)

if UV = ¢ 2VU. Using [7.37) we rewritd (7.36) as

A(AL5(N) = (1@ A 5(N) O (AN ® 1), (7.38)
where . .
O := Ve @k e,(1®@ Neg)e,(Ney @ k) Ry (7.39)
This expression can be simplified using the pentagon relatio
eq(V)eg(U) = €,(U)eg(qUV) g4(V) (7.40)
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and noting thag~'(\')? = (A7,)%. The resulting formula i${7.30), as claimed. O
Applying (id ®7;, ) to the second equation in(7.1) a similar analysis shows that

A 5(v) = (M _5(v) @1) eq((rr ) kofo @ f1) (1@ A 5(1v)) . (7.41)

where

M ()R 1 = (ider, )(%Z_s) . (7.42)

~

It is worth to observe that
(?5 ) fs  @1+1& [ +7q[]q ofo® J1, (;.4)

where we have used the iterative definitiﬁfi) = fofi — q %fifo given in [5.T). Before
regularization,[(7.41) can be considered as an equalitprofdl power series ir~2. In this
interpretation[(7.43) corresponds to the term of ordet. It is remarkable that the coproduct
of all the imaginary root vectors can be brought to the sinfiguien (7.41).

Let us finally note that our derivation df (7130, (7.41) wasséd on the identitie§ (7137) and
(7.40). As noted earlier, these identities are satisfiethbgpecial functiod,: (w) whenever the
arguments are replaced by positive self-adjoint operdka89, FaKV, Vo]. This observation
may be used to reduce the verification[of [7.1) to the verificadf the consequences of (7130)
and [7.41) in the representations of interest.

7.4 Consistency

The mixing between real and imaginary root generators utfteraction of the co-product

expressed i (Z.30), (7.141) implies that the renormabsapirescriptions adopted for the con-
tributions of real and imaginary root generators in the paddormula must be related. Let us
first state the proposed renormalisation prescription@fdal root contribution to the universal
R-matrix. We define

g,(x) if x is a nilpotent operator

Eq(x) = [e(T)]en = { (7.44)

& (x) if xis a positive self-adjoint operator

where these special functions are definedin (5.34) and.(ANVg will now verify that our
proposed prescription for the renormalisation of the imagy root contributions is compatible
with the definition[[7.44) and the consequence$ of (7.80%1))7
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7.4.1 Check of compatibility for 7y ., = (7, ® 7, )A

The image of the left hand side ¢f (7130) under,, can be computed using the explicit form
of the imaginary root currents

(I+z"¢*p) (A +2"gp)
(1=2ztg"Zp)(1-21q ' Zp)’

whereg? = \;/Xo, p = (M A2) 71, Z = vu~! @ v tu~t. Following the prescription outlined by
equations[(7.27) an@(7.28) this implies

(my, ® M)A (1 + Ei(2)) = (7.45)

& (¢ 25, 2) € (47 25,7)

£~ ) Ean(~ )

(7Y ® T 00) Zos)en = (T3, @ TL)A (M5 (X)) =

(7.46)
On the other hand, applying,, ® 7, to the right hand side of (7.B0) and using the definition

(7.44) we obtain
Epe ()\1)\22)
e (= 3) Eme (— 3)
The compatibility under tensor product, encodedin (7.8@tes thaf (7.46) has to be equal to
(Z.47). This is so provided that the functional relation

(7.47)

£2b2 (qw)ggbz(qflw) = SbQ (’IU), (748)

holds. This is indeed a simple consequence of the integred¢sentatiorn (717).

7.4.2 Tensor products of finite- and infinite-dimensional r@resentations, |

For the derivation of the Baxter equation we will also neeccaonsider tensor products of
finite- and infinite-dimensional representations suchrga@ 7r<.+. Let us first generalise our
renormalisation prescription in a way that will allow us tover cases involving such mixed
tensor products. Let be an operator on a Hilbert-space of the fokn V' with V' beingn-
dimensional that can be diagonalised by means of a sinyilkeihsformsSS in the sense that
x = S5 - diag(A\ixq, ..., ApXy) - SS7L, where), € C* andxg, £ = 1,...,n are positive-
selfadjoint operators. For such operatorsis natural to define

&(x) = 59 - diag(Ep(Mix1), ..., Er(Axy)) - SSTH. (7.49)
This definition allows us to define

() = [(rh @ @) (A D(#))] ... (7.50)

ren
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forv, w € {+,f}, keeping in mind that the infinite product over real root citnttions truncates
to a finite product whenever, is applied to the second tensor factor.

Important for the derivation of the Baxter equation will e identities

o) e W5 () = [(@m ) (Z 7).,
rras (€)= 5 (¢ (C), ¢ ren (7.51)
s (G =R ) = [ ome)]

ren

The proof of these identities can follow almost literallyetproof of (7.41) provided that the

identities [[Z.317),[(7.40) used in this calculation are presd by our renormalisation prescrip-
tion. We need to verify that

éaq(U) @@q(v) = @@q(U + V) ) éaq(v> éaq(U) = @@q(U> éaq(qUV) @@q(v> ) (7.52)
when

U :Z(7T§\®7T:)(fi®1), V:z(ﬂ§®7rlf)(k;1®fi). (7.53)

Let us start from the first equation in(7152) for 1. The caseé = 0 is similar. First notice that

1 —1
qg 0 q " x 0 1 1
UtV= Sy S1=SVST, 7.54
( 2\ gt a:) < 0 gt :C) ( )

wherexr = zur,'u~'vandS = (19) witht = —Au~'v'u. We thus have thall + V is
similar toV which is self-adjoint and the prescriptidn (7.44) gives

E(U+V) = S Eu(V)S™ =

gbz (qil x) 0
<t (Ep(qg 7 z) — Ep(gT 2)) Ep(qt? x)) ) (7.55)

On the other hand) is a nilpotent operator and the same prescription gi§gs) = ¢,(U)
1+ 7,'U so that

The equality between (7.65) arld (7.56) follows from the fioral relation&,: (¢™'z) = (1 +
z)&2(¢~'x) and the identity A7, ! = —t .

Let us turn to the second relation [n (7.52). Using the népay ofU and upon simplifying the
the U° term it reduces to

Let us focus on the cage= 1. The matrixU is proportional to(

99) so that only the lower left
entry of (Z.57) is non-trivial and reduses to the idenfipy(¢™'z) = (1 + 2)E2 (g ). 0
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7.4.3 Tensor products of finite- and infinite-dimensional r@resentations, Il

In order to verify that the consistency condition (7.41)dso&fter we apply the representations
il ® 7 we first need to spell out the form of the imaginary root vesta@@oncerningr' and
7, they are given as a specialization[of (7.8a) (7.4) wtedy. The current of imaginary
roots for this tensor product on the other hand takes the aotriprm

[(Wf\ ® 77;:) A(l+ F{(z))} = S! [Wf\ (1+ F{(2)) ® W: (1+ F{(z))} S, (7.58)

whereS = SAH(y)withS =1+ q%,wl(g (1)). Moreover, according to the definition below
(7.32) one has for the fundamental representatign = y2 (é y91 ). The equality[(Z.58) can be
verified by lengthy calculations using the iterative comstiion of root vectors given in Section
(.2.1. The reader might be satisfied checking the first ordercorresponding to the equality
(7.43). We will discusd(7.58) in Section 8.1.3 in more dstai

The relation[(7.58) with the renormalization prescriptf@®7), [7.28) implies that the left hand
side of (7.41) reads

[(Wf\ ® W:) A (//_5(’/))} =S [Wg\ (//:5(’/)) ® 7: (//_5(’/))} S. (7.59)

~ ~

We are going to verify that this is equal to the right hand siti§/.41) given by
(my (A 5() @1) (L+ (§5)) Q@) (A5(v)) . (7.60)

wheret = ¢~z 2¢y. This formula is simply obtained recalling thagr; (f;) = ¢zuy and
(ko fo) = ¢7'A(§§). Recall that the contribution (.Z_;(v)) is given in [Z1D). Ay (z)
in (Z.10) andr—(.#_4(v)) are central, the equality betweén (1.59) dnd (7.60) reduaces

. 1 0 ~ 1 0 1t
St S = . 7.61
(0 1-— ql)\21/2> <0 1-— q1>\21/2> (0 1) ( )

This is verified using the definition afandS given above.

7.5 Reducibility of tensor products

Other issues arise whenever tensor products of represgrgatontain sub-representations or
guotients isomorphic to one of the basic representatiohs.rénormalisation of the imaginary

root contributions must be compatible with the existenceuwfh relations. This will be seen

to imply functional relations between the special funcsi@ppearing in the imaginary root

contributions.
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7.5.1 Highest weight representations

As a warm-up let us consider a representation of the Weydkamluv = ¢~ 'vu realised on
vector spaces with basis, j € Z by means of

VU = Ujt1, uv; = q ;. (7.62)

It is possible to supplement the definitiomqf by a lowest- or highest weight condition, re-
stricting the values of to a semi-infinite subset &. It was first noted in [AF] that the tensor
product of representations{ ® 7r2, contains for¢’ = q%g a subrepresentation isomorphic to
7., and that the quotient! ® wg/w(jc is isomorphic torrqtlc.
To see this, let us consider tensor products of the ft{h@wé,, and look for a sub-representation
7r<.+,, generated by vectors of the form

w; = a;vj—1 @ uy +bjv; u_, (7.63)

using the standard basis. = ({), u— = () for C%. A straightforward calculation shows
that such a sub-representation exists provided¢hand¢ are related ag’ = q%g“. The sub-
representatiomé?, then has the parametéf = ¢(. It is furthermore straightforward to check
that the quotient” ® 7/, /n/, is isomorphic to;r;ilC in this case.

Picking representatives; for the quotiemzrzr ®7r2,/7rj,, one gets a basis fé{_ © C? generated
by vectorsw; = (). The action ot4,(b~), and therefore the representation of ® 1)(% ")

will be represented by lower-triangular matrices with essgo this basis.

7.5.2 Representations of modular double type

We are now going to argue that this derivation can be gesedlio cases where the repre-
sentationzrzr is replaced by a representation of modular double type d&bnehe spac® of
functionsf(p) which are entire, and have a Fourier transformation thattiseeas

9(p), vg(p) = g(p —1ib). (7.64)

The dualP’ of P contains the complexified delta-functionajsdefined by(é,, f) = f(p) for
all f € P andallp € C. The dual representatidm; )" will be realized on delta-functionalt
in terms of the transpose operators

ug(p) = e ™

u's, = e PG, Vo, = bpip- (7.65)

We claim that the tensor product of representati;oﬁ@ﬁ exhibits the same type of reducibility
as observed in the previous subsection. This is fairly easgé: We claim that the represen-
tation 7r<.+ ® wé, onP ® C? becomes reducible faf = q%(’, containing the sub-representation

+ - + f + - - - + - -
7, and that the quotient” ®@ WC’/%C is isomorphic tor,~, N this case.
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In order to verify this claim let us note that the tensor pmdq ®7r2 is realized on vector space
P ® C2. Vectors in this space can be realised as vector-valuedifunsor (p) = f(p)uy +
f—(p)u_, wheref, € P, e = £, and any basi$u,u_} for C2. The dual(P ® C?)’ of P @ C?

is spanned by elements of the forin= d .« + d_u", withdy € P'. (P ® C?)’ contains in
particular elements of the form

wy(p) = a(p)dpsiv ® uy +b(p)dp @ u_ . (7.66)

One may check that there exist a choice for the coefficienttionsa(p) andb(p) such that
the action of(wZr ® m)" onw, (p) becomes equivalent t(Or;C)’. This boils down to the same
calculation as outlined in Sectién 7.5.1 using the idemtifansg’ = ¢™” andv; = §_,. It
follows that elements gP ® C? of the form [ dp g(p)w.(p), g € P, represented by the vector
valued functions

vy (p) = g(p —ib)a(p — ib)uy + g(p)b(p)u-, (7.67)

will generate a sub-representatiof) in 7} ® 7, if (' = q:(. As before in Section 7.5.1 one
may check that” @ (/7. ~ =, .. As representatives for the quotient ® n{, /. one
may take vectors of the form, (p) = e ™h(p)u_, h € P.

Any vectorv(p) in P @ C* can be represented in the foxpi (p) 4 v, (p) for suitableg, h € P.
This allows us to represent any operator@m C? in terms of a matrix of operators acting on
the column vectof 7 ). It follows that the matrix representirigr} © #f, © 7~)(%~)],,, will

be lower triangular in such a representation,

(e @ 77)(%7)].eo 0

(¢ @ nf @ w)(A@ V@ N (T VI R
(/a

). (7.68)

if (' = q%(’. The existence of such a relation implies relations betwlenmaginary root
contributions to the R-matrices appearing in equafiong)7.8 is easy to see that the relations
following from (7.68) imply in particular equatiof (7]11hdt was previously observed to be
satisfied by our renormalisation prescription.

7.6 Relation to the Baxter equation

Let us consider the Q-operator defined as

~

QQ) =ty { (V@ 1) [ @7 27] .} (7.69)

together with the transfer matrix in the fundamental repnéstion given by

~

T(Q) = tra{ (@@ 1) (@) 2]} (7.70)
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The element?, with ¢ € {0, 1} corresponds to th&, automorphism represented by the Pauil
matrix o, for T(¢) and by F2 for Q(¢), see[[6.211). Introducing this factor is natural from the
point of view of the quantum affine algetqu(glg) and it is necessary to discuss the modular
X X Z magnet and lattice sinh-Gordon model on the same footing.

We are going to show that the validity & ;%,; = (A ® 1)(%~) within representations of the
form 7+ @ 7! ® 77 implies the Baxter equation

T(220)Q(C) = Qg¢) +Qlg7¢). (7.71)
In order to derivel(7.71), let us note that we may, on the ommihmpresenf(g") andQ(C) as
Q) = tryg, [ro2n(€) -+ 101 ()],
T(¢) = trea[ Lin(¢) -+ L1 (¢N] -
The right hand side of (7.71) may be represented as
T(Q%C)Q(C) =ty g2 [ [rO,2N<<)L5N(C/)] T [rO,l(C)L1(</)]]C,:q%C :

Using identity [7.511) we may represent each faatpr(¢)L, (¢') in the trace representing

T(¢)Q(C) in terms of (7} ® 7t @ m7)((A ® 1)(%7))] _, which was found to have a

lower triangular matrix representation in (7.68). It falle that the matrix representation of
[foon (OLon ()] -+ [ro.1(¢)L7 (¢)] will also be lower triangular. The Baxter equation follows
immediately from this observation.

7.6.1 Baxter equation for XXZ-type spin chains
It remains to show that the universal form of the Baxter eiguaf7.71) reproduces previous
forms of the Baxter equation appearing in the literature.

Let us look at the explicit form of (7.69) and _(7170). To do szall that for each site of the
spin-chain we have

(TERT) B ] = Pren (C/N (/N [(me@my) #27],, = 0(C/NLT(C/N). (7.72)

The normalization;;, () andd(x) are defined in(7]5) an@ (7.110) respectively and the remain-
ing operatorg*~(¢) andL™(¢) are given in[(5.44) and (5.26), respectively. The definiion
(Z.69) and[(7.70) will then reduce to

T(C) = 0:(O)TC),  QUC) = Za(Q) Q¥((), (7.73)
where®,.(¢) = [T, 0(¢/5a)0(C/Rn), Enl(C) = TIN_, pitn (C/#5n) i (¢ /Rn) @
T(() = trea [ Ly (C/Rn)Ly (C/kn) -+ LT (¢/Ra)Ly (¢/k1)]
QOH(C) = trygy [ ron (C/RNITN (/) -+ vy (C/RO)NGT (C/m)] - (7.74)
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We have set = 0 in (Z.69) and[(7.70). Using (7.111) the Baxter equation (yi§ &quivalent to

T (g3 O)QY(() = Q¥%(g¢) + A Q¥%(¢'¢), (7.75)

R0 E(@T) T < <)< 42)
A(C) = ; = L = 1-=){1-=]). 7.76
© O.(¢20)Z.(¢)  Exlg() H ki K, (7.76)

This is essentially the form of the Baxter equation for imédade spin chains of XXZ type, with
A(() being the quantum determinant of the monodromy matrix. dédtaat in order to simplify

A(¢) we used agaii(7.11) and the functional relapgp (¢ ¢ /k) = (1-C?/K2) piy (71 /K).

where

n=1

7.6.2 Baxter equation for the lattice Sinh-Gordon model

Let us finally note that the Baxter equation for the latticetS5ordon model studied ih [ByT1]
is an easy consequence of (71.75). Using the relatlons| (ar#$)5.47) it is straightforward to
deduce from[(7.15) that the operators

T(C) = trge [ Lg(1/CRILN(K/C) - -+ - Ly (1/¢r)LY (k/C)]
Q¥(C) = tryy, [ rgy (CRIGN (C/R) - -+ - ro (CR)ra(¢/m)] - (7.77)
satisfy a Baxter equation of the form
T2 Q)Q(C) = a™(Q) Q*(g71¢) + d*(O)Q™(qC) (7.78)
where
a*°(C) = (¢2¢/r) VA= /N1 = )N, dE(Q) = (¢2¢/R) . (7.79)

The equation[(7.78) is equivalent to the Baxter equatioiveérmpreviously in[[ByT1], as dis-
cussed in some detail in Appendix G.

7.6.3 Relation with previous representation-theoretic costructions of Q-operators

Our definition [7.6B) of Q-operators is in some respectslaimbut not quite identical to the

definitions of Q-operators based on representations of tbgcijator algebra introduced in

[BaLZ3]. The most important difference is that the repreéagons considered in [BalLZ3] have
extremal weight vectors, which is not the case for the reprtions used in this paper. In the
rest of this subsection we will compare the two constru&iommore detail.

Both type of representations are constructed starting thenfollowing algebra homomorphism
ma(eg) = A ta, ma(er) = A ta, (k) = m(ky!) = ¢h (7.80)
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wherea, a, ¢! satisfy the defining relations of the g-oscillator algebra

1
gaa—q¢ 'laa = —— ¢ MPag ™ = ¢2a, ¢Pag ™ = ¢ 2%a. (7.81)

q—q b’

If ¢ is not a root of unity this algebra admits only infinite dimemal representations. As
observed in Sectidn 5.3.2 the relations (7.81) imply thdes) is central, from which it quickly
follows that

m(1+E(2) = 1+wzt, wi=qg\ 2. (7.82)

Given any representationwe can obtain a new one as (2 using the automorphini3(e;) =
eo, 2(eg) = e1. Applying this procedure to the case above we find

(1+wz)

Q1+ FE = 7.83

T\ © ( + (Z)) (1+q_1 Cq—Qhwz—l) (1+q+1Cq_2hwz_1) ) ( )
whereC generates the center of the g-oscillator algebra and isetbéia

C:=(¢g—q¢')**(aa—aa). (7.84)

Notice that ifC # 0 the imaginary root currents are not represented by cer@adents.

The representation™ used in this paper, see (5128), corresponds te 0. In this casea anda
are inverse of each other up to a constant and we concludeti@t= 0 the g-oscillator algebra
is isomorphic to the Weyl algebra generated by invertibéansntsu, v satisfyinguv = ¢~ tvu.
In this case the representationsandr, o §2 are equivalent.

The representations considered in [Bal_Z3] are highesthtegpresentations of the g-oscillator
algebra generated from the Fock vacul@satisfyinga|0) = 0. Upon introducing the notation

Moz = T, Tz ‘= M0}, (7.85)
we find that the eigenvalues of the currents (I7.82) (7.83jerhighest weight state gives
_ _1\E1
Taiz(1+ E'(2))[0) = (1+¢7A72271)70). (7.86)

In the equation above, as in [BalZ3] and [HJ], the lataglefers to simple pole or simple zero
for the eigenvalue of the curremt+ E’(z) on the highest weight state. Such eigenvalues are
rational expression in~—! for the category of representations introduced in [HJ]. un paper

+ labels representations of the two Borel halves.

The representations considered in our paper do not haweneatweight vectors. It is unknown
to us if useful Q-operators can be constructed using higheght type representations in
auxiliary space if the representations used in quantumesgiaacof modular double type.
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7.7 Choice of branch

Let us finally return to the issue to fix a choice of branch fagaothm of the argument of
the special functiong),(w) used above to represent the imaginary root contributionsuilll

be fixed by the following reasoning: It was shown in Secfich®that the tensor product of
two pre-fundamental representations contains an evaluagipresentation of modular double
type. It will be observed below that titeial of such a representation contains representations
of highest weight type. The rational function representhgeigenvalues of the current on the
highest weight vector simplifies somewhat compared to tipersalues of a generic vector. We
demand that the eigenvalues[0f] ® m1"3)(%2;)].., On the highest weight vectors of these
sub-representations coincide with what is obtained byyapglour renormalisation prescription
to the eigenvalues of the current on the highest weight vedtiois gives a natural way to fix
the choice of branch dbg(w) in the definitiong,(w), as will now be described in more detail.

7.7.1 Highest weight representations in the dual oP;

The key observation is that the highest weight represemisitdfi/, (sl,) are contained in the
dualto the representatiorfd,. In order to see this, let us note that by simple changes atioot
one may rewrite the representation definedin (5.24) as
Ei=e=0—m|, T_,
J U= K; = g™ (7.87)
Fj = fS = [.7+m]qT+7
wherep = —ibm, T f(m) = f(m £ 1), and the parametgris related tos via
j= %(5 —¢), where ¢ := %(b+ b1y (7.88)
The dual spac®’, contains complexified delta-distrbutioss := 4,. By duality one gets

E.el = [j—ml] e, . )

s [‘7, h " Kiel, = q™el, . (7.89)

Fj el, = [j+m], €mt1 s

It follows that the distributionge’,; m = j, j + 1,...} generate a Verma submodui& within
the dualP. of P.

7.7.2 Eigenvalues of currents on the highest weight vector

The form of the imaginary root currents for representatiohsnodular double type follows
form the first equation if{7.8a) and the expression of (i&5xo be
(1 _ (]2_1 M_Q e+27rbs)(1 + (]Z_l M_2 e—27rbs)

. 7.90
(I+q 'zt p2qkd)(L+ gt 271 2 g k3) (7:99

T (14 By (2)) =
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The prescription(7.27)[ {Z.28) with the currents asin)AB90) then gives

Eap2 (koA /1) Eapa (—KIN? /%)

+ m.d. - —
[(71')\ & T )(‘@Né)]ren - €2b2 (q€27rbs/\2/u2)52b2 (qe‘QWbs/\Q/MQ) ’

;s

(7.91)

Let us now consider the dual actiondf (1 + E{(z)) on eg. Note that[(7.90) simplifies in this
case, as a factor in the numerator can be canceled agaimsbaifathe denominator.

Requiring that our renormalisation prescription leadiag{f.91) is consistent with this fact
finally fixes the choice of the branch of the logarithm in thérdgon of factors like&y2 (—w):

It should be such that the same cancellation takes place {heh) is evaluated oa§. This
will be the case whelvg(—w) = —mi + log(w).

7.8 Towards a "'more universal” R-matrix

Our findings suggest that there should exist a generalisafithe universal R-matrix that not
only makes sense fog| = 1, but which also extends the class of representations inhwhaan

be evaluated by an interesting class of infinite-dimendi@mesentations. The representations
of interest for us can all be found in the tensor products oftiypes of representations, the pre-
fundamental representations of modular double type onrtednand, and the finite-dimensional
representations on the other hand. We have defined rensadalersions of the image of the
universal R-matrix for the basic examples of such repregiems from which more general
representations can be constructed by taking tensor pisduc

Note that we have not defined the renormalisation of the mrioftumula for general tensor
products yet. However, if we have a tensor prodygt= (7; ® 7;) o A of two representation

for which we have already defined the image of the R-matrixnveg define the correspond-
ing R-operators vid (711). One may thereby extend the diefimdf the renormalised universal
R-matrix to the whole category of representations genérayetaking tensor products of rep-
resentations of prefundamental and finite-dimensionat.typhis allows us, in particular, to
construct

Rosa (A1) = (755, @ T, (2], (7.92)

from the product of four operators—(\/p) = [(73 ® 7, )(#)],en» @S Noted previously.

We'd finally like to propose that the prescription for the semalisation in the case of finite-
dimensional representations is related to the one for tee chinfinite-dimensional represen-
tations even more deeply. We are going to argue that the Iatfgdies the former.

In Section 7.7.11 we discussed the dual of the represensdfignlt is clear that the action of
Rs,s.(A/p) onPs, @ P, defines the dual action dPs, ® Ps,)’. As the latter contains highest
weight representation®;, ® %;, with j; related tos; via (7.88) fori = 1, 2, we get an action of
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(Rsyso (A1) ONZ;, @ Z;,. We are using the notatidd for the transpose (dual) of an operator
O. We conjecture that this action coincides with the actiothef R-matrix obtained from the
universal R-matrix using the renormalisation prescripiitroduced above,

(Roysx (M) - e1 ®@eq = (73, @75, (B ) yen -1 @ €2, (7.93)

H,J2
wheree, € %;,, e; € #Z;,. Aresultin this direction was obtained in [By[T3]: A formuli&e
(7.93) holds iR, s, (A/ 1) is replaced by the spectral parameter independent R-nfatrixact-
ing on the tensor product of two representations of the naydiduble. We believe that a proof
should be possible for example using the alternative reptason of the operatdr;, ,(\/u)
derived in [ByT1, Appendix D].

The validity of the conjecturé (7.93) would underline in winisense the renormalised version
of the universal R-matrix is a "more universal” R-matrix:cin not only be used for infinite-
dimensional representations of modular double type, @ défines the action of the R-matrices
on finite-dimensional representations in a way that autmaift ensures compatibility with
the structure of the enlarged category of representatiorrgéed from both finite-dimensional
representations and the infinite-dimensional representabf modular double type.

8 Imaginary roots and functional relations ||

In this section we shall begin by deriving a universal forntlteg Baxter equation for models
with Uq(é\[M) guantum group symmetry. A new feature in our derivationeésutbe of a fermionic
representation” containing all fundamental representationélgfgl 1) @s sub-representations.
Being reducible, it admits a collection of spectral pararset = (uo, - . ., par), One for each
fundamental representatiafn. contained inF. The Baxter equation will follow from the re-
ducibility of the tensor products” @ =+ at certain values of the spectral parameters.

The proof of the universal Baxter equation will be valid foetinfinite-dimensional representa-
tions of our interest if the renormalised R-matrices sptisé relationRy,sv, v, = Ry 15Rvs 14
andRy, v,ev; = Ry sRyp 1. We verify that this is the case for the representations ofirou
terest. This will again follow from a delicate interplay tveen the contributions associated to
real and imaginary roots in the product formula.

8.1 Universal Baxter equation

We are now going to prove the following universal form of thexBer equation:

M
2k—M

(=P T® (g7 ¢) Q* (~wq 7 () = 0, (8.1)

k=0
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wherew is an M-th root of unityw™ = 1. This equation reduces tb (7]71) faf = 2. The
"universal” Baxter operatoQ™ (1)) is defined as

Qt(\) = try, {(QZ ® 1) [(7?; ® 7rq) L@*}ren} ) (8.2)

The representatior,” corresponding to the auxiliary spaé¢ is given in [6.8). The trace
is twisted by the/-th power of theZ,, automorphisnt2 given in (4.7). The choice of the
representation in the quantum space, denoted, byill only be restricted by the condition that
the trace should exist. The (higher) transfer matrieés\) are similarly defined as traces

TR =ty {(@1) [(«P @r)2] ). (8.3)

over certain finite-dimensional irreducible represeptati/, that we descibe in the following.
It will be very useful for us to observe that the representai%rgk) relevant for the formulation
of the Baxter equatiorl_(8.1) appear as irreducible comptsniena reducible representation
constructed from fermionic creation- and annihiliatiorecgdorsc;, c;, i = 1,..., M which
satisfy

{Ci,éj} = 5ij7 {Ci,Cj} = 0, {éi,éj} =0. (84)
Let F denote the fermionic Fock space. The representatjois defined via

5 (e;) = A ¢, T (fi) = A1y, w5 (ki) = ¢ (8.5)

wheren; := ¢;c;. Notice that this is a representation of the M;I(;T[M). It is easy to see that
the total fermion number operater:= Zf‘il n; is in the center of the representatiofi. The
eigenspaceg), ~ c(¥) of n associated to the eigenvalbiare irreducible. Each) corresponds
to thek-th fundamental representation.

Remark7. The M-th root of unity w appearing explicitly in[(8]1) will turn out to play an
important role for the integrable model studied in this papé is not hard to see from the
definition above thatf'® (w(¢) = T®((), so that the Baxter equation posseg;a symmetry.
We will see in Sectiof_8]5 that this symmetry acts non-tliyian the solutionQ(¢) for the
choice of quantum space relevant for this paper.

Remark8. In Section 3.4 we introduced two Q-operat@3 ()), they correspond to the two
Q-operatorQ*(A), Q*()\). These are constructed using the representatignand 7,” given
in (8.13) and[(8.36) and the renormalized universal R-maffhe operatoQ* () satisfies the
Baxter equatior (8.37)
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8.1.1 Preliminaries

In order to show[(8]1), let us start with a simple observat@perators as the one appearing in
(8.1) can be represented as traces over the tensor pradack in the following way

M

D DR T () QF () = trren (@ 1) [(-1)" (W5 @ 7)) Z 7 o} - (8.6)

k=0
where the operators, on F ® H are for given(\, ..., A\y) € CM*1 defined as the operators
multiplying each vector iV, by )\, respectively. The tensor product of representations is
defined using the coproduct as

T = (TR o) AL (8.7)

The action ofQ2 € End(F ® H) in auxiliary space is understood. The identlty {8.6) foltow
from the decomposition of the fermionic representatigninto irreducible finite-dimensional
representations and from the following property of the arsal R-matrix:

[(mh- @ 1@ mg) Rig) o (L@ T @ 7g) Rgg) = [(Phr @7t @7) (A1) %] . (8.8)

ren

This relation is crucial for the derivation of the Baxter atjan. We will show in Section 8.4.1
that the renormalization of the universal R-matrix progbisethis paper preserves this property.

8.1.2 Block triangular structure of 74 @ 73"

The following observation will be the key to the derivatiditloe Baxter equatiori(8.1). There
exist special values of the spectral parameter

2k—M 2mi ¢

R ) & _
e = gy = —weq M C, e = fig == qM (, wp=¢e M", (8.9)

=~

such that the tensor product representafion (8.7) has tleg/fog triangular structure: For any
X € U,(b_) there exist orthogonal projectofé‘]), Hg) and an operataf,ey () such that

Y (rfe @ 1y ) A I = 0, (8.10a)
1 (rfe @ 1) AG) I = Foew (x) I, (8.10b)
11 (rfe @ 1) A I = Foew (x) 115 . (8.10¢)

The projectorsﬂ(f) andHéé) determine af{ dependent) decomposition
FOQH ~V, oV, =C*®V, (8.11)
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where in order to write the second equality we udéd ~ V, ~ V. We will show that
Trew(X) 2 (§9) ® mnew(x) @and(—1)" =~ (§ %) ® (—=1)" with respect to the decomposition
C? ® V. The relation[(8.10) can thus be rewritten in block matricnfas

n (i An e N (=1 Tnew(x) *
(_1) (W}' Qm, )A(X> - ( 0 _(_1)n’ Wnew(X)) : (812)

This is an operator acting di¥ ® V where each block acts dvi.

Proof of (8.10) To prove this fact it is enough to show that it holds for theeyatorsf;, ;.
To do so, it is convenient to rewrite the representatiorin terms of new variableg; that are
defined such that

A _ q ™ A
—q ! u; v, = = y; 1yl-+1, Wj\r(kz) = u; uZJrl (8.13)

It is not hard to see thdt (8.113) will hold provided that

Wi(fz‘) =

1
logy;, = 1 Z Xij log (u;lv?ujl) , (8.14)
whereX;; was defined in(4.25). The variablgssatisfy the following exchange relations

. o1
Yi¥i = 4" Y, u;y; = ¢y, (8.15)

whereY;; = 0,; —1+ %(z’ — J)modz- One of the advantages of introducipg is that they will
allow us to simplify the study of tensor products involving by use of the following formulas

(1om)) A(f) = A™My) - ¢'m (f@ A—_l 2@“) Sy Aly),  (8.16)
(1@m) A(g™) = A (y) - g @ u; - Aly), (8.17)

wheree = &g, f; = ¢2 @070 f; andA(y) = eXitt @Slos Vi,
Proof of (8.18) It is straightforward to check that
) (el Aly) = fig P ey, (8.18)

where
(1—¢€). (8.19)

<

It is furthermore easy to verify that(y)~! (1 ©y;) A(y) = ¢~ Zk=14Y% @ y,. Noting that
2 .
}/i,j - )/i-i-l,j = _M 9 if j # Z,Z + 1 ) (820)
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one finds that

ANy) L@yiyY) Aly) = ¢ a9 g Etan D gyty, (8.21)
The identity [8.16) follows easily by combining (8118) af@i1). O

For the fermionic Fock space representation! (8.5), ugihg' = (¢—q ')n; +¢ ', the identity
(8.18) can be rewritten in the following way

(e @ m)A(fi) =

. i [ O . (8.22)
=A(y) g™ ( Civa(Ci — gaCit1) — -1 ® yit1y; - Aly),

whereg, := —¢ " p;A,. The triangular structur€(810) will follow easily frofd.Z8). This
is best seen by performing a discrete Fourier transformgatbe affine Dynkin diagram as

follows
M _ M

1 2mip ) 1 _ 2mip
c(p) = NiDi e e c(p) = NI Z e ey, (8.23)
=1

This transformation preserves the anti-commutationicaiat(8.4). We are going to show that
(8.10) holds with projectors

I = A7 y) N Aly), I == A" (y) N(O) Aly), (8.24)

whereN(p) = ¢(p)c(p) andN(p) = c(p)e(p). Indeed, using(8.22) anf (8124), the relation
(8.10) fory = f; is rewritten as

N(0) [ej41(c; —weej)] N(£) = 0, (8.25a)
N(0) [e541(c; —wrc;a)] N(6) = My, N(0), (8.25b)
N(0) [e;01(c; — wresin)] N(£) = My, N(0) (8.25¢)

wherew, = e~ r* andM, ; is the same in the last two lines. Notice that the term progpaat
to the identity in the first tensor factor df (8]122) has aledeen simplified. The interested
reader can find the specialization of the formulae aboveda@ése\/ = 2 in AppendixD.

In order to prove[(8.25) let us rewrite the relevant combarmaentering [(8.22) in terms of
momentum space oscillators as

M-1
1 i . i
Cjr1(Cj — gnCjr1) = 7 > e PG (=5 P — g )e(k)e(p) . (8.26)

p,k=0

The projectorN(¢), N(¢) act in a simple way on Fourier transformed fermionic ostilia

N(6) e(k)c(p) N(£) = de, (1 — ) €(k)e(p), (8.27a)
N(0) e(k)e(p) N(¢) = (1 —dep) (1= k) e(k)e(p) N(0), (8.27b)
(ﬁ) é(k)c(p) N(g) = [(1 — 5@71,) (1 — (Sgk —|— (Sg k(Sg p] C ]€ C ) . (827C)
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Applying these relations t@ (8.26) with = wy, relation [8.25) follows witiM, ; given as

]_ 27 - 27
M,,; = i enr RO (=377 — wy)e(k)e(p) . (8.28)

p, kL
Notice that the oscillator of "momentund”does not appear in this expression. We have thereby
completed the proof of the triangular structure (8.10). O

It is worth to emphasize that while fdr (8.10a) to hold it ioagh to havey, = w,, the relations
(8.10B), [B-10c) further require thatq~ 37 is independent of, see[8.22). The values (8.9)
follows from these requirements. From the explicit form loé projectors the decomposition
(8.11) is easy to interpret: up to the similarity transfakify) one has

V12f1®%, V22f2®%, (829)

where F; and F, corresponds to the subspaces of the Fock sgawediere the/-th mode os-
cillators is respectively absent or present. They are lglésomorphic and their total number
operatom differs by one unit.

It is clear that the Baxter equatidn (B.1) will immediatedyiéw from our preliminary observa-
tion (8.6) combined with the triangular structure (8.12)isTis so as the operators appearing in
the diagonal elements of the matrix in_(8.12) coincide ups@a, from which the vanishing of
traces ovelF ® H follows.

Remark9. The form of projectors[(8.24), the similarity transforfify) and the introduction
of the fermionic oscillators iM{8.23) is motivated by thady of (7© @ %)% ~. Indeed, the
triangular structure ofr™ ® 77)A for special values of the spectral parameter is related to
values of the spectral parameter for which the operatore 77 )%~ has a non-trivial kernel.
Remark10. A form of the Baxter equation similar t@_(8.1) was derived [Hid1] for M =

3 using different techniques. In the language of this paperntodel considered in [Hi01]
corresponds to the quantum space tghe® ... @ 7, ) AW,

Remarkl1l. One may notice that for any € U, (b~) there exist¥(a) such that

(7 @ 7Y Ala) = A(y) {e(0) ® 1, U (a)} AT (y), (8.30)

where{a,b} := ab+ ba. The explicit form of¥(¢) and ¥(f;) is easily obtained from the
discussion above, the existenceldiz) follows.

8.1.3 Tensor products and Drinfeld’s currents

It is instructive to spell out explicitly what happens to iheaginary root vectors when taking
the tensor produdtr’s® @ =}")A as in [8.7). We will use these observations in Sedtion Bat.1 t
show that[(8.8) holds for the choice of quantum space studitids paper.
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The imaginary root vectors are encoded in the generatimgietsl + F/(z),i=1,..., M —1
defined in[(5.B). Their image undey and~, is given by

1 _ Rz Z*l q2(ni7ni+1)

T (14 Fl(2)) =

, (8.31a)

1— Ki z~1
A ! _ M _—1
T (1 -+ E (Z)) =1+ 5@',M71 Az . (831b)
The first expression is derived in Appendix C|2.3, the sederetjuivalent to[(6.10). These
are rational expressions in An important feature of the imaginary root currents is timat
many cases their (generalized) eigenvalues behave natipkly under tensor product. We
will return to this observation in Sectign 8.4.2 where wd @afio present some new interesting

counter examples. For now, let us see explicitly how thiskeon the case relevant for the
Baxter equation.

The form of the imaginary root currents for the tensor pradéithese representation is encoded
in the following relation

A(y) [(ﬂé‘“@ﬁi“) A1+ FZ,(Z))] Aly) =871 [7#“(1 + F/(2)) ® 7T “(1+ F/(z ))] S (8.32)
where
S=(1—gecycu) (1 - gacacs) (1 — guCica)  gn=—Asiy'q 7 . (833

Notice thatS is invertible for any value of,,. The equality[(8.32) can be verified by lengthy
calculations using the iterative construction of root eesgiven in Section 5.2.1. It also follows
from Theorem 8.1 of [KhT94].

It is manifest from[(8.32) and (8.81) that the tensor produgt2 7, )A(1+ F/(z)) is a rational
expression irx. If we rewrite [8.31h) foi = M — 1 as follows

1 +( ,u ) 7" 2(ﬂM 1—nar) -1

e (L+ Fy_q(2) = : 8.34
F ( w1 )) +(—q ) ¢ 2! ( )

it is then clear that for
DM = (=g )", (8.35)

the zero ofr (1+ F},_,(z)) cancels with the pole of =(1+ F},_,(2)). This mechanism signals
the reducibility of the tensor product. Indeed, the cowdif8.35) follows from[(8.9).

8.1.4 The representationt, and the Baxter equation

There is a second representation that can be used in aysi@ce to construct Baxter Q-

operators:
A A
Uip1 Vi = 1
q— —q

T(fi) = G Y (8.36)
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Following similar steps as the one given abovesrfor we can show that

M
ST DRT® () QT (wa ™ ¢) = 0, (8.37)

k=0

whereT®*) are the same as in(8.1). Fbf = 2, 7+ = 7+ and one can show that the two Baxter
equations[(8]1) and (8.86) are indeed equivalent by natitiatT® (\) = T?M)()\) = 1 and
—w squares to one whendoes.

We collect some of the relevant formulae used in the deowati

L)AL = AN y) ¢ (f ;

p—— q”“) ®Yir1y; - AY), (8.38)

wheref; = ¢—3@+é+1-1) £, From the equality above the analog[of (8.22) follows

n—1

n o =An I n1 f _ In g e —
(T @F)A(f;) = AHY) g ™ <(Cz'+1 — O Ci)C; + m) ® Vi1 ¥, L-AY), (8.39)

whereg, := ¢ u; ' \,. The tensor product representation exhibit triangularcstre forg, =
wy. Together with the condition that, q“T?l is independent ai this implies that\, = w; qMA?Q"C
M—n

andu, = ¢ 7 (.

Let us finally quote the formulae for the Drinfeld currentievant for this case. We have

(1 +Fl(2) = 146, A 27t (8.40a)
1 + MJM qfn q2(n17n2) Zfl

1 / _
71-]-'<1 + Fl(z)) - 1 +,u]\/1 q—n Z—l

N (8.40b)

The poles in the tensor produtts © 72")A cancels under the condition thék,)" =
g " (ua)M. In the special casg/ = 2 the representations, and7, are manifestly the same
and the currenf(8.34) coincides with (8.40b).

8.2 Renormalization of the imaginary root contribution to the universal
R-matrix

We had previously observed that the imaginary root contiobg play a key role for the validity
of the identity [8.8) underlying the derivation of the Baxéguation[(8.11) presented in Section
B.1. As a preparation for the verification f (8.8) we shaWnatroduce a prescription for
renormalising the imaginary root contribution to the umszg R-matrix
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8.2.1 Renormalization prescription for the imaginary root contributions

In order to formulate our prescription it is necessary tdlspé the structure of the imaginary
root currents first. Asinthe caselqij(gT[Q) imaginary root currents form a commutative algebra.
We will restrict our attention to representations in whilkh turrents are represented by rational
functions of the form

ot (14 271Ny, (14 27N

7 (1+ F(2)) = 4 -
z=1 (1 + 271 DZ,@') [I,2(1+271Dy,)

(8.41)

It will be shown in Sectiof 8.213 below that this conditiond®for a large class of represen-
tation including the ones we are interested in. Moreoves phoperty is preserved by taking
tensor products.

Next notice that the coefficients,, ;; given in (5.18) that enter the imaginary root contributions
to the universal R-matrix(5.15), can be rewritten using

(—1)™ ) [M — max(i, j)]gm [Min(i, j)]gn = mMZ mki;=2s+1) A (8) (g 42)

27.] )

wherek;; := M — |i — j| — 1, andy,?) = S22 ™) s~ 5 1. Inorder to derive this

relation one rewriteg], = >0 ¢" 2t

With this observations in mind it is clear that, before renalization, the contribution of imag-
inary roots for given representations takes the form of defiproduct] [ e, (w,), where
g,(w) is defined in[(5.34). Our renormalization prescriptionssisis in replacing . (w) with
Evrz (w) defined in[(7Z.7). For convenience we report the definitior her

dt w™ !
o dt _ 8.43
Enrpz(w) 1= exp ( /RH.O At sinh(Mb2t) sinh(t)) e

The prescription above can be formulated more explicitifodews

(7" @ 77) R 5] o =

ren
Jﬁl ZL’J 1 ij(DL ® Nz_f ) m 1 Hz/ 1 u( i ® DZ_/,j) (8.44)
ni+ ZJ 1 Z](Nz_l ® NZ’ ) Hz/ 1 z]( ® DZ’,])

i,j=1

)

where the image of the imaginary root currents uneeris given in [8.41) and

(s)
Yis

Gij(n H(SW —1)M T (=g ) ) (8.45)

using the notatiop, (k) := =21,
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8.2.2 Examples of renormalized imaginary root contributions

In this section we calculate the currents and formulate ¢lselting prescriptior (8.44) for the
renormalization of imaginary root contributions for theslzarepresentations of our interest. Let
us start recalling the form of imaginary root currents fagfpndamental representations

™ (L+ Fl(2) = 1+ 8 a2t (8.46a)
T (1+ Fl(2) =1+ &y XMt (8.46b)
™ L+ EN(2) = 1+ 6 AN M2, (8.46c¢)

Ty (1L+Ej(2) = 14+ &ip XMzt (8.464)

These equations are collected fram (8.31), (8.40), (6.88d)(6.18). Let us define
T = (70T ) Bl e ot e {£ 4}, (8.47)

compare to[(6.36). Following the prescription givenin &.4ne obtains

P (C) = H Eo (B ) (8.48a)
1

Enmpe ((=1)M-1 M)

Notice that forM = 2, these two expressions coincide and are equalio (7.6).

P =p"() = (8.48b)

The next example is the renormalization(ef” @ 7~)%_;. In this case, the prescription (8144)
for the currents(8.31), and(8.46c) gives

gMbQ (—qM_Q“ gﬁ/[) n—M

ren Enppz (—gM g2 q=2Mmar) om T ey (849)
This equality results after a cancellation of terms[in (B.4%he simplification does not rely
on any special property of the functiéh;;2 (w) and uses the fact that eashtakes the values
{0, 1}. At this point one can use the prope&ty;;- (¢ x) = (1 + 2)Eppe2 (¢~ M) to rewrite

[(mh, @) 225]

F o) a1 —o- M o= & (M gM)
|:(7T,un ® 7Tl/ ) N5] ren f(g*) (1 - 97 nM) ) ]-‘(g—) = 5Mb2 ( qM gM) (850)
A similar analysis gives
o B _ o _ g 5 _qM—QngM
[(ﬂ-lfx ® 7TV) %N(S] ren }‘(97) (1 - gj—w nl) ’ 9}‘(97) = ]\gjubg (—qM gM) ) (8 51)
where ]
g_ = qn;}u 2 n:=M-—n, n=1-—mn;. (8.52)

More examples of renormalization of imaginary root conttibns are presented in the follow-
ing section and Appendix B.2.1.
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Lax operators for T(\). Using the resultd (8.50) (8.51) we can write down the exipéixt
pression obtained from the renormalized universal R-mé&dri the Lax operators entering the
tranfer matriced (813) with quantum spakce (8.95).

(7 ©7,) )y = 05(0) M) |TT (1= 9- ¢ N@) | A 0)AW), (853)

(7 07,) )y = 050 ) AY) [T (1= 0 ¢ N@) | A @) AW). (8.54)

The variablesy; andy; entering the expressions above are introduced in (6.923) (equiv-
alently in (8.18),[(8.36)) and the fermionic number operai¥(p) = ¢(p)c(p) andN(p) =
c(p)c(p) are defined in terms of the fermionic oscillatdrs (8.23) imomentum space” conju-
gated to the Dynkin diagram circle. The main steps of theaten are left to Appendik EL2.
The Lax operatord (6.26), (6.1) can be recovered from thegeessions upon acting on the
subspace of the fermionic Fock space where the total nungezatom has eigenvalué.

8.2.3 Rationality of the imaginary root currents

It remains to show that the currents are indeed representedtional functions of the form
(8.41) in the representations of our interest. To this airneed to generalise the proof of the
rationality of the currents described in Section 7.2 fordhse qu(gTIQ) to Z/{q(gT[M). This turns
out to be somewhat more involved. We will outline the proololae leaving some technical
details to appendices.

It will be useful to consider the so-called universal Lax mat
L) = (rh @ )%, (8.55)

wherer! is the fundamental representationl@f(;[M) defined in[(6.R2). It follows from the
universal Yang-Baxter equation (4123) that(\) satisfies the quadratic relatioris (3.16). The
product formula for the universal R-matrices yields a tgalar decomposition of the form

M
ZL(\) = (1 + ) i) El-j> (Z a;(\) E) (1 + ) L) Em) , (8.56)
i>j i=1 i<j

whereE;; are the matrix units, as before. It can be shown, see App&ithx details, that for
any matrix.Z(\) that satisfies the relatiors (3]16) the following relatibnid

p—1

Ap(‘f7 )\)

T — qdef (N} _
Ay W = g de(LP(\¥)), AN =1, (857

ap(A) =
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wherep, = =21 and thep x p matrices#”/(\) are defined as

(LWOTF)). = AT (2(\)

[

i i=1,2,....p. (8.58)

ij
The quantum determinant g-det’()\)) in (8.57) is defined by an expression of the form

g-det(Z()\)) = (8.59)
= Z co(q) go(l),l(q_%pl)\) 30(2),2(97_%”)\) ZU(M),M(C]_%WA),

ocEeG)

The summation in (8.59) is extended over all permutatio$ )/ elements. An explicit for-
mula for the coefficients, (¢) in (8.59) can be found in(Al7). Note thgt,,(\), A,(u)] = 0.

We are interested in the contributions of the imaginary igenerators to the universal Lax
matrix contained in generating functiohg \) defined via

(rh @ 1) Z2s = > k(N Eqi. (8.60)

The explicit form ofk;(\) can be obtained using the definitigfi_;, see([(5.15) with(5.18), and
the explicit formula fomg(f%) given in Appendix C.2J3 . One can verify by direct comparison
thatk;(\) satisfy the following relations

=1+ B((—¢)'A™),  JJklg 7)) =1, (8.61)

=1

wherel + E!(z) is defined in[(5.9) ang; = =21 are the components of the Weyl vector.
Combining this observation with (8.57) and

M
(Mel)g’ =) Eawqi ™. (8.62)
i=1

we obtain
Az’Jrl (A)Azfl ()‘>

Al TN AN
whereA;(\) are defined in(8.57). Notice that this combination remairehanged if we rescale
the matrix.Z(\) by an overall function of\. Formula [(8.6B) allows us to complete the proof
of rationality of the currents for the representations aéiast along the lines of Sectién [7.2.
It suffices to note that the generating functiofig)\) get represented, up to anandependent
factor proportional to the identity, by polynomialsinWe have checked this fact explicitly for
the basic representations of our interest, and it will gargito hold for any tensor product of
these representations.

1+ E((=1)A™M) = geiTE (8.63)
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Remark12. In Section 4.1l we presented a realization of the quantumeaffigebrd/, (g) in
terms of3r generators. This presentation is due to Drinfel’d and Jifjixd, [J]. There is
an other realization known as Drinfel’d second realizaflbr87]. This realization involves
certain currents which, as explainedin [KhT2], are dinectinnected to the root vectors defined
in Section(5.21. The isomorphism between the realizatioBrinfel'd and Jimbo and the
Drinfel’d second realization has been proveriin [Bel].

In the casgy = sl there is yet an other presentation of the quantum affine edgeliowing
the Leningrad school, see [FaRT, ReSe]. The isomorphismdeagt this realization and the
Drinfel'd second realization was establshed in [DF]. We mate that the universal Lax matrix
introduced above contains (half) of the generatorsi,g%A[M) in the presentation of [FaRT,
ReSe]. The proof above therefore combines elements ofrak tiealisations.

8.3 Co-product of imaginary root generators

In Sectior 7.B we had found the useful identlty (7.30) exg@regthe mixing between real and
imaginary roots under co-product in the Can/Qfg[Q). It allowed us to analyse possible
consistency conditions on the renormalisation of the imagy root contributions that might
arise from this mixing. We shall now describe the generatiseof the identity [7.30) to the

case ouq(sT[M). As a useful generating function we shall again consider

M) @1:= (1o, ) (Z), (8.64)

The explicit expression of#Z_;(v) follows from the definitions[(8.68)[(5.15) and the form of
the imaginary root vectors given in_(6.52c):

B > (_1)m+1 mel\/f M -1)
M _5(v) = exp Z - PEIT T, foos , (8.65)
m=1
with
> M—1 _
FO = (@™ = ™) N i £, (8.66)
i=1

andu,, ;; given in (5.18). We are going to show that the co-producvf; () takes the form

A (M) = (M) 21) e (v™E) (1@ A1) , (8.67)

~

generalising[(7.30) to the cases with > 2. We are using the notatior) = ¢ — ¢! and

M—-1

== Tq2 Z qEM_Ej f(s*(ﬁj*ej\/j) ® fﬁojpfﬁM ) (868)

J=1
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is the combination of real root generators appearing in thproduct of.# ;(v). In the def-
inition of = the terms in the second tensor facff are constructed using the opposite root
ordering compared to the one defined in Appendix C.1.2 whiaksed for the construction of
f+. Their explicit expression can be found in_(E.50).

In the following we will report the main ideas that enter thegidation of [8.67) leaving most of
the technical details to Appendix E.3. The first observaitiahe following

1em) (%) = Ay) (£ ()@1) A\y),  Aly) = e &®evi (8 .69)

whereg; are the Cartan generators (4.6) and the variablage introduced ir(8.13). Notice that
we have already used the operatgreind the similarity transform (y) to simplify the study
of tensor products involving, in Section [[8.1.2). The explicit expression.af —(v) follows
from the product formula of the universal R-matiix (5.12§l@he form of(1 @ 77)(f, ® e,)
for v a real root given in(E]7). It takes the form

N _ _ ML (V) = eg(XT) . eq(XG_1)
A =) ) ), T @70

where
Xf =Ty Dilfv.iu X;. = Tq ﬁii ["'[fv(bfvl]w"ufvifl] ) .]Z.Z = qié (Eteir1—1) fi7 (871)

with 7 = yq% andr, = ¢ — ¢~ *. The fact that only finitely many real roots contribute to the
product formulal(5.12) is due to the special property-ofspelled out in Section 6.52. Notice
that the nested commutator in the definitionXof is

[' o [fVO? fl]? sy .fv"i—l] - qi ZL_:I(Ekil)qi5 (EHFEM*U f(s—(ei—E]u) . (872)

The commutation relations and coproduct formulae for tleeneints[(8.71) are collected in
AppendiXE.3.

The second ingredient used in derivation[of (8.67) are wertientities satisfied by,(X). In
addition to the relationg (7.B7), (7]40) used in Seclionii.the caselM = 2, the following
generalized pentagon equation holds

VU -UV
Sq(V)Sq(U) = €q(U) Eq (ﬁ) Sq(V) s (873)
if
¢ VEU+(q+q¢gHY VUV +qUV? =0, (8.74)
UV 4+ (q+q¢HYUVU +q ' VU? = 0. (8.75)
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Notice that the identity((7.40) is a special case[of (B.78)fd/ = ¢~2V U. The two basic
identities [7.37) and (8.73) are known to be satisfied Jty).

The last important observation used in the derivation is tha

[, SV =0,  for j=1,...,M—2, (8.76)

md
wheref"~" are defined in(8.86). This follow from the definitidn (8.66)kthe commutation
reIationE &.17).
Remarkl3. For future use let us note that the relations obtained ftaiBjy replacing,(z)
by &,(z) andU, V by positive self-adjoint operators are also satisfied, sge[p12] for a
derivation. The identities obtained by using our renorsaion prescription to define the eval-
uation of A (,///gé(u)) in representations of modular double type will therefosodle valid.
Remarkl4. The identity [8.61) is understood as an equality of formaV@oseries in the spec-
tral parameter. One may notice that the the first non-trieiah in this expansion reads

Ay — fMD @1 — 1@ fMTY = (M), 2. (8.77)

Within this interpretation, the relatioh (8167) provides@npact expression for the coproduct
of imaginary root vectors. This should be compared with km@xpressions in the literature
from [Dam2] and[[KhT94]. In[[KhT94] an explicit twist that rpa the coproduct defined in this
paper, to the so-called Drinfeld coproduct, with respeatiich imaginary roots are primitive
elements, is constructed. This form is not of direct use wiwh tensor factors correspond to
representations @i, (b ) that cannot be extended to representations of thé{y(JJaT[M).
Remarkl5. The quantity.#_; defined in[(8.68) appeared also in [FrH] (Section 7.2), wlitere
is calledT;—p;_1(2).

8.4 Checks of compatibility

In the previous section we had verified in the casla{q(ﬁ?@) that the proposed renormalisation
prescription preserves all the basic properties of thearsal R-matrices. This was found to be
a consequence of the fact that the functf) used to define the renormalisation of the real
root contributions satisfies the same functional relat{@31), (7.40), and(8.73) as are satisfied
by the functiore,(z) appearing in the product formula. In the following we willtbie how to
generalise this discussion to the casélgfsA[M).

It will furthermore be explained how the consequences ofdbatity (8.67) are consistent with
the renormalisation prescription

1 qds _
- M % Gy (v DL)

i IS G (v NG

8]t is actually obtained by applying the Cartan anti-invaint(4.13) to [5.117)

(8.78)

L (//75(’/))
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This will again be a consequence of the functional equatsatisfied by the special function
&q(2).

8.4.1 The case ofr ® 7, and the Baxter equation

In the following we verify [8.6]7) when the first two tensor facs are chosen asr ® 7. We
leave the proof of the identity involving real root contrilmns, generalizing the one presented
in Sectior_7.4.13, to Appendix E.4. This is a prototypicalrepte of tensor products involving
finite dimensional representations and modular double tgpeesentations. This verification,
supplemented with a similar analysis whereis replaced byt~ that goes along the same lines,
allows to complete the proof of the Baxter equation.

Explicit verification of 77 @ 7 applied to (8.67) The verification of[(8.67) in this case
is greatly simplified by the analysis of imaginary root cateegiven in Sectioh 8.1.3. More
specifically, the relatior (8.82) implies that the left haidie of [8.67) can be rewritten using

Ay) [(m, @ 7 ) A (A 5() ] Aly) ™ =S [ (#5(v)) @ wf, (M5(v))] S . (8.79)

Hn

whereS is given in [8.38). Concerning the right hand side, the feifg holds:

wr (AM5(W)) = 05(9-) (1—g" nu) | (8.80)

M-—1
A [(Freri ) ElAy) ' =Zel, Z=-1AM (Z gk ek> Cur (8.81)
k=1

where % (z) is defined in[(8.50) and the operator (.#Z_;) is central. The equality (8.81)
follows from (E.105) and the definitio (8.68).

It follows from these observations and the prescriptlod4y for &,(v~"Z' ® 1) that (8.67)
reduces to

St (1 —gM nM) S = (1 —gM nM) (1 + Tq_l v M E’) . (8.82)
This simple equality of operators acting on the fermionickspace holds as a consequence of

M—-1
SlenS =cu+ Y g F e (8.83)
k=1
In order to reducd (8.82) t6 (8.83), one can use the expbeihfof =’ and the following rela-
tions:ny, ¢y = 0, S commutes withey, andv= (X)) (g_)~M = (g,)™. The identity [8.8B)
is easy to show. O
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8.4.2 Checks off8.67)evaluated on prefundamental representations

This section contains an explicit verification of the idgnthat follows from [8.617) after ap-
plyingrt @ 77 or 7™ ® «* to it. The verification requires a careful study of the the gmaf
imaginary root currents under the tensor product repragens(7+ @ 77)A or (7 @ 7)A.
These are representationsigf(b—). We will see that in this case the (generalized) eigenval-
ues of imaginary root currents do not behave multiplicdivender tensor product, see (8.84)
and [8.89) below. This should be compared to a rather geresalt, which is a corollary of
Theorem 8.1 of [KhT94], which states the following:

Let 7w be a representation of,(g) andw™ a representation @f,(b~), then the generalized
eigenvalues ofmray @ w)A (1 + F/(2)) and(w @ )A (1 + F/(2)) are equal to the eigen-
values ofr™ (1 4+ F/(z)) x 7 (1 + F/(z)). Notice that this result, once supplemented by the
information that any finite dimensional representatiori/pfb—) can be extended to a finite
dimensional representation &f(g), implies the result of Proposition 1 in [FrR].

Explicit verification of 7+ @ = applied to (8.67) As in the example in Sectidn 8.4.1, in
order to verify [8.67), we need to evaluate two basic quiasti{1) the coproduct of imaginary
root currents, (2) the elemeBtdefined in[(8.6B). Let us proceed in order. On the one hand the
currents of imaginary root vectors for the tensor produdtnaf prefundamental representations
7T take a particularly simple form

1 i A M -2, M1
(my, ©@mL) AL+ F(z)) = 414127 i=M—2 (8.84)
(1AM 2 1) (1420 271) P M1

(¢t rz D¢ Trz 1)

wherer, = ¢ — ¢~! and the operataris given below. The resul(8.84) follows from a straight-
forward but lengthy calculation. The form (8184) is not tammising if we recall that, in the
special case ci:ﬁlq(;[M), the imaginary root currents can be computed using the flarf@63)
with . replaced by L *. It follows from (8.84) that the linear combination of imagry roots
defined in[(8.66) satisfies the relation

(@) [AG ) = F e —1e f0] = Ml (8.85)

m m

The result[(8.84) with the definitiof (8168) implies that
(my, @ T, ) A (A5(v))

~

(my, @ 7)) (A 5(v) @ M 4(v))

In writing the left hand side of this expression we have usedfact that the denominator is
represented by central elements. The ideniity (8.86) is thetained by first computing (8.85)

— & (V) (8.86)
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and then applying the renormalization prescription to tkgression[(8.65). It is instructive to
rederive [8.86) from the general formula(8.78) with — (7 ® 7}, )A. From this point of
view (8.86) holds as a consequence of the following identity

Gar v (="w) Gur H Ene (M) = Ea(w), (8.87)

gM—Q,M—1(w)

with w = r. The first equality in[(8.87) follows from the definition 6f;(x) given in (8.45) and
does not use any property &f;,2 (z). The second equality in(8.B7) is a simple consequence of
the definition [8.413).

In order to complete the verification that(8.67) holds whemapply the representatiart @7,
we need to evaluate the imagemfiefined in[(8.68). A simple calculation shows that

M—-1

(ﬂ'}\l ®7T)\2) = = q - q Z UMU .. -fl fo) X (fol .. .fj+1 f]) =T, (888)

With 77 (f5_(¢,—e,y) @nda™(f2 ) given in [6.9) and below (E.104) respecively. Above we
used the by now standard notatiori. @ 73, )(f; ® f;) = f; @ f;. The operator is the same as
the one appearing in the currerts (8.84). This concludehbelkcin this case.

Explicit verification of 7, ® 7, applied to (8.67) The steps are the same as in the previous
paragraph with important structural differences. The imaxy root currents take the form

(42" X)) (1+ 27! Xiy)

(3, @ m3,) AL+ Fi(2)) = (1—qg 'z X)(1—q¢gttz1X;)’

(8.89)

where
X, = AN (b)) (bigr - tar) ti = (quyv; @v;'u)? . (8.90)

Notice thatt; are commuting operators and satisfy..t,;, = 1. The linear combination of
imaginary roots defined if (8.66) satisfies the relation

m

(71 @) [A(f”?‘”) FMD g1 1 fM- ”} = [M]gn (MATT2) . (8.91)

To obtain this expression it is useful to observe that mogheterms in the suni_(8.66) cancel
with each other due to the form {8]89) and the iderjtity 1] x + [ — 1]+ — [i],+(¢" +¢7*) = 0.
By a similar mechanism as in_(8]86), this implies that

(7}, @ M)A (A 5(v))
(7}, @ ™) (A 5(v) @ A (V)

=& (vMMNTE)) . (8.92)
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It is instructive to rederive[ (8.92) from the general form@.78) withw™ — (7] @ 7} )A.
From this point of view[(8.92) holds as a consequence of

M-1

H Ginvi—1(—q'wi) Giv—1(—q ™ w;) . sz\il gMbQ(QQPS(M)WMfl) . Ep(wnr-1)

Gint—1(wiv1) Ginr—1(wig1) P (wo)pt (war) T (wo)pt (war)
(8.93)

with w; = v~ X; andp2(w) defined in[(8.4B). The first equality ih (8193) does not usegs an
property of the special functiofy;;,2(w). The second equality is the same adlin (B.87). For the
right hand side of (8.67) one finds that

(ﬁ; ® W;Z) Z=(q—q¢HMuyurtfo® (faer ... foaf)) = AN 1e3 (8.94)

where= is defined in[(8.68) The form of *(fs_(c,—c,,)) = J;1 f, follows from the definition
(8:36) and the iterative construction of root vectors, teosid tensor factor™ (/2" ., ) is given
below (E.104). This concludes the verification[of (8.67)his tcase.

i=1

8.5 Modular duality and quantum Wronskian relations

By dividing the Q-operators by the scalar factors comingfitbhe imaginary roots one obtains
Q-operators that are manifestly self-dual unbler b-!. We are now going to show that this
has important consequences, leading to functional relséonong the Q-operators of quantum
Wronskian type. In the case = 2 it has been observed in [Z00] that such functional relations
can be solved to express the eigenvalues of Q-operatonsns td solutions to certain nonlinear
difference equations of thermodynamic Bethe ansatz (TBpé t

8.5.1 Rewriting the Baxter equations

When the quantum space is taken as
mo(a) = (7, ®@Tn, @ @7, @75, ) AP (@) a € Uy(bT). (8.95)
the transfer matrices entering the Baxter equatfion (8.4 pearewritten as follows
Q7(¢) = 2(Qa™(¢),  TYQ) =6"(OuC), k=1...M-1, (8.9
where

N N
2 =[] r kYo (CRY, W) =[] b (Cra) b (R . (8.97)

a=1

The functionp®<2(¢) are given in[(8.48) and the form 6f(¢) follows from (8.50), [(8.511) to be

_ SMbQ((_l)M_l q—k CM)
gMbQ((_l)M—l q+k CM) ’
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The remaining transfer matrices involved[in {8.1) are singven by T (¢) = TM)(¢) = 1.
The rewriting above is convenient because the transfericeat,(¢) andq™ (¢) have simpler
analytic properties as functions of the spectral parancetepared to their ancestors.

Inserting [(8.95) in the Baxter equatidn (8.1) and dividiyg2d—q ¢) we obtain

- \E— . % + W ZkJ;IJVI _

kl( D" (O (g ¢)q (—wqg 7 () (8.99)

= AQ) g (—wq 'O+ (=) q* (—wqt'(),

where

= 1 N M\ M-1 M

s@= 28 T [(-5) 1T (1= (+2)")] . @aoo
o E(_‘J%JQM ¢) (k) (& ~ T \M—1 M—ZSg

Q)= Z g © (@0 =11 I (1+E0" g2 ) (8101

Notice that compared t6 (8.1) we reabsorbedhe¢h root of unityw in the definition of{. In
order to derive[(8.100) it is useful to notice that

o 71>\ m M—2s \ M s
£+—EZ+1 Ai = 1:[1 (L+¢" M) = g-de(L™(V)), (8.102a)
p+;(q_1 A WM -1A\MY o _
ot (gt ) I+ (D" AY) = g-defL" (V). (8.102b)

8.5.2 Elementary properties of functional difference equaons

Consider the M-th order functional difference equationdfor)

ST DR M) = o, (8.103)
k=0

where f¥1(\) means to shift the argument ¢f)\) in certain units, e.gf*/(\) := f(p*)). We
setto(A) = t)(A) = 1. This is the generic situation as they can be reintroducefgaling
the equation(8.103) withy(\) and by redefining(\). Let us recall two elementary facts about
functional difference relations:

1. Letgi(N), ..., qu(N) be M solutions of [(8.103) then the quantum Wronskian
— [a—1]
W) = det (qf7I) (8.104)

is a quasiconstant, i.&/ (\) = WH(\).
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2. Letgi(N), ..., qu—1(N\) be M — 1 solutions of [([8.103) then

a0 = det  (d0) (8.105)
satisfies the conjugate Baxter equation
M
(—DF BN @) =0, BMK) =0, (8.106)
k=0

The statements can strengthened considerable provided dealing with Q-operators that are
self-dual undeb — b 1.

8.5.3 Modular duality

It is manifest from its explicit expression that (¢) is invariant upon replacingwith b=*. This
means thay™ () satisfies adual Baxter equation obtained by replacibgvith 6=1. In order
to make the behaviour undér— b= more visible let us introduce := 2“—7; log ¢ along with
S = 2L log k, ands, := 2L log &,. Multiplication byg 7 ande~""r in the¢-plane translates
into shifts by—ib** and—ib~! in theu-plane.

We have already observed in the remark belowl (8.5) that oneob&ain M solutions to the
Baxter equation[(8]1) by shifting the argument of the Q-afmras followsQ* (w, () with
we = e*™/M The dual Baxter equation guarantees that these are linggpéndent. It will be
argued that the following relations hold

det qt(u—i(kbt' +0b7")) = Flu— May), (8.107)

1<kl<M

where the operatdf(u) is determined up to a-independent operator as

N M—1
F(u) = Fy H {eb (u—5,—cp) H ey(u— 5,4+ (2s— M — 1)) | - (8.108)

We had noted above that the Baxter equation implies quanstancy off (u), more precisely
we find in our case the functional equation

Flu— Mc,) = A(—qe%“)F(u +ib— Mcy) . (8.109)

The dual Baxter equation obtained by replacing: b= in the coefficients implies thaf (u)
must satisfy a very similar difference equation witheplaced by)~!. These equations posses
the manifestly self-dual solution (8.7108). Taken togettese two difference equations de-
termineF(u) up to a constant operatéy. This operator can be determined by studying the
asymptotics of* (¢) for { — oo, as was done fak/ = 2 in [ByT1]. We intend to return to this
guestion elsewhere.
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Remarkl6. It was observed in Remaltk 6 above that the tensor pradlct - - -® 7 contains
for generic values of \;} an irreducible representations of evaluation type, asesgad more
precisely in equatiori (6.50). Formal reasoning indicates tor certain values of\,} there
may exist invariant subspaces in the duairﬁjlf X ij. In particular for\, = qﬁ—?)\ there
seems to exist a sub-representation isomorphic to thaltregpresentation. Similar observations
have been used in the case of highest weight represent&tidiesive functional relations sim-
ilar to (8.107) using resolutions of the identity repres¢ion of Bernstein-Gel'fand-Gel'fand
(BGG)-type [BaLZ3| BaHK| BaFLMS, DM]. It would be interesg to know if a similar ap-
proach can be used to derive functional equations in theafaspresentations that do not have
extremal weight vectors as considered in our paper. A mateBatic analysis of the tensor
products(ry, ® --- @ 73, )Al) and their connections with the functional relations inwgy
Q-operators may be an interesting project for the future.

Appendices

A Quantum minors and triangular decomposition of .Z(x)

The quantum determininant. In this appendix we introduce the quantum determinant, see
[KuSk81], [Ma], [Tar92]. It follows from the relatior (3.)&hat

My LGN o L(q VP N) = Lo(g 3P N) L Lg PN, L, (AD)
where
0 = (Rm-1m) (Rm—2mBr_gm_1) --- (Rim -+ Riy) € End((CY)*™) ,  (A.2)

and —1\M M

MRM()\@, N),  Ae=q TP, (A.3)
q9—4q

with R(X, p) given in (317) antp, = 2=2*. The indicess, b in R,, and_%,(\) entering

(A1) denotes the-th (b-th) copy of CM in (CM)®™. One can show thdl, ,, projects into

the totally antisymmetric part a8 in (C*)®™. The casen = M plays a distinguished role.

On the one hand

Ra,b =

I, «Zl(q_%pl)‘) e gM(q_%pM)‘)Hl_Q...M = g-det(Z(\)) I, a, (A.4)
where g-det.Z()\)) acts as a scalar ifC")** and takes the form
a-detl L (V) = > colq) Loa(a 7 N) Lo@ya(a 72N) . Loanyaa(g MN),

o €GB

(A.5)
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wherep,, = =21 The coefficients, (¢) are determined by the relation

I (60(1) ® €p2) .- ® eJ(M)) =, (@) Iy (a1 ®ey...@en), (A.6)

wheree; denote the canonical basis 6/, see [M6]. With a little inspection one finds that
where

3 3 B 9 M
co(@) = (=) "7, flo) = i ;(k‘ — 1k —o(k)). (A.7)

One the other hand one can show via the fusion procedurétolet(.2(\)) , £ (1)] = 0.

Examples The definition above produce
g-defL=(\)) = 1+ (=DM 1AM (A.8)

whereL~()) is defined in[(6.22). Notice that only two permutation cdmites to the expression
for the quantum determinant given above= id ando = w := (2,3,..., M, 1). The coeffi-
cient in the quantum determinant are computed recalling/thg = M —1 andf(w) = 1— M.

An other relevant example is

7T;:1 (Az()\)) = Up...U; (]_ - 52"]\/[_1 )\M(—]_)M) s (Ag)
77';:1 (Az()\>> = Uy...U; ﬁ(l — )\MqZ;QS) (A].O)

whereA;(\) are defined in[(8.57). Notice that faf = 2 the two expressions above coincide.

Definition. Itis convenient to define

(g[p}(k%))” = A7 D (20 ij=12,....p. (A.11)
ij

ij

This definition is motivated by the fact that?!(\) satisfies the same relations. & \) with M/
replaced by. The expression for the quantum determinant0f!(\) is understood ag (Al5)
with M replaced byk.

The quantum comatrix. Let us define the quantum comatri®(\) of Z(\) by

LT N LN = g-det(L(N)) . (A.12)

The matrix entries ofZ()\) can be expressed in terms of quantum minors#f\). In the
following we will need only the last diagonal elements givBn

(Z(N) 1y = Grdet( L1 (FT)) (A.13)
where.ZP1()\) is defined in[(8.58)
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Triangular decomposition of Z(z). Consider the triangular decomposition of the type
(8.586) of a matrixX with non-commutative entrieX;;. One has

a, = (((X[m)l)pp) C(XP) =Xy, ig=1.p. (A.14)

The derivation of this fact is elementary, see €.g./[loh]iferapplication in a similar context.
If X is replaced byZ()), one finds a simple expression for (Al.14) as follows from @).1
combined with[[A.IB). The relation (857) follows.

B On the evaluation representation

In this appendix we review the definition of evaluation reygretation. Along the way we will
obtain explicit formulae for the image of imaginary rooti@mnts under the evaluation homomor-
phism. We could not find such expressions in the literaturees€ formulae allow to compute
the image of the universal R-matrix under ev, filling an apparent gap in the literature.

B.1 Jimbo evaluation homomorphism

In [J85] Jimbo introduced an homomorphism, usually calledluation homomorphismand
denoted by ev, froan(gTIM) to U,(gl,,). This homomorphism can be given in terms of the
generatorde;, fi, q¢} of Z/{q(gTIM) andi,(gl,,) respectively, see e.d. [CP]. For the purposes of
this section it is more convenient to exploit this homomasphusing

1
Pev(N)

It can be shown that, upon choosing the scalar fagetgn) appropriately (see below), one has

Ley(A) = (m ® ev) %~ . (B.1)

M
Lev(A) = Z Ei ® (quHi + M qﬁyf%i) + Z AG=Dm Ei; ®&. (B.2)

i=1 i#j
It follows from the universal Yang-Baxter equatidn (4.2Bat this Lax operator satisfies the
quadratic relationd (3.16). These relations, togetheh wie specific dependence bf,(\)
on the spectral parametev, provides a definition ot/,(gl,,;) in terms of the generators
{q™}ic1 . arv {€ij}izs. The fact that the definitioi{B.1) gives rise to a Lax operatbthe
form (B.2) follows from the interwining property (4.9a) dfd universal R-matrix. It is shown
in AppendiXB.2 that this is the case upon defining

1 L 1
evie:) = T Gnd L) = q—q

=g Ei (B.3)
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ev (qgi_ﬁi = q . (B.4)

A direct calculation of[(B.l1) using the infinite product fauka for the universal R-matrix has
been done fouq(gT[Q) in [KhST94], see also Section 7.1.3, alugglg) in [Ra13]. As opposed
to the derivation based oh_(419a), the direct calculatiothefproduct formula determines the
scalar factope,(\) as well. In the following section we determine the image @&fithaginary
root vectors under the evaluation homomorphism and, as @bypt, the factope,()).

Remarkl7. One may consider fixing the spectral parameter dependersmd Lax operator
to be that of a degrek polynomial in\=! for £ < M. The casé = M corresponds td (Bl2).
An identification of the type (BI1) would then provide an hanaphisms forni/, (b..) to some
algebra whose commutation relations are dictated by fH&)3The casé = 1 will produce

L=(\) defined in[(6.2R).
Remarkl8. The R-matrix in[(3.1l7) is related tb (B.2) as follows

L

Tt (Leu(V) = ¢ (g7 = ¢" M) R(A 1), (B.5)

p=1

upon setting;” = —g77 in the left hand side. Moreover, the expression (7.17) ddawith
(B.2) in the special cas&/ = 2, upon identifying;” = —q.

B.2 Intertwining properties for Ley(\)

It follows from the definition[(B.1) thale,()) satisfies the intertwining property
Le(A) (7 @ €V) Afa) = (7} @ eV) AP(a) Ley()),  Va € Uy(sly). (B.6)

In the following we will study the implications of (Bl.6) whek..,()\) is taken to be of the form

M
Lev(A) = Z Ei ® (qu + M qjvi) + Z A= Ei; ®&j. (B.7)
i=1 i#j
One can argue that the solution bf (B.6) is unique up to mlidagon by an element of the
form 1 ® p(\) wherep(\) belongs to the center &f,(gl,,). In order for this to be the case it
is important that[(BJ6) holds for the fLmq(;[M) and not just a Borel half. The fact that we can
find a solution of the interwining property of the fort (B. A provides a proof of (Bl.1).

Let us proceed with the analysis. Using the fofm {B.7) anéhtak = ¢, the intertwining
property implies

¢Mevg?) = evq7) ¢V, qMrev(q”) = ev(q”) ¢, (B.8)

Eevq™) = ¢k ev(g™) & (B.9)



Next, consider the intertwining property far= f;. The \*! term of these equations imme-
diately implies that
ev(¢®) = ¢" ¢, (B.10)

for some constant. Using this identification and (B.9), the" terms of the same equations
give
Eivi = (q—q7") g ev(fi) - (B.11)
Let us turn to the case = ¢; in (B.6). A similar analysis applied to the terms of order and
A\ shows that
@) =q g Eiiv1 = (' — Wad B.12
ev(q™) = q"q ", it = (@ —q)eve) g, (B.12)

for some constant. The equationd (B.10),_(B.lL1], (Bl12) give the identifioatbetween the
generators to{q(gA[M) andif, (gl,,). The constants andz correspond to the freedom of overall
rescaling ofLe, and introducing the spectral parameter for ev. To obfail)(#e demand that
the leading term in thé expansion is

M
(Wf ® ev)qit = Z Ei, ® qu ) (B.13)
i=1

whereg! is given in [Z.21) #f(¢%) = ¢5+ andg~* = ev(¢%~3r¢). Notice that[[, ¢ = 1.

This requirement implies that": = ¢* and¢V: = ¢>~*:. The remaining equation contained

in (B.6) prescribe how to express; in terms of these generators. The equivalence between
different looking expressions fat; is equivalent to the Serre relations.

B.2.1 Image of imaginary root vectors and Gelfand-Tsetlin &gebra

The image of the imaginary root vectors under the evaludt@nomorphism can be obtained
by applying the procedure explained in Secfion 5.2.1. As pinocedure is quite involved we
will use a shortcut based on the observations presentec:tioS8g.2.8. The expression (8]63)
for the imaginary root current$ + E!(z) in terms of quantum minors is independent of a
rescaling ofZ’(\) by an arbitrary function of\. For this reason the quantum minorslQf(\)
givenin (B.2) can be directly used to obtain(év+ E!(z)). Itis not hard to see that the relevant
guantum minors take the form
p
G,(\) = g-detLf (A7) = ¢== % T (1 +AM g2et7) (B.14)
s=1
with 37 v, = —=>"_ H,. These quantum minors commute,(\), G,(x)] = 0 and
generate a maximally commutative subalgebra/gfl,,) known as Gelfand-Tsetlin algebra,
see e.g.[[NaTa]. This algebra can be descibed as follows.Zl(ef, (gl,,)) be the center of
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.....

of U, (gly,) generated by (U, (gly)), Z (Uy(gly)), ..., Z (Uy(gly,)) is evidently commutative.
This is what is called Gelfand-Tsetlin algebra. Frém (B.44l (8.68) we conclude that
Hi’:i (1 4+t q2up+1,s+v) Hls:} (1 4 1 q2up,175+7)

/ —
ev(l + Ep((—l)pz)) I, 4 gtz 2wt TP, (L + gt 2L @veet)

(B.15)

or equivalently

L0 | SN
ev(eff) = ¢ IS (et - e = Yt @)
s=1
Using this formula for the imaginary root vectors we can obthe scalar factor ir (Bl1) to be
(—z)™ 15y g (g2 1)
) = = B.17
pel) o (Z m [M]gm 31;[1 gqu (q*M=T1 7) ’ ( )

m=1

wherez := ¢* \M ande, () is defined in[(5.34).

C Evaluation of the Universal R-matrix

C.1 Cartan-Weyl basis foruq(sA[M)
C.1.1 Choice of convex order foﬂ/lq(;[M)

Recall that the simple roots ef,; arec;; = ¢; —¢;,y Withi=1,..., M — 1 and
A+(5[M>:{€Z—€],1§Z<j§M} (Cl)

The highest root) = a; + - + ay_1 = ¢ — €y and the remaining simple root eAfM is
apg =0 —0. The setA . (sA[M) is given in [5.2),[(5.8). We endow this set with a convex (nal)m
order, sed (5]4) for the definition, as follows

1&1 < 1&2 <= I&M—l < Z=od '<I/B\3M—1 = ]@M—Q <= ]@1, (C.2)
compare tol(5J5). The ordered sets of real positive r&@md]@i are defined as

j&i = Az =< AZ—F(S =< AZ—FQ(S < ..., AZ = € €41 R € —€qyg X RE—€), (C3)

=N

g o= =< Bz+25 =< ]Bz+5 =< BZ‘, Bz = 5—(62 — Ei-l—l) << 5_(61' — E]w) s (C4)
A similar root ordering appears in relation to the univeRahatrix for the Yangian in [Stu].
We remark that the ordering above can be obtained in the fkankeof [Ito], as an ordering of
"M-raw type“, using the action of the extended affine WeylgwoAccording to theorem 2.3 in
[Tol2] any convex order can be obtained form any other by amsitfon of so called elementary
inversions.
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C.1.2 Explicit construction of root vectors foruq(sA[M)
Root vectorse, wherey € A (sly).
eai+a¢+1 = [eaiuea¢+1]q—1 )

Cojtaititaite [eaiveai+1+ai+2} —1

q
and so on.

Root vectorse;_, wherey € A, (sly;). There arel — 1 steps in the consrtuction. One has

the following M — 1 definitions (first step)

€5—0 ‘= €qq
65—9-}—@]%,1 = |:€O¢1V[,17 65—9] q—l )
€5—0+an_otan—1 T |:60¢JVI—27 66_94'@1%—1} 1
€5—0+an_stan—otany—_1 T |:60¢JVI—37 65_94'@1%—24‘04]&171} 1
eéfal = [ea27€57a17a2 q—l )

One has the following/ — 2 definitions

65-}—@1—9 = [eala 65—9](1*1 3
E5+ar1—0+an_1 — [eaM,la €5+a1—6} g1
eéfag = [ea37 6570127013 q—l )

One has the following/ — 3 definitions

6(54-041-{-042—9 = [eaga 654-041—9](171 )
E5+tar+tas—0+an_1 — [eaM,p €5+ai+as —9] g1
e(sfag = [ea47€57a37a4]q—1 )

One has the following final definition ( stég — 1)
Cs—apr—1 = |:60¢JVI—2766_041%—1_04]&172](1*1 .
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C.2 Fermionic Fock space representation

C.2.1 Fermionic Fock space representation: definition

T Uy(sly) — Fu (C.22)
mr(er) = piCicin T (fi) = peinic (ki) = ¢~ (C.23)
.FM . {Ci,éj} = 5@']’ {Ci,Cj} =0 {éi,éj} =0 n; := C;C; (C24)

where the indices j, k, . .. are subject to cyclic identificatiori:+ M ~ i. This representation
is not irreducible asy is central. The fundamental representation correspondgte- 1. In
this case

Wu(ei) = M_l Ei,i+1, Wu(fi) = K Ei+1,ia ﬂ-u(hi) = Ei,i - Ei—l—l,i—l—la (C.25)

and

C.2.2 Fermionic Fock space representation: evaluation ofaot vectors

Using the explicit definitions in Section 5.2.1 and Apperidif.2 one obtains

1.
Tr(ee—e,) = W7 Cic; ¢(Zizinam) (C.27)
Tr(es—eey) = (—q) @i Meyc; g (Zii ) =(Sidime) | (C.28)

2.
mr(ef)) = Kig™ " i — iy, (C.29)
Tr(eains) = (ki) mr(ea,), (C.30)

Tr(es-antrs) = (5:)° Tr(ep-an) | (C.31)
1r(efy) = (k)" me(el) . (C.32)
)

ki = M (—q)t q(Zhlea ) ~(Sicim) (C.33)

3. In the case of interest we do not need these generators.

4. It follows that
1 _ Hi Z—l q2(\’1i+1—\’1i)

mr(1+ El(2)) = p— , (C.34)
which upon Taylor expansion gives
i 1 N1 —1;
mr(eh) = 7 (k)" ¢ k(g —n)],. (C.35)
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Remark. From the formulas above one can easly obtain root vectothéfundamental rep-
resentation (and further include st&p

T (Clemeyyirs) = 7 (—qt:)* i, (C.36)
T (e(o—(er—e,)4hs) = tip? " (—q t;)" Eji, (C.37)
(_1)k‘+1

2 k] (Ei,i — q% Ei—i—l,i—l—l) , (C.38)

wherei < j andt; = u= (—q)" 1.

C.2.3 Fermionic Cartan-Weyl basis: second Borel half

1.
77 (ferey) = W78 e g (Zhmina ), (C.39)
T (fsoterey) = (=g 1) M0 g c; ¢ (SR )+ (Sidime) (C.40)
2.
Tr(fi)) = Fi g™ i —nilg, (C.41)
T (forsrs) = (F0)" wr(fa), (C.42)
Tr(fomansks) = (Fi)" 7r(fs—an) (C.43)
wr(fi)) = (R)* wr(f). (C.44)
Ro = M (=g g (B m)+H(Eikm) (C.45)

3. In the case of interest we do not need these generators.

4. Finally, notice that we just need to replagcith ¢~ andz with 2~! so that

1 _ *i —1 2(ni7n¢+1)
rr(1+ Fl(z) = — = 4 , (C.46)

1-— Kq 21

which upon Taylor expansion gives

(Ra)* g ) [T — ), - (C.47)

| =

mr(fy) =
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C.3 Minimal representations ofi{(gl,,)

Let us define the following representationZgfin™)

w(e;) = q_fi_ AL Wik (tZ,+t7'Z7Y) (C.48)

where

with [], Z, = [[, W; = 1 ands; andt are complex numbers. The goal of this appendix is to
compute the image of the Cartan-Weyl generators undéve will see that image of infinitely
many real roots is non zero. Using the explicit iterativetoaction presented in Section 5.2.1
and Appendix C.1]2, one obtains

1.
7j—1
7 (ee;) = q_fi_ p [H qtska] W, Wit (tZ,+t71Z7) (C.50)
k=i+1
5. i—1 M
W(@g_(ei_gj)) = q—lj—q [Htlskzkll [ H qtska] WjW;1 (thth*le*l) ,
k=1 k=j+1

(C.51)
wherel <i < j < M.

2. Once we have constructede;_,, ), we may notice that for each nodeve have an evalu-
ation type representation btt](sAIQ). To make this observation explicit we write

i Pi o o
m(ey)) = = — (2lgki + (2" +q72™)) (C.52)
where
i—1 M
k; = ZZ-HZ;l, ¢ = thZiHZi, Di = q Stot [H t_lzkll [ H qtZ, (C.53)
k=1 k=i+2

It is easy to verify thap; and¢**i commute withr(e,,,), 7(es_q,) for fixed i. With this
observation in mind we evaluate the remaining root vectssgeaated to the nodedo be

_ k k
W(eaﬂrk(s) = (q 1pi kl) 7T<€0!i)7 7T<€(5—Oéi)+k5) = (qulpi kz) 7T<€5*0!i)7 (C54)

_ Ak
m(eny) = % (k)" =2 ([k + g ki + [Klg (** + ¢ *") ki + [k — 1)) ,  (C.55)

(1 + Z—1q+2xi pl) (1 + Z—lq—Qani pl)

1+ Ei(z) = '
7T( + Z(Z)) (1 — 1 q+1 kzpz) (1 — 2+l qul ksz)

(C.56)
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Comparison with the general form of the currents (B.153). The imaginary root currents
(C.58) can be rewritten as

(1 —+ 271 Xi—l) (]_ —+ 2’71 Xi—l—l)
(1—z21qMX)(1—21¢g71X;)

m(1+ Ei(2)) = (C.57)

The comparison witH (B.15) follows from the formula

ud (H (1 +tq2”’“5+7)> = g,(t) (1 - (=1)PtX,),, 7w=moev, (C.58)

s=1

where
p—1

gt = [T Q=AM g77) (C.59)

s=1
Notice that the contribution from,(\) cancel out (fop > 1) in the combinatior((B.15) leaving
a rational function with two zeroes and two poles\ii. We conclude that for these represen-
tations ofif,(gl,,), the image of the Gelfand-Tsetlin algebra coincides withithage of the
Cartan subalgebra.

D Triangular decomposition of (7, @ 7} ) A for M = 2

It can be useful to present the main formulae of SecfionZBih.a more explicit form for the
case ofM = 2. The relation[(8.22) in this case reads

Ao 0 0 0
-2 -1
F oo+ 1 [ a2y 0 ¢\ 0 0
® A = A A D.1
(77'“ 7T)m) (fl) (y) (q _ q1> 0 q_% Tq [ q+1 )\1 0 (y) ( )
0 0 0 Ao
Ao 0 0 0

hi@ﬂnAm»:Awrl<Wy Aly)  (D2)

+2 0 ¢\ q_%Tqu 0
q—qt

0 0 g¢g'x 0
0 0 0 A

wherey, = y,! =yandr, =q¢—q ' If u = q% A1 one finds a block triangular structEre
given by
PL A | (75,0 7,) AU A P = 0 (0.3)

1
qz A

9 The terminology refers to the following fact: For an operafy we say that it has a block triangular structure
if PLOP_ =0andP_O P, # 0 for orthogonal projectorP ..
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Ao 0 0 0

% +20; 0 :I:l)\ 0 0
P. A (]—' +)A y A 71P — qzy q 1 P
| (0 n) s am e = (LXT) | 0 T D0 e
0 0 0 A2
(D.4)
whereo; = —1,0, = +1 and
1 0 0 0
0 1/2 1/2 0 1 0 1 0
P, = /2 1/ = ® S, P_..=1-P,. (D.5)
0 1/2 1/2 0 0 0 0 1
0 0 0 0

Where® refers to the Kronecker product and the masiis easily worked out. These relations
reduce to[(8.10) withI; = A(y)'P,A(y) andIl, = A(y)"'P_A(y). Using the similarity
transformS we rewrite [D.4) as

1

-1 ([ F + , ] -1 (azy™ Lo Ao 0
) P+ A(Y) i (ﬂ-q%)q ® 7T>\n> A(fz)_ A(Y) P+S - <(] _ q—1> <0 0 ® 0 q+1 A\

[ ] 2yt (0 0 g A\ 0
-Ip A 7 YA AW-IP s = (LY
STPAW)| (77, @) AU [AW) TP <q_q_1 caelt)

(D.7)
The statement expressed by (8.12) is actually stronger@@&}) and [D.6),[(D.)7) as it states
that the2 x 2 matrix in the right hand side df (B.6) arld (ID.7) as to be theesarp to a similarity
transform. This implies, up to exchange)afwith \,, that\y = ¢~ t\; and\y = g™ \,.

A similar analysis can be done in the casg:6f —gz \;.

E Formof (1®7n7)%Z~ and (1® 7~ )%~ and action of the
coproduct on the first tensor factor

E.1 Image of the universal R-matrix underl @ 7~ and 1 ® 7~

For the following analysis it is convenient to rewrite

-1
(1)

™ (ei) = e ﬁwﬂ}’;l’ (ki) = u;tuggy (E.1)

The exchange relations of these variables are giveninl(8.15
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1 ® 7~ on combinations of root vectors entering the universal R-maix. Let vy €
Af(;[M), the relations(8.18)[(8.21), together with (6.52a), iynpl

o1 <q*% (EitEir1—1) e 1) Y= €i—€it1
B B 1 ) i—1 2 EidE
A [em) (@ e)] Aly) = =3 7 (g ZGDg @D £ 91) = i-(qmen)
0 otherwise
(E.2)

e—M
' —qgandiy ™t = ¢ vl

where7, = ¢~ The contribution of the imaginary root to the
universal R-matrix is left unchanged by the actiom\@f). We conclude that the image of the
reduced universal R-matrix can be written as

[(1 ® ﬂ;) 5?_} = Aly) (//_(1/) ® 1) A (y). (E.3)

ren

The explicit expression fof (8.70) follows from the fromZlEand the product formula(5.12),
upon recalling that, (7, ) = [exp,(z)] .

Intertwining relation for .#~. The property[(4.18) of the universal R-matrix implies

_ —2€;11 — _ — —2€;
), &) = vt g T

Y

& = ¢ 2@t e (E4)

The formof (1® 77) %~ Introducey; via

,_ It
T (ei) =€, = m yi+1 yl 1 . (ES)

The variableg; satisfy the same exchange relationg,asith ¢ replaced by, ~t. We can rewrite

(6.11) and[(6.12) as

1\
GRYI—

Yi¥: 77'_(66—(61—9)) =

T (Cej—e;) =
(€e-s;) gt —q ' —q

In analogy with[(E.R) we obtain

Ai—d (qu;iﬂ % gs @D § 1) N
1) .. e 1.
AT [C@r ) @e)] AY) = —§ VM (DS @D £ o) g =5-(a-¢)
q
0 otherwise
(E.7)
wherer, = ¢ ' —¢ and\ = A ¢7. The asymmetry betweerr and7~ is a consequence of the
fact that we choose the same root ordering.
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In analogy with[[E-4)
[(1ea )% ] = AY) (4~ @1)A7'(y), (E.8)
satisfy the interwining relation

2€; 77— 7 — 2€i41
7 @q 4 M 5 +3(E@+Es1—1)

[%_7 él] = 1 ) € = (¢ €i, (Eg)
qa - —4q

whereaq = —q~1y_gu(1-9),

E.2 Some steps for the evaluation ofm” ® 7~) %~ and (77 @ 77) %~
Computation of (77 @ 7~) Z~. Applying 7r to (E.2) and usind(C.39), (C.40) one obtains

A(y) (# Cit1 Ci) Ay) v=¢—¢€4

(r@m) (F@e) = $AW) (= & en) Ay, v =0—(a—ar) (EL0)

q—q
0 otherwise

wherey € AZS(sA[M) and andy_ is defined in[(8.50). Next, one obtains

(g™ M5 ¢*M) oo

(g q?M=m); g2M)

(m), @) s = 07 (1— 9 nar) | 07 = . (E.11)

This calculation is the same as in (8.50) before reguladmaf he last non-trivial identity used
in the derivation of[(8.53) is

M-1 M
(1—g_¢cycy)...(1—g_Cpy cM,12(1—g¥ nM)<1— Z g' ¢, cM) :H (1—g,e* H”N(p)) )
i=1 p=1

R
from %~ s ~

TV
from Z._s

(E.12)
In particular notice that the cyclicity property, i.e. thect that it commutes with the internal
shift operator, of this object is obscure in the left handesaahd totally manifest in the right
hand side.

Computation of (7" @ 77) 2~ . Applying to (E) and usind(C.39), (C.40) one obtains

A(y) (% ¢ Cz‘) ANy r=ea—g
(w7l @) (fy®e) = S AY) (% ¢ cj) AYy), y=6—(a—¢) (E13)

q

0 otherwise

125



whereg_ is given in [8.51).. The contribution of the imaginary rosts

~ (M M5 ¢*M) oo

(mh @m,) %5 =0 (1—g"w), OF = G v M)

compare to[(8.91) The last identity we use to prave (8.54) is

(E.14)

M M
\(1—|—Blc1) c (1+BM710M71>1(1_§¥ ﬁ1)<1—|—z g¥*]+161 Cj) :H (1—@,67 R}PN(]ﬁ) .

fron@_«; (. =2 v p=1
from‘%’}g
(E.15)
whereB; = Zj]‘iiﬂ g 'c;andn; =1 —n; =cc. As(1 —an,)(l —an;) = 1 — athisis the

inverse matrix of[(E.12).

E.2.1 Check of the Jimbo equation

Let us verify that[(E.1?) satisfies the relatiohs (E.4) viaeaplicit calculation. We can rewrite

(E4) as
[Wf («///7) y C Cz’+1} = —g- (ﬂz'+1 Uva («///7) —TF («///7) ﬂz‘) ) (E.16)

where we have usegd™?" =1 —n; ¢ '(q — ¢~ !) to simplify the right hand side and introduced
g_ asin [8.50). Itis easy to check that the relation (E.16) fisfed if

TF (%7) C, = (éi - gféiJrl) TF (%7) y (El?)
cinmr (M) = 75 (M) (Civ1 — g-Ci) . (E.18)

These equations are easy to solve upon Fourier transfammiatihe index and give the solu-
tion (E12).77 (. ~) satisfies the same equationsras(.# )" with g_ replaced byj._.

E.3 Derivation of (8.67)
E.3.1 From (A X ld) (e@) = %13%23 to A(%i)
Applying (1 ® 1 ® 7~) to (4.9b) and usind (El.3), one obtains

A (‘///7) = (ﬁle My 212) ((Joo Fio My 91}1 q;,l) , (E.19)

where
Ty = q—% i1 (Q@Ej)yij’ oo = ngé (a®&) (E.20)

This claim can be easily derived usifip® 7~ )¢~* = A(u) and

AAY) ™ Aily) = FR Asly), (E.21)
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Ao(y) " Aa(u) A (A(y) 'A() T = ¢TI (W) A ()T 0 (E.22)
Aa(y)Ar(y) T Ar () As(y)Ar(u) ™M Ag(y) = ¢T3 7 (E.23)
These relations are derived using (8.15).

E.3.2 Preliminaries

Commutation relations involving X;*, X~ defined in(8.71) The following relations hold

X7 X5 = PO 0) X X i,j=1,...,M—1. (E.24)
200541 X2XT §> 4

XoX = 4! 7 J , for 1<i4j<M-—1. (E.25)
XX i<jAM-—1

The casé = j corresponds to the iterative definitiat,, = 7' [X;", X5*], wherer, = ¢—¢~!
(compare to[(8.71)).

Proof: One may verify the relations above by direct calculatiorsiaductive arguments. In the
following we will show how these relations arise as a consege of [(5.10) and the definitions

(B.71), [8.72). This is a simple corollary ¢f(5110):

Let o, 5 € A.(g) with a < 3 be such that the decomposition+ 5 = >, ny v with
ng € Z~o andy, € A, (g) is unique. Then

fafo = % f5 fo. (E.26)

As an illustrative example let us show how this corollary liep (E.24) . The identity (E.25) is
shown similarly. Itis easy to see that= 6 — (¢; — eyr) @andf = 6 — (¢; — er) for ¢ > j satisfy
the conditions forl(E.26) to hold. We conclude that

f5*(6¢*61\/1) f5*(6j*61\/1) = q_l f5*(6j*61\/1) f5*(6¢*61\/1) ) 1>7. (E27)

The relation[(E.24) easily follows from this identity toget with the definitiond(8.71), (8.172)
and the relatiog” f,, = ¢~ ") £, ¢". O

Coproducts of X, X7 defined in (8.71) A simple calculation using the definition of the
coproduct shows that
A(XT) = X7 (1) + X7(2), (E.28)

where

e

(&) (E.29)

QO
S
I
<
g
<
[N

XF(1) =X ® a;, X3(2) =a; k'@ X3,
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The coproduct oK defined in[(8.711) is more complicated. Set
6 = AXT) = X7 (1) = X7(2). (E-30)
where
X7(1) = X7 @by, X7(2) = bg T @XT, by = it Do % g (E.31)

Notice thatb; commutes withf;_,_.,,). The explicit expression af; is given below.

—€M

Remark
91_21 (Xf ® 1) F1g = Xf(l) qoofu (1 ®X7) yl_Ql qo_ol = Xf(Q), (E-32)
91_21 (Xz> ®1) Fp = X?(l) GooF12 (1 ®Xi>) yl_Ql qo_ol = X?(Q)- (E.33)

More commutation relations. It is a simple exercise to show that the combinations defined

in (E229), [E.31) satisfy the following relations

XA (1) XF(2) = ¢ 20010 X2 (2) XZ(1) (E.34)
XF(1) X5 (2) = g?0ar-10u-1) X~ (2) X(1) (E.35)
X (1)X3(2) = ¢ X5(2) X7 (1) (E.36)
X7(1)X7(2) = ¢72%2 X2 (2) X (1) (E37)

The exhange relations involvingf (a), X (a) with a fixed are the same &ds(E]24) ahd (E.25).

Explicit form of §;. It follows from the definition[(E.30) that

~

b= 0 3 [ D) K@) X 2)]XE). (E.38)

T

wherer, = ¢ —q .

Proof. Upon applying the coproduct to the inductive definitidp , = 7, [X;", X7*] and using
(E.38), [E.3b) one easily obtains

Siv1 = g X7 (2) X7 (1) 47,71 [0, X7 (1) + X7(2)] .- (E.39)
Further observe that
[6;, X5 (1)] =0, k=id,i+1,....,.M —2. (E.40)
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This can be easily shown by induction usihg (E.39) and théaxge properties given in the
previous paragraph. Equatidn (E.39) thus reduces to

S = XF@)XT(1) + 7, 6, X7(2)] (E.41)

from which the explicit form ob; given above follows.

O
We notice that whil@; was originally defined for = 1, ..., M — 1, we extend the definition to
i = M using the explicit formuld{E.38).
Some commutation relations involvingy;. We collect the following relations
5 X7 (1) = ¢ X7 (1) 6, 6 X5 (2) = ¢ 2 X;(2) 6 k>1i. (E.42)
5 X5 (2) = XF(2)6; k=i4+1,....M—1. (E.43)
[6:, X2 X7 (1) = X7 (1) [6:, X5 (2)] (E.44)
[0:, X5(2)] (XF(2)X7 (1) = ¢* (XF(2)X7 (1)) [0, X7 (2)] (E.45)

The last identity follows from the Serre relatiohs (4.4)Knally
V = 0, U := X} (2), satisfy the (twisted) Serre relatios (8.74), (8.75). .4

The relation [(8.75), which is linear iy, can be shown easily using the exchange relations
collected above and the fact thef ,(2), X;*(2) satisfy the (twisted) Serre relatioris (8.75).
Showing [8.7%) requires a bit of work. It is not hard to seéngishe explicit expression faf,
given in (E.38), that the equality

g (Wi W+ Wy W) o+ ¢ fo (Wi Wy + Wy we) = (@+ ¢ (Wi fown +wy fown)

(E.47)
wheren # m < (andw, = [- - - [fu, fas1], . - -, fr_1] implies [8.75). The relations (E.47) can be
shown as follows. Letn > n and notice thaty, = [z, w,,] where[z, f;] = 0, (E.47) is satisfied
if the same equation holds far, — w,,. The relation[(E.47) forn = n is a consequence of
this elementary fact: Iff1,. .., fi, fix1- .., fur) Satisfy the Serre relations UQ(EIM), then for
any: € Z/MZ and choice of sigw, the elementsfi, ..., fi fix1 — q° fiz1 fi- -, fur) Satisfy
the Serre relations éf,(gl,, ,).

0; and the opposite root ordering. Let f;;p_q be root vectors constructed using the opposite
root ordering, explicitly

fggej:fifop _q_l P fi7 j:Z+277M7 (E48)

€it1—€j €it1—€j
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with f2* = f.. Itis easy to inductively show that

—€i+1

op i—j+1

feifej =9q 2 q%Zi;i(Ek‘f’gk-ﬂ_l) [ o [fl) .fi-l—l]v SRR ]Ej—l] ) 1 S 1< j S M. (E49)

In the special case gf= M it may be rewritten as

M-1 1) L (eden— P . .
FP o = = @D g Gt R f ] fal, ] fae] (E.50)

E.3.3 FromA(.Z~)to A(#)

On coproduct of .#Z~. The following identity holds
A ('//-:) = (91_21 ’//-:,1 <912) (qOO le «//;2 91—21 qo_ol) , (E51)

Proof. Recall the form of #~ from (8.70). It follows from [Z.3]7) and the exchange relatio

(E.34) that
A (X)) = & (AXT)) = (X7 (1)) 6(X7(2)). (E.52)

The identity [E.511) follows from this relation together WifE.32) and the exchange relations
(E.34).

On coproduct of .Z~. Letus defineZ as follows
A(AD) = B (400 Fr2 > T 4c) - (E.53)

More explicitely, using the form af#” given in [8.70) and (E.33)
1 1

B = |&EX_1(2)...6,(XT(2 (E.54)
[ CI< M 1( )) q( 1( ))} (g)q(A(XT)) (gaq(A(X]T/[—l))
In order to simplify this expression we will use the followitemma.
Lemma. This identity holds
A(6(X7)) = 6 (AXT)) = &(X7 (1)) &(6:) &4(X7(2)), (E.55)
whereA(X;) = X7 (1) + X7 (2) + ¢;, compare to(E.30).
Proof: (E.55) is derived using two simple observations
(i)
E(U+V+W) = &(U)&W) &), (E.56)
if
Uv = ¢2VU, UW = ¢ 2WU, VW = ¢™WV. (E.57)
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(i) The exchange relations (E]57) are satisfied by
U=X(1), V=X(2), W=3§. (E.58)

Point(i) is derived using(Z.37) twice. Poifit) uses the exchange relatiohs (E.36) dnd (E.42).
[

By applying this lemma td (E.54) and rearranging terms ugimgexchange relations (E|37)
and (E.42) we obtain

7= <<sz<xi><1>>) <<sz<152> ézoé(l))) "'(@(5141)&(@11(1))) - B9

.....

generators only. This fact, combined with the observaf®iig) and the explicit forn{{E.59),
makes it manifest that
1@ M) B = B M) . (E.60)

Using this relation and the explicit form o#, we rewrite [[E.1P) as

A(My) = (M 521) dB (10 M), (E.61)

~

where

1 1 N N ) )
7 ((%(Xfmm) E T ) (6(X5r1 (1) - &(XT (1)) (&(XT@)).-- - £,(X51(2)) -

(E.62)
To derive this expression we also used the fact thaind(.#Z_; © 1) commute.
Completing the derivation. In the following we will show that
ARB = Xy &,(00) %, (=1,...,M. (E.63)
where . .
Zy = ( ) E,(X (1) ... & (X7 (1)) (E.64)
=\ G Eeey) AR ) 4G )

Yy = (E,(X5(2) ... E,(X5a(2))) [(@@j@) @@q(Xi*(l))) <<fq<51Ml) &(XZil(l)zE) ]65)

andy¢; are given in[(E.38).

Proof. For ¢ = 1 the identity trivially follows from the explicit form of#, % given in (E.62),
(E.59) and the fact thaf, (6, = 0) = 1. For/ = M one hasZy, = %y, = 1 and the identity
(E.63) implies[(8.67). We will prové (E.63) by induction énFirst notice that

1

2o = Zon E(aX7(2)X7 (1)) (X7 (1)) E(XF(2)

(E.66)
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1 1
&q(0e) (X7 (1))
The first identity easily follows from the exchange reladi.36) and the pentagon relation
(7.40). The second identity follows from the exchange ietet (E.48) and(E.36). The crucial
observation is that as a consequencé of (E.46) one cah U8 {8 rewrite

W = &% (2))

ey (E.67)

1 ) P
X)) Sl G 2) = &(7, [0, X7 (2)]) - (E.68)

éaq((sé)
Finally (E.44) and[(E.45) witH(7.37) imply the result.

E.4 For mixed pentagon

The goal of this appendix it to show that (E.52), (E.55) an@8 are satisfied when we apply
™ @nt.

E.4.1 Preliminaries

The first step is to provide explicit expressions for the argats of the special functions enter-

ing, (E52), (E.5b) and(E.68) when we apply @ 7.

Action of 1 ® «* on X (1) and X(2). ConsiderX; (1) andX;(2) defined in [E.Z2B) and
(8.71). They satisfy the following relations

A) [A@af) XFM]AT(Y) = A g7 fromy, (E.69)
Ay) [(1 @) XF @) A y) = ¢ i) @ my, (E.70)

where
mi =g 2 g ATl (@) Ve e (E.71)

andf, = q4(#*%~1), compare to the definition beloi(8116). These relatiorofed from [E.18),
@21) and\(y) [(1© 7 ()] A~ (y) = ¢+ @i (7).
Applying 77" to the first tensor factor. From the identities above it follows that

Aly) [(7 @ 7)) XF (W] ATHY) = 7 p A~ g7 €ac @ my (E.72)
AY) [(7F @ 70) XA @] A y) = ¢ @myt (E.73)



Rewriting of ¢, defined in (E:38) One can rewrité, defined in[(E.3B).as

_ k2 .y <
6= a2 b fi ey @ AT i fina - fed] b, (ET4)

whereb, are defined in(E.31).
Derivation: It follows form the definitions[(E.29) an@ (8.171) t%t

— — H € ~ ~ ~
[ X @), XE @] X (@) = 2 b by g @ g T [ fi] L fe)
(E.76)
wherez = ¢ 7, v1. If follows from the definitions[(E.31)[(8.71) and the ohssion (8.72)
that

1

Xi (1) =q 27,0 " bg f5—(ch—er) @ bi (E.77)
Action of 1 ® 7 on &, X7 (1) and X7 (2).

/-1
Aly) [(T@ 7)) 8] A (y) = 7 <Z ARG g b b, fa<ekEM>> ®mg,

k=1
(E.78)
Aly) [Aem) X (W] A Y) = A g2 b7 fiqmeny @ M), (E.79)
A(y) [(1 ® ﬂ;\_) XZ(Z)] ANy) = b2 ¢ M @m] , (E.80)
where
m; =g g Nvlrf(b)y, vyt (E.81)
Derivation: The relation[(E.718) is obtained from (E]174) by applying tbidfving
“ “ « 1 M+1 =k _ —
w5 (o Fenl o fodl) = 73t (590) 7wl yeyi (E.82)
(b ) Yoy T (by) = a2 v,y (E.83)
_ _1 k _ _
AY) (fo-tep—ean @ D) ATHY) = 0247 fo—(—ean b @ Vi Yir - (E.84)
Aly) (1@ vy ) ATHy) = b2 b2 @ vy (E.85)
Aly) (T @7y (b)) A7 y) = by @7y (by). (E.86)
10 To derive this identity one may notice that
beby! = ¢ W g sk f g3 (@tE) = Has. (E.75)
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The relation [(E.79) follows from (E.77) with (E.B4) arid (B)8 The relation[(E.80) follows

from

— YeYur - (E.87)

Wj(ftsf(ez*eM)) = q—q

with (E:85) and[(E.86).

Applying 77 to the first tensor factor. We can applyr;; to the first tensor factor of (E.V8),

(EX79), [E.8D) and use the expressions collected in Appddd.3 to obtain
/-1
Ay) [(mf @ 7)) 6] AHy) = —70q "t (Z g 5k> cy ®my (E.88)
k=1
Ay) [(7 @af) X (W] A™y) = =7 ¢ " tegy " Crem @ mp (E.89)
Aly) [(mF @m) X7 (2] AN y) = te@mj, (E.90)
wheret, = ¢ i@Zim andg, = —q¢ 7 '\ To derive these relations recall that
ﬂl{(qié bk‘ f5*(€k*6M)) = _(_q%ﬂ)kékCM-

Action of 1 ® = on 7, '[d,, X;(2)]. The following holds

-1
Aly) [(Tem) 7 on XN A ) = 7 (Z AT b by fa—<ek—eM>> oM -

k=1
(E.91)

Derivation: The starting point isL(E.41) witi (E.V0), (E179) and (E.7®)follows from the
definitions (E.711) and(E.81) that;, , = ¢m; mj.

Applying wf to the first tensor factor.

/-1
Aly) [(7F @m) 7 06 XF @I AT Y) = —¢ ' Ty tea <Z 9" ck> cy ®@my,, . (E.92)
k=1

E.4.2 \Verifications of7* ® 7+ on (E.52) (E.55)and (E.68)

Verification of 7% ® =+ on (E52) In order to verify [E.5R) using the prescriptidn (7.44), let
us first observe that the image of the si{X;*) = X*(1) + X;*(2) can be rewritten as

Aly) [(7F @ 7)) AXH)] A Hy) = (@) (@™ @1) w (S® nt, (E.93)

wherew, := ¢~% ® m;. To obtain this expression we used the relatiéns (E.72) [BGdBY,
and the identity

S¢S = ¢V T Cpcy, S=1-q 'zcrce, (E.94)
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wherez = p\~'¢3. Form these relations and recalling ti#atr, x) = 1 + x whenx? = 0, it
follows that the identity[(E.52) reduces to

(S (29 1) 51,2 ((anHl ® 1) (,ug) (S X 1)_1:(1 + T wyp (ég_,_ng (039 1)) €b2 ((anHl X 1) (,Ug) .
(E.95)
The only non trivial term in this identity is the one linearinwhich can be rewritten as

Epe ((qz“”1 ® 1) wg) (Copicr®1) = (1 +q¢™! wg) (Cor1Cr ® 1) Epe (((]2““1 ® 1) u.)g) . (E.96)
Recalling that*"+1¢,,; = ¢?c,4; andc,,¢*+1 = ¢, We obtain
En (P we) = (1+q" wp) & (wy) - (E.97)
This is the basic property @ () defined in[(5.317).

Verification of 77 @ 7+ on (E-B8) The image of the three operators entering (E.55) is given
in (E.88), [E.89) and(E.90). Their sum4s(X;") = X7 (1) + X[ (2) + ¢;, compare to[(E.30).

Its image can be rewritten as
Aly) [(7F @m ) AXD A y) = (@) (te@m;) (S'®1) . (E.98)

This equality follows form
M-1
Sth_lztg (1—(]_17'(16(0]\/[) s S:1+ (Z gn_kék> Cyrr, (E99)
k=1

whereC, := Eizl g. % ¢;. Following the prescription given in(7.#4) and the relati@bove,
the identity (E.5b) reduces to
(8 (39 1) ng (tg (29 mj) (S X 1)_1 = (1 — qi1 ty Cg Cy ® m?) ng (tg (29 mj) . (E]_OO)

Notice that to simplify the right hand side we used the folluyv for x* = 0 we haves, (1, x) =
1 + x. The term proportional tg, * in (EZI00) is given by

e (te@my) (Cren @ 1) = (1+ ¢ 'te@m)) (cpey @ 1) Epe (L, @my) . (E.101)

To derive this relation we also used tleatwith s = ¢+ 1,..., M — 1 commute witht,. The
final observation is thaty c.cyr = ¢*tox Crey andcyen te = tox ey Wheret,, commutes
with ¢;cyy, so that[(E.101) reduces to

ng (q2 tg’k & m?) (ékCM & 1) = (1 + q+1t17k X mj) (ékCM X 1) ng (tg’k & m?) . (E102)
This relation follows the basic property 6§ (x), seel(5.37).
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Verification of 77 @ 7 on (E.68) Inserting [E.88),(E.73) and@(E.92) in(EI68) and using the

prescription[(7.44), we obtain, after simple manipulasion
(1@m))Ee(z) — Ep(z) (1@my) =Epe(20) qgze (1@ My ), (E.103)

wherez, = ¢*(+ 1731 g m;*. To derive this equation we also used ; = ¢m;m;. Upon
observing thatl ® m; )z, = ¢*z,(1 ® m; ) the relations[(E.103) reduces to the basic property
of &p2(x), seel(B.37).

E.4.3 Auxiliary for check of A(.#5).

The following relation holds
)\M—i

A(Y) [f(g,(Ei,EM) ® W;\_ (feoiEeM)} A_1<y> = q— q,l (q% bz f57(e¢*eM) ® 1) . (E104)

Derivation: The relations[{(E.50) and (EI82) imply that (/.,,) = Tgl(qﬁA)M*inyi‘l.
The relation [(E104) follows upon implementing the actidnAdy) as given in [(E.84) and
(E.85). O
Applying 77 to the first tensor factor, {E.1D4) reduces to

n—M

F + ( pop 1 ()M i
A(y) [ﬂ-,un (f5—(€i—EA1)) ® W (fEi—E]M)} A (y> = _m <(_q M Nn) qCiCy ® 1) .
(E.105)

E.5 The R-matrix in the fundamental representation from the universal
R-matrix

Using (C.36), a simple calculation shows that

) } — N B M T (i—7) B qfl _ q+1
(7Tm®ﬂ'y) H ‘%’Y —1+0’Z ; Eij®Eji7 o = ———

ver; j=i+1 1 - (SC/CU)M .

(E.106)
Recall that%" is given in [5.18) wirhs, = 1 and the ordered set, is defined in [CB).
The simple result in (E.106) follows from the fact that, foettundamental representation, the
root vectors associated to the getare nilpotent and commute among themselves. Moreover,
the simple dependence @nin (C.386) is responsible for turning infinite products oveinto
geometric series giving rise to the denominatos oMultiplying the factors[(E.106) according
to the order[(C.2) one finds

(i—9)

1>7 Y
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Similarly
NGO
(7?2 ® 7T£) Rrs=1+0 Z (;) Ei; ®Ej . (E.108)
1<J
The evaluation ofZ’; defined in[(5.1b) gives

M 98
yM — Mg 26>

(rh@m) 2t = p(z) > T o 73 B O By (E.109)
ij=1
where
o) = B oo (@ 2g " oo e (=g 2) e (=g 2) (E.110)
(B (M2 07 ) g (=gM22) equ(=¢*~Mz) '

wherez = (y/2)", (2¢) = [liz0 (1 — 2¢") ande,(z) is defined in[(5.34). To obtain
(E.109) one use$ (5.18], (CI38) and their Cartan-conjdgat@logues. Finally the evaluation
of (4.21) gives

M
(me®m,) ¢ = ¢ Y ¢ VE; ®Ej;. (E.111)
ij=1

Assembling the pieces together one obtains

1-M

(my@m) 2t = q ™ p(2)R(z,y), (E.112)
where
R(z,y) = Z Ei ® By + v Z Ei ®Ej; + Z K(i—j)mody Eij @ Eji (E.113)
i i) i)
v y -t e Ak M (E.114)

- g LyM — gtigM’

One can verify thaf(E.112) satisfies the intertwining rieta (4.9). Finally one observes that

= Xz
qfl yM — q+1 xrM Yy ’

Ria(z,y) Ro1(y,2) = 1. (E.115)
and (crossing symmetry)

1—2¢7?)(1 - 2¢*")

N\
((Rn)™) ) = a@Rate ). ) = ST
(E.116)
whereT} means transposition in the first tensor factor. Notice tbabeding to the properties
of the projection of the universal R-matrix on evaluatiopresentations, see e.g. chapter 9
of [EEK] one hasp(z) = [[,-,n(¢ % 2). For M = 2,3 the calculation presented in this
appendix can be found in [Br_ZLG] and [BoGKNRY].
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F Supplementary material for Section 6

F.1 Onthe cyclicity of i+

Let
= = h(zws) h(zws) ... h(zwar) RN wi veny) - (2P wio) (2 wy), (F.1)

and recallw; w;;; = ¢ 2w, w;. In order to show thaE is cyclic we apply the following
procedure

1. Apply pentagonq — 3) to the last two terms on the left &, i.e.
h(zwa)h(zws) = h(zws)h(z* wa_3) h(zwsy), (F.2)
2. Move h(zw,) all the way to the right before meeting the last two terms i pinoduct

formula for =. This is done without problems sinegw, = wow;, for 4 < £ < M and
W1_Wg = Wo W1 g for 3 <I<M-1.

3. Use pentagon agaifl & 2) on the three terms on the right, i.e.

h(zwg) h(z*wi_2) h(zwy) = h(zw;) h(zwsy), (F.3)

4. Rewrite
= = h(zwsz)Zh(zwy), (F.4)
and apply the three steps abovestto obtain
= = h(zws) h(zwy) éh(z2 wa_3) h(zws), (F.5)
and so on. In the last steps one uses

R(zM wo_ar) h(zwy) = h(zwy) h(zM " wy ) . (F.6)

F.2 " satisfies the YBE

In this appendix we prove that (w), related to™+ via (6.81), satisfies the relation (6184). The
proof we present uses only the identlty (6.94) and is in saspect similar to the proof of the
star-star relation for elliptic Boltzmann weights giver{BaKS13].

The braid relation(6.84) fov.(w) , upon inserting

pa(w) = / ) K(s)wls), dn(s) = d(sen) [ s, (F.7)
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can be rewritten as

/ du(x) q_2(x72(Q_1)t2+(Q71_Q)t1) 1621 (tl + l‘) ICZ1Z2 (2 t2) ICZ2 (tl - l‘) = (F8)

/ dp(x) g 2 @2A=CDHOTI=D) [ () L a) K, (260) Koy (e —2) . (F9)

Above we used the notatida, b) = Zfil a; b; and(Qa); = a;41, See below for the derivation

of (E8) from [6.84). Next, set

tl + .T) ICZQ (tl — ZL’)
1,62122 (2t1> .

ey (1, 1) 1= / du(x) g2 o2V +@7 - L (F.10)

It follows from the cyclicity of K.(v), manelyK.(c) = K.(Qo), that the identity[(E8) is
equivalent to
%1,22 (tl, tz) == %2,21 (tQ, Qiltl) . (Fll)

As explained below one can show that

Ay (s ts) = / dA ﬁ Su(0% ZA) i ez (F.12)
B S} Y |
where
a=20n —n)+2E2Mvy, [=2(n—Qn)—-2E2Mv,. (F.13)
andv; = 5 logz;, 7, = ibt, andvy = £7(1,1,...,1). Itis clear from the definition of,

$ that [EI1) is equivalent to the fact that (B.12) is invaridm, — —f3, 3 — —Q '« and
vy andwv, are exchanged. This is manifest from recalling that)s,(—2z) = 1 and changing
integration variable from to —\. The calculations omitted in the derivation above are given
the following.

From (6.84)to (E8) We start from the braid relation (6]84) and inge(iv) as above. Next,
reorder the non-commuting exponentials as follows

wy(51) W (52) Wi (55) = e153) (o8l 517050 + (og(wa). 52 (F.14)
w2(s’1) W1(S/2) Wz(sg) =q B(s1,52,83) ,(log(wz), s1+s5) + (log(w1), 55) (F.15)

where
sy, s2,83) = 2(5_, (2 —1)sy + (21— Q) s,), Sy = o1 :;: i (F.16)
B(s1,89,83) = 2(s, (1 =Q sy + (' = Q) 8,), s, = # (F.17)



These relations follow fromwv, ; wy ; = q2(5w—5i+1’]‘>w27j w1;, Which in turns follows from the
definitions belowl(6.82). The next step is to take the "comfit! of ¢2(f1:loewi)+2(t2,logws2) g0 we
set

25, = 2t; = s, s.=x=35_, So = 2ty = 25/, . (F.18)

The rewriting [(E.8) follows. O

Simplifying 7., .,(t1,t2). Sety = b (2 — 1)z and7, = ibt,. The exponential in the
definition of <7, ., (t1, t2) can be rewritten as

q72(x,2(971)t2+(9*179)t1) — 2miF) (F.19)

where7 = 207, — (1 + Q)71 Inserting the delta function in the froffyet) ~ [ dA e?™ver,
one then finds

M
Ay, (b ) = / d\ [ ), (F.20)
R k=1

where

1) = / ay 2Tkt ZY = 0+ @) Tk TV =0+ 4) amvnin | (E 1)
R Sb(2Tk k1 — V1 — V2 + Cp)

wherer = 7, andv, = ﬁ log(z,). This integration can be done explicitly as

sp(u+v—cp)sp(—w — 2 +¢)
b b) b(quv 2 b) gm=) o (F.22)
sb(—w + =5 - Cb)

/ dy sp(u — y) sp(v +y) e =
R

which follows from [6.94). We thus conclude that

_ Sb(Oék — )\)
$p(Bk — M)

wherea and are given in[(E.13) and the terms linearricancel out in the product ovér

miA(va—v1) elinear inT

I (M) , (F.23)

G Comparison with the literature

In the caseM = 2 closely related models have been studied in the literatyrether tech-
niques, see in particular [ByTd, ByT3] arid [BaMS]. The pwspof this appendix is to clarify
the relation between the representation theoretic cartgins described in this paper and the
objects constructed in [ByTL, ByT3] and [BaMS].
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G.1 Projection to the lattice-Sinh Gordon model | — Lax operdors

As a preparation for some of the following discussions letlasify the relation between the
approach to the lattice Sinh-Gordon model described in [B\ByT3] and the formalism used
in this paper in some detail.

Abstractly, one may define the lattice Sinh-Gordon modelhankinematical level by defining
its x-algebra of observabled.. in terms of generator§,, £ = 1, ..., 2N and relations

Jon font1 = q2f2n:|:1 Jon s Je forr = ferr fo for |l > 1. (G.1)
The time evolution is represented by the automorphissh A,

L KE A qfier KP4 qfen

. G.2
14+ qr%fro1 1+ qr? frn (G.2)

T(fi) = fi

The generatorg;, represent initial values for the time-evolutierthat are naturally associated
with the vertices of the saw-blade cont@udepicted in Figure 3l1. Equally natural appears to
be the contou€ related toC by means of a spacial translation with Ieném. The half-shift

o= defined byo—%(fk) = fr+1 alone isnotan automorphism afd... Let us instead introduce
the related automorphisﬁ‘% by

52 (fon1) = farks 62(fon) = fonsn - (G.3)

The lattice Sinh-Gordon model was defined in [ByT1] by medrth® Lax matrix

i sinmb? E, e”b“Kii_e_ﬂbUKSO : (G.4)

ek, — e ™uK L i sinb*F ,

LiG(U) — %e—ﬂbs <
This description is associated to the following repreg@maof the algebra of observables,
WSG(an—l) — 6—27rbp" ’ 7TSG(JCQn) — 627rb(xn+xn+1)’ (GS)

where x,, and p,, generate the usual Schrodinger representation of theehleesg-algebra
[P, Xm) = (271)716,,,» on wave-functiong)(x) = (x|), x = (z1,...,TN).

Another natural representatiafi® is obtained by composing' with the automorphisrﬁ%. It
is naturally associated to the cont@urThe operato¥ ., with kernel

N N
<X/ | Yo | X> _ H eQm‘m;L(xn—l—anrl) _ H 627ri(a:;_1+x’n)az" ’ (66)
n=1 n=1
is easily seen to satisfy
Pn - Yoo = Yoo (Xn + Xn+1) ) (Xn + Xn+1) Yoo = Yoo Pn+1 5 (G7)
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which implies thaty, implements the automorphisﬁﬁ in the representation®c.

We are now going to explain how to associate natural reptasens of the algebra of observ-
ables to these two contours. To this aim let us note that theodremy matrixM(\) associated
to C will be represented as

M(A) i= Ly, (A/K) L3, 1 (AK) -+ Ly (A/K) LY (Ak) . (G.8)
Considering the contour leads to the definition of the monodromy matrix

M(A) := L (Ak)Ly, ((N\/K) -+ LT (Ax) Ly (M\/K). (G.9)

In the first case it is natural to regafg (\) = L, (\/x) L3, _,(\x) as the Lax-matrix associated
to parallel transport along one physical lattice site, andampare it withZ>“()\). To simplify
notation we will temporarily restrict attention to a specifalue ofk, and drop the subscript
in the notations. The Lax-matri&(\) can be represented as

fy-l _ A _
Lo\ =5\ K) L (k) = ( ) ( denml AR )

; Vo Ugy, AR V2_nl—1 Ugp—1
T, E AA AIAT
—y o En (M + ATAT)Y (G.10)
77;1 ()\Agl + )FlAn) iT4 Fp

S

using the notations,, = (v,, Uy, Uy Vo, )2, 1T, = i(q¢ — ¢~') = sin wb?, and

Jun
N

1 _1
iTq Fn = Bgz (K“An + /‘f_lA;l)Bn 2 An = (VZnUZnUQn—1V2n—1)

(G.11)

NI

i, E, = B:% (li_lAn + liA;l) B:% B, = (Vo Uy, Uy, Vol 1)
There is a natural representation of the algefiga associated to this set-up, defined by setting
fon—1 = ch(an—l) = Ai, fon = ch(an) = B;Ll B;}A- (G.12)

This representation is reducible. One could project ongceiigenspaces of the the central ele-
mentsn,,. A convenient explicit description of the projection maygieen in the representation
where the operator(s:k)%v,gl(uk)% are diagonal with eigenvalue&*+. Let| y,,y, ) be a delta-
function normalized vector satisfying

1 1
(U) 2V (u)2 [y s ) = €™ |y, s )
L U s |y ys ) = 0(yr — y)0(yL — ) -

1 Thxs
\ 1(Us>2‘yrays> :eb yrays>7

Let us furthermore use the shorthand notation
N
ly) = ®\y2my2n71), Y= (Y1, ¥2n) -
n=1
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n. is diagonal in this representation with eigenval&vz—v2--1) The projectionl] is then
defined by simply setting,,, = y2,_1 = z,, forn =1, ..., N, which is equivalent to setting the
eigenvalue of), to one. It is clear thall mapsr' to 75¢. The projection ofZ(\) will coincide
with x2L%¢(u) if the parameters are related respectively as

k= mA = e, A = —ie™. (G.13)
Itis equally natural to regard,(\) = Lj, ., (\/r) Ly, (Ax) as the Lax-matrix associated to par-
allel transport along one physical lattice site. This Laatnx can be represented by a formula
similar to [G.10), but witm,,, B,, andn,, replaced byA,,, B,, and7,, defined respectively as

_ 1 a1
1 M = (V2n+1u2n+1v2n1u2nl)2 ) (G.14)

whereC: is the operator representing the translation by one-halfpifysical lattice site, satis-
fying C 2 -On-C% = 0,41 for each local observab(@,. There is another natural representation
7' of the algebrad, associated to this set-up, defined by replacingin (G.12ptiezatorsh,,
andB, by A,, B,,, respectively. The representatioli is naturally defined in such a way that the
operators(uk)%vk(uk)% are diagonal with eigenvalues®, for k = 1,...,2N, respectively.
The natural analog of the projectidhwill be denoted.

G.2 Projection to the lattice Sinh-Gordon model Il — Q-operaors

Let us recall that the Q-operators have been defined as

QX . 1) + = Tryg, (1w (V) G (1) -1 (V) (V) (G.15)

Our goal in this subsection is to demonstrate that the piojeof Q(\; iz, 1) to the physical
subspace, denoted @$); i, ;1) can be represented in the form

Q(eﬂ'b’u}; ewbm’ eﬂ'bm) — 6%((l—m)2+(l—ﬁl)2) Y(l’ m, m) . Yoo , (616)

where the operator,,, has been defined above Via (.6), &{& m, m) is an integral operator
with the kernel
N
(x| Y(lm,m) [ x) =[] Vi), + 200 Vo (2, — ) - (G.17)

n=1

The special functioi, (x) appearing in[(G.17) is defined as

Vi (z) = (G.18)

Sb(l‘ —
i

Sb(

ISR
~—

+
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We may note that the projection of the Q-operator onto thesjghy subspace is equal to the
operatorQ _ constructed in [ByTL1].

In order to derive[(G.16), let us start froln (Gl 15), and ihtee expression$ (5.48) fof,” ()\)
and [5.51) forrtF (\). Itis useful to represenf,"()\) as

r(A) = B Paa(el)  Fe (G.19)

rs

using the notatiog;, := u,v, u,v,. By moving all operators,, to the right one may represent
Q(A; fi, p) in the form

=

2N
Qu i;v) = Y(pv) - C2-[[ Fa, (G.20)
n=1

where) ! = C 2 - [[2Y, A,

V(A iy 1) = Tryy, |:PO,2N Px/p (fg,—QNv gO_,QN) Poan—1 p)\/u(g(—)’—,QN—l) T
f (G.21)

T 'Po,z Px/n (fa:Qaga,Q) Po,1 Px/u(gaﬁ)] -C2.

The strategy will be to evaluate the matrix elements of therator (y’|) (u, ii; v)|y) in the
representation introduced in the previous subsection. ¥ ¢hat

<yl | y(eﬂbl; enbm’ eﬂbm) | y> _ (622)
N
= CbQN e%((l_m)z—’—(l_m)z) H Vm—l (y2n+1 + yén) _m—l(x/n - xn) em(yzwrl_yén)z ’
n=1

wherez,, = (2, + y2,—1). The functionV,,(z) is the Fourier-transformation &f, (z), which
may be expressed as

V() == /dy 2 (2) = Vou2e (7)

1
= —(b+b71). G.23
Sb(u+0b) ) Cp 2( + ) ( )

In order to prove((G.22), let us insert the identity operatdhe form [ dy, | v, ) (y, | in front of
each operatoP, . in (G.21), and let us furthermore insédt= [ Hi’ll dyil |y Y (yy | in front
of C~z. This produces an integral representation for the matemeht on the left hand side of
(G.22). The building blocks of the integrand are

s U | Prs [ s ys ) = 0(y) — w5)0 (Y5 — ) (G.24a)
<y7/“7 y; | Prs peﬂbw (g;rs) | Yrs ys> = 5(Z;s + er)vfw(y;s - yrs) 9 (GZ4b)
(Yoo | Prg o (B 80) | U s ) = 60y — 4 )8y — y,) Vow(z,,) €755, (G.24c)
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, , , ,
Xon Xon-1 Xon2 Xop-3

Xy Xon Xon-1 Xon2 Xon-3

Figure 2: Diagrammatic representations for the kernels defined iratiqus (G.244) (G.24b)
and (G.24¢) respectively. The labels correspond to the variables appg in the formulae

G.24)

where

, PR—
rs

Y+ Ys)s  Zrs =Y — Yoo
(yr + ys)a Zrs = Yr — Ys.

T

N[= N[

Lpg =

Equation [(G.24b) follows easily from the identity

(| Fp)|2) = P’ =), Fa)= [ dy Fly)em. (6.25)

wherex, p satisfy|[p,x] = 1/27i, while | z ) and (2’| are eigenvectors of with eigenvalues:
andz’, respectively. The delta-distributions allow us to cary all the appearing integrations.
In order to keep track of the resulting identifications ofighles it may be helpful to use the
diagrammatic representations of the building blo¢ks ({5étl of the matrix element(G.22)
given in Figureé D.

Let Y(\; i, i) be the projection o}/ (\, iz, 1) onto the physical subspace defined by setting all
z, to zero. It easily follows from(G.22) that(\; i, ;1) can be represented as integral operator
with the matrix element$ (G.17).

The operatop/,, satisfies the relations

yo_ol'f2n71'yoo - f2_n17

yion, Y. =1,. (G.26)
yc;l'an'yoo:BnJrl’ ! !

This means thad,, intertwines the representation$ and 7' respectively. It follows easily
that the projection 0}/, onto the physical subspace can be identified with the opedlatwted
Y., inthesensethdl - V., = Y. - II.
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G.3 Comparison with alternative definitions of the Baxter Q-operator

A Baxter Q-operatoQ®"(u) was constructed in [ByT1] in such a way that it satisfies a Baxt
equation of the form

T (w) Q% (u) = o™ (u)Q" (u — ib) + d”" (u)Q™" (u +ib) . (G.27)

The coefficient functiong®” (u) andd®* (u) on the right hand sider df (G.R7) are given explicitly
as
a”" (u) = d®"(—u) = e V™ [ cosh(mb(u — s — —b))] (G.28)

The operatoQ®” (u) constructed in [ByT1] can be represented as the pro@tittu) = Y (u)-Z,
with Y (u) andZ being represented by the kernels

(x| Y(u)[x H Vies—e, (@ + ) Vs (7, — 7).
=1 (G.29)

’,:]z

x'|Z]x) Vogs(zl — ).

r=1

Our aim is to compar@®* (u) with the Q-operators obtained from the universal R-matibkin
the formalism developed in this paper. Using formulae (pa&id [5.48), and following the
discussion given in Sectiohs 6.8 dnd|6.9 it is straightfodaa find
Rf\,/\;ﬂ,u(x/Kv Ty, ) =e 7 -m) Vm (2 +27) e T m)ZVm (2] — 2g) (G.30)
x ed MV (@l — o) e TV, ok 1)

whereV, (z) was defined in[{G.23). It follows that the fundamental transhatrix has the

kernel
<X/ ‘ T(ewb[’ €7rbl, ewbm eﬂbm) | X> — e%i((l*ﬁl)2+(l7m)2+(l77m)27(l77m)2) x (631)

Y )

N
X /dyl .dyn H Vi 1Y +20) Vi (@, = 4,) Vi iy — 20) V(g + Typ1) -

r=1

Settingl = m in (G.31), for example, one ge®(\; i, i1) := T (1, \; fi, 1) with kernel

< |QSG( bl . wbm’ewbm) |X> — 6%((17m)2+(l7m)2+(m7m)2)X (632)
N
< [y [ Vicaloren +50) Vs = ) Vit = 22).
r=1

This expression can now easily be compared with the formidiaéhe kernel of the lattice-
Sinh-Gordon Q-operatd®®* (u) constructed in [ByT]. We have

Q*%(g3¢) = Q(g3¢ i, p) = GV e 3 (4 (1 )N QP (u) (G.33)
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if the parameters are related respectively as

,u:e”bm:ﬁ:mA:e”

ﬂ — ewbm — /{_1 — (mA)_l — e—T(bS’

bs
)

It follows from (G.27) thaiQ(¢) satisfies a Baxter-type equation of the form
T (q2Q)Q(Q) = a**(¢) Q*(g7'¢) + d* () @40, (G.35)
where
a*(¢) = q = (¢/r) V(L= /N1 =R, ) =g 2 (/R (G.36)

The Baxter equation (G.B85) coincides with the equatiornvéerusing the representation theory
of quantum affine algebras in the main text.

G.4 Connection with the Faddeev-Volkov model

We are now going to show how the 1+1-dimensional lattice rhetielied in this paper is

related to the two-dimensional model of statistical meatspalled Faddeev-Volkov model,
defined and studied in [BaMS]. To this aim it will be usefultéroduce the Boltzmann weights
W, (z) related to the special functiab, (z) by multiplication with au-dependent factor,

Wu(z) = Z(u) Vy(z), (G.37)

where=(u) = e @15z 1) @ (y), andd(u) is defined as

dt 672#1
log ®(u) := — : G.38
og ¢ (u) 8t sinh(bt) sinh(b-"t) cosh((b + b-1)¢) (G.38)
R+-40
The special functio®(u) satisfies the functional equations
Elut)=E(u—c) = (w(w)™,  Ew)E(-u) = 1. (G.39)

Together with[(G.23) one finds th#f, (x) is self-dual under Fourier-transformation in the sense
that
Wo(z) = / dy W) = W e (7). (G.40)

Other useful properties noted in [BaMS] are
Wo(z) =1, Wo(r —y) =6(z—y). (G.41)

Let us denote the operator obtained frdnby the replacemerit, (z) — W, (x) andV,(z) —

W, (z) by T'.

147



It then follows easily from our formuld (G.B1) above that &men number of lattice sites one
may identify the kernels representing products of fundaaléransfer matrices

Tos(Xn11:X0) = (X1 | Qoaa Ts(War, wyp) - Ty, wy) Qg | Xo) (G.42)
whereQ,qq = HnN:1 o,_1; We are using the notations = (wy, ..., wy), w = (w1, ..., W)
ands = (sy,...,sy). Let us temporarily restrict attention to the case tNas even. It is easy
to see that

T\?V?W;S(XN-i-l? XO) = ng\,/w;s(XN—i—la XO) (G43)
whereZ:',, . (xn+1,Xo) is the partition function of the Faddeev-Volkov model on etaagular

lattice which may be explicitly represented as

N M
ZVEV\,/W;S(XN'Fl’ Xo) ::/ H H dy:zn me_Sn (yzl+1 - y;n"_l) me+5n (y;n—’_l - yzl) (G44)

n=1m=1

X Won—sn (U = Y™ W (Y — )

Note that the range of values of the parameters considef@&AMS] (motivated by positivity
of the Boltzmann weights) correspondsnmaginaryvalues ofu, v’ ands.
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