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It is often argued that low fine tuning in the MSSM necessarily requires a rather light Higgsino.
In this note we show that this need not be the case when a more complete set of soft SUSY
breaking mass terms are included. In particular an Higgsino mass term, that correlates the µ−term
contribution with the soft SUSY-breaking Higgsino masses, significantly reduces the fine tuning even
for Higgsinos in the TeV mass range where its relic abundance means it can make up all the dark
matter.

I. INTRODUCTION

Our expectation of what to find beyond the Standard
Model (SM) of particle physics has largely been shaped
by naturalness arguments, and arguably low energy su-
persymmetry emerged as the prime candidate for BSM
physics. Fine tuning considerations give us a handle to
judge (i) which classes of models are (more) natural but
also (ii) for a given model which parameter choices are
preferred. It has been realised long ago that the µ term
plays a special role in fine tuning considerations. The
RGE evolution is very mild and the fine tuning with re-
spect to µ can be estimated as

∆µ ∼
2µ2

M2
Z

(1)

which implies that for a natural theory with fine tuning
∆µ < 100 the value of µ should not exceed a few hun-
dred GeV. As the Higgsino mass in the usual MSSM is
roughly given by µ, this has led to the belief that a nat-
ural theory necessarily requires a rather light Higgsino,
see e.g. [1–10]. It is of crucial importance to evaluate
whether this conclusion is true, as light Higgsinos start
to be established as one of the main tell tale signs for
naturalness within the community and search strategies
are developed accordingly.

A light Higgsino typically means that it is the lightest
supersymmetric particle (LSP). As the annihilation cross
section of Higgsinos is sizeable, dark matter is typically
underproduced in this case. While this is experimentally
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viable, because dark matter could consist of several com-
ponents (there might e.g. be an additional component
of axion dark matter), it would be nice to saturate the
relic abundance with Higgsinos only. The Higgsino relic
abundance depends on the Higgsino mass mH̃ and the
correct relic abundance is achieved for mH̃ ∼ 1 TeV. This
however seems to be in strong tension with naturalness
arguments.

In this note we show that in the MSSM Higgsino
masses of about 1 TeV can be achieved with low fine
tuning. The key insight is that in addition to the usual
µ term a SUSY breaking Higgsino mass term can be
present. As discussed below although such a term can
readily be generated nevertheless it is almost always dis-
carded. The reason is that it can be reabsorbed into
other parameters of the model and hence seems superflu-
ous. While this is true with respect to the particle spec-
trum, the inferred values for the fine tuning can differ
significantly. Accordingly, the conclusions with regards
to the particle spectrum based on fine tuning considera-
tions change as well; in particular a TeV scale Higgsino
might well be natural.

This letter is organises as follows. In Section II we in-
troduce the new ingredients we consider in the context of
the MSSM and discuss in detail the structure and possi-
ble origin of the Higgsino mass term. In Section III we
give an approximate relation between the fine-tuning in
the model and the new soft-terms before we perform, in
Section IV, a purely numerical study of the fine-tuning.
We conclude in Section V.
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II. THE MSSM WITH THE FULL SET OF SOFT
TERMS

Let us consider the MSSM extended by the following
non-holomorphic soft-terms, “soft” in the sense that they
do not lead to quadratic divergences at radiative order
[11],

LNH =T ′u,ijH
∗
d ũ
∗
R,iq̃j + T ′d,ijH

∗
ud̃
∗
R,iq̃j+

T ′e,ijH
∗
uẽ
∗
R,i l̃j + µ′H̃dH̃u + h.c. (2)

The potential origin of these terms can either be spon-
taneous SUSY breaking within gravity mediation [12],
strongly coupled SUSY gauge theories [13], or they are
radiatively-generated in N = 2 and N = 4 SUSY gauge
theories [14–18]. In II A we give an explicit example for
the case of the Higgsino mass term.

While µ′ enters the neutralino mass matrix

mχ̃0 =


M1 0 − 1

2g1vd
1
2g1vu

0 M2
1
2g2vd − 1

2g2vu
− 1

2g1vd
1
2g2vd 0 −µ′ − µ

1
2g1vu − 1

2g2vu −µ
′ − µ 0

 (3)

the mass matrices for all scalars as well as the two min-
imisation conditions ∂V

∂vi
= 0 (i = u, d) are not changed

compared to the MSSM without the terms given in
eq. (2). Thus, the dependence of M2

Z on the SUSY pa-
rameters and tanβ = vu

vd
= tβ is as usual

M2
Z

2
=
µ2 +m2

Hd
+ t2β

(
−
(
µ2 +m2

Hu

))
t2β − 1

' −µ(Q)2 −mHu(Q)2 (4)

where in the last step we explicitly show the dependence
on the scale Q at which the parameters are determined.
In the following, unless otherwise stated, we take this
to be the SUSY breaking scale. Some phenomenological
consequences of the additional soft-terms were analysed
in Refs. [19, 20].

A. The soft Higgsino mass

Low fine-tuning requires that there should be no sig-
nificant relation between uncorrelated coefficients of the
soft terms. However in specific SUSY breaking schemes
there may be correlations between the coefficients and
such natural correlations can significantly affect the fine-
tuning measure. For example if SUSY breaking leads to
degenerate soft scalar masses there is a cancellation be-
tween the tree level and radiative contributions to the
Higgs mass that leads to a reduction of the sensitivity
of the Higgs mass to the initial scalar masses, the so-
called “focus point”. As a result the fine-tuning measure
is significantly reduced.

Thus, when computing fine-tuning, it is important to
take care of all possible natural correlations between the

coefficients of the soft terms. Here we argue that the
soft Higgsino mass provides one such correlation that has
not been included in fine tuning estimates and that it
can lead to a significant reduction in fine-tuning. The
reason that it is not included is that it can be elim-
inated by a change in the supersymmetric “µ term”,
µHuHd|θθ, together with a change in the Higgs soft
masses1, mH2

u
|Hu|2,mH2

d
|Hd|2:

µ′H̃uH̃d ≡ mH̃HuHd|θθ −m2
H̃

(|Hu|2|+Hd|2) (5)

However dropping the Higgsino mass term is inconsis-
tent with the determination of the fine-tuning measure
because, as may be seen from this equation, the Higgsino
mass term implies a natural correlation between the co-
efficients of the µ term and the Higgs soft masses.

Of course it is important to ask whether, in an effec-
tive field theory sense, an Higgsino mass can occur with a
coefficient uncorrelated with the other soft SUSY break-
ing terms of the MSSM. It is straightforward to establish
that this is the case. For example the authors of reference
[21] have tabulated all the allowed dimension 5 operators
in the MSSM that are consistent with R parity. In par-
ticular they find the operator

O =
1

M

∫
d4θ[A(S, S†)Dα

(
B(S, S†)H2e

−V1
)

×Dα

(
Γ(S, S†)eV1H1

)
+ h.c.] (6)

where A,B and Γ are functions of the SUSY breaking
spurion S = Msθ

2 where Ms is the SUSY breaking scale,
V1 is a combination of the MSSM vector superfields, M is
the mediator mass coming from integrating out massive
fields in the underlying theory. For example, this par-
ticular operator can be generated by integrating out two
massive SU(2) multiplets that are coupled to the MSSM
Higgs supermultiplets and in this case M is the mass of
these massive doublets. Including the SUSY breaking ef-
fects this operator generates a soft Higgsino mass term
with coefficient proportional to the coefficient of the SS†

term in A. As this is the only SUSY breaking term pro-
portional to this coefficient the soft Higgsino mass is not
correlated with other SUSY breaking terms, and should
be included when calculating fine-tuning in the MSSM.

III. THE IMPACT OF THE NEW SOFT-TERMS
ON THE FINE-TUNING MEASURE

The fine tuning measure which we consider with re-
spect to a set of independent parameters, p, is given by
[22, 23]

∆ ≡ max Abs
[
∆p

]
, ∆p ≡

∂ ln v2

∂ ln p
=

p

v2
∂v2

∂p
. (7)

1 In general also the non-holomorphic trilinear couplings T’ need to
be shifted due to the F -term contribution of the superpotential
µ-term.
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The quantity ∆−1 gives a measure of the accuracy to
which independent parameters must be tuned to get the
correct electroweak breaking scale. In the following we
will concentrate on the contributions of µ and µ′ on the
fine tuning measure.

The generic expressions for the Renormalisation Group
Equations (RGEs) in the presence of non-holomorphic
soft-terms are given in Refs. [24, 25]. We have imple-
mented them in the Mathematica package SARAH [26–31]
to calculate the β-functions for all relevant terms in the
considered model. The one-loop results for running of
the new holomorphic soft-terms as well as the standard
soft-breaking masses are summarised in appendix A. We
can use these results to find an approximate dependence
of the running m2

Hu
as function of all other soft-breaking

terms. For this purpose, we assume CMSSM-like bound-
ary conditions at the scale MGUT = 2.0× 1016 GeV

M1 = M2 = M3 ≡ m1/2 , m2
Hd

= m2
Hu
≡ m2

0

m2
e = m2

d = m2
u = m2

l = m2
q ≡ 1m2

0

Ti = A0Yi , T ′i = A′0Yi

and expand around m0 = m1/2 = A0 = A′0 = µ = µ′ =
1 TeV. For tanβ = 50, we find

m2
Hu

(Q) ' 0.001AbAt − 0.002AbM2 − 0.009AbM3

− 0.007A′b
2

+ 0.002A′bA
′
t − 0.024A′bµ

′ − 0.013A′τ
2

− 0.012A′τµ
′ − 0.032A2

t + 0.007AtM1 + 0.039AtM2

+ 0.145AtM3 + 0.015A′t
2

+ 0.023A′tµ
′ + 0.007M2

1

− 0.005M1M2 − 0.021M1M3 + 0.222M2
2 − 0.131M2M3

− 1.479M2
3 − 0.051m2

d,12 − 0.013m2
d,3 − 0.051m2

e,12

− 0.026m2
e,3 + 0.037m2

Hd
+ 0.637m2

Hu
+ 0.051m2

l,12

+ 0.025m2
l,3 − 0.051m2

q,12 − 0.350m2
q,3 + 0.101m2

u,12

− 0.287m2
u,3 + 0.168µ′2 (8)

Here, we neglected first and second generation Yukawa
couplings and skipped all terms with coefficients smaller

than 10−3. In addition, we parametrised T
(′)
i = A(′)iYi

for (i = t, b, τ). For both µ and µ′ we obtain the simple

relation µ(′) ' 0.86µ(′)(MGUT). Thus, the dependence
of the Z-boson mass at the weak scale on the parameters
at the GUT scale is given by

M2
Z

2
' −0.17µ′(MGUT)2 − 0.86µ(MGUT)2 + . . . (9)

Neglecting mixing effects in the neutralino sector, the
Higgsino mass is given by mH̃ ∼ 0.86(µ+ µ′). We there-
fore expect that the fine tuning can be very mild even
for rather heavy Higgsinos, if the main contribution to
its mass comes from the non-holomorphic soft term.

IV. PARAMETER SCAN AND PLOTS

We verified this expectation with an explicit numeri-
cal study. As free parameters at the GUT scale we take

m0,m1/2, A0, tanβ, µ,Bµ, µ′. The correct electroweak
vacuum is ensured via the choice of the Higgs masses
m2
Hu
,m2

Hd
. The overall fine tuning in this setup will typ-

ically not be dominated by µ, but this could be changed
by considering e.g. non-universal gaugino masses (see
e.g. [32, 33]). As these two problems ‘factorise’ we con-
centrate on the fine tuning with respect to µ and µ′.

We performed a scan over the MSSM parameter space
using the SARAH generated SPheno [34, 35] version. In
Fig. 1 we show the contribution to the fine tuning mea-
sure with respect to µ and the non-holomorphic Higgsino
mass term µ′. We find that the usual approximation

for the fine tuning with respect to µ, ∆µ ∼ 2µ2

M2
Z

is an

excellent approximation. Inspecting the plots we infer
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FIG. 1. Top: Contribution of µ to the fine tuning measure vs.
the value of µ. The red line corresponds to the rough estimate

∆µ ∼ 2µ2

M2
Z

, which we observe to be an excellent approxima-

tion. Bottom: Contribution of µ′ to the fine tuning measure
vs. the value of µ′.

that the lowest fine tuning for a given Higgsino mass will
be achieved for a non-holomorphic contribution to the
Higgsino mass which is about 4-5 times larger than the
contribution from the usual µ term. If we aim for a Hig-
gsino mass of 1 TeV, particularly interesting from the
dark matter perspective as it naturally gives the correct
relic abundance, the ideal combination with respect to
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fine tuning would therefore be for values µ ∼ 200 GeV
and µ′ ∼ 1000 GeV, resulting in a fine tuning of about
∆µ ∼ ∆µ′ ∼ 20. Without the soft Higgsino mass term
the fine tuning would be ∆µ ∼ 350! This estimate is
confirmed in Figure 2 where we plot the mass of the neu-
tralinos with the largest Higgsino component against the
fine tuning, showing that indeed it can be of O(1 TeV)
for ∆′µ,µ ≤ 20. Depending on the parameter choice this
state can be the LSP and give the correct relic abundance
to be dark matter. For comparison we also show the fine
tuning for the case where µ′ = 0 (red points).
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FIG. 2. The maximum ∆µ,µ′ contribution to the fine tun-
ing measure plotted against the Higgsino mass for varying µ′

(blue) and µ′ = 0 (red).

V. SUMMARY AND CONCLUSIONS

In this letter we have shown that a heavy Higgsino
with a mass of O(1 TeV) can arise in the MSSM without
having a very large contribution to the the fine tuning
in the MSSM from the µ term, provided that one al-
lows for a non-holomorphic soft SUSY breaking Higgsino
mass term. Such a heavy Higgsino has a sufficiently small
annihilation cross section so that it can readily be dark
matter without the need for any additional dark mat-
ter component. Although the soft Higgsino mass term is
equivalent to a combination of a supersymmetric µ term
and soft SUSY breaking Higgs mass terms, it is essential
to keep the Higgsino mass term explicitly when calcu-
lating the fine tuning because it naturally correlates the
magnitude of the equivalent µ term and soft Higgs mass
terms in such a way as to largely cancel the fine tuning
contributions of these terms.

In order to make the role of the Higgsino mass clear,
we have concentrated on the contribution to fine tuning
coming from the µ term and the soft Higgsino mass term.
However the significant suppression of these contribu-
tions that we find means that other contributions to the
fine tuning are likely to be dominant and it will be impor-

tant to perform a complete analysis including all fine tun-
ing contributions. In this context it will also be impor-
tant to include the Higgsino soft mass term in extensions
of the MSSM, such as those with non-universal gaugino
masses [32, 33] or the generalised NMSSM [33, 36, 37]
that have been shown to reduce fine tuning. We hope to
consider these issues shortly.
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Appendix A: Renormalisation group equations
including non-holomorphic soft-terms

1. RGEs for non-holomorphic soft-terms

β
(1)

T ′
u

= +3T
′

uY
†
d Yd + T

′

uY
†
uYu + 2YuY

†
d T

′

d − 4µ′YuY
†
d Yd

+ 2YuY
†
uT

′

u −
6

5
Yu

((
5g22 + g21

)
µ′ − 5Tr

(
T

′

uY
†
u

))
+ T

′

u

(
3Tr
(
YdY

†
d

)
− 4

15

(
20g23 + g21

)
+ Tr

(
YeY

†
e

))
(A1)

β
(1)

T
′
d

= +T
′

dY
†
d Yd + 3T

′

dY
†
uYu + 2YdY

†
d T

′

d + 2YdY
†
uT

′

u

− 4µ′YdY
†
uYu + Yd

(
2Tr
(
T

′

eY
†
e

)
+ 6Tr

(
T

′

dY
†
d

)
− 6

5

(
5g22 + g21

)
µ′
)

+
1

15
T

′

d

(
2g21 + 45Tr

(
YuY

†
u

)
− 80g23

)
(A2)

β
(1)

T ′
e

= +T
′

eY
†
e Ye + 2YeY

†
e T

′

e + Ye

(
2Tr
(
T

′

eY
†
e

)
+ 6Tr

(
T

′

dY
†
d

)
− 6

5

(
5g22 + g21

)
µ′
)

+ T
′

e

(
3Tr
(
YuY

†
u

)
− 6

5
g21

)
(A3)

β
(1)
µ′ = 3µ′Tr

(
YdY

†
d

)
− 3

5
µ′
(

5g22 − 5Tr
(
YuY

†
u

)
+ g21

)
+ µ′Tr

(
YeY

†
e

)
(A4)

2. RGEs for soft-breaking masses

β
(1)
m2

q
= − 2

15
g211|M1|2 −

32

3
g231|M3|2 − 6g221|M2|2 + 2m2

Hd
Y †d Yd

+ 2m2
Hu
Y †uYu + 2T †dTd + 2T †uTu + 2T

′

d

T
T

′

d

∗
+ 2T

′

u

T
T

′

u

∗

− 4|µ′|2Y Td Y ∗d − 4|µ′|2Y Tu Y ∗u +m2
qY
†
d Yd +m2

qY
†
uYu

+ 2Y †dm
2
dYd + Y †d Ydm

2
q + 2Y †um

2
uYu + Y †uYum

2
q +

g11σ

3
(A5)
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β
(1)

m2
l

= −6

5
g211|M1|2 − 6g221|M2|2 + 2m2

Hd
Y †e Ye + 2T †e Te

+ 2T
′

e

T
T

′

e

∗
− 4|µ′|2Y Te Y ∗e

+m2
l Y
†
e Ye + 2Y †em

2
eYe + Y †e Yem

2
l − g11σ (A6)

β
(1)

m2
Hd

= −6

5
g21µ
′2 − 6g22µ

′2 − 6

5
g21 |M1|2 − 6g22 |M2|2 − g1σ

+ 6Tr
(
T

′

uT
′

u

†)
+ 6m2

Hd
Tr
(
YdY

†
d

)
+ 2m2

Hd
Tr
(
YeY

†
e

)
+ 6Tr

(
T ∗d T

T
d

)
+ 2Tr

(
T ∗e T

T
e

)
+ 6Tr

(
m2
dYdY

†
d

)
+ 2Tr

(
m2
eYeY

†
e

)
+ 2Tr

(
m2
l Y
†
e Ye

)
+ 6Tr

(
m2
qY
†
d Yd

)
(A7)

β
(1)

m2
Hu

= −6

5
g21µ
′2 − 6g22µ

′2 − 6

5
g21 |M1|2 − 6g22 |M2|2 + g1σ

+ 6Tr
(
T

′

dT
′

d

†)
+ 2Tr

(
T

′

eT
′

e

†)
+ 6m2

Hu
Tr
(
YuY

†
u

)
+ 6Tr

(
T ∗uT

T
u

)
+ 6Tr

(
m2
qY
†
uYu

)
+ 6Tr

(
m2
uYuY

†
u

)
(A8)

β
(1)

m2
d

= − 8

15
g211|M1|2 −

32

3
g231|M3|2 + 4m2

Hd
YdY

†
d

+ 4T
′

d

∗
T

′

d

T
− 8|µ′|2Y ∗d Y Td + 4TdT

†
d + 2m2

dYdY
†
d

+ 4Ydm
2
qY
†
d + 2YdY

†
dm

2
d +

2g11σ

3
(A9)

β
(1)
m2

u
= −32

15
g211|M1|2 −

32

3
g231|M3|2 + 4m2

Hu
YuY

†
u

+ 4T
′

u

∗
T

′

u

T
− 8|µ′|2Y ∗u Y Tu + 4TuT

†
u + 2m2

uYuY
†
u

+ 4Yum
2
qY
†
u + 2YuY

†
um

2
u −

4g11σ

3
(A10)

β
(1)
m2

e
= −24

5
g211|M1|2 + 2

(
2m2

Hd
YeY

†
e + 2T

′

e

∗
T

′

e

T

− 4|µ′|2Y ∗e Y Te + 2TeT
†
e +m2

eYeY
†
e + 2Yem

2
l Y
†
e

+ YeY
†
em

2
e

)
+ 2g11σ (A11)

with

σ =
3

5
g1

(
− 2Tr

(
m2
u

)
− Tr

(
m2
l

)
−m2

Hd
+m2

Hu

+ Tr
(
m2
d

)
+ Tr

(
m2
e

)
+ Tr

(
m2
q

))
(A12)
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