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Abstract

Version 1.6.0 of the code SusHi is presented. Concerning inclusive CP-even Higgs pro-
duction in gluon fusion, the following new features with respect to previous versions have
been implemented: expansion of the partonic cross section in the soft limit, i.e. around
x = M2

H/ŝ → 1; N3LO QCD corrections in terms of the soft expansion; top-quark mass
suppressed terms through NNLO; matching to the cross section at x→ 0 through N3LO. For
CP-even and -odd scalars, an efficient evaluation of the renormalization-scale dependence
is included, and effects of dimension-5 operators can be studied, which we demonstrate
for the SM Higgs boson and for a CP-even scalar with a mass of 750 GeV. In addition, as
a generalization of the previously available bb̄ → H cross section, SusHi 1.6.0 provides
the cross section for charged and neutral Higgs production in the annihilation of arbitrary
heavy quarks. At fixed order in perturbation theory, SusHi thus allows to obtain Higgs
cross-section predictions in different models to the highest precision known today. For the
SM Higgs boson of MH = 125 GeV, SusHi yields 48.28 pb for the gluon-fusion cross section
at the LHC at 13 TeV. Simultaneously, SusHi provides the renormalization-scale uncertainty
of ±1.97 pb.
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1. Introduction

Since the year 2012, an important task of particle physics is to fully measure the properties
of the Higgs boson with mass MH ≈ 125 GeV discovered at the Large Hadron Collider
(LHC) [1, 2]. At the same time, the search for additional Higgs bosons, which are predicted
in many extended theories, is among the main missions of the LHC experiments. For this
purpose, the knowledge of the corresponding production cross sections with high precision
is of great relevance. The latest efforts in this direction are regularly summarized in the
reports of the “LHC Higgs cross section working group”[3–6].

In this paper, we describe the new features that have been implemented in version 1.6.0 of
the program SusHi [7, 8]. SusHi is a Fortran code which calculates Higgs-boson production
cross sections through gluon fusion and bottom-quark annihilation in the Standard Model
(SM), general Two-Higgs-Doublet Models (2HDM), the Minimal Supersymmetric Standard
Model (MSSM) as well as its next-to-minimal extension (NMSSM), see Ref. [9].1 Some of
these additions to SusHi directly improve the theoretical predictions of the cross section;
others are provided to allow for more sophisticated uncertainty estimates of these predictions.
The new features are the following:

• SusHi now includes the next-to-next-to-next-to-leading order (N3LO) terms for the
gluon-fusion cross section of a CP-even Higgs boson in the heavy-top limit as described
in Refs. [19–22].

• It provides the so-called soft expansion of the gluon-fusion cross section around the
threshold of Higgs-boson production at x ≡ M2

φ/ŝ = 1, where ŝ denotes the partonic
center-of-mass energy and Mφ the Higgs-boson mass. This expansion is available for
the cross sections in the heavy-top limit up to N3LO for CP-even Higgs bosons. At
next-to-leading order (NLO) and next-to-NLO (NNLO), the exact x-dependence is still
available, of course, and remains the default.

• In addition, SusHi 1.6.0 includes top-quark mass effects to the gluon-fusion cross
section of a CP-even Higgs boson in the heavy-top limit up to NNLO, implemented
through an expansion in inverse powers of the top-quark mass as described in Refs. [23–
29]. The exact top-mass dependence at lowest order can be factored out. We remark
that this feature is most interesting at NNLO, of course, since at leading order (LO)
and NLO, SusHi also provides the full quark-mass dependence.

• A matching of the soft expansion to the high-energy limit [23–25], i.e. x → 0, is
available through N3LO.

• The renormalization-scale dependence of the gluon-fusion cross section within an ar-
bitrary interval is calculated in a single SusHi run.

1Other codes to obtain inclusive Higgs-boson cross sections through gluon fusion in the SM and beyond
are described in Refs. [10–18].
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• The effect of dimension-5 operators to the gluon-fusion cross section can be taken
into account through N3LO QCD for the inclusive cross section, and at LO and NLO

(i.e. α3
s) for the Higgs transverse momentum (pT ) distribution and (pseudo)rapidity

distribution, respectively.

• Higgs-boson production cross sections through heavy-quark annihilation are imple-
mented along the lines of Ref. [30], both for the NNLO QCD inclusive cross section, as
well as for more exclusive cross sections up to NLO QCD.

All of the described features are applicable to Higgs-boson production in the theoretical
models currently implemented in SusHi, even though some only work for low Higgs masses
below the top-quark threshold Mφ < 2Mt or for CP-even Higgs bosons.

Our paper is organized as follows: We start with a brief general overview of the code SusHi

in Section 2, and subsequently present the new features implemented for the prediction of
the gluon-fusion cross section in Section 3. This includes a theoretical description of the soft
expansion, the inclusion of N3LO terms and the top-quark mass effects in Sections 3.1–3.3.
We proceed with a description of the “RGE procedure” to determine the renormalization-
scale dependence of the gluon-fusion cross section in Section 3.4, and finally describe the
implementation of an effective Lagrangian including dimension-5 operators in Section 3.5.
The implementation of heavy-quark annihilation cross sections is described in Section 4.
Numerical results are presented in Section 5; they also include a comparison of our results
with the most recent literature.

2. The program SusHi

SusHi is a program originally designed to describe Higgs production in gluon fusion and
bottom-quark annihilation in the MSSM. It collects a number of results from the literature
valid through N3LO in the strong coupling constant, and combines them in a consistent way.
We subsequently discuss the present theoretical knowledge of the calculation of the gluon
fusion and bottom-quark annihilation cross sections and their inclusion in SusHi.

It is well-known that QCD corrections to the gluon-fusion process gg → φ [31], mediated
through heavy quarks in the SM, are very large. NLO QCD corrections are known for
general quark masses [32–37]. In the heavy-top limit, an effective theory can be constructed
by integrating out the top quark. In this case, NNLO corrections have been calculated a long
time ago [38–40]. The N3LO contributions were only recently obtained in Refs. [19, 20, 22, 41,
42], while various parts of the N3LO calculation have been calculated independently [21, 43–
56]. Approximate N3LO results were presented in Refs. [16, 17, 57]. Effects of a finite
top-quark mass at NNLO were approximately taken into account in Refs. [23–29].

Many of these effects can be taken into account in the latest version of SusHi; this will be
discussed in detail in Section 3. Electroweak corrections [58–60] can be included as well,
either in terms of the full SM electroweak correction factor, or restricted to the corrections
mediated by light quarks, the latter being a more conservative estimate in certain BSM
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scenarios. For completeness, we note that effects beyond fixed order have been addressed
through soft-gluon resummation [18, 61–67], but those are not included in SusHi.

If requested in the input file, SusHi uses the SM results described above also for the 2HDM,
the MSSM or the NMSSM through the proper rescaling of the Yukawa couplings. In su-
persymmetric models, also squarks induce an interaction of the Higgs boson to two gluons.
In the MSSM, the corresponding NLO virtual contributions, involving squarks, quarks and
gluinos, are either known in an expansion of inverse powers of heavy SUSY masses [68–70]
or in the limit of a vanishing Higgs mass, see Refs. [71–74]. In this limit, even NNLO correc-
tions of stop-induced contributions are known, see Refs. [75, 76]; an approximation of these
effects [77] is included in SusHi, see Ref. [78]. Whereas for the MSSM SusHi relies on both
expansions, for the NMSSM the NLO virtual corrections are purely based on an expansion
in heavy SUSY masses [9]. We note that numerical results for the exact NLO virtual contri-
butions involving squarks, quarks, and gluinos were presented in Refs. [79, 80], and analytic
results for the pure squark-induced contributions can be found in Refs. [36, 37, 81].

The associated production of a Higgs boson with bottom quarks, pp→ bb̄φ, is of particular
relevance for Higgs bosons, where the Yukawa coupling to bottom quarks is enhanced. This
happens in models with two Higgs doublets, for example, if tan β, the ratio of the vacuum
expectation values of the two neutral Higgs fields, is large. SusHi includes the cross section
for this process in the so-called 5-flavor scheme, i.e. for the annihilation process bb̄ → φ.
The inclusive cross section for this process is implemented at NNLO QCD [82, 83]; it is
reweighted by effective Yukawa couplings in the model under consideration. SusHi 1.6.0

now also includes general heavy-quark annihilation cross sections [30] at NNLO QCD, which
we will describe in Section 4.

For completeness we note that SusHi can be linked to FeynHiggs [84–87] and 2HDMC [88] to
obtain consistent sets of parameters in the MSSM or the 2HDM, respectively.

SusHi is controlled via an SLHA-style [89] input file. In the following, we will refer to the
entries of a Block "NAME" and their possible values as NAME(ENTRY)=VALUE. If more than
one value is required, we write NAME(ENTRY)={VALUE1,VALUE2,. . . } or, when referring only
to one specific value, NAME(ENTRY,1)=VALUE1, etc.

3. Higgs production through gluon fusion

The hadronic cross section for Higgs production in gluon fusion can be written as

σ(pp→ H +X) =
∑

i,j∈{q,q̄,g}

φ̃i ⊗ φ̃j ⊗ σ̂ij , (1)

where φi(x, µF) = φ̃i(x, µF)/x are parton densities, q (q̄) denotes the set of all (anti-)quarks
(q = t and q̄ = t̄ can be neglected), and ⊗ is the convolution defined as

(f ⊗ g)(z) ≡
∫ 1

0

dx1

∫ 1

0

dx2f(x1)g(x2)δ(z − x1x2) . (2)
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The perturbative expansion of the partonic cross section,

σ̂ij,NnLO =
n∑
l=0

σ̂
(l)
ij , (3)

can be represented in terms of Feynman diagrams where the external partons couple to
the Higgs bosons through a top-, bottom-, or charm-quark loop (contributions from lighter
quarks are negligible).

The first two terms in the perturbative expansion of σ̂ij (l = 0, 1 in Eq. (3)) are known for

general quark mass and included in SusHi 1.6.0. The NNLO term σ̂
(2)
ij has been evaluated

on the basis of an effective Higgs-gluon interaction vertex which results from integrating out
the top quark from the SM Lagrangian. At NLO, it has been checked that this results in
an excellent approximation of the NLO QCD correction factor to the LO cross section, even
for rather large Higgs-boson masses. At NNLO, the validity of the heavy-top limit for the
QCD corrections factor was investigated through the calculation of a number of terms in an
expansion around M2

t � ŝ,M2
φ, and matching it to the high-energy limit of σ̂

(2)
ij [23–29]. It

was found that the mass effects to the QCD correction factor are at the sub-percent level.

Recently, also the N3LO-term σ̂
(0)
ij has become available in terms of a soft expansion. We

will comment on its implementation in the latest release of SusHi in Section 3.2.

The exact NLO and the approximate higher order results for the cross section are combined
in SusHi through the formula

σX = σNLO + ∆Xσ
t , ∆Xσ

t ≡ (1 + δEW)σtX − σtNLO , (4)

where σNLO refers to the NLO cross section with exact top-, bottom- and charm-mass de-
pendence, while σtX (X=NnLO, n ≥ 1) is obtained in the limit of a large top-quark mass.
Electroweak effects [58], encoded in δEW, are included by assuming their full factorization
from the QCD effects, as suggested by Ref. [90] for a SM Higgs boson. In BSM scenarios,
this assumption may be no longer justified. SusHi therefore provides an alternative way to
include electroweak effects which is based solely on the light-quark contributions to the elec-
troweak correction factor; for details, we refer the reader to Refs. [7, 78]. For our purpose,
it suffices to assume Eq. (4). The new release of SusHi provides various approximations to
evaluate σtX, in particular through expansions in 1/Mt, and expansions around ŝ = M2

φ.

In addition to σX, which can be found in Block SUSHIggh, SusHi also outputs the individual
terms of Eq. (4). The exact LO and NLO cross sections are collected in Block XSGGH, while
the σtX are given in Block XSGGHEFF, which also contains the electroweak correction term
δEW, if requested.

It is understood that the NnLO terms in Eq. (4) are evaluated with NnLO PDFs.2 Note that
this means that, for example, ∆NNLOσ

t is not simply the convolution of σ̂t,(2) with NNLO

2Since N3LO PDFs are not yet available, we use NNLO PDFs for the evaluation of the N3LO cross section
in this paper. The user of SusHi can specify the PDF set at each order individually.
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PDFs, but retains a sensitivity to σ̂t,(1). Thus, the final result for the NNLO gluon-fusion
cross section obtained from SusHi through Eq. (4) depends on the approximation applied to
the evaluation of both σ̂t,(2) and σ̂t,(1). If electroweak effects are included, this even holds
for SusHi’s final result for σNLO due to the definition of ∆Xσ

t in Eq. (4).

In the remainder of this section, we first discuss the soft expansion around the threshold
of Higgs production, ŝ = M2

φ, in Section 3.1. The implementation of N3LO contributions is
described in Section 3.2, and top-quark mass effects through NNLO as well as the matching
to the high-energy limit in Section 3.3. While these features are only available for CP-even
Higgs bosons (partially in a certain range of Higgs-boson masses Mφ only), the analytic
calculation of the µR dependence of the gluon-fusion cross section described in Section 3.4
is available for all Higgs bosons. The inclusion of dimension-5 operators is discussed in
Section 3.5.

3.1. Soft expansion

The NLO and NNLO coefficients of σt are approximated very well by the first few terms3

in an expansion around the “soft limit”, x → 1. In fact, the gain of the full ŝ-dependence
becomes doubtful anyway when working in the heavy-top limit, since the latter formally
breaks down for ŝ > 4M2

t , meaning x . 0.13 for MH = 125 GeV. Apart from the exact
ŝ-dependence at LO, NLO, and NNLO, SusHi 1.6.0 provides the soft expansion of the cross
section for CP-even Higgs production through order (1− x)16 at these perturbative orders,
and also at N3LO (for more details on the latter, see Section 3.2).

The precise way in which the soft expansion is applied is governed by the new Block

GGHSOFT. Each line in this block contains four integers:

Block GGHSOFT

<entry > <n1> <n2> <n3 >

Following Section 2, we will refer to such a line as GGHSOFT(<entry>)={<n1>,<n2>,<n3>}
in the text, and to the individual entries as GGHSOFT(<entry>,1)=<n1>, etc. Setting

GGHSOFT(n)={1,N, a} evaluates the soft expansion of σ̂
t,(n)
ij in the following way:

σ̂tij → σ̂tij,N ≡ xaT xN
(

∆σ̂tij
xa

)
, (5)

where T xN denotes the asymptotic expansion around x = 1 through order (1 − x)N , and a
is a positive integer. Setting GGHSOFT(n,2)=-1 will keep only the soft and collinear terms,
whose x dependence is given by

δ(1− x) or

(
lnk(1− x)

1− x

)
+

, k ≥ 0 (6)

3The first 16 terms in this expansion lead to an accuracy of better than 1% with respect to the heavy-top
limit with exact x-dependence at NNLO, for example. For more details see below.
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by definition. Here (·)+ denotes the usual plus distribution, defined by∫ 1

z

dx (f(1− x))+ g(x) =

∫ 1

z

dxf(x) [g(x)− g(1)] + g(1)

∫ z

0

dxf(x) . (7)

The parameters GGHSOFT(n) apply to all partonic subchannels at order NnLO, and to all
terms in the 1/Mt expansion as requested by the input Block GGHMT, see Section 3.3 below.

The exact x-dependence is obtained by setting GGHSOFT(n,1)=0 (only available for n ≤ 2).
The other two entries in GGHSOFT(n) are then irrelevant. The default values for the block
GGHSOFT through NLO are

default: GGHSOFT(1,1)=0 ; GGHSOFT(2,1)=0 ; GGHSOFT(3)={1,16,0} . (8)

Again, all terms of the soft expansion are available including the full µF- and µR-dependence.

A sample input block reads

Block GGHSOFT

1 0 0 0

2 1 16 1

3 1 16 1

which provides the result including the exact x-dependence at NLO, and the soft expansion
through (1 − x)16 at NNLO and N3LO after factoring out a factor of x (a = 1 in Eq. (5)).
We recall that these settings only affect the heavy-top results σ̂tX in Eq. (4); σNLO is always
calculated by taking into account the full quark-mass and x-dependence. The soft expansion
is available for all CP-even Higgs bosons of arbitrary masses.

3.2. N3LO terms

Recently, the N3LO QCD corrections to the Higgs production cross section through gluon
fusion have become available [19–22]. More specifically, the result was provided in terms of
the soft expansion through order (1−x)37 of the leading term in 1/Mt for µ = µR = µF. We
implemented this expansion through (1− x)16; higher order terms do not change the result
within the associated uncertainty. In addition, we included the µF- and µR-dependent terms
at the same order. Experience from NNLO lets one expect that these terms are sufficient to
obtain an excellent approximation of the QCD correction factor to the LO cross section, at
least for Higgs masses in the validity range of the effective theory description.

The N3LO result is accessible in SusHi 1.6.0 by setting the input parameter SUSHI(5)=3.
This will evolve αs(MZ) to αs(µR) at 4-loop order when calculating the cross section, where
µR/Mφ is defined in SCALES(1). Note that with this setting, the hadronic cross section will
formally still suffer from an inconsistency because N3LO PDF sets are not yet available. As
described in Section 3.1, the depth of the soft expansion at N3LO, as well as the power a in
Eq. (5) can be controlled through the input variables GGHSOFT(3).4

4The setting GGHSOFT(3,1)=0 is not available, of course.
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Finally, we remark that, also at N3LO, the full µR- and µF-dependence is available, again
accessible through the variables SCALES(1) and SCALES(2), respectively. It follows from
invariance of the hadronic result under these scales, and only requires the NNLO result as
input, as well as the QCD β function and the QCD splitting functions through three loops.
The required convolutions can be evaluated with the help of the program MT.m [91], for
example.

3.3. Top-quark mass effects

In versions before SusHi 1.6.0, only the formally leading terms in 1/Mt were available

for σ̂
t,(2)
ij . However, in order to allow for thorough studies of the theoretical uncertainty

associated with the gluon-fusion cross section, SusHi 1.6.0 includes also subleading terms
in 1/Mt for the production of a CP-even Higgs (SUSHI(2)∈ {11,12,13}). There are a
number of options provided by SusHi 1.6.0 associated with this; they are controlled by the
new input Block GGHMT.

First of all, GGHMT(n)=P ∈ {0,1,. . . , P max
n } provides the expansion of σ̂

t,(n)
ij through 1/MP

t

(note that terms with odd P vanish). In addition (or alternatively), one may define

the depth of the expansion individually for each partonic channel σ̂
t,(n)
ij through the pa-

rameters GGHMT(nm)=P ∈ {0,1,. . . , P max
n }, where ij = (gg, qg, qq̄, qq, qq′) corresponds to

m = (1, 2, 3, 4, 5), respectively. Currently, the maximal available depths of expansion are5

Pmax
0 = Pmax

1 = 10 and Pmax
2 = 6.

The default settings are

default: GGHMT(0)=-1 ; GGHMT(1)=0 ; GGHMT(2)=0 ;

GGHMT(1i)=GGHMT(1) , i = 1, . . . , 3 ; GGHMT(2i)=GGHMT(2) , i = 1, . . . , 5 ,
(9)

where GGHMT(0)=-1 means to keep the full top mass dependence. Let us recall that these
settings only affect the heavy-top results σ̂tX in Eq. (4); σNLO is always calculated by taking
into account the full quark-mass dependence.

As an example, consider the input

Block GGHMT

1 10

13 0

2 6

23 0

24 0

25 0

which will cause SusHi 1.6.0 to

• keep the full top mass dependence at LO

• expand the NLO terms σ̂
t,(1)
gg and σ̂

t,(1)
qg through 1/M10

t

5For the qq̄-channel, the maximum reduces to Pmax
2 = 4, if a soft expansion beyond N = 13 is requested.
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• expand the NNLO terms σ̂
t,(2)
gg and σ̂

t,(2)
qg through 1/M6

t

• keep only the terms of order 1/M0
t for the pure quark channels at NLO and NNLO.

This also shows that the variables GGHMT(nm) overrule the setting of GGHMT(n) for the
individual channels. This may be desirable as it is known that the pure quark channels
show a rather bad convergence behavior [24–29], so one may want to include only a small
number of terms for them in the 1/Mt expansion. By convention, GGHMT(n) must always
be at least as large as the maximum of GGHMT(nm); if this is not the case in the input
file, SusHi will override the user’s definition of GGHMT(n) and set it to the maximum of all
GGHMT(nm).

In the strict heavy-top limit (i.e., P = 0), the quality of the approximation improves con-
siderably if one factors out the LO mass dependence σt0 [34, 92] before the expansion, given
by

σt0 =
π
√

2GF

256

(αs
π

)2

τ 2

∣∣∣∣1 + (1− τ) arcsin2 1√
τ

∣∣∣∣2 , τ =
4M2

t

M2
φ

, (10)

where GF ≈ 1.16637 · 10−5 GeV−2 [93] is Fermi’s constant. The generalization to higher
orders in 1/Mt corresponds to

σ̂
t,(n)
ij = σt0

TPn,ij σ̂t,(n)
ij

TPnσt0
, (11)

where TP denotes an operator that performs an asymptotic expansion through order 1/MP
t .

In a strict sense, it should be Pn = Pn,ij; however, SusHi allows only for a global value of
Pn here, which applies to all sub-channels ij and is set to GGHMT(n).

Setting GGHMT(-1)=n factors out the LO mass dependence through order n, i.e.

σ̂tij = σt0

n∑
k=0

TPk,ij σ̂
t,(k)
ij

TPkσt0
+
∑
k≥n+1

TPk,ij σ̂
t,(k)
ij . (12)

This will affect all partonic channels. The default setting is

default: GGHMT(-1)=3 (13)

which means that the LO Mt dependence is factored out from all available orders.

It was observed that higher orders in 1/Mt in general spoil the validity of the expansion,
since its radius of convergence is formally restricted to ŝ < 4M2

t . This manifests itself in the
expansion coefficients containing positive powers of ŝ/M2

φ. In order to tame the correspond-
ing divergence as ŝ→∞, it was suggested to match the result to the asymptotic behavior in
this limit, which is known from Refs. [23, 24]. Whether or not such a matching is performed

for σ̂
t,(n)
ij is governed by the parameter GGHMT(n·10) (i.e. GGHMT(10), GGHMT(20), . . . ). By

default,

default: GGHMT(n·10)=0 , n = 1, . . . , 3 , (14)
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meaning that no matching is done; setting GGHMT(n·10)=1 switches the matching on for all
partonic subchannels at order NnLO.

As we will find in Section 5, the matching to x → 0 is helpful in approximating the full
cross section even at 1/M0

t . Thus, we provide the possibility to do this matching also at
N3LO, even though top-mass suppressed terms are not yet known at this order. The form of
the matching through NNLO has been introduced in Refs. [24, 25]; here we adopt the same
strategy, generalized to N3LO:

σ̂
t,(n)
ij (x) = σ̂

t,(n)
ij,N (x) + σt0

n−1∑
l=1

A
(n,l)
ij

[
ln

1

x
−

N∑
k=1

1

k
(1− x)k

]l
+ (1− x)N+1

[
σt0B

(n)
ij − σ̂t,(n)

ij,N (0)
]
,

(15)

where σt0B
(0)
ij = σ̂

t,(0)
ij,N (0) = 0, and σ̂

t,(n)
ij,N (x) denotes the soft expansion of the cross section

through order (1 − x)N , see Eq. (5). The coefficients B
(1)
ij and A

(2,1)
ij are given in numerical

form in Refs. [23, 24, 94],6 while A
(3,2)
gg can be found in Ref. [94] (where it is called C3

AC(3)).
For the unknown coefficients through N3LO, we assume

σt0B
(n)
ij = σ̂

t,(n)
ij,N (0) for n ≥ 2 , A

(3,1)
ij = 0 . (16)

The technical consequence of the matching procedure implemented in SusHi is that it re-
quires the cross section to be expressed in terms of the soft expansion, i.e., one needs to set
GGHSOFT(n,1)=1 if the NnLO cross section is requested.

The effect of the matching at N3LO is shown in Fig. 1: the soft expansion tends to a constant
towards x→ 0 by construction, and cannot reproduce the ln2 x-behavior of the exact result.
The merging of the two limits is very smooth and suggests that the matched curve is not too
far from the full result. Of course, the fact that some coefficients in Eq. (15) are unknown
introduces a theoretical uncertainty. However, we observe a change in the final cross section
of only about 0.5% when setting A

(3,1)
gg = A

(3,2)
gg for a SM Higgs, for example.

It remains to say that all terms in 1/Mt are available including the full µF- and µR-
dependence. As in earlier versions of SusHi, these parameters are accessible through the
input parameters SCALES(1) and SCALES(2). Since top-quark mass effects are not known
for the N3LO cross section, all settings of GGHMT involving n = 3 except from GGHMT(30)

have no effect in the current version SusHi 1.6.0. The inclusion of 1/Mt terms is only
available for Mφ < 2Mt and the matching to the high-energy limit only in a mass range
Mφ ∈ [100 GeV, 300 GeV].

6The notation for A
(2,1)
ij is A

(2)
ij in that paper.
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Figure 1: Partonic cross section σ̂
t,(3)
gg /σt0 in 104 according to Eq. (15) as a function of x = M2

φ/ŝ with and

without matching to the high-energy limit. The order of the soft expansion applied in both cases is (1−x)16.

3.4. Renormalization scale dependence

The renormalization scale (µR) dependence of the partonic cross section can be written as

σ̂ij =
∑
n≥0

n∑
l=0

(
αs(µR)

π

)n+2

κ̂
(n,l)
ij (µ0) llR0 , (17)

where lR0 = 2 ln(µR/µ0), and µ0 is an arbitrary reference scale. The coefficients κ̂
(n,l)
ij (µ0)

are explicitly contained in SusHi (for µ0 = Mφ). The dependence of the cross section on µR

can be studied with SusHi by varying the input parameter SCALES(1), which contains the
numerical value for µR/Mφ. SusHi will then insert this value into Eq. (17) and convolve the
resulting partonic cross section over the PDFs. A decent picture of the µR dependence may
require to perform this “standard procedure” ten times or more.

SusHi 1.6.0 provides a considerably faster way to obtain the µR dependence of the cross
section by convolving the κ̂

(n,l)
ij (µ0) with the PDFs before varying µR,

κ(n,l)(µ0) = κ̂
(n,l)
ij (µ0)⊗ φ̃i ⊗ φ̃j . (18)

We will refer to this as the “RGE procedure”. Due to the renormalization group equation7

d

dµ2
R

σNnLO = O(αn+3
s ) =

d

dµ2
R

σ̂ij,NnLO , (19)

7The power n+ 3 takes into account the fact that the LO cross section is of order α2
s.
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which holds both at the partonic and the hadronic level, it suffices to calculate the coefficients
κ(n,l)(µ0) for l = 0 and n ≤ 2 if the N3LO result is requested. SusHi 1.6.0 does this by
initially assuming µ0/Mφ = µR/Mφ = SCALES(1) in Eq. (17). All other coefficients are then
determined via the QCD β function, defined through

d

dµ2
R

αs(µR) = αs(µR)β(αs) , β(αs) = −αs
π

∑
n≥0

(αs
π

)n
βn . (20)

Explicitly, one finds

κ(1,1) = 2 β0 κ
(0,0) , κ(2,2) =

3

2
β0 κ

(1,1) , κ(2,1) = 2 β1 κ
(0,0) + 3 β0 κ

(1,0) ,

κ(3,3) =
4

3
β0 κ

(2,2) , κ(3,2) =
3

2
β1 κ

(1,1) + 2 β0 κ
(2,1) ,

κ(3,1) = 2 β2 κ
(0,0) + 3 β1 κ

(1,0) + 4 β0 κ
(2,0) .

(21)

Inserting these coefficients into the hadronic analogue of Eq. (17), it is possible to obtain the
hadronic cross section at any value of µR without any further numerical integration. Since
the µR dependence is typically much larger than the µF dependence for gluon fusion, this
feature of SusHi saves a significant amount of computing time when aiming for an estimate
of the theoretical uncertainty of the cross section.

Thus, in addition to the usual output file <outfile>, running SusHi 1.6.0 with the stan-
dard command

./bin/sushi <infile> <outfile>

will produce an additional file <outfile> murdep which contains the gluon-fusion cross
section for several values of µR in the form

µR/GeV σLO/pb σNLO/pb σNNLO/pb σN3LO/pb (22)

where all cross sections are evaluated following Eq. (4), i.e. they potentially contain quark-
mass effects, SUSY corrections, and/or electroweak effects. The values of µR to be scanned
over can be set in <infile> through

Block SCALES

1 <mu0mh >

102 <min0 > <max0 > <N>

which will cause SusHi 1.6.0 to evaluate the cross section at N + 1 equidistant points for
log µR between log µmin and log µmax, meaning8

µR = µmin

(
µmax

µmin

)i/N
, i ∈ {0, 1, . . . , N} . (23)

8<N>=N , <min0>=µmin/µ0, <max0>=µmax/µ0, <mu0mh>=µ0/Mφ.
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In addition, SusHi 1.6.0 includes a theoretical error estimate on the inclusive cross section
into the standard output file <outfile>, given as the maximal and minimal deviation (in
pb) within the interval µR ∈ [µ1, µ2] from the value at µR = µ0. The interval is specified
as SCALES(101)={µ1/µ0,µ2/µ0} (recall that µ0/Mφ =SCALES(1)); it defaults to [µ1, µ2] =
[µ0/2, 2µ0].

We remark that this feature works at all perturbative orders through N3LO, for any settings
in the blocks GGHMT or GGHSOFT, and for any model under consideration. The only restriction
is that all parameters except for the strong coupling constant need to be defined on-shell.
If this is not the case, SusHi 1.6.0 will not produce <outfile> murdep. Note that, due
to Eq. (4), the procedure implemented in SusHi 1.6.0 is a slightly refined version of the
one described above. In particular, this implies that the NNLO µR dependence is exact,
since it is fully determined by the exact NLO cross section σNLO. On the other hand,
the renormalization-scale dependence at N3LO derived from the RGE procedure inherits
whatever approximations were made (or not made) at NNLO. Thus, the result obtained
through the standard and the RGE procedure are usually not identical. For example, if one
keeps the full x-dependence at NNLO, one also obtains the full x-dependence of the µR-terms
at N3LO with the RGE procedure, while the standard procedure would only provide them
in the soft expansion.

3.5. Effective Lagrangian - dimension-5 operators

Let us start from a particular well-defined theory TH; in the current version of SusHi, this
could be the SM, a general 2HDM, the MSSM, or the NMSSM. We may now include additional
gauge invariant dimension-5 operators to TH which couple the neutral Higgs bosons of TH

to gluons in the following way9:

L = LTH +

N1∑
i=1

αs
12πv

c5,1iH1iG
a
µνG

a,µν +

N2∑
i=1

αs
8πv

c5,2iH2iG
a
µνG̃

a,µν . (24)

Here, LTH is the Lagrangian of the initial theory TH, Ga
µν is the gluonic field strength tensor

with color index a and Lorentz indices µ and ν, and G̃a
µν ≡ εµνρσG

a,ρσ is its dual (ε0123 = +1).
As usual, αs is the strong coupling constant and v the SM Higgs-boson vacuum expectation

value, which we express in terms of Fermi’s constant v = 1/
√√

2GF . N1 and N2 are the
numbers of CP-even and CP-odd Higgs bosons of the theory, respectively. The particles
themselves are generically denoted by H1i and H2i (cf. also Table 1 below).

The c5,ni denote dimensionless Wilson coefficients which are understood as perturbative
series in αs:

c5,ni =
3∑

k=0

(αs
π

)k
c

(k)
5,ni . (25)

9CP-even and -odd scalars, which couple through dimension-5 operators only, can also be studied, see
the description after Eq. (31).

13



<htype> SM 2HDM/MSSM NMSSM

11 H h H1

12 − H H2

13 − − H3

21 A A A1

22 − − A2

Table 1: Assignment of the SusHi input parameter SUSHI(2)=<htype> to the type of Higgs boson in the
various models. A dash (−) means that the assignment is not meaningful; it will lead to a fatal error in
SusHi.

The normalization is such that c
(0)
5,ni = 1 corresponds to the LO contribution of an infinitely

heavy up-type quark u′ with SM-couplings.10 The NLO term for a CP-even Higgs in this
case would be c

(1)
5,11 = 11

4
, etc. In a theory that obeys naturalness, on the other hand, the

order of magnitude of the Wilson coefficients would be c5,ni = O(v/Λ), where Λ is a scale of
physics beyond the SM.

The basic structures for the implementation of the effective Lagrangian in Eq. (24) have
already been present in earlier versions of SusHi. The reason for this is that the very same
operators result from integrating out the top quark or heavy squarks and gluinos from LTH.
In fact, the NNLO corrections due to top quarks, as well as the NLO corrections due to top,
stop, and gluino are evaluated on the basis of these dimension-5 operators.

Thus, SusHi 1.6.0 does not implement any new results; it simply re-uses previously avail-
able functions and subroutines in order to extend the gluon-fusion amplitudes to take
into account the effect of the additional terms in Eq. (24). The numerical values for the
coefficients c5,ni in Eq. (24) are specified through the newly introduced Block DIM5.

For example, within the MSSM,

Block DIM5

11 1.00000000E-04 # c5h0

12 4.00000000E-05 # c5H0

21 -3.00000000E-07 # c5A0

corresponds to c
(0)
5,11 ≡ c

(0)
5,h = 10−4, c

(0)
5,12 ≡ c

(0)
5,H = 4 · 10−5, and c

(0)
5,21 ≡ c

(0)
5,A = −3 · 10−7.

Note that SusHi calculates the cross section of only one particular type of Higgs boson per
run (defined in SUSHI(2)), see Ref. [7]. Correspondingly, only the pertinent entry in Block

DIM5 will have an effect on the result, the other entries will be ignored. The corrections at
higher orders are specified by setting DIM5(<k><ni>) for coefficients c

(k)
5,ni with k ≥ 1. At

NLO the contribution of an infinitely heavy up-type quark u′ is thus reproduced by setting
DIM5(11)=1 and DIM5(111)=2.75.

The scale dependence of the dimension-5 Wilson coefficient can be derived from the non-

10“SM-like” refers to the interaction Lagrangian Lint = −(mu′/v)H1iū′u
′ for a CP-even, and Lint =

−i(mu′/v)H2iū′γ5u
′ for a CP-odd Higgs boson.
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renormalization of the trace anomaly term [10, 95–98],

µ2 d

dµ2
β(αs)GµνG

µν ≡ 0 , (26)

where β(αs) is given in Eq. (20). Since also αsc5,1iGµνG
µν must be scale invariant, this

immediately leads to

c5,1i(µR) = c5,1i(µφ)
(β/αs)|µR
(β/αs)|µφ

. (27)

Perturbatively, we can write this as

c5,1i(µR) =
∑
n≥0

n∑
l=0

(
αs(µR)

π

)n
c

(n,l)
5,1i (µφ)llRφ , (28)

with lRφ = 2 ln(µR/µφ),

c
(n,0)
5,1i = c

(n)
5,1i(µφ) , c

(n,n)
5,1i = 0 ∀ n (29)

and, through NNLO,

c
(2,1)
5,1i = β0c

(1,0)
5,1i − β1c

(0,0)
5,1i ,

c
(3,2)
5,1i = β0(β0c

(1,0)
5,1i − β1c

(0,0)
5,1i ) , c

(3,1)
5,1i = 2(β0c

(2,0)
5,1i − β2c

(0,0)
5,1i ) .

(30)

Setting DIM5(0)=1 makes SusHi evolve the Wilson coefficient perturbatively, i.e. according
to Eq. (28); this is the default. On the other hand, one can also employ Eq. (27) for the
evolution by setting DIM5(0)=2, similar to the implementation in Higlu [10]. The evolution
can also be switched off (i.e. c5,1i(µR) = c5,1i(µφ)) by setting DIM5(0)=0. The RGE procedure
described in the previous section is only applicable for DIM5(0)=1. SusHi will assume the
Wilson coefficient provided in the input Block DIM5 to be renormalized at µφ = Mφ. The
corresponding values at µR (where µR is given in SCALES(1)) are output in Block DIM5OUT.

Moreover, the inclusion of dimension-5 operators is not compatible with the inclusion of 1/Mt

terms, i.e. SusHi stops if GGHMT(1)6=0 or GGHMT(2)6=0. The LO dependence including quark-
mass effects must not be factored out, i.e. SusHi only accepts the setting GGHMT(-1)=-1, in
order not to reweight the dimension-5 operator contributions with top-quark mass effects.

We note that through the Block FACTORS, which existed also in earlier versions, SusHi

allows to alter the couplings of the Higgs boson to quarks and squarks. Thus, for example
additional factors κt and κb for the Higgs-boson coupling to top and bottom quarks can be
chosen. In case of the SM the corresponding Lagrangian then takes the following form for
the CP-even Higgs boson H11 = H

LTH 3 −κt
√

2
Mt

v
tt̄H − κb

√
2
Mb

v
bb̄H . (31)
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It is therefore easily possible to perform an analysis as presented in Ref. [99] in SusHi, where
the dependence of the gluon-fusion cross section on κt and c5,1i is discussed. We will later
also focus on this dependence for a very boosted Higgs taking into account the bottom-
quark induced contribution in addition. Moreover, by setting the couplings to quarks and
gauge bosons to zero through the settings in Block FACTORS and SUSHI(7)=0, respectively,
also CP-even or -odd scalars beyond the implemented models can be studied. We will
demonstrate this option by providing inclusive cross sections for a scalar with a mass of
750 GeV at the 13 TeV LHC in Section 5.4.

4. Heavy-quark annihilation

In this section we shortly comment on the implementation of the total inclusive NNLO

Higgs-production cross sections through heavy-quark annihilation, Q′Q̄→ φ, as described in
Ref. [30]. Its activation is through the presence of the Block QQH in the input file, which
has the following form:

Block QQH

1 <parton1 >

2 <parton2 >

11 <v*y>

12 <mu>

Here, <parton1>∈ {1, . . . , 5} denotes the initial-state quark flavor Q
′, and <parton2>∈

{−1, . . . ,−5} the initial-state anti-quark flavor Q̄. <v*y> is the Q
′
Q̄φ coupling in the MS

scheme at scale <mu>= µ/GeV, normalized such that the SM value of the qq̄H coupling is
<v*y>= mq(µ)/GeV. For further details regarding the implementation in SusHi 1.6.0 and
results we refer to Ref. [30].

If the Block QQH is provided, SusHi will not calculate the gluon-fusion cross section. The
calculation of heavy-quark annihilation cross sections is also compatible with cuts on the
(pseudo)rapidity or transverse momentum of the Higgs boson up to O(α3

s), controlled
through the settings in Block DISTRIB. Also pT distributions (DISTRIB(1)=1) can be re-
quested. Since all quarks are assumed massless in this approach, the underlying theory is
chirally symmetric. Therefore the results for a scalar and a pseudo-scalar Higgs are iden-
tical and the setting of SUSHI(2) is irrelevant. Note also that the collision of an up-type
quark with a down-type anti-quark (or vice versa) implies that φ carries an electric charge.
The only model dependence of the Q

′
Q̄φ cross section as calculated by SusHi is through

the setting of the Yukawa coupling in QQH(11), such that a calculation in the SM-mode is
sufficient (SUSHI(1)=0), unless the Higgs mass should be obtained from some external code
like FeynHiggs.

Other parameters of the Q
′
Q̄φ calculation are determined by the same input values as they

are used for the bb̄φ cross section when no input Block QQH is present. In particular, the
perturbative order of Q

′
Q̄φ is controlled through SUSHI(6)=n, where n = 1, 2, 3 results in

the LO, NLO, or NNLO prediction, respectively, and the renormalization and factorization
scales (relative to Mφ) are defined through SCALES(11) and SCALES(12), respectively.
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5. Numerical results

This section demonstrates the newly implemented features of SusHi 1.6.0 with the help
of exemplary numerical results. We start with a discussion of the convergence of the soft
expansion at individual perturbative orders up to N3LO, proceed with top-quark mass ef-
fects in the effective field-theory approach, move to the RGE procedure to determine the
renormalization-scale dependence, before we use these features to provide a prediction for
the cross section of the SM Higgs boson. Finally, we study the effect of higher dimensional
operators to the transverse momentum pT of the SM Higgs boson and provide inclusive
cross sections for a CP-even scalar with a mass of 750 GeV. For numerical results concerning
heavy-quark annihilation, we refer the reader to Ref. [30].

If not stated otherwise, the setup for the numerical evaluations is as follows: The LHC

center-of-mass energy is set to
√
s = 13 TeV, and the SM Higgs mass to MH = 125 GeV. We

employ PDF4LHC15 [100–106] as parton distribution functions (PDF), where the (n)nlo mc

Monte Carlo is used by default, and the (n)nlo 100 Hessian sets if noted. Since N3LO

PDF sets are not available, we use the NNLO set also for the evaluation of the N3LO terms.
Nevertheless, in the N3LO calculation, we evolve αs at 4-loop level; using 3-loop running of
αs instead, the final prediction of the cross section for a SM Higgs boson changes at the level
of 10−5. The remaining input follows the recommendation of the LHC Higgs cross section
working group, see Ref. [107]. The on-shell charm-quark mass is set to mOS

c = 1.64 GeV,
which is the upper edge of the range given in Ref. [107]. The central scale choice for the
renormalization and factorization scale is µR = µF = MH/2.

Note that the results of Sections 5.1–5.3 are obtained for a SM Higgs boson. However,
SusHi 1.6.0 allows to take into account the effects of N3LO contributions in the heavy-top
limit and 1/Mt terms to the NNLO contributions for any CP-even Higgs boson in the imple-
mented models, as long as the mass of the Higgs boson under consideration is sufficiently
light, i.e. below 2Mt. Effects of dimension-5 operators (see Section 3.5 and 5.4), on the other
hand, can be taken into account for any of the neutral Higgs bosons of the implemented
models and CP-even and -odd scalars, which couple through dimension-5 operators only.

5.1. Soft expansion up to N3LO

In this section, we study the behavior of the expansion around the “soft limit”, x → 1, for
the gluon-fusion cross section, see also Section 3.1. For the sake of clarity, top-quark mass
effects beyond LO will be neglected in this section, although the LO cross section including
the full top-quark mass dependence is factored out to all orders (i.e. we set GGHMT(-1)=3,
see Section 3.3). In order to discuss the convergence of the soft expansion, we define the
quantity (

δσ

σ

)NnLO

=
σtNnLO,N,a

σt
Nn−1LO

− 1 with n ≥ 1 , (32)

where σtNnLO has been introduced in Eq. (5). Through O(αn+1
s ), the exact x-dependence is

taken into account. In the highest-order terms, i.e. the terms of order O(αn+2
s ) in σtNnLO,N,a,

17



0 5 10 15
0.0

0.5

1.0

1.5

2.0

EFT a = 0

a = 2

a = 1

a = 3

(δ
σ
/σ

)N
L
O

N
0 5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

EFT a = 0

a = 2

a = 1

a = 3

(δ
σ
/σ

)N
N
L
O

N(a) (b)

Figure 2: (a) Convergence of the NLO cross section as a function of N for a = 0, 1, 2, 3 in Eq. (5); (b)
Convergence of the NNLO cross section as a function of N for a = 0, 1, 2, 3 in Eq. (5). In both figures the
colors depict a = 0 (red), a = 1 (blue), a = 2 (green), a = 3 (black). The black, dashed line corresponds to
the exact result in the heavy-top limit. The results are obtained for a SM Higgs with MH = 125 GeV at the√
s = 13 TeV LHC.

the soft expansion is applied according to Eq. (5) up to order (1 − x)N with N ≤ 16. All
studies in this subsection were performed without matching the cross section to the result
at x→ 0, i.e., we set GGHMT(n·10)=0 for n = 1, 2, 3.

At infinite order of the soft expansion, the value of the parameter a in Eq. (5) is obviously
irrelevant. If only a finite number of terms in the expansion is available, the dependence of
the result on the parameter a has been studied in detail in Ref. [22]. It was shown that the
soft expansion seems to converge particularly well for small, non-negative values of a. The
differences among the final results for different values of a are smaller at higher orders, as
we demonstrate subsequently. One observes that the µF-dependent terms of σ̂ at NLO are
polynomial in x, which means that they are identical to their soft expansion for a = 0 once
it is taken to sufficiently high order (N = 3, to be specific). This is no longer true with the
choice a > 0. Let us add that, since the µR-dependent terms at NLO are proportional to
δ(1− x), they are the same whether the soft expansion is applied or not.

Figs. 2 (a) and (b) show the convergence of the soft expansion at NLO and NNLO, respec-
tively. Both figures also include the result without soft expansion as dashed black line, i.e.
where σtNnLO,N,a is replaced by σtNnLO in Eq. (32). At NLO, the case a = 0 appears to be
clearly preferable; for larger value of a, the soft expansion is further away from the exact
x-dependence. For N ≥ 9, the deviation for a = 0 is less than 2.5%.11 It decreases down to
1.3% at N = 16, while the result for a = 1 is still more than 7% off.

At NNLO, convergence of the soft expansion appears to be a bit faster, with no significant

11Note that this refers to the absolute NLO correction term in pb; with respect to the total cross section,
this translates into an approximation which is better than 1.6%.
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Figure 3: (a) Convergence of the N3LO cross section as a function of N for a = 0, 1, 2, 3 in Eq. (5); (b)
Convergence of the gg channel of the N3LO as a function of N for a = 0, 1, 2, 3 in Eq. (5). A zoom for larger
values of N is provided in the upper right corner of the figures. In both figures the colors depict a = 0 (red),
a = 1 (blue), a = 2 (green), a = 3 (black). The results are obtained for a SM Higgs with MH = 125 GeV at
the
√
s = 13 TeV LHC.

impact of the terms higher than (1−x)6 both for a = 0 and a = 1. For N ≥ 9, the result for
a = 0 (a = 1) approximates the exact x-dependence of the correction term to better than
5% (2%) (translating into about 0.9% (0.3%) for the total cross section).

Fig. 3 (a) depicts the convergence of the soft expansion for the cross section at N3LO. Above
N = 11, the spread among the curves for a = 0, 1, 2, 3 is of the order of 3% of δσ/σ,
which means about 0.1% of the total cross section. For completeness, the same plot for the
dominant gg channel alone is shown in Fig. 3 (b). Note that in this case, we only include the
gg channel also in the denominator of Eq. (32). At lower orders of the soft expansion, the
curve for a = 0 behaves less smoothly compared to a ≥ 1; at sufficiently high orders though,
all results can be considered consistent with each other at the level of accuracy indicated
above.

5.2. Top-quark mass effects through NNLO and matching to the high-energy limit

In this section we comment on top-quark mass effects beyond the heavy-top limit, which
can be taken into account in SusHi up to 1/M10

t at LO and NLO and up to 1/M6
t at NNLO.

As already pointed out in Section 3.3, a naive expansion of the partonic cross section in
1/Mt breaks down. Thus, in this section, we apply the matching to the high-energy limit as
described in Section 3.3, i.e. we set GGHMT(n·10)=1 for n = 1, 2, 3.

Recall that the matching procedure of Refs. [24, 25] requires the soft expansion of the partonic
cross section. Thus before discussing the relevance of the top-quark mass effects, it is
necessary to study the convergence of the soft expansion also for these terms. For the result
at NLO we can compare to the result in the heavy-top limit, but also to the exact top-quark
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Figure 4: (a) Convergence of the NLO cross section as a function of N for a = 0, 1, 2, 3 in Eq. (5) with
top-quark mass effects up to 1/M8

t ; (b) Convergence of the NNLO cross section as a function of N for
a = 0, 1, 2, 3 in Eq. (5) with top-quark mass effects up to 1/M4

t . In both figures the colors depict a = 0 (red),
a = 1 (blue), a = 2 (green), a = 3 (black). The black, dashed line corresponds to the exact result in the
heavy-top limit, the black, dot-dashed line to the exact result with full top-quark mass dependence (only
known at NLO). The results are obtained for a SM Higgs with MH = 125 GeV at the

√
s = 13 TeV LHC.

mass dependence; the difference between these two results is about 1%. At NNLO, on the
other hand, only a comparison to the heavy-top limit is possible. The results are shown
in Fig. 4, including terms through 1/M8

t at NLO, and through 1/M4
t at NNLO (for the gg

and the qg channels also 1/M6
t terms are implemented in SusHi but provide a negligible

contribution, see Fig. 6 below). Following Eq. (32), we keep the exact x-dependence one
order below to allow for a better comparison with the figures of Section 5.1. At NLO, one
observes a nice convergence of the soft expansion to the exact result, provided a = 0. Terms
beyond (1 − x)10 have only negligible effects on the final result in this case. At NNLO,
convergence of the soft expansion is significantly slower, but the available number of terms
in this expansion seems sufficient for a prediction of the mass effects with permille level
accuracy, provided that a = 0 is indeed the most reliable choice for the parameter defined
in Eq. (5). Fig. 5 shows the N3LO result with matching to the high-energy limit as described
in Section 3.3. The convergence of the soft expansion as a function of N is slightly worse
compared to the result without matching, but shows a similar behaviour as the results at
NLO and NNLO depicted in Fig. 4. The correction at N = 16 is comparable to the result
without matching, see Fig. 3.

Let us now discuss the top-quark mass effects at different orders 1/MP
t in more detail, while

applying the soft expansion through (1−x)16 with a = 0 (see Eq. (5)). The result is presented
in Fig. 6, where the relative difference(

δσ

σ

)
Mt

=
σP
σhtl

− 1 (33)
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Figure 5: (a) Convergence of the N3LO cross section as a function of N for a = 0, 1, 2, 3 in Eq. (5); (b)
Convergence of the gg channel of the N3LO as a function of N for a = 0, 1, 2, 3 in Eq. (5). A zoom for larger
values of N is provided in the upper right corner of the figures. In both figures the colors depict a = 0
(red), a = 1 (blue), a = 2 (green), a = 3 (black). In contrast to Fig. 3 the N3LO result is matched to the
high-energy limit. The results are obtained for a SM Higgs with MH = 125 GeV at the

√
s = 13 TeV LHC.

to the heavy-top limit at the corresponding perturbative order is shown. At NLO, σP is
obtained by including terms of order 1/MP

t in the partonic cross section and matching it
to the x → 0 limit (i.e. GGHMT(1)=P , GGHMT(10)=1, GGHSOFT(1)={1,16,0}), while σhtl is
the heavy-top limit at NLO (i.e. GGHMT(1)=GGHMT(10)=0, GGHSOFT(1)={0,0,0}). In both
cases, the value for the cross section provided by SusHi in XSGGHEFF(1) is used.

At NNLO, we use Eq. (4) which corresponds to the SusHi output SUSHIggh(1), neglecting
bottom- and charm-quark, and electroweak effects (FACTORS(1)=FACTORS(3)=SUSHI(7)=0).
Furthermore, we make sure that only the genuine NNLO effects of the 1/Mt terms are shown,
by fixing the approximation used at O(α3

s); specifically, we set GGHMT(1)=6, GGHMT(10)=1,
and GGHSOFT(1)={1,16,0}, both for σP and σhtl. For the O(α4

s)-terms, we apply the anal-
ogous settings of the NLO case described above. I.e., we include terms of order 1/MP

t in σP
(modulo the restriction to 1/M4

t for the pure quark channels, see above), and match them
to the x→ 0 limit, while we apply the usual heavy-top limit for σhtl.

The results are shown in Fig. 6, together with the relative difference of the exact NLO cross
section to its heavy-top limit (black dashed). The points at P = 0 illustrate the effect of
using the soft expansion combined with matching to the result at x = 0, as opposed to
keeping the full x dependence (without matching). Both at NLO and NNLO, this effect is
obviously larger than the genuine 1/Mt-terms. This underlines that, as long as one works
in a heavy-top approximation, which is strictly valid only for x > M2

φ/(4M
2
t ), the full

x-dependence is not necessarily an improvement w.r.t. the soft expansion, in particular if
additional information like the x→ 0 limit is available.
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Both at NLO and NNLO, the 1/Mt terms exhibit a nice convergence behavior. However,
the observation at NLO is that, while the 1/M0

t result almost exactly reproduces the full
mass dependence, including higher-order mass effects moves the approximation away from
the exact result. Thus, we cannot expect that their inclusion at NNLO leads to an improved
result w.r.t. the heavy-top limit. Nevertheless, we believe that their overall behavior allows
to derive an upper bound on the top-mass effects to the heavy-top limit of the order of
1% [24, 25, 27].

5.3. Cross section prediction for the SM Higgs boson and scale dependence

Having discussed the top-quark mass terms to the NLO and NNLO cross section in the
heavy-top limit and the convergence of the soft expansion, we can finally provide a pre-
diction for the cross section of the SM Higgs boson including its scale uncertainty. In this
section we make use of the Hessian PDF sets PDF4LHC15 (n)nlo 100. Following the argu-
ments of the preceding sections, the best prediction of SusHi is obtained with the following
settings: use the perturbative result through N3LO, i.e. set SUSHI(5)=3; at each order of
the effective-theory result, apply the soft expansion through (1 − x)16 with a = 0, i.e. set
GGHSOFT(n)={1,16,0} for n ∈ {1, 2, 3}; take into account top-quark mass terms to the
predictions of the NLO and NNLO cross sections in the heavy-top limit through the settings
GGHMT(n)=4 for n ∈ {1, 2}, i.e. 1/M4

t terms are taken into account at NLO and NNLO;
match to the high-energy limit x→ 0 at NLO, NNLO, and N3LO, i.e. set GGHMT(n·10)=1 for
n = 1, 2, 3. The choice of a = 0 is motivated through the reproduction of the correct scale
dependence at NLO and the observations in Section 5. Also note that for all predictions in

22



the effective field-theory approach, we factor out the full top-quark mass dependence, i.e.
GGHMT(-1)=3. Finally, we include the electroweak correction factor according to Eq. (4), i.e.
we set SUSHI(7)=2. The exact NLO cross section of Eq. (4) contains the contributions from
the three heaviest quarks: top, bottom, and charm. The numbers can be reproduced with
the input file SM-N3LO best.in in the /example folder of the SusHi 1.6.0 distribution.

With this setup, we obtain
NNLO : σ = 43.55 pb± 4.44 pb(µR) ,

+N3LO : σ = 45.20 pb± 1.61 pb(µR) ,

+1/Mt effects at NLO and NNLO

+matching (x→ 0) at NLO, NNLO and N3LO : σ = 45.80 pb± 1.87 pb(µR) ,

+electroweak corrections : σ = 48.28 pb± 1.97 pb(µR) ,

(34)

where the uncertainty±∆(µR) only takes into account the renormalization-scale dependence.
Here, ∆(µR) is the maximum deviation of the cross section within the interval µR/MH ∈
[1/4, 1] from the value at µR = MH/2. Each line of Eq. (34), including the uncertainty,
has been obtained in a single run of SusHi, which takes a few seconds on a modern desktop
computer. The final result is perfectly consistent within its uncertainties with the prediction
48.58 pb± 1 pb(µR) given in Ref. [22] and the result 48.1 pb± 2.0 pb (without resummation)
employing the Cacciari-Houdeau Bayesian approach [108] to estimate higher unknown orders
presented in Ref. [18]. We note that the result of Ref. [22] was computed with the NNLO PDF

set at all orders, whereas we employ the NLO PDF set for the NLO terms in Eq. (4). If we
employ PDF4LHC15 nnlo 100 instead at all orders, we obtain 48.37 pb. Other uncertainties
need to be added as described in Refs. [6, 22].

Running the input file SM-N3LO best.in also generates a file including the renormalization-
scale dependence. Its content is shown in Fig. 7 (a). The dependence clearly reduces succes-
sively at each order from LO to N3LO. Note that at each order we follow Eq. (4) and thus
include the electroweak correction factor beyond LO. The flat behavior around µR = MH/2
leads to a highly asymmetric scale variation around the central value, suggesting a sym-
metrization of the corresponding uncertainty band as done in Eq. (34). As explained in
Section 3.4, the µR dependence obtained through the RGE procedure at NnLO is as pre-
cise as the calculation at Nn−1LO, while in the standard procedure (by manually varying
SCALES(1)), its precision is determined by the NnLO calculation. We show the result of
the standard procedure in Fig. 7 (b) (black lines). In addition, the µ = µF dependence for
µR = MH/2 (blue) and the combined µ = µF = µR dependence (red) are shown. In each
case, the solid and dashed line corresponds to setting a = 0 and a = 1 in Eq. (5), respec-
tively. The differences between these two cases, as well as between the standard and the
RGE procedure are small, except for small values of µ. We also observe that the behaviour
at low values of µ in Fig. 7 (b) is dependent on the soft expansion and the matching per-
formed at NLO and NNLO. However, within the interval µ ∈ [MH/4,MH] which we use for
the uncertainty determination, the agreement is good.
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Figure 7: (a) LO (red, dotted), NLO (green, dashed), NNLO (blue, dotdashed) and N3LO (black, solid) gluon-
fusion cross section in pb (see Eq. (4)) as a function of µR/MH (obtained in a single run); (b) Best prediction
cross section in pb as a function of µF/MH (together with µR = MH/2) (blue) and µF/MH = µR/MH (red)
and µR/MH (together with µF = MH/2) (black). Each curve is shown twice, once for a = 0 (solid) and
a = 1 (dashed) in the soft expansion at N3LO. The dotted, thin black line depicts the N3LO result from (a).
Both figures are obtained for a SM Higgs with MH = 125 GeV at the

√
s = 13 TeV LHC.

5.4. Dimension 5 operators

In order to study the effect of the dimension-5 operators, it is helpful to consider the fraction
of events where the SM Higgs boson is produced at transverse momenta above a certain
value pcut

T . We define

R(pcut
T ) =

1

σtot
σ(pcut

T ) with σ(pcut
T ) =

∫
pT>p

cut
T

dpT
dσ

dpT
, (35)

where σ ≡ σni(c5,ni) denotes the cross section for the production of a Higgs boson Hni within
the theory defined by Eq. (24), and follow the numerical setup described at the beginning of
Section 5. However, we do not take into account charm-quark and electroweak contributions
and choose a pT -dependent renormalization and factorization scale for the result presented
in Fig. 10. If not stated otherwise, the relative Yukawa couplings to top- and bottom quarks
are set to one, i.e. we discuss the specific model TH with additional dimension-5 operator.
In the subsequent NLO analysis, we set c

(1)
5 = 11

4
c

(0)
5 , i.e. our dimension-5 operator assumes

the same (rescaled) NLO correction as for the top-quark induced Wilson coefficient.

The ratio R(pcut
T ) of Eq. (35) is shown in Fig. 8 for the SM Higgs boson as a function of

(a) pcut
T for various values of c

(0)
5,H , and (b) c

(0)
5,H for various values of pcut

T . Similarly, Fig. 9
shows the ratio for a CP-odd Higgs boson with mass 125 GeV. For Fig. 8 (a) and Fig. 9 (a),
σtot is chosen such that each R(pcut

T ) is normalized to its NLO inclusive cross section. For
Fig. 8 (b) and Fig. 9 (b), σtot = σ(pcut

T ) for c5 = 0 to ensure that all curves start at one.
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Figure 8: (a) Ratio of R(pcutT ) with different c
(0)
5,H (see figure) and R(pcutT ) with c5,H = 0 as a function of pcutT

in GeV; (b) Ratio of R(pcutT ) and R(pcutT ) with c5,H = 0 as a function of c
(0)
5,H for different pcutT (see figure).

In both figures we set c
(1)
5,A = 11

4 c
(0)
5,A. Both figures are obtained for a CP-even SM Higgs with MH = 125 GeV

at the
√
s = 13 TeV LHC.

The minima, which are clearly visible around pcut
T = 50 GeV, are induced by the negative

interference with the bottom-quark induced contributions to gluon fusion, which turns into
a positive interference for higher values of pcut

T . Accordingly, these minima affect also the
dependence on c5 in Fig. 8 (b) and Fig. 9 (b), i.e. the lowest curve is obtained for a value
of pcut

T around 40 GeV. Apart from the impact on the inclusive cross section, the point-like
interaction encoded in the coefficient c5 thus distorts the shape of the pT distributions with
respect to the loop-induced massive top- and bottom-quark contributions, as expected.

Following the study performed in Ref. [99], we now work out the dependence of the cross

section with a minimal cut on pT on the factors κt and c
(0)
5,H for the SM Higgs boson12. In

addition, we include the dependence on the bottom-quark induced contribution through the
factor κb, since the latter is non-negligible for pcut

T < 200 GeV. For this study we also choose
pT -dependent renormalization and factorization scales µR = µF =

√
M2

H + p2
T/2, which is

possible through the setting SCALES(3)=1. We define σ̃(pcut
T ), which just includes the top-

quark induced contribution, i.e. we set κt = 1 and c5,H = κb = 0, and then perform a fit
of

σ(pcut
T )

σ̃(pcut
T )

= (κt + c
(0)
5,H)2 + δκtc

(0)
5,H + ε(c

(0)
5,H)2 + δbtκbκt + δbgκbc

(0)
5,H + εbκ

2
b , (36)

where we set c
(1)
5,H = 11

4
c

(0)
5,H and δ and ε are defined identically to Ref. [99]. In addition,

however, we include the bottom-quark induced contribution, which is understood as pure

12Our c
(0)
5,H corresponds to κg in Ref. [99].
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Figure 9: (a) Ratio of R(pcutT ) with different c
(0)
5,A (see figure) and R(pcutT ) with c5,A = 0 as a function of pcutT

in GeV; (b) Ratio of R(pcutT ) and R(pcutT ) with c5,A = 0 as a function of c
(0)
5,A for different pcutT (see figure).

In both figures we set c
(1)
5,A = 11

4 c
(0)
5,A. Both figures are obtained for a CP-odd Higgs with mA = 125 GeV at

the
√
s = 13 TeV LHC.

correction entering through δbg, δbt, and εb. The values for δ and ε coincide at the percent level
with the values of Table 1 in Ref. [99], where for completeness we note that our calculation
also includes the qq induced contribution to gluon fusion. For our numerical setup we show
the dependence of the five correction factors on the lower cut pcut

T in Fig. 10.

As it can be seen in Fig. 10 (a), the larger the lower cut pcut
T , the more the degeneracy

between κt and c5,H , which are indistinguishable in the inclusive cross section, is broken.
On the other hand Fig. 10 (b) points out that for low pcut

T < 200 GeV bottom-quark induced
contributions should also be taken into account. The interferences of the latter with the
top-quark induced contributions on the one hand and with the effective coupling c5,H on the
other hand, encoded in δbt and δbg, are identical only for low pcut

T . We note that the cross
section prediction for the SM Higgs boson of course should include the full correction by
bottom quarks given by δbt and εb. For completeness we partially also reproduced Fig. 2 of
Ref. [99], which illustrates the disentanglement of the degeneracy between κt and c5,H .

As a last example we discuss the calculation of the gluon-fusion cross section for an arbi-
trary scalar, which couples to gluons through an effective operator c

(0)
5 = 1 only. Moti-

vated by the background deviation in the diphoton channel at 750 GeV in both LHC ex-
periments [109, 110], we choose the mass of the scalar to be mX = 750 GeV. We pick an
input file for the SM, set the SM Higgs-boson mass to MH = 750 GeV, include a dimension-5
operator through DIM5(11)=1, but set the SM Higgs-boson couplings to quarks and gauge
bosons to zero in Block FACTORS and through SUSHI(7)=0. The results are shown in Tab. 2.
We include the renormalization scale uncertainty ±∆(µR), which was obtained simultane-
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Figure 10: (a) Correction factors δ, ε as a function of the lower cut pcutT in GeV and in addition (b) δbg,
δbt and εb as a function of pcutT . Both figures are obtained for a SM Higgs with MH = 125 GeV at the√
s = 13 TeV LHC.

ously. Again ∆(µR) is the maximum deviation of the cross section within the interval
µR ∈ [1/4, 1]mX and µR ∈ [1/2, 2]mX for the central scale choices µR = µF = mX/2 and
µR = µF = mX , respectively. For this purpose the Wilson coefficient is evolved pertur-
batively, i.e. DIM5(0)=1. At N3LO the soft expansion is performed up to (1 − x)16 with
a = 0. The matching to the high-energy limit, x → 0, is not applied. Similar to the SM

Higgs boson we observe a good convergence of the perturbative series with a renormalization
scale uncertainty of less than ±1.3 and ±2.9% at N3LO QCD for the central scale choices
µR = µF = mX/2 and µR = µF = mX , respectively.

σ(gg → X)[fb] µR = µF = mX/2 µR = µF = mX

LO 246.2± 52.8 185.8± 36.0
NLO 368.7± 43.1 316.3± 39.1

NNLO 410.0± 19.1 384.9± 24.0
N3LO 414.4± 5.3 407.2± 11.7

Table 2: Inclusive gluon-fusion cross section in fb for a CP-even scalar with mass mX = 750 GeV, which

couples to gluons through c
(0)
5 = 1 only. The results are given at different orders NkLO, k = 0, 1, 2, 3, in QCD

for the
√
s = 13 TeV LHC for two renormalization and factorization scale choices. The depicted uncertainty

is the renormalization-scale uncertainty ±∆(µR).
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6. Conclusions

We presented the new features implemented in version 1.6.0 of the code SusHi. Aside from
the implementation of heavy-quark annihilation, many new features aim at the improve-
ment of the gluon-fusion cross-section prediction and its associated uncertainty estimate. In
particular, SusHi now provides the soft expansion around the threshold of Higgs production
and the matching to the high-energy limit for CP-even Higgs bosons, at NLO, NNLO and
N3LO QCD. Top-quark mass effects beyond the usual infinite top-mass limit can be taken
into account at NLO and NNLO. We investigated the relevance of these effects for a SM-like
Higgs boson with a mass of 125 GeV and provide a prediction of the corresponding gluon-
fusion cross section at the LHC with a center-of-mass energy of 13 TeV. Both for CP-even and
-odd Higgs bosons, SusHi now calculates the renormalization-scale uncertainty simultane-
ously to the calculation of the gluon-fusion cross section at the central scale. Moreover, the
effects of dimension-5 operators can be studied in any model currently supported by SusHi.
We showed how the degeneracy between the top-quark mass contribution and a point-like
dimension-5 operator contribution can be broken at large values of the transverse momentum
of a Higgs boson with mass 125 GeV. The implementation of arbitrary dimension-5 opera-
tors is also particularly suited for the study of new CP-even and -odd scalars beyond the
implemented models. We showed the convergence of the perturbative series for the inclusive
gluon-fusion cross section of a scalar with mass 750 GeV at the 13 TeV LHC.

Our description includes examples how the user can control the new features through the
setting of blocks in the input file of SusHi. Example input files are contained in the /example
folder of the current SusHi release to be found at [8].
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