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Abstract

We present FlexibleEFTHiggs, a method for calculating the SM-like Higgs pole
mass in SUSY (and even non-SUSY) models, which combines an effective field theory
approach with a diagrammatic calculation. It thus achieves an all order resumma-
tion of leading logarithms together with the inclusion of all non-logarithmic 1-loop
contributions. We implement this method into FlexibleSUSY and study its prop-
erties in the MSSM, NMSSM, E6SSM and MRSSM. In the MSSM, it correctly
interpolates between the known results of effective field theory calculations in the
literature for a high SUSY scale and fixed-order calculations in the full theory for
a sub-TeV SUSY scale. We compare our MSSM results to those from public codes
and identify the origin of the most significant deviations between the DR programs.
We then perform a similar comparison in the remaining three non-minimal models.
For all four models we estimate the theoretical uncertainty of FlexibleEFTHiggs and
the fixed-order DR programs thereby finding that the former becomes more precise
than the latter for a SUSY scale above a few TeV. Even for sub-TeV SUSY scales,
FlexibleEFTHiggs maintains the uncertainty estimate around 2–3GeV, remaining a
competitive alternative to existing fixed-order computations.
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1 Introduction
A hallmark of renormalizable supersymmetric (SUSY) theories is that quartic scalar cou-
plings are not free parameters, but fixed in terms of gauge and (in some models) Yukawa
couplings. As a result, predictions of the Standard Model (SM)-like Higgs mass are re-
stricted to a limited range and precise calculations are very important for testing SUSY
models. Since the discovery of a 125 GeV Higgs boson at the LHC [1, 2], the need for
precise predictions within SUSY models has increased in several ways. First, the measure-
ment is already far more precise than existing theory predictions, motivating significant
improvements in both theory predictions and their associated uncertainty estimates. Sec-
ond, the non-observation of new physics at the LHC, may imply heavier masses of new
particles, so predictions should be reliable both for light or heavy SUSY masses. Third,
the heavy Higgs boson mass provokes naturalness questions that motivate non-minimal
SUSY models and improving precision Higgs mass calculations there.

Here we present FlexibleEFTHiggs, a new method for calculating the Higgs mass
that can improve the precision of the Higgs mass prediction in minimal and non-minimal
SUSY models. This method uses effective field theory (EFT) techniques, which improve
the precision when the SUSY masses are much heavier than the electroweak (EW) scale.
However, FlexibleEFTHiggs also includes terms which are important at low SUSY scales,
previously only included in fixed-order calculations. This hybrid approach combines the
virtues of both worlds to give precise predictions at both high and low SUSY scales. We
also present an extensive analysis of the remaining theory uncertainty and discuss in detail
the differences to other calculations, shedding light on the theory uncertainties of existing
calculations. The method and uncertainty estimates are applied to the MSSM and three
non-minimal models, the NMSSM, the E6SSM, and the MRSSM.

The fixed-order and EFT approaches have both been used extensively in the literature,
for a complete picture, see e.g. the recent review [3]. In a fixed-order, or Feynman dia-
grammatic computation, a perturbative expansion is performed to a specified order in the
gauge or Yukawa couplings. In the MSSM, the dominant 2-loop corrections were added
long ago [4–15]. Recent progress for the MSSM includes incorporating electroweak gauge
couplings [16], a genuine calculation of leading 3-loop effects [17, 18], and momentum-
dependent 2-loop contributions [19–21]. Many public codes for MSSM Higgs mass cal-
culations are available, see e.g. [22–26]. There are also dedicated calculations and public
codes for the NMSSM, see e.g. [25–30]. For any user-defined model, SARAH/SPheno per-
forms an automatic 2-loop calculation at zero momentum in the gauge-less limit [31, 32].

Fixed-order calculations are particularly reliable when the new particle masses are
around the EW scale. If the new physics scale is too high, large logarithms appear at
each order in perturbation theory, and the result can suffer from a large truncation error.
Recently, therefore, Refs. [30,33,34] combined fixed-order calculations with the resumma-
tion of the leading and next-to-leading logarithms without double counting, reducing the
theory uncertainty at high SUSY masses.

EFT calculations use a matching-and-running procedure. In the simplest case, all non-
SM particles are integrated out at some high SUSY scale. The running SM parameters
at the high scale are then determined by matching, run down to the EW scale using
renormalization group methods, and the Higgs mass is computed at the weak scale in the
SM. Since the early works in this approach [35–41], developments include the analytical
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evaluation of 3-loop terms [42], next-to-next-to-leading logarithm (NNLL) accuracy [34,
43–45], non-SM EFTs potentially for additional thresholds [44,46–50]. The RGEs can be
solved either numerically as in this work or perturbatively as done to two loops [38–41]
and three loops [42] (see also Appendix B). Public programs implementing this EFT-
type calculation (for MSSM only) are SusyHD [45], FlexibleSUSY/HSSUSY [51] and the
MhEFT [52].

As discussed e.g. in Ref. [45], the disadvantage of pure EFT-type calculations is that
they miss non-logarithmic contributions that are suppressed by powers of the SUSY mass
scale already at the tree-level and 1-loop level. Hence, the theory uncertainty increases
strongly if the SUSY masses are close to the EW scale.

FlexibleEFTHiggs is an EFT calculation with specially chosen matching conditions,
such that the Higgs mass calculation is exact at the tree-level and 1-loop level. This
ensures that the theory uncertainty remains bounded at both high and low SUSY scales,
as we will show. We have implemented FlexibleEFTHiggs into FlexibleSUSY [26], a
spectrum generator generator for BSM models based on SARAH [53–58] and SOFTSUSY
[23,25] so that this method can be used in a huge variety of models. The level of precision
currently implemented is 1-loop mass matching and 3-loop running in the SM. Currently
a limiting assumption is that the SM is the correct low-energy EFT at the EW scale and
all non-SM particles are integrated out at a heavy scale.

This paper is structured as follows: In Section 2 we give an overview of the pure EFT
and the fixed-order approaches and describe the FlexibleEFTHiggs method in more detail.
In Section 3 we apply FlexibleEFTHiggs to the MSSM and compare the results with those
from publicly available MSSM spectrum generators. In addition, we analyse the origin of
the most significant deviations between the DR fixed-order calculations in FlexibleSUSY,
SOFTSUSY and SPheno. We then present several possibilities to estimate the theo-
retical uncertainty of the Higgs mass prediction in the DR fixed-order approaches and in
FlexibleEFTHiggs. In Section 4 we summarize and combine the uncertainty estimates and
give an order of magnitude for the SUSY scale above which we expect FlexibleEFTHiggs
to lead to a more precise prediction than the DR fixed-order programs. In Sections 5–7
we apply FlexibleEFTHiggs to the NMSSM, E6SSM and the MRSSM and perform an
uncertainty estimation. We conclude in Section 8.

2 Procedure of the calculation
The new FlexibleEFTHiggs approach presented here is an EFT-type calculation of the
SM-like Higgs mass in the MSSM or any other non-minimal SUSY or BSM model, where
we assume the Standard Model is a valid EFT. FlexibleEFTHiggs is implemented into
FlexibleSUSY [26], a C++ and Mathematica framework to create modular spectrum
generators for SUSY and non-SUSY models. Before introducing FlexibleEFTHiggs, we
describe the SM and MSSM to fix our notation and then describe fixed-order and “pure
EFT” calculations implemented in several public programs all of which use the DR scheme.
There are also very accurate calculations in the on-shell renormalization scheme, for ex-
ample FeynHiggs [6, 19, 22, 33, 59–62] and NMSSMCALC [29, 63, 64], but we will not
go into the details of the on-shell calculations. In the following we use the programs
FlexibleSUSY 1.5.1, SOFTSUSY 3.6.2, SARAH 4.9.0, SPheno 3.3.8, FeynHiggs 2.12.0,
SusyHD 1.0.2 and NMSSMTools 4.8.2, if not stated otherwise.
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2.1 The Standard Model and its minimal supersymmetric exten-
sion

The Standard Model is invariant under local gauge transformations of the group,

GSM = SU(3)C × SU(2)L × U(1)Y , (1)

where the gauge couplings associated with SU(3)C , SU(2)L and U(1)Y are g3, g2 and
g1, respectively, with g1 under the SU(5) GUT normalization. Sometimes it is more
convenient to write expressions in terms of the U(1)Y gauge coupling, which we denote
gY =

√
3/5 g1. As usual, we also use e2 = g2Y g

2
2/(g

2
Y + g22), αe.m. = e2/4π and αs = g23/4π.

The spontaneous breakdown of electroweak symmetry SU(2)L×U(1)Y → U(1)e occurs
when the coefficient of the bilinear term in the Higgs potential,

V (φ) = µ2|Φ|2 + λ|Φ|4, (2)

is negative. This causes the neutral component of the Higgs field, Φ, which is a SU(2)L
doublet, to develop a vacuum expectation value (VEV), v =

√
−µ2/(2λ). The Standard

Model fermions are the left handed SU(2)L quark and lepton doublets Qi and Li, and
the right handed SU(2)L singlets for up-type and down-type quarks and charged leptons,
uRi, dRi, eRi. They obtain mass through their Yukawa interactions with the Higgs field,

LYukawa
SM = (Yu)ij Qi · Φ† uRj + (Yd)ij Qi Φ dRj + (Ye)ij Li Φ eRj + h.c., (3)

when the neutral Higgs field develops a VEV. Here i, j denote generation indices, and
we define the SU(2)L dot product, A · B := A1B2 − A2B1. To simplify the notation we
denote the third generation Yukawa couplings as yt, yb, yτ which are the largest singular
values of Yu, Yd, Ye, respectively.

The minimal supersymmetric extension of the Standard Model (MSSM) has the su-
perpotential,

WMSSM = µ Ĥu · Ĥd + (Yu)ij Q̂i · Ĥu û
c
j + (Yd)ij Q̂i · Ĥd d̂

c
j + (Ye)ij L̂i · Ĥd ê

c
j, (4)

where all superfields appear with a hat. The chiral superfields have the GSM quantum
numbers

Q̂ : (3,2, 1
6
), ûc : (3̄,1,−2

3
), d̂c : (3̄,1, 1

3
), L̂ : (1,2,−1

2
), êc : (1,1, 1),

Ĥd : (1,2,−1
2
), Ĥu : (1,2, 1

2
),

(5)

where the first and second symbol in the parentheses denotes the representation of the
corresponding superfield with respect to SU(3)C and SU(2)L and the third component
is the hypercharge in standard normalization. The neutral components of the up-type
Higgs field, Hu, and down-type Higgs field, Hd, develop the VEVs, vu/

√
2 and vd/

√
2,

respectively. As usual we define,

v =
√
v2u + v2d, tan β =

vu
vd
, (6)

where v ≈ 246GeV. The soft breaking Lagrangian is given by

Lsoft
MSSM = −1

2

[
M1

¯̃B0B̃0 +M2
¯̃WW̃ +M3

¯̃gg̃
]
−m2

Hu
|Hu|2 −m2

Hd
|Hd|2 − [BµHu ·Hd + h.c.]
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−
[
Q̃†i (m

2
Q)ijQ̃j + d̃†Ri(m

2
d)ij d̃Rj + ũ†Ri(m

2
u)ijũRj + L̃†i (m

2
L)ijL̃j + ẽ†Ri(m

2
e)ij ẽRj

]
+
[
(Tu)ijQ̃i ·Huũ

†
Rj + (Td)ijQ̃i ·Hdd̃

†
Rj + (Te)ijL̃i ·Hdẽ

†
Rj + h.c.

]
. (7)

In the following, we trade the soft-breaking trilinear couplings for the customary Xf

parameters as

(Yf )ij(Xf )ij = (Tf )ij − (Yf )ij

{
µ∗ tan β
µ∗ cot β

}
, for

{
f = d, e,
f = u,

(8)

with the appearing matrices given in the super-CKM basis [65, 66]. For the third gener-
ation fermions we define Xt := (Xu)33, Xb := (Xd)33, Xτ := (Xe)33. The gauginos have
the following GSM quantum numbers:

B̃ : (1,1, 0), W̃ : (1,3, 0), g̃ : (8,1, 0). (9)

In the scenarios studied in the following we set the dimensionful running DR superpoten-
tial and soft-breaking parameters to the common value of the SUSY scale, MSUSY, if not
stated otherwise:

(m2
f )ij(MSUSY) = δijM

2
SUSY, (f = Q, u, d, L, e)

Mi(MSUSY) = MSUSY, (i = 1, 2, 3)

µ(MSUSY) = MSUSY,

m2
A(MSUSY) =

Bµ(MSUSY)

sin β(MSUSY) cos β(MSUSY)
= M2

SUSY,

(Xf )ij(MSUSY) = 0.

(10)

Sometimes we will go beyond the last equation and keep Xt as a free parameter and set
it to a non-zero value.

In our numerical evaluations we will choose the numerical values αMS,SM(5)
e.m. (MZ) =

1/127.944 for the running fine structure constant, Mt = 173.34GeV, Mτ = 1.777GeV,
MZ = 91.1876GeV for the top quark, τ lepton and Z boson pole masses, andmMS,SM(5)

b (mb) =
4.18GeV for the running b-quark mass, if not stated otherwise.

2.2 Fixed-order calculations in FlexibleSUSY, SOFTSUSY and
SARAH/SPheno

We now discuss the fixed-order approach for calculating the Higgs mass that is imple-
mented in FlexibleSUSY, SOFTSUSY and SARAH/SPheno. There are two major steps
in this calculation:

1. Find all DR parameters at the SUSY scale.

2. Calculate the Higgs pole mass from the DR parameters.

The first step is rather complicated and involves an iteration. One complication is
that some parameters may be set at a higher-scale and the values at the SUSY scale only
obtained through the RG running, though here we will simply set all non-SM parameters
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at the SUSY scale. Nonetheless this is still non-trivial because some of the DR parameters
must be chosen to fulfill the EWSB equations or are determined by experimental data.
For the EWSB conditions we will fix the soft Higgs masses in this work, which is an
option available in all of the codes we use. The VEV, v is fixed from the DR running
mZ , leaving tan β as a free parameter at the SUSY scale. The gauge couplings, g1, g2 and
g3 and Yukawa couplings, Yu, Yd and Ye can be extracted from data. This can be done
using the measured values of the running MS electromagnetic and strong couplings, the
Weinberg angle or an equivalent quantity, and the quark and lepton masses. Specifically
FlexibleSUSY, SOFTSUSY and SPheno all use the following,

αDR,SUSY
s (MZ) =

α
MS,SM(5)
s (MZ)

1−∆αSM
s (MZ)−∆αSUSY

s (MZ)
, (11)

mDR,SUSY
Z (MZ) =

√
M2

Z + Re ΠT,SUSY
ZZ (M2

Z), (12)

where MZ is the Z-boson pole mass, ΠT
ZZ(p2) is the transverse part of the 1-loop Z self

energy and α
MS,SM(5)
s (MZ) is the MS strong coupling in the SM with 5-flavours. Using

these and further similar relations, all DR gauge couplings and EWSB parameters of the
fundamental SUSY theory can be determined at the low scale Q = MZ . The Yukawa cou-
plings are determined similarly from the running vacuum expectation values and fermion
masses, but specific corrections beyond the 1-loop level are taken into account. Most
importantly, the running top quark mass in FlexibleSUSY and SOFTSUSY is given by

mDR
t = Mt + Re

[
Σ̃

(1),S
t (Mt)

]
+Mt Re

[
Σ̃

(1),L
t (Mt) + Σ̃

(1),R
t (Mt)

]
+Mt

[
Σ̃

(1),qcd
t (mDR

t ) +
(

Σ̃
(1),qcd
t (mDR

t )
)2

+ Σ̃
(2),qcd
t (mDR

t )

]
, (13)

where Mt denotes the top pole mass, Σ̃
(1),S
t (p), Σ̃

(1),L
t (p) and Σ̃

(1),R
t (p) denote the scalar,

left-handed and right-handed part of the 1-loop top self energy without SM-QCD contribu-
tions, evaluated at p = Mt, and Σ̃

(1,2),qcd
t (mDR

t ) denote SM-QCD self energy contributions,
with a factor /p removed, evaluated at p = mDR

t [67, 68]:

Σ̃
(1),qcd
t (mDR

t ) = − g23
12π2

[
5− 3 ln

(
(mDR

t )2

Q2

)]
, (14)

Σ̃
(2),qcd
t (mDR

t ) = − g43
4608π4

[
396 ln2

(
(mDR

t )2

Q2

)
− 1476 ln

(
(mDR

t )2

Q2

)
− 48ζ(3)

+ 2011 + 16π2(1 + ln 4)

]
. (15)

Eq. (13) is evaluated at the scaleMZ and yields the running top mass mDR
t (MZ). SPheno

treats the top quark mass differently and requires

mDR
t = Mt + Re

[
Σ̃

(1),S
t (mDR

t )
]

+mDR
t Re

[
Σ̃

(1),L
t (mDR

t ) + Σ̃
(1),R
t (mDR

t )
]

+mDR
t

[
Σ̃

(1),qcd
t (mDR

t ) + Σ̃
(2),qcd
t (mDR

t )
]
. (16)
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We will later comment on this difference between Eqs. (13) and (16). Both these equations
determine the running top mass implicitly and are solved by an iteration, resulting in
slightly different solutions.

In the second step, the Higgs boson mass is computed numerically by solving

0 = det

[
p2δij − (m2

φ)ij + Re Σφ,ij(p
2)− tφ,i

vi

]
, (17)

where m2
φ denotes the CP-even Higgs tree-level mass matrix, Σφ and tφ are the DR-

renormalized CP-even Higgs self energy and tadpole, respectively, and v1 ≡ vd, v2 ≡ vu.
In the MSSM, FlexibleSUSY, SOFTSUSY and SPheno use the full 1-loop self energy
and 2-loop corrections of the order O((αt + αb)

2 + (αt + αb)αs + α2
τ ) from [9, 11–14].

For non-minimal SUSY models, FlexibleSUSY uses the full 1-loop self energy (optionally
extended by the 2-loop MSSM or NMSSM contributions). SARAH/SPheno uses the 2-
loop self energy in the gauge-less limit and at zero momentum in any given model [31,32].

2.3 Pure EFT calculation in SusyHD and FlexibleSUSY/HSSUSY

EFT calculations have the virtue of resumming potentially large logarithms of the generic
heavy SUSY mass scale beyond any finite loop level. The calculation is based on the
approximation that all non-SM particles, i.e. all SUSY particles and the extra Higgs
states, have a common heavy mass of order MSUSY, and that the SM is the correct low-
energy EFT below MSUSY.

The determination of DR parameters and the computation of the Higgs mass is then
done in three steps, carried out iteratively, until convergence is reached:

1. Integrate out all SUSY particles at the SUSY scale, and determine the SM parameter
λ at MSUSY by a matching of the SUSY theory to the SM.

2. Use the SM renormalization group equations to run the SM parameters down to the
EW scale.

3. Match the SM parameters to experiment at the EW scale, and compute the Higgs
pole mass.

In the pure EFT approach, the threshold corrections at the SUSY scale are expressed
as perturbative functions of the SM parameters at MSUSY, dimensionless (combinations
of) SUSY parameters and at most logarithms of SUSY masses. No terms suppressed by
powers of MSUSY appear. The known 1- and 2-loop threshold correction to λ from the
MSSM read [44,45]

λpure EFT =
1

4

(
g2Y + g22

)
cos2 2β + ∆λ(1) + ∆λ(2), (18)
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(4π)2∆λ(1) = 3(ySMt )2
[
(ySMt )2 +

1

2

(
g22 −

g2Y
3

)
cos 2β

]
ln

m2
Q3

Q2
match

+ 3(ySMt )2
[
(ySMt )2 +

2

3
g2Y cos 2β

]
ln

m2
U3

Q2
match

+ 6(ySMt )4X̃t

[
F̃1 (xQU)− X̃t

12
F̃2 (xQU)

]
+

3

4
(ySMt )2X̃t cos 2β

[
g2Y F̃3 (xQU) + g22F̃4 (xQU)

]
− 1

4
(ySMt )2X̃t cos2 2β

(
g2Y + g22

)
F̃5 (xQU)

+O(g4Y , g
4
2, g

2
Y g

2
2),

(19)

where X̃t = X2
t /(mQ3mU3) and xQU = mQ3/mU3 . In Eqs. (18)–(19) gY , g2 and ySMt

denote the Standard Model electroweak gauge and top Yukawa couplings at the SUSY
scale, respectively, all defined in the MS scheme. With Qmatch we denote the matching
scale, which we identify with MSUSY, if not stated otherwise. The loop functions F̃i(x) as
well as ∆λ(2) can be found in [44, 45]. Since λ is directly expressed in terms of running
SM parameters and fundamental SUSY input parameters, no other threshold corrections
are needed.

This pure EFT approach to calculate the Higgs pole mass is implemented in SusyHD
[45] and FlexibleSUSY/HSSUSY [51].1 HSSUSY is now part of the public FlexibleSUSY
distribution and has the same essential features and method of SusyHD within a C++
framework. Both programs use the same definition2 (18) for λ and 3-loop RGEs to evolve
λ to the Mt scale [69, 70]. At the Mt scale, both programs determine the SM gauge
and Yukawa couplings by matching to experiment. HSSUSY extracts the SM gauge
and Yukawa couplings at the 1-loop level from α

MS,SM(5)
s (MZ), αMS,SM(5)

e.m. (MZ) and GF

and quark and lepton masses using the approach described in [26], thereby taking into
account 1-loop and leading 2-loop corrections. For the extraction of the top Yukawa
coupling also the known 2-loop and 3-loop QCD corrections are taken into account [71,
72]. SusyHD includes several further subleading corrections, e.g. fit formulas for 2-loop
threshold corrections to the EW gauge couplings [69]. Finally, the Higgs pole mass is
calculated at the scale Mt. HSSUSY employs full 1-loop and leading 2-loop corrections
of O(αtαs + α2

t ); SusyHD uses a numerical fit formula approximating the full 2-loop
corrections.

2.4 EFT calculation in FlexibleEFTHiggs

The calculation of FlexibleEFTHiggs follows the same logic as the EFT calculation of
SusyHD and HSSUSY. The difference lies in the choice of the matching conditions. In

1The FlexibleSUSY/HSSUSY model file has been written by Emanuele Bagnaschi, Georg Weiglein
and Alexander Voigt and will be presented and studied in more detail by these authors in an upcoming
publication.

2In HSSUSY we used analytical Mathematica expressions for the 2-loop threshold corrections ∆λ(2)

of O(αtαs) provided by the authors of [44] and O(α2
t ) provided by the authors of SusyHD.
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FlexibleEFTHiggs, λ(MSUSY) is determined implicitly by the condition

(MSM
h )2 = (MMSSM

h )2 at Qmatch, (20)

i.e. by the condition that the lightest CP-even Higgs pole masses, computed in the effective
and the full theory at the SUSY scale in fixed-order perturbation theory in the MS/DR
schemes, agree. The Standard Model Higgs pole mass is calculated at the scale MSUSY as

(MSM
h )2 = (mMS,SM

h )2 − Re ΣMS,SM
h ((MSM

h )2) + tMS,SM
h /v, (21)

where mMS,SM
h is the running MS Higgs mass in the Standard Model, ΣMS,SM

h is the MS-
renormalized Standard Model Higgs self energy and tMS,SM

h is the corresponding tadpole.
Using this, the quartic Higgs coupling in the SM reads

λ(MSUSY) =
1

v2

[
(MMSSM

h )2 + Re ΣMS,SM
h ((MSM

h )2)− tMS,SM
h

v

]
. (22)

In the current implementation, only 1-loop self energies and tadpoles are used in this
matching condition; in the future it is planned to take into account 2-loop corrections.

Likewise, the gauge couplings and the Z-boson and top quark mass, are implicitly
fixed by the conditions

αDR,SUSY
x (MSUSY) =

αMS,SM
x (MSUSY)

1−∆αSUSY
x (MSUSY)

, x = e.m., s, (23)

(mMS,SM
Z )2 − Re ΠT,SM

ZZ (M2
Z) = (mDR,SUSY

Z )2 − Re ΠT,SUSY
ZZ (M2

Z), (24)

mMS,SM
t − Re

[
Σ̃

(1),SM
t (Mt)

]
−mMS,SM

t

[
Σ̃

(1),SM-qcd
t (mMS,SM

t ) + Σ̃
(2),SM-qcd
t (mMS,SM

t )
]

= mDR
t − Re

[
Σ̃

(1)
t (Mt)

]
−mDR

t

[
Σ̃

(1),qcd
t (mDR

t ) + Σ̃
(2),qcd
t (mDR

t )
]
,

(25)

at the SUSY scale, where Σ̃
(1)
t again denote the 1-loop top self-energy contributions with-

out the SM QCD part, and Σ̃
(1,2),SM-qcd
t (mMS,SM

t ) denote SM QCD self energy contributions
in the MS scheme, with a factor /p removed, evaluated at p = mMS,SM

t [71]:

Σ̃
(1),SM-qcd
t (mMS,SM

t ) = − g23
12π2

[
4− 3 ln

(
(mMS,SM

t )2

Q2
match

)]
, (26)

Σ̃
(2),SM-qcd
t (mMS,SM

t ) = − g43
4608π4

[
396 ln2

(
(mMS,SM

t )2

Q2
match

)
− 1452 ln

(
(mMS,SM

t )2

Q2
match

)

− 48ζ(3) + 2053 + 16π2(1 + ln 4)

]
.

(27)

Here quantities with the superscript SM are SM quantities, renormalized in the MS scheme.
Three-loop RGEs are used to run the SM parameters to the EW scale, as is done in
SusyHD and FlexibleSUSY/HSSUSY. The matching to experimental quantities is done
at Q = MZ in exactly the same way as for FlexibleSUSY/HSSUSY described in the
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previous subsection, except that only 2-loop SM-QCD corrections are used to extract
ySMt (MZ). Finally, the Higgs pole mass is calculated in the Standard Model at the scale
Mt using the full MS-renormalized 1-loop self energy. The crucial advantage of this choice
of matching conditions is that the resulting Higgs boson mass is exact at the 1-loop level
and contains resummed leading logarithms to all orders. In particular, FlexibleEFTHiggs
does not neglect terms of O(v2/M2

SUSY). This is in contrast to the pure EFT approach,
where already at the tree-level terms suppressed by powers of MSUSY originating from the
mixing of the light with the heavy Higgs are missing. Thus, FlexibleEFTHiggs has no
“EFT uncertainty” [45], which is present in SusyHD and HSSUSY.

For completeness and illustration, the equivalence of the two choices of matching
conditions, Eqs. (19) and (22), up to power-suppressed terms is proven analytically at the
1-loop level in Appendix A.

3 Numerical results in the MSSM and differences be-
tween calculations

In the present section we discuss numerical results for the lightest, SM-like Higgs boson in
the MSSM. The results of FlexibleEFTHiggs are compared to the results of SOFTSUSY,
SARAH/SPheno and SusyHD and variants of the original FlexibleSUSY. We focus
mainly on analysing the differences between the calculations and their origins as well as
on discussing theory uncertainties.

3.1 MSSM for Xt = 0

3.1.1 Results of FlexibleEFTHiggs and fixed-order calculations

We begin with the special case of zero DR stop mixing, Xt(MSUSY) = 0, and a common
valueMSUSY for all DR SUSY mass parameters, as defined in Eqs. (10). In this special case
it is known that the 2-loop threshold corrections ∆λ(2) are numerically very small, and the
leading 2-loop contributions of O(αsαt) even vanish [44]. As a result, FlexibleEFTHiggs
happens to be essentially as accurate as if 2-loop instead of 1-loop threshold corrections
for λ were implemented. Our comparisons to other calculations will therefore be sensi-
tive to differences which do not originate from missing 2-loop threshold corrections but
from other, more subtle effects. Figure 1 compares FlexibleEFTHiggs to SusyHD. It
demonstrates the validity of FlexibleEFTHiggs and shows the numerical impact of the
various different design choices made in FlexibleEFTHiggs and SusyHD. The red solid
line showsMh as a function ofMSUSY for FlexibleEFTHiggs with maximum precision, i.e.
with 1-loop mass matching conditions Eqs. (20)–(25) at the scale MSUSY, 3-loop running
in the Standard Model, 1-loop matching to the known low-energy parameters, including
2-loop QCD corrections to ySMt . The other lines correspond to SusyHD and variants of
FlexibleEFTHiggs, where the SusyHD-like calculation is transformed step by step into
the FlexibleEFTHiggs-like one. We will now explain each step in detail.

• The brown dashed line corresponds to SusyHD with maximum precision. The
brown pluses correspond to FlexibleEFTHiggs, where the calculation of all Standard
Model parameters is performed using the same expressions as in SusyHD. This
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Figure 1: Influence of switching on or off different contributions to the lightest CP-even
Higgs pole mass, Mh, in SusyHD and FlexibleEFTHiggs for tanβ = 5, Xt = 0.

means in particular that the fit formulas of Ref. [69] are used to obtain the running
gauge and Yukawa couplings at the Mt scale. Thus, both programs use 2-loop
threshold corrections to λ(MSUSY) from Eq. (18), 3-loop running in the Standard
Model, calculation of αMS,SM

s (Mt) using 4-loop QCD and 2-loop electroweak running
from MZ to Mt plus 3-loop matching, and calculation of ySMt (Mt) at NNNLO [69].
The two programs agree exactly with each other.3

• The green crosses and the green dash-dotted line correspond to SusyHD and the
modified FlexibleEFTHiggs respectively with only 1-loop matching of λ at the high
scaleMSUSY. The numerical difference from what would result from 2-loop matching
is very small for large MSUSY, namely below 50MeV for MSUSY > 2TeV. This
confirms the statement that the 2-loop threshold correction is negligible for Xt = 0
and a common SUSY mass scale.

• The black dotted line corresponds to replacing the λ-matching, Eq. (18), by the
matching procedure of FlexibleEFTHiggs, Eqs. (20)–(25), except that the equality
of the top pole masses at MSUSY has been required at the tree-level only. The
Higgs pole mass matching is the essential design choice of FlexibleEFTHiggs. The
line converges to the λ-matching curves for large MSUSY, confirming that the two
matching procedures become equivalent forMSUSY →∞. ForMSUSY . 500GeV the
SusyHD-approach becomes unreliable. The difference between the two matching
procedures is formally of O((tree-level, 1-loop) × v2/M2

SUSY). Terms of this order
are ignored in SusyHD, but correctly taken into account in FlexibleEFTHiggs, so
the difference between the two matching procedures is a measure of part of the
theory uncertainty of SusyHD. In Ref. [45] this theory uncertainty was labelled
“EFT uncertainty”, and the numerical result of Figure 1 is compatible with the
uncertainty estimate given in Ref. [45]: For the scenario shown in Figure 1 and
MSUSY > 1TeV the difference is smaller than 200MeV. For MSUSY < 500GeV the
difference can reach up to 3GeV.

3For this reason the FlexibleEFTHiggs version modified in this way might be viewed as a replica of
SusyHD within the C++ framework of FlexibleSUSY.
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• In the blue dashed-double-dotted line the low-scale computation of the running SM
top Yukawa coupling has been changed, and the leading 3-loop QCD terms included
so far have been switched off. Even though the impact on the Higgs mass is formally
of 4-loop order, the resulting numerical difference is rather sizeable, around 600MeV.
The importance of the 3-loop corrections to the top Yukawa coupling was already
stressed in Refs. [45, 69, 73]. The black circles represent the equivalent change in
SusyHD, where the 3-loop QCD corrections to the SM top Yukawa coupling are
switched off. In SusyHD the omission of this 3-loop correction leads to a change of
the same size.

• The red line shows the calculation in FlexibleEFTHiggs. It differs from the blue
dashed-double-dotted line in the following ways: (i) yMSSM

t (MSUSY) is calculated by
matching the top pole mass at the 1-loop level (including 2-loop SM-QCD correc-
tions) at MSUSY using Eq. (25), (ii) Mh is calculated at the scale Mt by numerically
solving Eq. (17) using the full momentum-dependent 1-loop Higgs self-energy, in-
stead of setting the momentum to the MS Higgs mass, p2 = m2

h, as done in SusyHD.
The inclusion of both changes leads to an approximately constant decrease of Mh

of about 1GeV.
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Figure 2: Comparison of predictions for Mh in the MSSM using the EFT
with pole mass matching method (FlexibleEFTHiggs/MSSM), the pure EFT cal-
culation (FlexibleSUSY/HSSUSY and SusyHD) and the diagrammatic calculations
(FlexibleSUSY/MSSM, SARAH/SPheno, SOFTSUSY and FeynHiggs) for tanβ = 5 and
Xt = 0. The green and brown bands show the theory uncertainty as estimated by FeynHiggs
and SusyHD, respectively.

Figure 2 compares the results of FlexibleEFTHiggs and SusyHD/HSSUSY to the fixed-
order results of SOFTSUSY, SARAH/SPheno, and the original FlexibleSUSY. For com-
parison, also the results of FeynHiggs are shown; the differences between the recent ver-
sions of FeynHiggs and other calculations have been discussed e.g. in Refs. [3, 20, 45]. In
line with the discussion of Figure 1, SusyHD and FlexibleEFTHiggs agree up to 0.5GeV
at high MSUSY, but SusyHD deviates more strongly at low MSUSY due to the missing
terms of O((tree-level, 1-loop)× v2/M2

SUSY).
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Figure 2 shows in addition that FlexibleEFTHiggs agrees at low MSUSY with all fixed-
order calculations. This is the consequence of the choice of the pole-mass matching
condition Eq. (20), and it reflects the fact that FlexibleEFTHiggs corresponds to an exact
1-loop calculation plus resummation of higher-loop logarithms.

3.1.2 Theory uncertainty estimations

The comparisons shown in the previous figures allow us to make several observations
about various ways to estimate theory uncertainties. Ref. [45] has divided the theory
uncertainty of SusyHD into three parts, one of which is the “EFT uncertainty” due to
truncating the low-energy EFT at the dimension-4 level (i.e. taking the renormalizable
SM as the EFT). This EFT uncertainty arises from missing power-suppressed terms of
O((tree-level, 1-loop) × v2/M2

SUSY); hence it becomes large for MSUSY . 500GeV. As
mentioned in the context of Figure 1, the choice of the Higgs pole mass matching condition
in FlexibleEFTHiggs avoids this uncertainty by construction. As a consequence, the
difference between SusyHD and FlexibleEFTHiggs at low MSUSY can be regarded as a
measure of the EFT uncertainty of SusyHD.

In FlexibleEFTHiggs the Higgs mass prediction is exact at the 1-loop level due to the
1-loop Higgs pole mass matching condition. At the 2-loop level, power-suppressed as well
as non-power-suppressed (but non-logarithmic) terms are missing; these will be discussed
in the next subsection.

Now we turn to an extensive discussion of the differences between EFT and fixed-
order calculations at high MSUSY, and on the resulting theory uncertainty of the fixed-
order calculations. Figure 2 shows that at high MSUSY, the two fixed-order calculations
of SPheno and FlexibleSUSY/SOFTSUSY deviate significantly from each other, and that
FlexibleSUSY/SOFTSUSY agrees well with the EFT calculations. These differences orig-
inate from ≥ 3-loop terms, which are taken into account differently. For a deeper under-
standing and illustration, we derive the leading 3-loop logarithms for all these approaches:

• The all-order leading-log part of the EFT results of FlexibleEFTHiggs and SusyHD
can be obtained analytically by integrating 1-loop RGEs and using tree-level match-
ing at the high and low scales.

• SPheno, SOFTSUSY and FlexibleSUSY do a fixed-order 2-loop computation of
Mh in the DR-scheme at the scale MSUSY. Once the running parameters at the
scale MSUSY are replaced by their low-energy counterparts via the definitions of
Section 2.2, implicit terms of ≥ 3-loop order are generated. These implicit higher-
order terms are different in FlexibleSUSY/SOFTSUSY and SPheno, because of the
different definitions of the top Yukawa coupling in Eqs. (13), (16), respectively.

The leading logarithms in αs and αt up to 3-loop level obtained in these ways can be
written as

(M2
h)X = m2

h + v̂2ŷ4t

[
12tSκL − 12t2Sκ

2
L

(
16ĝ23 − 3ŷ2t

)
+ 4t3Sκ

3
L∆X

3LLL + · · ·
]
,

∆X
3LLL =


736ĝ43 − 240ĝ23 ŷ

2
t − 99ŷ4t (X = EFT),

736
3
ĝ43 + 144ĝ23 ŷ

2
t − 351

2
ŷ4t (X = FlexibleSUSY/SOFTSUSY),

992
3
ĝ43 + 240ĝ23 ŷ

2
t − 297

2
ŷ4t (X = SPheno),

(28)
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where X denotes the calculational approach (X = EFT denotes FlexibleEFTHiggs or
SusyHD) and κL = 1/(16π2), tS = ln(MSUSY/Mt), v̂ = vSM(Mt), ĝ3 = gSM3 (Mt), ŷt =
ySMt (Mt). We have worked in the large-tan β limit, and the details of this calculation are
shown in Appendix B; for the EFT-case similar analytical results including subleading
logarithms are presented in Refs. [42, 43].

By construction, all codes agree at the 2-loop level, and the EFT calculations contain
the correct 3-loop leading log. However, the implicit 3-loop leading logs of SPheno and
FlexibleSUSY/SOFTSUSY in (28) are both incorrect, and different.4 The analytical
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results show why FlexibleSUSY/SOFTSUSY and SPheno deviate from each other at high
MSUSY. They also make it clear that the difference between FlexibleSUSY/SOFTSUSY
and SPheno should be regarded as part of the theory uncertainty of both programs. In
fact, inspection of the coefficients of the 3-loop leading logs in Eqs. (28) indicates that the
theory uncertainty of both FlexibleSUSY/SOFTSUSY and SPheno could be significantly
larger than their difference. In this sense it is surprising that the EFT results are actually
close to FlexibleSUSY/SOFTSUSY but far away from SPheno in Figure 2. The reason
for this is an accidental cancellation between the O(α2

sαt) terms in Eqs. (28) and formally
subleading terms. This cancellation can be made more obvious, if one expresses Mh in
terms of the Standard Model MS parameters at MSUSY:

(M2
h)X = m2

h + v2y4t

[
12tSκL + 12t2Sκ

2
L

(
16g23 − 9y2t

)
+ 4t3Sκ

3
L∆̄X

3LLL + . . .
]
,

4In Ref. [43], the EFT calculation was compared to “fixed-order calculations”. In that reference,
“fixed-order” was simulated via perturbative truncation of the full EFT result. Hence, even at the 3-loop
order, the “fixed-order” calculations of Ref. [43] always agree with the EFT result. This is different from
the concrete fixed-order calculations implemented in SPheno, SOFTSUSY and FlexibleSUSY, which are
2-loop codes but nonetheless include partial corrections at the ≥ 3-loop level.
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∆̄X
3LLL =


736g43 − 672g23y

2
t + 90y4t (X = EFT),

736g43
3
− 288g23y

2
t +

27y4t
2

(X = FlexibleSUSY/SOFTSUSY),
992g43

3
− 192g23y

2
t +

81y4t
2

(X = SPheno),

(29)

where v = vSM(MSUSY), g3 = gSM3 (MSUSY), yt = ySMt (MSUSY). In the EFT result there is
an accidental, numerical cancellation between the different 3-loop terms which has been
observed and discussed in Refs. [42, 43]. In spite of different numerical coefficients, a
similar cancellation happens in FlexibleSUSY/SOFTSUSY and (to a smaller extent) in
SPheno. As a consequence, the EFT results are closer to the fixed-order ones than what
could be expected.

To highlight this accidentality we show Figure 3, which displays Mh in the three
approaches for different values of αMS,SM(5)

s (MZ). MSUSY is set to 20TeV to amplify the
3-loop leading logarithms. The plot shows that accidentally the fixed-order FlexibleSUSY
and the EFT calculations agree around the true value of αMS,SM(5)

s (MZ) ≈ 0.1184.
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is calculated is varied within [MSUSY/2, 2MSUSY].

After these considerations we turn to the question of estimating the theory uncertainty
of the DR fixed-order calculations. As noted above, the difference between the fixed-
order MSSM calculations in FlexibleSUSY/SOFTSUSY and SPheno is due to a different
treatment of the 3-loop leading logarithms, so it can be regarded as an estimate for part
of the theory uncertainty of the two calculations. On a more general level, we therefore
discuss two ways to estimate the theory uncertainty of these fixed-order calculations:

1. Using known MSSM higher-order results: In the MSSM, we know that the
leading 1-loop contributions are governed by the running top mass mt. On the other
hand the full 2-loop MSSM SUSY-QCD contributions to mt are known [68]. Evaluating
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Eq. (13) at the 2-loop leading log level taking into account the full 2-loop SUSY-QCD
contributions of [68] would shift the running top mass by

∆m
(2)
t (MZ) = −184

9

g43Mt

(4π)4
ln2 MSUSY

MZ

. (30)

Thus, to estimate the theory uncertainty, we can add the term

C1
g43Mt

(4π)4
ln2 MSUSY

MZ

(31)

to the r.h.s. of Eq. (13) and vary the coefficient C1 within the interval [−184/9, 184/9].
This changes the 3-loop leading logarithms in the Higgs boson mass prediction by a
motivated amount. The resulting uncertainty band is shown in red in Figure 4. We find
that this uncertainty band contains both the FlexibleSUSY curve (green dash-dotted line)
and the SPheno curve (turquoise solid line).

2. Generating higher-order terms: Another option is to change the calculation
of yMSSM

t such that changes of higher-order are automatically induced. The different
treatment of yMSSM

t in FlexibleSUSY and SPheno, i.e. using Eq. (13) or (16), provides two
examples. There are further motivated possibilities to define yMSSM

t , namely to employ
either Eq. (13) or Eq. (16) at the renormalization scale MSUSY instead of at MZ . All
four variants to calculate yMSSM

t are equal at the 1-loop level but different at the 2-loop
level, so the resulting Higgs masses differ by 3-loop terms. In Figure 4 we show the four
corresponding Higgs mass predictions. The two new ones are shown as the black dashed
line and the brown dotted line, respectively. We find that the four approaches to calculate
yMSSM
t are distributed within the red uncertainty band. Their differences thus represent
an alternative way to estimate the theory uncertainty from the missing 3-loop leading
logarithms in the fixed-order calculations. We therefore define

∆M
(4×yt)
h = max

y
(i)
t , y

(j)
t ∈

{
y
(13)
t (MZ),y

(16)
t (MZ),y

(13)
t (MSUSY),y

(16)
t (MSUSY)

}
∣∣∣Mh(y

(i)
t )−Mh(y

(j)
t )
∣∣∣ , (32)

where y(13)t (Q) refers to the definition of Eq. (13) and y(16)t (Q) refers to Eq. (16) evaluated
at the scale Q. The advantage of this second way is that it can be applied also in non-
minimal models, where the 2-loop contributions to ySUSYt are unknown.

Another frequently used way to estimate the theory uncertainty is to vary the renor-
malization scale Q at which Mh is calculated and the loop-corrected EWSB conditions
are solved. The variation interval is usually chosen to be [Q0/2, 2Q0], where Q0 is the
default renormalization scale to be used to calculate the Higgs pole mass in the chosen
approach. In the fixed-order programs Q0 = MSUSY is used, while in FlexibleEFTHiggs
we use Q0 = Mt. Figure 5 shows Mh as a function of Q in the MSSM calculated for
tan β = 5, Xt = 0, MSUSY = 2TeV with FlexibleSUSY in the fixed-order approach (left
panel) and with FlexibleEFTHiggs (right panel). The renormalization scale has been
varied within the interval [Q0/2, 2Q0]. In each approach one can see that the sizes of
the resulting upwards and downwards variations of the Higgs pole mass is not equal and
might even be highly non-linear. Due to this effect, we define the uncertainty ∆M

(Q)
h to

be

∆M
(Q)
h = max

Q∈[Q0/2,2Q0]
|Mh(Q0)−Mh(Q)| . (33)
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Figure 5: Illustration of the theory uncertainty estimate ∆M
(Q)
h for the fixed-order calcula-

tions of FlexibleSUSY and SARAH/SPheno (left panel) as well as FlexibleEFTHiggs (right
panel). The blue dashed line showsMh in the MSSM for tanβ = 5, Xt = 0,MSUSY = 2TeV
as a function of the renormalization scale Q. The black vertical error bar is placed at the
default value of the renormalization scale, Q0, and the red horizontal line marks the cor-
responding Higgs pole mass, Mh(Q0). The black error bar and the yellow band show the
resulting uncertainty estimate ∆M

(Q)
h .

Thus, in this scenario we obtain ∆M
(Q)
h = 1.0GeV for the fixed-order approach, and

∆M
(Q)
h = 1.7GeV for FlexibleEFTHiggs. The yellow band in Figure 4 shows the variation

ofMh in the fixed-order approach when Q is varied within the interval [MSUSY/2, 2MSUSY].
By construction, the width of this band, i.e. the magnitude of 2×∆M

(Q)
h is given by

terms of O(3-loop× ln2(MSUSY/MZ)× ln(2)) or O(2-loop× ln(MSUSY/MZ)× ln(2)), where
in the latter case only 2-loop contributions beyond the O((αt+αb)

2+(αt+αb)αs+α2
τ ) can

contribute. This should be contrasted with the magnitude of ∆M
(4×yt)
h from (32), which

is a measure of the leading missing/incorrect terms of O(3-loop× ln3(MSUSY/MZ)). Hence
the two uncertainty estimations are sensitive to different contributions, but particularly
∆M

(Q)
h alone would underestimate the theory uncertainty at high MSUSY.

3.2 MSSM for Xt 6= 0

3.2.1 Results of FlexibleEFTHiggs and fixed-order calculations

Now we turn to the MSSM with Xt 6= 0. The main new aspect is that the 2-loop thresh-
old correction for λ(MSUSY), which is not implemented in FlexibleEFTHiggs, is now non-
negligible. Hence, we can in particular discuss the theory uncertainty of FlexibleEFTHiggs
from these missing non-logarithmic 2-loop contributions. However, our analysis is in-
tended to be more general. It aims to be applicable also to the case of the non-minimal
SUSY models discussed in the subsequent sections, as well as in the future when the
2-loop threshold correction is implemented in FlexibleEFTHiggs. It might also shed light
on the theory uncertainty of existing programs such as SusyHD.

In Figure 6 we show Mh in the MSSM as a function of MSUSY for Xt = −2MSUSY

in the left panel, and Mh as a function of Xt for MSUSY = 2TeV in the right panel, for
some publicly available spectrum generators. The Higgs boson mass is calculated using
FlexibleEFTHiggs (red solid line), FlexibleSUSY (green dash-dotted line), SOFTSUSY
(pink dashed-double-dotted line), SARAH/SPheno (turquoise solid line), FeynHiggs (light
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Figure 6: Comparison of predictions for Mh in the MSSM using the EFT
with pole mass matching method (FlexibleEFTHiggs/MSSM), the pure EFT cal-
culation (FlexibleSUSY/HSSUSY and SusyHD) and the diagrammatic calculations
(FlexibleSUSY/MSSM, SARAH/SPheno, SOFTSUSY and FeynHiggs) for tanβ = 5. The
green and brown bands show the theory uncertainty as estimated by FeynHiggs and
SusyHD, respectively. In the left panel we fix Xt = −2MSUSY and vary MSUSY. In
the right panel we fix MSUSY = 2TeV and vary Xt.

green dash-dotted line) and SusyHD (brown dashed line).
The large difference between SPheno and FlexibleSUSY/SOFTSUSY in these two

figures is again due to the different, incorrect ≥ 3-loop leading logs. As Figure 6 shows,
the difference is increasing with MSUSY, and thus should be regarded as an estimate of
part of the theory uncertainty of SPheno and FlexibleSUSY/SOFTSUSY.

For Xt = 0, SusyHD and FlexibleEFTHiggs differ by around 1GeV, which corre-
sponds mainly to the inclusion of higher-order terms in the matching of yt at MSUSY, to
1-loop terms suppressed by v2/M2

SUSY, which are missing in SusyHD, and to the differ-
ent definition of the running top mass at the low scale. As can be seen in Figure 6, for
Xt 6= 0 the difference between SusyHD and FlexibleEFTHiggs can become larger, due to
the missing 2-loop Mh matching in FlexibleEFTHiggs. Still, in accordance with the non-
logarithmic nature of the 1-loop threshold corrections, the difference between SusyHD
and FlexibleEFTHiggs does not significantly increase with MSUSY.

3.2.2 Theory uncertainty estimations

Now we turn to estimating the theory uncertainty of FlexibleEFTHiggs. As explained
in Section 3.1.2 it has no “EFT uncertainty”, because power-suppressed terms are auto-
matically taken into account up to the 1-loop level. But FlexibleEFTHiggs is missing the
2-loop threshold corrections in its current version, leading to a theory uncertainty. We
propose several methods to estimate the theory uncertainty of Mh in FlexibleEFTHiggs
originating from these missing 2-loop threshold corrections:

1. Using known MSSM higher-order results: Actually the leading MSSM 2-loop
threshold corrections for λ(MSUSY) are known and are of O(αtαs) and O(α2

t ) [44, 45].
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Figure 7: Uncertainty estimates for the fixed-order 2-loop calculations with FlexibleSUSY
and SARAH/SPheno and for FlexibleEFTHiggs. Left panels: fixed-order uncertainty es-
timates of Sec. 3.1.2 using renormalization scale variation, ∆M

(Q)
h (yellow) and from the

different top Yukawa definitions, ∆M
(4×yt)
h (red). Right panels: FlexibleEFTHiggs uncer-

tainty estimations of Sec. 3.2.2 using renormalization scale uncertainty, ∆M
(Q)
h (yellow),

matching scale variation, ∆M
(Qmatch)
h (pink) and the uncertainty from different loop orders

for the top pole mass matching, ∆M
(yt 0L vs. 1L)
h (turquoise). In the top row tanβ = 5 and

Xt = −2MSUSY is used. In the bottom row we set tanβ = 5 and MSUSY = 2TeV.

They have the form

∆λ
(2)
(αtαs)

=
g23(ySMt )4

(4π)4
× C2, ∆λ

(2)

(α2
t )

=
(ySMt )6

(4π)4
× C3, (34)

where the coefficients C2 and C3 depend on Qmatch, Xt/MSUSY and tan β in our common
SUSY mass scale scenario. If one sets Qmatch = MSUSY and variesXt within the reasonably
large interval [−3MSUSY,+3MSUSY] and tan β within [1,∞], the coefficients vary within
C2 ∈ [−314, 231] and C3 ∈ [−6, 489]. These minimal and maximal values for C2 and C3

can be used to estimate the maximal effect of the missing 2-loop threshold corrections
to λ(MSUSY) in FlexibleEFTHiggs by adding the terms (34) to the r.h.s. of Eq. (22).
The uncertainty estimated in this way is shown as the dashed area in the panels on the
r.h.s. of Figure 7. As can also be seen from Figure 6, the variation of C2 and C3 does
not reflect the fact that the 2-loop threshold corrections are negligible for Xt = 0 and
are large for Xt ≈

√
6MSUSY. Therefore, the variation of C2 and C3 certainly leads to

an overestimation of the theory uncertainty of FlexibleEFTHiggs for small values of Xt.
However, one can expect that the theory uncertainty estimated in this way is reasonable
for maximal mixing scenarios.

19



2. Generating higher-order terms: Another option to estimate the uncertainty is
to change the calculation of λ(MSUSY) in FlexibleEFTHiggs such that changes of higher-
order are automatically induced. Here we have two quantities at our disposal, which we
expect to have a sizable impact on the value of λ(MSUSY): (i) the value of yMSSM

t , (ii) the
choice of the renormalization scale, Qmatch, at which λ is calculated.

(i) The dominant 1-loop threshold correction to λ is governed by the top Yukawa cou-
pling. Thus, changing yt by motivated 1-loop terms shifts λ by 2-loop terms. Such
motivated terms can be obtained by switching the yMSSM

t definition at the SUSY
scale, Eq. (25), between the 1-loop level and the tree-level. The differences in yMSSM

t

are sensitive to αs, αt, Xt, and contain logarithmic as well as non-logarithmic terms.
The resulting shift in λ should therefore provide a good estimate of the magnitude
of the actual dominant 2-loop threshold corrections to λ. As an automatic way to
evaluate the theory uncertainty from the missing 2-loop threshold corrections we
propose to define

∆M
(yt 0L vs. 1L)
h =

∣∣∣MFlexibleEFTHiggs
h (y

MSSM,(1)
t )−MFlexibleEFTHiggs

h (y
MSSM,(0)
t )

∣∣∣ , (35)

where the two terms on the r.h.s. correspond to the FlexibleEFTHiggs prediction
using the yMSSM

t (MSUSY) definition (25) either at the 1-loop or at the tree-level.

The turquoise uncertainty band in the panels on the r.h.s. of Figure 7 shows the
variation ofMh by ±∆M

(yt 0L vs. 1L)
h , i.e. the variation from using either the tree-level

or 1-loop top Yukawa coupling. The figures show that this estimated uncertainty
is of the same order as the uncertainty obtained from variation of C2 and C3 for
most SUSY scales. Furthermore, we find that the uncertainty estimate vanishes
for Xt ≈ 0 and is maximal for maximal mixing (Xt ≈ ±

√
6MSUSY). Thus, this

estimated uncertainty reflects the expectation that the missing 2-loop threshold
corrections for λ(MSUSY) are small for vanishing Xt and can be sizable for maximal
mixing.

(ii) By variation of the matching scale Qmatch within the interval [MSUSY/2, 2MSUSY],
the size of logarithmic higher-order contributions to λ(MSUSY) can be estimated.
Varying Qmatch involves (a) RG running of all Standard Model parameters to Qmatch

using 3-loop RGEs, (b) RG running of all MSSM parameters to Qmatch using 2-loop
RGEs and (c) calculation of λ, as well as the MSSM gauge and Yukawa couplings
and vMSSM at the scale Qmatch using Eqs. (20)–(25). Thus, the matching scale
variation is sensitive to missing 2-loop renormalization scale-dependent logarithmic
contributions in the calculation of λ.

The effect of the matching scale variation is shown by the red band on the r.h.s.
of Figure 7. We find that the uncertainty is nearly independent of Xt, which is in
agreement with the expectation: As can be seen from Eq. (71), the renormalization
scale-dependent part of the 1-loop threshold correction, ∆λ(1), is not Xt-dependent.
Furthermore, the β functions of the MSSM parameters gMSSM

Y , gMSSM
2 , tan β, vu and

vd, which determine λ at the tree-level, do not depend on Xt either [74, 75]. For
this reason, the variation of Qmatch is not directly sensitive to Xt-dependent terms.
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Therefore, one can expect that the variation of Qmatch alone is not sufficient to
estimate the theory uncertainty from missing 2-loop threshold corrections.5

Another source of uncertainty in FlexibleEFTHiggs comes from the missing 2-loop con-
tributions to Mh in the SM. As done above, one way to estimate the leading logarithmic
2-loopMh contributions is to vary the renormalization scale Q, at whichMh is calculated,
within the interval [Mt/2, 2Mt]. This uncertainty estimate is shown in form of the yellow
band on the r.h.s. of Figure 7. Comparing all uncertainty bands for FlexibleEFTHiggs, we
find that for this scenario the Higgs mass theory uncertainty is dominated by the missing
2-loop contributions to λ(MSUSY).

4 Combined MSSM uncertainty estimation
In the previous section we discussed many different ways to estimate contributions to the-
ory uncertainties, relevant for existing fixed-order calculations as well as for SusyHD and
FlexibleEFTHiggs. In this section we summarize and combine these various uncertainty
estimates, focusing on FlexibleEFTHiggs and the fixed-order codes (the discussion equally
applies to FlexibleSUSY, SOFTSUSY and SPheno). Figure 8 shows the Higgs pole mass
calculated with FlexibleEFTHiggs and the fixed-order FlexibleSUSY, including estimates
of theory uncertainties. The plots demonstrate that the new approach always has an un-
certainty of around 2–3GeV and becomes more accurate for MSUSY in the few-TeV range.
We now provide the details of the uncertainty estimates.

FlexibleEFTHiggs calculation: Following the classification of the theory uncertain-
ties in Ref. [45], FlexibleEFTHiggs has two basic sources of theory uncertainty: from
missing higher-order corrections in the matching procedure at the high scale (“high-scale
uncertainty”), and from missing higher-order corrections in the Higgs pole mass compu-
tation in the EFT at the low scale (“low-scale uncertainty”).

An important property of FlexibleEFTHiggs is the inclusion of all non-logarithmic 1-
loop contributions toMh due to the special choice of the matching procedure. As discussed
in Section 3, the resulting “EFT uncertainty” discussed in Ref. [45] due to missing power-
suppressed tree-level or 1-loop terms is therefore not present in FlexibleEFTHiggs by
construction.

The high-scale uncertainty of FlexibleEFTHiggs is estimated in two ways, introduced
and discussed in detail in Section 3.1.2:

1. Use of yMSSM
t (MSUSY), which has been obtained from the top pole mass matching

at the SUSY scale either at the tree-level or at the 1-loop level. We denote the
corresponding shift in the Higgs pole mass as ∆M

(yt 0L vs. 1L)
h , as defined in Eq. (35).

2. Variation of the matching scale Qmatch within the interval [MSUSY/2, 2MSUSY]. We
denote the corresponding Higgs pole mass uncertainty estimate by ∆M

(Qmatch)
h , see

Eq. (33).

The low-scale uncertainty is estimated as follows:
5For ∆λ(2) this is no longer the case: The renormalization scale-dependent part of ∆λ(2) depends on

Xt, see Eq. (21) in Ref. [45].
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Figure 8: Predictions for Mh and combined theoretical uncertainty estimates for
FlexibleSUSY and FlexibleEFTHiggs in the MSSM for tanβ = 5. The first three pan-
els show Mh as a function of MSUSY for Xt/MSUSY = 0, −2 and 2, respectively. The last
three panels show Mh as a function Xt for MSUSY = 1TeV, 2TeV and 30TeV, respectively.

3. Variation of the renormalization scale Q, at which the Higgs pole mass is calcu-
lated, in the interval [Mt/2, 2Mt]. We denote the corresponding Higgs pole mass
uncertainty estimate by ∆M

(Q)
h , see Eq. (33).

Since the two high-scale uncertainty estimates 1 and 2 are partially sensitive to the same
higher-order MSSM corrections, we combine ∆M

(yt 0L vs. 1L)
h and ∆M

(Qmatch)
h by taking

the maximum of the two for each parameter point. ∆M
(Q)
h is sensitive to logarithmic

higher-order Standard Model corrections, which is why we add it in quadrature to the
former:

∆MFlexibleEFTHiggs
h =

√(
max

{
∆M

(yt 0L vs. 1L)
h ,∆M

(Qmatch)
h

})2
+
(

∆M
(Q)
h

)2
. (36)

In Figure 8 we find that for small values of Xt this combined uncertainty estimate is of
the order 2GeV for FlexibleEFTHiggs. The uncertainty grows up to around 3GeV for
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maximal mixing. Since FlexibleEFTHiggs is an EFT calculation, its uncertainty does not
depend on the SUSY scale: Even for largeMSUSY ≈ 30TeV the uncertainty is of the order
or below 3GeV. Likewise, because there is no “EFT uncertainty”, the uncertainty does
not grow significantly for low MSUSY.

Fixed-order calculation: The theory uncertainty of the fixed-order calculations arises
from missing higher-order corrections. As described in Section 3.1.2 we propose two
measures of leading missing contributions:

1. Using the four different definitions of yMSSM
t , as described in Section 3.1.2. We

denote the maximum difference between the Higgs masses obtained using these four
definitions as ∆M

(4×yt)
h , see Eq. (32). This is particularly sensitive to the leading

3-loop logarithms governed by the top Yukawa coupling.

2. Variation of the renormalization scale Q, at which the Higgs pole mass is calculated,
within the interval [MSUSY/2, 2MSUSY]. We denote the corresponding Higgs pole
mass uncertainty estimate by ∆M

(Q)
h , see Eq. (33). This is particularly sensitive to

subleading logarithms governed by all couplings of the MSSM.

We have combined these two uncertainty estimates as

∆MFlexibleSUSY
h =

√(
∆M

(4×yt)
h

)2
+
(

∆M
(Q)
h

)2
. (37)

In Figure 8, ∆MFlexibleSUSY
h grows logarithmically with MSUSY as expected. For small

values of Xt and SUSY scales below 1TeV, the combined uncertainty estimate is below
1GeV. For larger SUSY scales and larger Xt values, the uncertainty can grow up to
9GeV.

We remark that further subleading effects, such as finite, non-logarithmic corrections
arising e.g. from going beyond the O((αt + αb)

2 + (αt + αb)αs + α2
τ ) approximation at

the 2-loop level, are not necessarily captured by the estimate (37); hence particularly at
low MSUSY, the true uncertainty of the fixed-order calculations might be larger than this
estimate.

5 Numerical results in the NMSSM
Here we consider the next-to-minimal supersymmetric standard model (NMSSM) [76,77],
where the MSSM superfield content is extended by an extra gauge singlet superfield Ŝ. In
early calculations of higher-order corrections to NMSSM Higgs masses both effective field
theory techniques [78–83] and fixed-order calculations in the effective potential approxi-
mation [84–87] were employed. More recently DR calculations with full 1-loop corrections
[27,88], 2-loop corrections of O(αs(αb + αt)) [27], and finally 2-loop corrections involving
all superpotential parameters were calculated [89]. Recent progress in a mixed on-shell-
DR scheme has also been made, with full 1-loop corrections [63,64] and 2-loop corrections
of O(αsαt) [90].

We assume that there is a Z3 symmetry, which forbids the µ-term so that when the
new scalar singlet, S, develops a VEV and generates an effective µ-term, it solves the µ
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problem of the MSSM. The superpotential is then,

WNMSSM =WMSSM(µ = 0) + λ Ŝ Ĥu · Ĥd +
1

3
κ Ŝ3. (38)

The soft breaking Lagrangian density is,

Lsoft
NMSSM = Lsoft

MSSM(Bµ = 0) + λAλSHuHd +
1

3
κAκS

3 +m2
S|S|2. (39)

The Higgs fields develop VEVs,

〈Hu〉 =
1√
2

(
0
vu

)
, 〈Hd〉 =

1√
2

(
vd
0

)
, 〈S〉 =

1√
2
vs. (40)

Here we implement our new method for predicting the Higgs mass, and our uncertainty
estimates for this and the FlexibleSUSY fixed-order calculation, to the NMSSM. We then
compare our FlexibleEFTHiggs calculation to the predictions using some of the publicly
available software. To keep our analysis simple we set the soft-breaking squared sfermion
mass parameters and gaugino masses toMSUSY, as defined in Eqs. (10), tan β(MSUSY) = 5,
and require that the two additional Yukawa couplings in the NMSSM are equal,

λ(MSUSY) = κ(MSUSY). (41)

We also require that vs is fixed so that µeff = MSUSY, i.e.

vs(MSUSY) =

√
2MSUSY

λ(MSUSY)
. (42)

The new trilinears are fixed to,

Aλ(MSUSY) =
1

λ

(√
2 tan βM2

SUSY

vs(tan2 β + 1)
− κλ vs√

2

)
, Aκ(MSUSY) = −

√
2M2

SUSY

vs
, (43)

where all DR quantities on the right hand side are evaluated at MSUSY. The complicated
expression for Aλ ensures the mass of the MSSM-like CP-odd state, which appears in
the CP-odd mass matrix, is equal to MSUSY. The soft-breaking squared Higgs mass
parameters m2

Hu
,m2

Hd
,m2

S are fixed by the EWSB minimization conditions.
In Figure 9 we compare the NMSSM predictions for the Higgs mass using the FlexibleSUSY

fixed-order calculation and the new FlexibleEFTHiggs calculation. In the top panels
one can see that as in the MSSM the FlexibleSUSY prediction is remarkably close to
FlexibleEFTHiggs. However the uncertainty bands for fixed-order calculation in the left
panels of Figure 9 show that nonetheless this is a coincidence and the true uncertainty of
the fixed-order calculation is much larger. Two different values of the new singlet Yukawa
couplings, λ and κ, are shown and one can see in this case increasing these couplings
reduces the Higgs mass due to increased singlet mixing, but has little impact on the
comparison between the two approaches.

The panels on the right of Figure 9 show the uncertainty estimation bands for the
FlexibleEFTHiggs calculation. By comparing the plots in the middle panel one can see
that asMSUSY is increased, the fixed-order uncertainty rises rapidly while the FlexibleEFTHiggs
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Figure 9: Higgs mass predictions and uncertainty estimates of Sec. 3 applied to the fixed-
order calculations with FlexibleSUSY and to FlexibleEFTHiggs in the NMSSM. The top
row shows the Higgs mass predictions and the uncertainty estimates, the lower two rows
only the uncertainty estimates, as in Fig. 7. The values of the singlet Yukawa couplings are
κ = λ = 0.01 or κ = λ = 0.4, as indicated in the plots. In all panels we have fixed Xt = 0
and tanβ = 5.

uncertainties have only a weak dependence on MSUSY, in line with our expectations and
in agreement with the results obtained in the MSSM.

If we combine these uncertainties in the manner described in Section 4, we find that also
in the NMSSM FlexibleEFTHiggs becomes more precise than the fixed-order calculation
for values ofMSUSY in the few-TeV region. However, by comparing the cases λ = κ = 0.01
and λ = κ = 0.4 (see Figure 10) we find that the precise value of MSUSY at which this
happens depends on the singlet Yukawa couplings.

We now turn to a comparison with the results of FlexibleEFTHiggs and various
public NMSSM codes: the fixed-order FlexibleSUSY calculation, NMSPEC [28] in the
NMSSMTools 4.8.2 package, the next-to-minimal extensions of SOFTSUSY 3.6.2 [25] and
an NMSSM module generated with SARAH 4.9.0 and compiled and run in SPheno 3.3.8.
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Figure 10: Predictions for Mh and combined theoretical uncertainty estimates for
FlexibleSUSY and FlexibleEFTHiggs in the NMSSM, compared with results of other codes.
We choose Xt = 0 and tanβ = 5 in all panels. The top panel shows λ = κ = 0.01 (left),
which is close to the MSSM limit and λ = κ = 0.2 (right). In both cases the situation
is quite similar to the MSSM. Row 2 shows λ = κ = 0.4 (left) and λ = κ = 0.6 (right).
Here we see significant deviation from the MSSM pattern with the SPheno fixed-order cal-
culation, which is due to the same infra-red divergences behind the known Goldstone boson
catastrophe [91–93].

We also include results from a modified version of SARAH/SPheno, which calculates
the top quark Yukawa coupling yNMSSM

t (MZ) using Eq. (13) as is done in FlexibleSUSY
and SOFTSUSY, labeled as SARAH/SPheno FS-like. Here we omit the calculation of
NMSSMCALC [29], but one may see comparisons between NMSSMCALC calculating in
the DR scheme and the other fixed-order codes in Ref. [94]. Note that the SARAH/SPheno
calculations take into account the full 2-loop corrections in the gaugeless limit and effec-
tive potential approximation, while the other fixed-order codes include 2-loop NMSSM
corrections of O((αt+αb)αs) from Ref. [27] but include only MSSM-like 2-loop corrections
of O((αt + αb)

2 + α2
τ ).

In Figure 10 we show the Higgs mass against MSUSY for λ(MSUSY) = κ(MSUSY) ∈
{0.01, 0.2, 0.4, 0.6}. For small λ and κ the results are like in the MSSM. FlexibleEFTHiggs
agrees very well with the fixed-order FlexibleSUSY calculation. Among the fixed-order
codes, SARAH/SPheno FS-like agrees very well with SOFTSUSY and the fixed-order
FlexibleSUSY. Due to the different definition of the top Yukawa coupling, the Higgs mass
calculated with SPheno is slightly higher than all other fixed-order codes; NMSSMTools
is slightly lower. The agreement between all these codes shows in particular that the
specific, non-MSSM-like 2-loop corrections that are only included in SPheno are small.

In contrast, for larger λ = κ & 0.2 both SPheno results (both in its original form
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and in the modified version with the FlexibleSUSY-like top Yukawa coupling definition)
deviate very strongly from all other results for large MSUSY & 2TeV. This effect has not
been discussed in Ref. [94], where only smaller MSUSY were considered. The discrepancy
can be traced back to singularities in the 2-loop effective potential calculation used in
SPheno,6 briefly described in Section 2.3 of Ref. [31]. As also mentioned in this reference,
these singularities are not present in the corresponding MSSM calculations, and also not
present in the other NMSSM codes, since these codes do not take into account NMSSM-
specific 2-loop corrections involving αλ and ακ. These singularities are similar to the
ones related to Goldstone bosons and discussed in Refs. [91, 92], but are related to the
smallness of the physical Higgs boson mass compared to the renormalization scale. As
explained in the mentioned references, such singularities are spurious and appear only
due to the truncation of the perturbation series at fixed order. For this reason we regard
the parameter region with large λ, κ and large MSUSY as outside the range of validity of
the SPheno calculation.7
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Figure 11: As Fig. 10, but for other parameter choices. We fix MSUSY = 10 TeV and
tanβ = 5 and plot Mh against i) (left panel) λ, where κ = λ, Xt = 0 and ii) (right panel)
Xt where κ = λ = 0.01.

The left panel of Figure 11 confirms that FlexibleEFTHiggs and the fixed-order cal-
culations in FlexibleSUSY and SOFTSUSY agree remarkably well for all values of λ
and κ, indicating that these couplings do not disrupt this remarkable numerical can-
cellation amongst the 3-loop logs, which yield results close to the correct ones calcu-
lated using effective field theory techniques. The same cancellation does not take place
in the NMSSMTools calculation and the deviation between this result and fixed-order
FlexibleSUSY gives an indication of the large uncertainty in these approaches. By con-
trast the right panel of Figure 11 shows that as with the MSSM, this cancellation depends
on the value of Xt. The results here are very similar to those of the MSSM, since we are
in the MSSM limit. Interestingly the fixed order calculation of NMSSMTools agrees very
well with FlexibleEFTHiggs when Xt ≈ −

√
6MSUSY.

6We gratefully acknowledge clarifying discussions with the authors of Refs. [31, 32] about these dis-
crepancies and the expected range of validity of the SPheno results.

7Note: our estimation of various sources of uncertainty in the fixed-order calculation cannot account
for this kind of effect. So it is not surprising that the SPheno result lies outside this band.
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6 Numerical results in the E6SSM
We now make a much bigger departure from minimality and consider an E6 inspired
model, with an extra U(1) gauge symmetry and matter filling complete multiplets of the
fundamental 27 representation of E6. Specifically we consider the exceptional supersym-
metric standard model (E6SSM) [95–97] which has previously been shown to have very
heavy sfermions [97, 98] making effective field theory techniques very important for ac-
curately predicting the Higgs mass. In the past 2-loop expressions for the Higgs mass
were obtained [95] by generalising MSSM [40] and NMSSM [82] results from effective
field theory calculations that had been expanded to fixed 2-loop order. This was used in
determining the spectrum [97, 98] and showing consistency with a 125 GeV Higgs [99],
though the accuracy was strictly limited due to the very heavy spectra. A first attempt at
improving precision of calculations in the model was made when full 1-loop threshold cor-
rections for the gauge and Yukawa couplings were calculated [100], with the top Yukawa
threshold corrections having a significant impact on the Higgs mass. With SARAH the
full 1-loop self energy can be calculated for the first time in FlexibleSUSY and SPheno
and both include the option to use NMSSM and MSSM 2-loop corrections, though these
will not be accurate when the exotic couplings are large and must be used with care.
SARAH/SPheno can now calculate full fixed-order 2-loop order corrections.8 Finally, re-
cently when studying the phenomenology of an E6 inspired model [101], SusyHD was
used to resum the logs and obtain the Higgs mass after matching to the MSSM at tree
level.

Here we investigate the impact of FlexibleEFTHiggs on the Higgs mass. We will
compare our results to the fixed-order calculations of FlexibleSUSY and also compare
with SARAH/SPheno.

The E6SSM extends the matter content of the MSSM with the following superfields:

Ĥd
α : (1,2,−1

2
,−3), Ĥu

α : (1,2, 1
2
,−2), D̂x

i : (3,1,−1
3
,−2), D̂x

i : (3,1, 1
3
,−3),

Ŝi : (1,1, 0, 5), N̂ c
i : (1,1, 0, 0), Ĥ ′ : (1,2,−1

2
, 2), Ĥ ′ : (1,2,

1

2
,−2),

(44)

where we include generation indices i = 1, 2, 3 and α = 1, 2 and we specify the GE6SSM =
GSM × U(1)N gauge group quantum numbers with the quantities in brackets specifically
showing the SU(3) representation, the SU(2) representation, the U(1)Y charge without
GUT normalization and the U(1)N charge also without GUT normalization.9

The full E6 superpotential is rather complicated, but with some simplifying assump-
tions including a ZH

2 symmetry to forbid flavour changing neutral currents and a ZB
2

symmetry to forbid proton decay, the superpotential can be written as [97],

WE6SSM =WMSSM(µ = 0) + λŜ3ĤuĤd + λαŜ3Ĥ
u
αĤ

d
α + κiŜ3D̂

x
i D̂

x
i + µ′Ĥ ′Ĥ ′. (45)

The soft breaking Lagrangian then contains,

Lsoft
E6SSM = Lsoft

MSSM(Bµ = 0)−m2
Si
|Si|2 −m2

Hu
i
|Hu

i |2 −m2
Hd

i
|Hd

i |2 −m2
H′|H ′|2 −m2

H′ |H ′|2

8Calculated in the gaugeless limit with the effective potential approximation, where p2 = 0.
9The E6 GUT normalization for the U(1)N charges is 1√

40
, while the E6 GUT normalization for the

U(1)Y charges is the same as the usual SU(5) one,
√

3/5.
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−m2
Di
|Di|2 −m2

Di
|Di|2 −

1

2
M ′

1
¯̃B′B̃′

−
[
B′µ′H ′ ·H ′ + TλiS3H

d
i ·Hu

i + TκiS3DiDi + h.c.
]
, (46)

where B̃′ is the gaugino superpartner of the B′ gauge field, associated with the U(1)N
gauge symmetry, and we have defined Hd

3 := Hd and Hu
3 := Hu to write the soft trilinear

couplings more compactly. The third generation singlet S3 and the neutral components
of Hu and Hd doublets are the Higgs fields which develop the VEVs, vs/

√
2, vu/

√
2, and

vd/
√

2, respectively. In our analysis here we set the soft-breaking scalar and gaugino mass
parameters and µeff = λvs/

√
2 to MSUSY, as defined in Eqs. (10). In addition, we fix

(m2
s)αβ(MSUSY) = δαβM

2
SUSY, (s = S,Hu, Hd)

m2
H′(MSUSY) = m2

H′(MSUSY) = M2
SUSY,

m2
Di

(MSUSY) = m2
Di

(MSUSY) = M2
SUSY, (i = 1, 2, 3)

B′µ′(MSUSY) = M2
SUSY,

M ′
1(MSUSY) = MSUSY.

(47)

To ensure that the exotic quarks, the inert Higgsinos and the Z ′ boson all get DR masses
equal to MSUSY we set

κ(MSUSY) = λ1,2(MSUSY) = g′1(MSUSY)
5√
20

= λ(MSUSY). (48)

We also require that vs is fixed so that µeff = MSUSY, i.e.

vs(MSUSY) =

√
2MSUSY

λ(MSUSY)
. (49)

The E6SSM-specific trilinear couplings are set to

Tλ3(MSUSY) =

√
2M2

SUSY sin β cos β

vs
,

Tκ1,2,3(MSUSY) = Tλ1,2(MSUSY) = 0.

(50)

and the soft scalar Higgs masses m2
Hu
,m2

Hd
, (m2

S)3,3 are fixed by the EWSB conditions.
For the scans we use tan β(MSUSY) = 5 and λ(MSUSY) = 0.1.

In Figure 12 one can see that the fixed-order FlexibleSUSY result is quite different
from the FlexibleEFTHiggs result. In this case it seems that the cancellation between
the logarithms is spoiled, due to the substantially altered RGE running between the EW
scale and MSUSY caused by the additional colored matter which dramatically affect the
RGE trajectory of αs and then indirectly αt through the gauge coupling contributions to
the RGEs. The fact that we are shifted so far away from the cancellation is also reflected
in the enhancement of the fixed-order uncertainty estimate from extracting yt in different
ways, shown in red in the left panels. Figure 12 also shows our uncertainty estimates for
FlexibleEFTHiggs in the right panels. As with the MSSM and NMSSM we can see that
our estimation of the theory uncertainty (shown on the right) is not increasing significantly
with MSUSY, which is to be expected from the construction of this approach.
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Figure 12: Higgs mass predictions and uncertainty estimates of Sec. 3 applied to the fixed-
order calculations with FlexibleSUSY and to FlexibleEFTHiggs in the E6SSM with fixed
Xt = 0, tanβ = 5 and λ = 0.1. The top row shows the Higgs mass predictions and the
uncertainty estimates, the lower row only the uncertainty estimates, as in Fig. 7.

In Figure 13 we show the SARAH/SPheno prediction, along with combined uncer-
tainty estimations for the fixed-order FlexibleSUSY and FlexibleEFTHiggs results. Here
the SPheno prediction is close to the FlexibleSUSY fixed-order prediction, particularly
when the top Yukawa is extracted in the same way. This should be expected since the
exotic couplings are all quite small in this scenario, making the 2-loop corrections that
are only in SPheno rather small. Therefore the main difference between the SPheno and
FlexibleEFTHiggs results appears to be due to the resummed logs, which in this case be-
come important at much lowerMSUSY values. Notably atMSUSY = 1 TeV there is already
a 3 GeV gap between the FlexibleEFTHiggs prediction and the fixed-order predictions,
though the results are compatible within estimated uncertainties. It is noteworthy that
the estimated uncertainty of FlexibleEFTHiggs is in the range 2–3GeV, like in the MSSM,
while the one of the fixed order results has significantly increased. To improve the pre-
cision further, adding 2-loop matching to the FlexibleEFTHiggs calculation will be very
important. It is also worth noting that we see no evidence of the problems due to infra-red
divergences in the E6SSM-specific SARAH/SPheno 2-loop correction here, which can be
understood due to the small values of the exotic couplings. We do not investigate varying
the exotic couplings here due to large dimensionality of the parameter space, but leave
this for dedicated studies of this model.
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Figure 13: Predictions for Mh and combined theoretical uncertainty estimates for
FlexibleSUSY and FlexibleEFTHiggs in the E6SSM, compared with results of other codes.
We fix Xt = 0, tanβ = 5 and λ = 0.1.

7 Numerical results in the MRSSM
As another example for a non-minimal model, we study the properties of FlexibleEFTHiggs
in the MRSSM, a minimal supersymmetric model with unbroken continuous R-symmetry
[102]. The model is motivated in a number of ways, and particularly the mass of the
SM-like Higgs boson has been shown to be compatible with experiment in a variety of pa-
rameter scenarios in Refs. [103–105]. In the following we employ the conventions of these
references. The MRSSM has the same field content as the MSSM, with the following
additional superfields:

R̂d : (1,2,−1
2
), R̂u : (1,2, 1

2
), Ŝ : (1,1, 0), T̂ : (1,3, 0), Ô : (8,1, 0). (51)

The superpotential of the MRSSM is given by

WMRSSM =WMSSM(µ = 0) + µdR̂d · Ĥd + µuR̂u · Ĥu

+ λdŜR̂d · Ĥd + λuŜR̂u · Ĥu + ΛdR̂d · T̂ Ĥd + ΛuR̂u · T̂ Ĥu.
(52)

As in the E6SSM and Z3-symmetric NMSSM, the µ term is forbidden in the MRSSM.
New µu,d terms and Yukawa-like interactions between the R̂ Higgs fields and Ĥu,d are
allowed in general. The soft-breaking trilinear couplings as well as the Majorana mass
terms for the gauginos are forbidden by the R-symmetry. The Lagrangian of the soft
breaking scalar mass terms reads

Lsoft,m2

MRSSM = Lsoft
MSSM(Bµ = Tu = Td = Te = M1 = M2 = M3 = 0)

−m2
Ru

(
|R0

u|2 + |R−u |2
)
−m2

Rd

(
|R0

d|2 + |R+
d |

2
)

−m2
S|S|2 −m2

T

(
|T 0|2 + |T+|2 + |T−|2

)
−m2

O|O|2.
(53)

The fermionic components of the Ŝ, T̂ and Ô fields mix with the gauginos B̃, W̃ and g̃
into Dirac fermions. The Dirac mass terms can be interpreted as being generated by the
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soft breaking of a supersymmetric hidden sector model via spurions. The resulting part
of the soft-breaking MRSSM Langrangian reads

Lsoft,M
MRSSM = −MD

B (B̃S̃ −
√

2DBS)−MD
W (W̃ aT̃ a −

√
2DaWT a)

−MD
g (g̃aÕa −

√
2DagOa) + h.c.,

(54)

where the auxiliary D fields can be eliminated by their equations of motion, giving rise
to triple scalar interactions governed by the Dirac mass parameters. The Higgs fields
Hu, Hd and S develop VEVs as in Eqs. (40). In addition, the electrically neutral linear
combination of the Higgs triplet develops a VEV as

〈T 0〉 =
vT√

2
. (55)

For the MRSSM study presented in this section, we impose the boundary conditions of
Eqs. (10) as well as

m2
S = m2

T = m2
O = m2

Rd
= m2

Ru
= 10M2

SUSY,

MD
B = MD

W = MD
g = MSUSY,

µu = µd = 1TeV, tan β = 5,

Λu = Λd = −0.5, λu = λd = −0.01.

(56)

at the scale MSUSY, which is inspired by BMP3′ from Ref. [104]. The parameters m2
Hu

,
m2
Hd

, vS, vT are fixed at the scale MSUSY by the four electroweak symmetry breaking
conditions. In the fixed-order calculation, the MRSSM DR gauge and Yukawa couplings
as well as the Standard Model-like vacuum expectation value v =

√
v2u + v2d are calculated

from the known values of αMS,SM(5)
e.m. (MZ), αMS,SM(5)

s (MZ), GF , MW , MZ and from the
known Standard Model fermion masses at the 1-loop level at the low-energy scale MZ .10
In particular, the top Yukawa coupling is calculated as described in Section 2.2, where
the 2-loop SM-QCD corrections are taken into account.

In the left panel of Figure 14 we show the two uncertainty estimate bands for the
fixed-order 2-loop calculation with SARAH/SPheno as described in Section 3.1.2:

• The yellow uncertainty band shows ∆M
(Q)
h , i.e. the variation of Mh when the renor-

malization scale is varied, at which Mh is calculated. We find that for SPheno this
estimation of part of the uncertainty is of the order 0.5–2GeV for most of the dis-
played MSUSY range, which is relatively small, because of the 2-loop Higgs mass
computation. In contrast, this uncertainty is between 1–3GeV for FlexibleSUSY
due to the missing 2-loop Higgs mass contributions.

• The red band shows ∆M
(4×yt)
h , i.e. the variation of Mh in the 1-loop fixed-order

calculation with FlexibleSUSY when yMRSSM
t is calculated in the four different ways

presented in Section 3.1.2. As discussed, it estimates a partial theory uncertainty of

10In SPheno, αMS,SM(5)
e.m. (MZ) and the Fermi constant GF are used as input to calculate the DR gauge

couplings g1(MZ) and g2(MZ). This approach is a generalization of the one presented in [106] for the
MSSM. FlexibleSUSY, in contrast, uses the W and Z pole masses as input to calculate g1(MZ) and
g2(MZ) in the MRSSM at the 1-loop level.
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Figure 14: Uncertainty estimates of Sec. 3 forMh, applied to the fixed-order approach with
SARAH/SPheno (left panel) and to FlexibleEFTHiggs/MRSSM (right panel) as a function
of MSUSY for the MRSSM parameter point (56).

the fixed-order 2-loop calculation from missing 3-loop terms. The red band would
be a clear underestimation of the theory uncertainty of FlexibleSUSY’s 1-loop cal-
culation. For both programs we find that this uncertainty estimate is dominant and
can reach up to 17GeV for SUSY scales around 100TeV.

In the right panel of Figure 14, the three uncertainty bands introduced in Section 3.2 for
FlexibleEFTHiggs are shown:

• The turquoise uncertainty band shows ∆M
(yt 0L vs. 1L)
h , which has been obtained by

calculating yMRSSM
t (MSUSY) using either a tree-level or a 1-loop top quark pole mass

matching. For this scenario the resulting estimated uncertainty is below 0.5GeV for
all values ofMSUSY. This uncertainty is smaller in the MRSSM than in the MSSM for
maximal mixing, partially because yMRSSM

t (MSUSY) is smaller than yMSSM
t (MSUSY),

for example yMRSSM,(1)
t (100TeV) = 0.81, yMSSM,(1)

t (100TeV) = 0.87.

• The red band shows ∆M
(Qmatch)
h , i.e. the variation of Mh when the matching scale

Qmatch is varied within the interval [MSUSY/2, 2MSUSY]. We find that this uncertainty
is between 0.5–2.5GeV and thus dominates in the scenario considered here.

• The yellow band shows ∆M
(Q)
h in FlexibleEFTHiggs. This estimated uncertainty is

below 2GeV for all SUSY scales above 1TeV, similarly to the results in the other
non-minimal SUSY models.

Based on these estimated theoretical uncertainties, we conclude that for the scenario
studied here FlexibleEFTHiggs leads to a more precise prediction of Mh than the fixed-
order calculation for SUSY scales above a few TeV.

In Figure 15, the lightest CP-even Higgs pole mass in the MRSSM is shown as a
function of MSUSY for the parameter point (56), together with the combined uncer-
tainty estimates. The green dash-dotted line shows the fixed-order 1-loop calculation
with FlexibleSUSY. The difference between FlexibleSUSY’s and SARAH/SPheno’s 1-
loop calculations originates again from the different definition of the running top mass
in the MRSSM at MZ . The turquoise solid line shows SPheno’s fixed-order 2-loop Higgs
pole mass calculation. We find that the pure 2-loop corrections enhance the Higgs mass
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Figure 15: Predictions for Mh and combined theoretical uncertainty estimates for
FlexibleSUSY and FlexibleEFTHiggs in the MRSSM, compared with results of other codes
as a function of MSUSY for the parameter point specified in Eqs. (56).

significantly, up to 12GeV for MSUSY = 10TeV, compared to the 1-loop result.11 Such
large 2-loop corrections in the DR scheme have been found and studied already in [104]
and have been compared to the on-shell scheme in [107]. The turquoise dashed line again
shows SPheno’s fixed-order 2-loop calculation, but using the definition (13) for the run-
ning top Yukawa coupling. We find that in this scenario all fixed-order curves become
linear for MSUSY & 1TeV, which indicates that in this scenario Mh is dominated by the
leading logarithm for large SUSY scales. The red solid line shows Mh as calculated with
FlexibleEFTHiggs in the MRSSM. Since in FlexibleEFTHiggs a 1-loop Higgs mass match-
ing and 3-loop renormalization group running is performed, FlexibleEFTHiggs resums the
leading logarithmic contributions to all orders. Since FlexibleEFTHiggs resums large log-
arithms, and since these logarithmic contributions dominate for SUSY scales above 1TeV
in this scenario, we again expect FlexibleEFTHiggs to give a more precise Higgs mass
prediction for SUSY scales above a few TeV.

In addition, we show in Figure 15 the combined uncertainty estimates introduced in
Section 4. In the MRSSM, SPheno is the only publicly available program which can per-
form a (partial) 2-loop calculation. Since ∆MFlexibleSUSY

h is a partial estimation of missing
3-loop corrections, we can reasonably draw it only around SPheno’s 2-loop curve. The
corresponding combined uncertainty for FlexibleSUSY’s 1-loop calculation is expected to
be significantly larger than the shown size of ∆MFlexibleSUSY

h and would require a separate
uncertainty estimation of the missing 2-loop contributions. As expected, ∆MFlexibleSUSY

h

grows logarithmically with MSUSY and can be as large as 10GeV for MSUSY = 10TeV.
In contrast, the uncertainty estimate for FlexibleEFTHiggs, ∆MFlexibleEFTHiggs

h , remains
nearly constant and around 3GeV for MSUSY & 2TeV.

For comparison to the study of the 2-loop Higgs pole mass contributions in Ref. [104],
we show in Table 1 the lightest CP-even Higgs pole mass in the MRSSM for the benchmark

11We see no evidence for infra-red divergences in SPheno’s 2-loop corrections for this MRSSM scenario.
However, we find numerical instabilities for MSUSY > 10TeV, which is why we do not draw the SPheno
2-loop curve above this scale.
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points BM1′–BM3′ together with combined uncertainties from Eqs. (36) and (37).12 The

Point SPheno SPheno SPheno SPheno FlexibleSUSY FlexibleEFT-
1L 2L 1L, (13) 2L, (13) 1L Higgs 1L

BM1′ 120.4 125.6± 1.3 120.0 125.1± 1.3 120.6 122.1± 1.7
BM2′ 120.8 126.0± 1.1 120.4 125.6± 1.1 120.2 121.7± 1.8
BM3′ 121.0 125.7± 1.3 120.5 125.2± 1.3 120.4 121.9± 1.9

Table 1: Lightest CP-even Higgs pole mass in GeV for the MRSSM benchmark points
BM1′–BM3′ of Ref. [104]. The given uncertainty estimates have been obtained using
Eqs. (36) and (37).

first two data columns showMh calculated with SARAH and SPheno at the 1- and 2-loop
level, respectively. These computations use the definition (16) to calculate yMRSSM

t (MZ).
In the third and fourth data columns Mh has been calculated with a modified version
of SARAH/SPheno, where Eq. (13) is used to calculate yMRSSM

t (MZ). These different
Yukawa coupling definitions amount to 0.4–0.5GeV shift in Mh for these benchmark
points. The fifth data column shows Mh calculated with FlexibleSUSY at the 1-loop
level, where by default Eq. (13) is used to calculate yMRSSM

t (MZ), and gMRSSM
1,2 (MZ) are

calculated using MZ and MW as input (instead of MZ and GF as done in SPheno).
The difference between the fixed-order FlexibleSUSY and SPheno 1-loop calculations
using Eq. (13) (data columns 3 and 5) originates from the different definitions of the
electroweak gauge couplings, which affect the Higgs pole mass already at the tree-level.
The last column shows the calculation of Mh with FlexibleEFTHiggs, which resums the
leading logarithms to all orders. The result of FlexibleEFTHiggs lies between the 1- and
2-loop calculations.

8 Conclusions
We have presented FlexibleEFTHiggs, an EFT calculation of the SM-like Higgs mass
in any SUSY or non-SUSY model, that can make precise predictions for both high and
low new physics scales. A judicious choice of matching conditions, equating pole masses,
ensures that terms of O(v2/M2

SUSY) are included, which are missed by “pure EFT” cal-
culations such as SusyHD and FlexibleSUSY/HSSUSY. Thus large logarithms can be
resummed, while ensuring that the Higgs pole mass calculation is exact at the 1-loop
level. Since this choice of matching requires only self energies and tadpoles, it is also very
easy to automate and apply to any SUSY (or even non-SUSY) model, where the Standard
Model is the valid low energy effective field theory. This method has been implemented
in FlexibleSUSY, and we have used this to obtain results in the MSSM, NMSSM, E6SSM
and MRSSM.

We discussed several ways to estimate the theoretical uncertainty of FlexibleEFTHiggs
and the fixed-order approaches of FlexibleSUSY/SOFTSUSY and SPheno. These esti-
mates show the expected behaviour, i.e. the fixed-order uncertainty rises withMSUSY while

12The values of the lightest CP-even Higgs masses for BM1′–BM3′ presented in [104] have been obtained
with SARAH 4.5.3 and SPheno 3.3.6. In addition, the authors have modified the generated SPheno code
to predict the W mass with higher precision, as described in [103], Eqs. (4.8)–(4.13).
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our FlexibleEFTHiggs estimate does not. For example in the MSSM whenMSUSY is larger
than a few TeV our combined uncertainty estimate for FlexibleEFTHiggs is smaller than
our combination of various fixed-order uncertainty estimates, and similar results are ob-
tained in the NMSSM, E6SSM and MRSSM. Moreover, even for SUSY scales close to the
EW scale we observe that the uncertainty of FlexibleEFTHiggs is around 2–3GeV and is
thus not much larger than the fixed-order calculations, even for cases where the 2-loop
contributions to the Higgs mass are large.

We also compared FlexibleEFTHiggs to other spectrum generators in all four of these
models. In the MSSM we demonstrated that we understand all the differences between
FlexibleEFTHiggs and SusyHD and showed that the two codes agree well at highMSUSY

in scenarios where the 2-loop threshold corrections are negligible. In regions where the
2-loop threshold corrections are non-negligible, the codes disagree by non-logarithmic 2-
loop terms, which do not increase with MSUSY. However, in these regions the deviation of
the codes lies within our uncertainty estimate for FlexibleEFTHiggs. We also found that
the fixed-order calculations of FlexibleSUSY and SOFTSUSY agree surprisingly well with
the EFT results of FlexibleEFTHiggs, SusyHD and FlexibleSUSY/HSSUSY even at very
large MSUSY, owing to an accidental cancellation among the 3-loop leading logarithms.
This cancellation however depends on which partial 3-loop corrections are included and
SPheno does not have the same tendency despite being accurate to the same formal 2-loop
order as FlexibleSUSY and SOFTSUSY. This cancellation also occurs in the NMSSM,
even for rather large values of the new singlet Yukawa couplings. There we see on the
other hand that the full fixed-order 2-loop calculation in SARAH/SPheno is not reliable
when both MSUSY and the exotic couplings are large, due to infrared divergences which
appear in the 2-loop functions, which are not present in the other fixed order codes as
they neglect these contributions.

In the E6SSM we studied cases where all exotic couplings are rather small. Nonetheless,
there is already a large impact of the exotic couplings on the fixed-order calculations at
largeMSUSY and thus we find that there is no longer good agreement between the available
fixed-order calculations. The very different renormalization group flow in this model,
where the β-function of αs vanishes at 1-loop level, spoils the accidental cancellation
between the 3-loop logarithms observed in the MSSM and NMSSM. We see that some
of the sources of uncertainty in the fixed-order calculation, specifically the uncertainty
that is estimated from different definitions of the Yukawa couplings, rises with MSUSY

much more rapidly than in the MSSM or NMSSM. Therefore, an effective field theory
calculation in this model is important presumably at lighter values of MSUSY than in the
MSSM and NMSSM.

Finally, we applied FlexibleEFTHiggs to the MRSSM and compared the results with
the available 1- and 2-loop fixed-order calculations in a scenario with sizable triplet cou-
plings as well as with benchmark points from the literature. Similar to the E6SSM, we
find that the fixed-order programs no longer agree well with FlexibleEFTHiggs for SUSY
scales above a few TeV. One of the reasons is the different running of αs in the MRSSM,
which again spoils the accidental cancellation of higher-order logarithms. We also find
that the uncertainty of the fixed-order calculations, estimated by the different definitions
of the top Yukawa coupling, increases more rapidly with MSUSY than in the MSSM or
NMSSM. In contrast, the combined uncertainty estimate for FlexibleEFTHiggs is inde-
pendent of MSUSY, making the FlexibleEFTHiggs calculation more reliable already above
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a few TeV.
There are limitations of FlexibleEFTHiggs motivating further developments. The most

obvious is the use of 1-loop matching at the SUSY scale instead of 2-loop matching. As
a result, the implementation still misses 2-loop power-suppressed as well as non-power-
suppressed (but non-logarithmic) terms in the Higgs pole mass. This is complementary
to SARAH/SPheno, the only publicly available code that can include these 2-loop terms
for all models, which can however become unreliable for large SUSY scales due to the lack
of large higher-order logarithms. It is planned to extend FlexibleEFTHiggs by using the
Higgs pole mass matching condition at the 2-loop level for a higher accuracy. Another pos-
sible extension of FlexibleEFTHiggs is to allow for more diverse mass hierarchies leading
to additional intermediate scales at which subsets of particles are sequentially integrated
out. In this way further types of potentially large logarithms can be resummed.
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A Equivalence of Mh-matching to ∆λ(1)

We show the equivalence of FlexibleEFTHiggs’ matching procedure, set forth in Section
2.4, to the 1-loop threshold corrections to λ at O(αt) from the MSSM presented in the
literature such as Eq. (10) in [44]. For this, we apply the matching condition (20) at the
1-loop level which requires that the Higgs pole mass calculated in the SM be equal to the
lightest Higgs pole mass in the MSSM. In this appendix, the matching scale Qmatch shall
be abbreviated to Q. In the Standard Model Higgs pole mass in Eq. (21), both ΣMS,SM

h

and tMS,SM
h are evaluated at the 1-loop level. The lightest MSSM Higgs pole mass MMSSM

h

is calculated at the renormalization scale Q = MSUSY iteratively by Eq. (17) as

(MMSSM
h )2 = (mMSSM

h )2 − ΣDR,MSSM
h + tDR,MSSM

h /v, (57)

where mMSSM
h is the running DR Higgs mass in the MSSM, ΣDR,MSSM

h is the DR-re-
normalized 1-loop self-energy of the SM-like Higgs in the MSSM, and tDR,MSSM

h is the
corresponding tadpole, given by

ΣDR,MSSM
h = c2αΣDR,MSSM

huhu
+ s2αΣDR,MSSM

hdhd
− 2sαcαΣDR,MSSM

huhd
, (58)
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tDR,MSSM
h

v
= c2α

tDR,MSSM
hu

vu
+ s2α

tDR,MSSM
hd

vd
. (59)

In the SM coupling limit, the Higgs mixing angle α is given by α = β− π
2
, and the SM-like

Higgs self-energy and the tadpole become

ΣDR,MSSM
h = s2βΣDR,MSSM

huhu
+ c2βΣDR,MSSM

hdhd
+ 2sβcβΣDR,MSSM

huhd
, (60)

tDR,MSSM
h

v
= s2β

tDR,MSSM
hu

vu
+ c2β

tDR,MSSM
hd

vd
. (61)

Keeping only the O(ynt ) terms, the 1-loop corrections to the SM-like Higgs in the MSSM
is given by

− ΣDR,MSSM
h + tDR,MSSM

h /v = −ΣMS,SM
h + tMS,SM

h /v

− 3(ySMt )2

(4π)2

{
X2
t c

2
2θB0(p

2,m2
t̃1
,m2

t̃2
)

+ 2 (mt + s2θXt/2)2
[
B0(p

2,m2
t̃1
,m2

t̃1
) +B0(p

2,m2
t̃2
,m2

t̃2
)
]

− Xts2θ
2mt

[
A0(m

2
t̃1

) + A0(m
2
t̃2

)
] }
, (62)

where θ is the stop mixing angle as defined in Eq. (19) of Ref. [9] and s2θ = sin 2θ,
c2θ = cos 2θ, Xt = At−µ/ tan β, mt = ySMt v/

√
2. The MSSM top quark Yukawa coupling

has been replaced by the corresponding SM Yukawa coupling using the tree-level relation
yMSSM
t = ySMt /sβ. By making use of the relation

sin 2θ =
2mtXt

m2
t̃1
−m2

t̃2

, (63)

and inserting Eq. (62) into (20), one obtains the running Higgs mass in the Standard
Model as

(mSM
h )2 = (mMSSM

h )2 + ∆m2
h, (64)

with the 1-loop correction

(4π)2∆m2
h = −3X2

t (ySMt )2

{
2(ySMt )2v2

[
B0(p

2,m2
t̃1
,m2

t̃1
)−B0(p

2,m2
t̃2
,m2

t̃2
)
]

m2
t̃1
−m2

t̃2

+B0(p
2,m2

t̃1
,m2

t̃2
) +

A0(m
2
t̃2

)− A0(m
2
t̃1

)

m2
t̃1
−m2

t̃2

}

− 3X4
t (ySMt )4v2

(m2
t̃1
−m2

t̃2
)2

[
B0(p

2,m2
t̃1
,m2

t̃1
) +B0(p

2,m2
t̃2
,m2

t̃2
)− 2B0(p

2,m2
t̃1
,m2

t̃2
)
]

− 3(ySMt )4v2
[
B0(p

2,m2
t̃1
,m2

t̃1
) +B0(p

2,m2
t̃2
,m2

t̃2
)
]
. (65)

By inserting the stop masses in terms of the soft-breaking parameters and Xt,

m2
t̃1,2

= m2
t +

1

2

(
m2
Q3

+m2
U3
∓
√(

m2
Q3
−m2

U3

)2
+ 4(mtXt)2

)
, (66)
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evaluating the B0 functions at the momentum p2 = λv2, and expanding in powers of
v2/M2

SUSY up to O(v2/M2
SUSY), one obtains at O(y4t )

(4π)2

(ySMt )4v2
∆m2

h = 3 ln
m2
Q3

Q2
+ 3 ln

m2
U3

Q2
−
p2
(
m2
Q3

+m2
U3

)
2m2

Q3
m2
U3

+X2
t

[
6 ln

m2
Q3

m2
U3

m2
Q3
−m2

U3

+
p2

m2
Q3
m2
U3

(
m2
Q3
−m2

U3

)3(m6
Q3
− 6m4

Q3
m2
U3

+ 6m2
Q3
m4
U3

+
3

2
m2
Q3
m2
U3

(
m2
Q3

+m2
U3

)
ln
m2
Q3

m2
U3

−m6
U3

)]

+X4
t

{
−

3
[(
m2
Q3

+m2
U3

)
ln

m2
Q3

m2
U3

− 2m2
Q3

+ 2m2
U3

]
(
m2
Q3
−m2

U3

)3
+

p2

2m2
Q3
m2
U3

(
m2
Q3
−m2

U3

)5
[
−m8

Q3
+ 17m6

Q3
m2
U3
− 17m2

Q3
m6
U3

+ 3m2
Q3
m2
U3

(
m4
Q3

+ 8m2
Q3
m2
U3

+m4
U3

)
ln

(
m2
U3

m2
Q3

)
+m8

U3

]}
. (67)

Using the relations

(mSM
h )2 = λv2, (68)

(mMSSM
h )2 =

1

4
(g2Y + g22)(v2u + v2d)c

2
2β, (69)

and exploiting that ∆m2
h = v2∆λ at the 1-loop O(y4t ), one obtains from Eq. (64) in the

limit p2 → 0

λ =
1

4
(g2Y + g22)c22β + ∆λ(1) (70)

with

(4π)2∆λ(1) = 3(ySMt )4
(

ln
m2
Q3

Q2
+ ln

m2
U3

Q2

)
+

6(ySMt )4X2
t ln

m2
Q3

m2
U3

m2
Q3
−m2

U3

−
3(ySMt )4X4

t

[(
m2
Q3

+m2
U3

)
ln

m2
Q3

m2
U3

− 2m2
Q3

+ 2m2
U3

]
(
m2
Q3
−m2

U3

)3 , (71)

which is equivalent to the O(y4t ) terms of Eq. (10) of Ref. [44]. We conclude that in the
MSSM FlexibleEFTHiggs’ approach is equivalent to the 1-loop threshold corrections to λ
from Ref. [44] in the SM coupling limit α = β − π

2
and p2 �M2

SUSY.
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B Leading logarithms in the EFT, FlexibleSUSY, and
SPheno-calculations

Here we derive the leading L-loop logarithms of the form tS ≡ ln(MSUSY/Mt) governed by
the two most important couplings αs = g23/4π and yt, which are contained in the MSSM
Higgs mass calculations in FlexibleSUSY and SPheno. We compare them to the correct
leading logarithms, which are contained in the EFT calculation. For simplicity we work
in the approximation of large tan β and identify sin β = 1, vu = v in the definition of the
MSSM top Yukawa coupling. In the present section, we use the following notation for the
required running couplings in the SM and MSSM at scale t ≡ ln(Q/Mt):

SM: g3(t), yt(t), v(t), λ(t); (72)
MSSM: g̃3(t), ỹt(t), ṽ(t). (73)

As an abbreviation, we write the quantities at the top-mass scale and the SUSY scale as

SM, low: ĝ3 = g3(0), ŷt = yt(0), v̂ = v(0), λ̂ = λ(0); (74)
SM, high: g3 = g3(tS), yt = yt(tS), v = v(tS), λ = λ(tS); (75)

MSSM, low: ḡ3 = g̃3(0), ȳt = ỹt(0), v̄ = ṽ(0); (76)
MSSM, high: g̃3 = g̃3(tS), ỹt = ỹt(tS), ṽ = ṽ(tS). (77)

The relevant β functions are the 1-loop β functions for these parameters, βX(t) ≡ dX(t)
dt

.
The relevant terms can be written as

βg3(t) = βg3,g23g
3
3(t), βyt(t) = yt(t)

(
βyt,g23g

2
3(t) + βyt,y2t y

2
t (t)
)
,

βv(t) = βv,y2t v(t)y2t (t), βλ(t) = βλ,y4t y
4
t (t) + βλ,y2t λy

2
t (t)λ(t) + βλ,λ2λ

2(t) .
(78)

The values of the appearing coefficients depend on the model. In the SM, they read

βg3,g23 = −7κL, βyt,g23 = −8κL, βyt,y2t =
9

2
κL, βv,y2t = −3κL,

βλ,y4t = −12κL, βλ,y2t λ = 12κL, βλ,λ2 = 12κL.
(79)

Here we use the common loop factor constant κL = 1/(16π2). In the MSSM, we denote
the corresponding coefficients with a tilde; their values are

β̃g3,g23 = −3κL, β̃yt,g23 = −16

3
κL, β̃yt,y2t = 6κL, β̃v,y2t = −3κL. (80)

As is well known, the leading logarithms can be obtained in the EFT approach by inte-
grating the RGEs in the SM. In a first step this yields the running couplings

g3(t) =

√
1

1
ĝ23
− 2βg3,g23 t

= ĝ3 − 7tκLĝ
3
3 +

147

2
t2κ2Lĝ

5
3 −

1715

2
t3κ3Lĝ

7
3 + . . . , (81)

yt(t) = ŷt + t
(
βyt,g23 ĝ

2
3 ŷt + βyt,y2t ŷ

3
t

)
+

1

2
t2ŷt

(
2βg3,g23βyt,g23 ĝ

4
3 + β2

yt,g23
ĝ43 + 4βyt,g23βyt,y2t ĝ

2
3 ŷ

2
t + 3β2

yt,y2t
ŷ4t

)
+ . . . (82)
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= ŷt + tκL

(
9ŷ3t
2
− 8ĝ23 ŷt

)
+ t2κ2Lŷt

(
88ĝ43 − 72ĝ23 ŷ

2
t +

243

8
ŷ4t

)
+ . . . , (83)

v(t) = v̂

(
1 + βv,y2t tŷ

2
t + t2

(
β2
v,y2t

ŷ4t

2
+ βv,y2t βyt,g23 ĝ

2
3 ŷ

2
t + βv,y2t βyt,y2t ŷ

4
t

))
(84)

= v̂
(
1− 3tκLŷ

2
t + t2κ2L

(
24ĝ23 ŷ

2
t − 9ŷ4t

))
. (85)

As indicated, the running couplings on the left-hand side are taken at scale t, while the
couplings without argument on the right-hand side are running couplings at the fixed low
scale t = 0, i.e. at Q = Mt. In a second step these results can be used to integrate the
RGE for λ, to express λ̂ as a function of λ(t),

λ̂ = λ(t)− βλ,y4t tŷ
4
t +

1

2
βλ,y4t t

2ŷ4t

(
(βλ,y2t λ − 4βyt,y2t )ŷ2t − 4βyt,g23 ĝ

2
3

)
− 1

6
βλ,y4t t

3ŷ4t

[
(8βg3,g23βyt,g23 + 16β2

yt,g23
)ĝ43 − 10βyt,g23(βλ,y2t λ − 4βyt,y2t )ĝ23 ŷ

2
t

+
(

2βλ,λ2βλ,y4t + β2
λ,y2t λ

− 10βλ,y2t λβyt,y2t + 24β2
yt,y2t

)
ŷ4t

]
(86)

In this equation, terms of higher-order in λ(t) have been neglected. In leading-logarithmic
approximation, the high-scale coupling λ(tS) is given by matching the SM to the tree-level
MSSM Higgs boson mass m2

h at the SUSY scale. The EFT prediction for the Higgs boson
mass is then, in this approximation,

M2
h = v̂2λ̂ (87)

= m2
h + v̂2ŷ4t

[
12tSκL − 12t2Sκ

2
L

(
16ĝ23 − 3ŷ2t

)
+ 4t3Sκ

3
L

(
736ĝ43 − 240ĝ23 ŷ

2
t − 99ŷ4t

)
+ . . .

]
. (88)

The previous equations agree with Eq. (11) from Ref. [60] and Eq. (A.17) from Ref. [42].
Now we compare these results with the leading logarithms contained in the “fixed-

order” calculations. The most important difference is the definition of the Yukawa cou-
pling. In the original FlexibleSUSY (and SOFTSUSY) or SPheno, the low-scale MSSM
Yukawa coupling is defined by Eq. (13) or Eq. (16), respectively. These equations con-
tain leading logarithms within the self energy parts Σ̃

(1),L,R
t , and the coefficients of these

logarithms is given by the difference of the SM and MSSM β functions for the Yukawa
coupling. Hence, to the leading logarithmic level, these equations imply

ȳFlexibleSUSYt = ŷt

[
1 +

(
(βyt,g23 − β̃yt,g23)ḡ23 + (βyt,y2t − β̃yt,y2t )(ȳFlexibleSUSYt )2

)
tS

]
, (89)

ȳSPhenot =
ŷt

1−
(

(βyt,g23 − β̃yt,g23)ḡ23 − (βyt,y2t − β̃yt,y2t )(ȳSPhenot )2
)
tS
, (90)

which has to be iterated to find the solutions for the low-scale Yukawa couplings in terms
of ŷt. The strong gauge coupling is determined by low-scale matching to the SM, but the
matching condition is such that, at the leading logarithmic level, we obtain g̃3 = g3, and

ḡ23 =

[
1

ĝ23
− 2(βg3,g23 − β̃g3,g23)tS

]−1
. (91)
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The low-scale Yukawa couplings are then run up to the SUSY scale with the MSSM
β function. For the running Eq. (82) applies, with the replacement of SM by MSSM
quantities. Plugging in the values of all coefficients, the final result for the SUSY-scale
MSSM Yukawa couplings used in the fixed-order calculations is therefore

ỹFlexibleSUSYt = ŷt + tSκL

(
9ŷ3t
2
− 8ĝ23 ŷt

)
+ t2Sκ

2
L

(
976ĝ43 ŷt

9
− 96ĝ23 ŷ

3
t +

63ŷ5t
2

)
+ . . . , (92)

ỹSPhenot = ŷt + tSκL

(
9ŷ3t
2
− 8ĝ23 ŷt

)
+ t2Sκ

2
L

(
1040ĝ43 ŷt

9
− 88ĝ23 ŷ

3
t +

135ŷ5t
4

)
+ . . . ,

(93)

which agrees at the 1-loop level with the EFT result but disagrees at the 2-loop level.
The fixed-order calculations of the MSSM Higgs boson mass then plug the SUSY-scale
MSSM parameters into the DR-Higgs self energy. At the leading logarithmic level, this
gives

M2
h = m2

h + ṽ2ỹ4t

(
tSc1 + t2S(c21g̃

2
3 + c22ỹ

2
t )
)
, (94)

c1 = −βλ,y4t = 12κL, (95)

c21 = 2βλ,y4t βyt,g23 = 192κ2L, (96)

c22 = βλ,y4t
(
βλ,y2t λ/2 + 2βv,y2t + 2βyt,y2t

)
= −108κ2L, (97)

where mh is the running tree-level Higgs mass and where the values of the coefficients c
follow from the agreement of the 2-loop leading logarithms with the correct EFT result.
Hence, plugging in number, we obtain the leading logarithms up to the 3-loop level,
contained in the fixed-order calculations,

(M2
h)FlexibleSUSY = m2

h + v̂2ŷ4t

[
12tSκL − 12t2Sκ

2
L

(
16ĝ23 − 3ŷ2t

)
+ 4t3Sκ

3
L

(
736

3
ĝ43 + 144ĝ23 ŷ

2
t −

351

2
ŷ4t

)]
, (98)

(M2
h)SPheno = m2

h + v̂2ŷ4t

[
12tSκL − 12t2Sκ

2
L

(
16ĝ23 − 3ŷ2t

)
+ 4t3Sκ

3
L

(
992

3
ĝ43 + 240ĝ23 ŷ

2
t −

297

2
ŷ4t

)]
. (99)

So far, all results are expressed in terms of low-scale SM couplings, which are con-
nected to low-energy observables without large logarithms. It is useful to record here
the equivalent results, in which these low-scale SM couplings are replaced by SUSY-scale
running SM parameters, which are connected to the fundamental high-scale SUSY pa-
rameters without large logarithms. For this purpose, Eqs. (81), (83) can be inverted. The
results for the high-scale Yukawa couplings used in FlexibleSUSY and SPheno are then

ỹFlexibleSUSYt = yt + t2Sκ
2
L

(
184

9
g43yt − 24g23y

3
t +

9

8
y5t

)
+ . . . , (100)

ỹSPhenot = yt + t2Sκ
2
L

(
248

9
g43yt − 16g23y

3
t +

27

8
y5t

)
+ . . . , (101)
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and the results for the Higgs boson mass in the EFT, FlexibleSUSY, and SPheno are

(M2
h)EFT = m2

h + v2y4t

[
12tSκL + 12t2Sκ

2
L

(
16g23 − 9y2t

)
+ 4t3Sκ

3
L

(
736g43 − 672g23y

2
t + 90y4t

)
+ . . .

]
, (102)

(M2
h)FlexibleSUSY = m2

h + v2y4t

[
12tSκL + 12t2Sκ

2
L

(
16g23 − 9y2t

)
+ 4t3Sκ

3
L

(
736g43

3
− 288g23y

2
t +

27y4t
2

)
+ . . .

]
, (103)

(M2
h)SPheno = m2

h + v2y4t

[
12tSκL + 12t2Sκ

2
L

(
16g23 − 9y2t

)
+ 4t3Sκ

3
L

(
992g43

3
− 192g23y

2
t +

81y4t
2

)
+ . . .

]
. (104)

The EFT result here agrees with Ref. [42], Eq. (A.22).
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