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Abstract

We find a new class of metastable de Sitter solutions in compactifications of
six-dimensional supergravity motivated by type IIB or heterotic string vacua.
Two Fayet-Iliopoulos terms of a local U(1) symmetry are generated by magnetic
flux and by the Green-Schwarz term canceling the gauge anomalies, respectively.
The interplay between the induced D-term and a nonperturbative superpotential
stabilizes the moduli and determines the size of the extra dimensions.
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1 Introduction

The observed accelerated expansion of the universe [1] is most easily explained by a
constant vacuum energy density, the characteristic feature of de Sitter space. This
has led to an intense search for de Sitter vacua in supergravity and superstring the-
ories, which represent attractive extensions of the standard model of particle physics.
Although much progress has been made, challenging questions still remain [2].

A particularly attractive proposal by Kachru, Kallosh, Linde and Trivedi [3] is
based on quantized fluxes in type IIB string theory and additional nonperturbative
effects stabilizing the overall volume modulus. These features are captured in the KKLT
superpotential that yields an anti-de Sitter minimum. To achieve the required ‘uplift’ to
de Sitter space additional ingredients are needed such as anti-D3 branes [3,4], D-terms
induced by magnetic flux [5–7] or constant Fayet-Iliopoulos terms [8]. Alternatively,
additional matter fields have to be added allowing for an F-term uplift (see e.g. [9,10]).
Also extensions of the KKLT proposal, such as the Large Volume Scenario [11] and
Kähler Uplift [12,13] need additional ingredients to achieve an uplift to de Sitter vacua.

Necessary conditions for de Sitter vacua in four-dimensional supergravity theories
derived from string theory compactifications have been systematically analyzed in [14].
In particular, constraints on the Kähler potential and, in case of gauged shift symme-
tries, on the associated Fayet-Iliopoulos (FI) terms have been derived [15]. For a related
discussion of de Sitter and Minkowski vacua in string theory see, for instance, [6,16–19].

In this Letter, we study de Sitter vacua in six-dimensional supergravity models,
compactified on orbifolds with flux. Such models have been suggested as an interme-
diate step in string compactifications to four dimensions [20]. Our results represent an
application of previous work [21,22]. The crucial ingredients are the flux and the Green-
Schwarz term of an anomalous local U(1) symmetry. They lead to two Fayet-Iliopoulos
terms of opposite sign, and they modify the gauge kinetic function. Together with
a nonperturbative KKLT-type superpotential one naturally obtains de Sitter vacua,
without any additional degrees of freedom below the flux induced mass scale. In the
following we derive relations between the superpotential parameters and de Sitter vacua
in moduli space and give an explicit example.

2 Conditions for de Sitter vacua

In this work we consider a simple N = 1 supergravity model1 that has been derived as
the effective four-dimensional Lagrangian for flux compactifications of six-dimensional
supergravity [21, 22]. It contains three chiral multiplets, S, T , U and the real vector
multiplet V of a U(1) gauge symmetry. The Kähler potential is given by

K = − log(S + S + iXSV )− log(T + T + iXTV )− log(U + U) . (1)

1We follow the conventions of [23].
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where XS,T are purely imaginary and constant Killing vectors parameterizing a gauged
shift symmetry. Note that the Kähler potential is of no-scale type, i.e. KiK

īK̄ = 3,
where i (̄) denotes the derivative with respect to the i-th chiral (̄-th anti-chiral)
multiplet and Kī is the inverse Kähler metric.

To completely define the gauge sector one further has to specify the gauge kinetic
function H, whose real part h corresponds to the effective gauge coupling. In the
following it will be crucial that, in addition to the classical term linear in S, the gauge
kinetic function contains a second part linear in T ,

H = hSS + hTT . (2)

A T -dependence is known to arise due to quantum corrections [24, 25]. Following the
convention S = 1

2
(s+ ic), T = 1

2
(t+ ib), one has h = 1

2
(hSs+ hT t). Finally, we have to

specify the superpotential. It has to be gauge invariant and can therefore only depend
on the linear combination

Z = −iXTS + iXST ≡ 1
2
(z + ic̃) , (3)

where in a first step, we ignore the shape modulus U . For reasons discussed above we
consider a KKLT-type potential,

W (Z) = W0 +W1e
−aZ , (4)

where, w.l.o.g. we choose a > 0, W0 and W1 to be real.
In the following it will be important that the parameter hT in the gauge kinetic

function is negative while the classical contribution hS is positive. Furthermore, the
two Killing vectors have to be of opposite sign. As we shall see in the next section,
both conditions are satisfied in flux compactifications of 6d supergravity. The line along
which h(s, t) = 0 divides the moduli space into a physical (h > 0) and an unphysical
region (h < 0). The physical region thus satisfies the condition

t < t(h) = −hS
hT
s . (5)

The scalar potential is a sum of F - and D-term contributions,

V = VF + VD = eK(KīDiWD̄W − 3|W |2) +
g2

2h
D2 , (6)

where DiW = Wi + KiW is the Kähler covariant derivative of the superpotential and
g is a gauge coupling. The D-term is given in terms of the Killing vectors,

D = iKiX
i = − i

s
XS − i

t
XT . (7)

3



Due to their opposite sign D = 0 defines a second line in (s, t) space given by

t(D) = −X
T

XS
s . (8)

If this line is not part of the physical region in moduli space, i.e. |XT/XS| ≥ |hS/hT |,
the D-term potential is positive definite. This is the situation we want to study in the
following.

Solutions of the equations of motion leading to Minkowski or de Sitter vacua have
to fulfill,

∂SV = 0 , ∂TV = 0 , V = ε ≥ 0 , (9)

which yield three relations between the F -term and D-term contributions to the po-
tential. It is convenient to use the linear combinations ∂± = s∂S ± t∂T instead of ∂S,T .
Derivatives of the superpotential then produce the factors ∂−Z = stD and ∂+Z = stE,
where

E = iKTX
T − iKSX

S = − i
t
XT +

i

s
XS . (10)

In terms of D and E the scalar potential can be written in the compact form

V =
st

2
(D2 + E2)A− EB +

g2

2h
D2 , (11)

with

A = |∂ZW |2 = a2W 2
1 e

−az , (12)

B = 2Re
(
∂ZWW

)
= −2aW1

(
W1 e

−az +W0 e
−a

2
z cos

(
a
2
c̃
))

. (13)

Note that the term −3|W |2 in the scalar potential (6) has disappeared due to the no-
scale structure of the Kähler potential. Choosing opposite signs for W0 and W1, the
axion c̃ is stabilized at zero, and in the following we set the cosine term to one. The
orthogonal axion gives a mass to the U(1) vector field via the Stueckelberg mechanism
[21].

In order to find minima we invert the problem and solve for the superpotential pa-
rameters in terms of s and t. In this way we can see which superpotential parameters
lead to minima in the (s, t) plane for realistic parameter ranges. The conditions for ex-
trema (9) yield three relations between the superpotential parameters and the position
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(s, t) of the extrema in moduli space. A straightforward calculation leads to

A = − 1

2h2st(1− ρ2)

(
hT tρ+ h(2− ρ+ ρ2) + h2 2ε

E2

)
,

B = − E

4h2(1− ρ2)

(
hT tρ(1 + ρ2) + h(2− ρ+ ρ2 − ρ3 + 3ρ4) + h2 8ε

E2

)
,

a = −2E(1− ρ2)

st

hT tρ+ h(2− ρ− 3ρ2)

E2 (hT tρ(1 + ρ2) + h(2− ρ+ 5ρ2 − ρ3 − ρ4)) + 8h2ρ2ε
,

(14)

where we have introduced the ratio ρ = D/E ∈ (−1, 1). The quantities on the r.h.s.
of these equations, h, E and ρ, only depend on the values of the moduli fields s and t,
whereas A, B and a are related to the superpotential by the definitions (12) and (13).

Eqs. (14) can now be used to identify consistency conditions for the existence of de
Sitter vacua and to construct explicit solutions. A similar discussion for pure F -term
breaking has recently been carried out in [26]. From Eq. (12) we see that A has to
be positive, and by definition a > 0. Furthermore, B > 0 is needed for a cancellation
of the positive contributions in the potential (11), thus allowing for a vanishing or
small cosmological constant. From Eqs. (14) one reads off that these conditions can be
satisfied if hT < 0. The reason is that the terms proportional to h, which would give
the unwanted sign, can be made small due to the opposite sign of the two contributions
hSs and hT t. Given a solution for a chosen extremum at (s, t), one then has to examine
whether the obtained values for h, a, W0 and W1 are physically meaningful.2 Let
us finally emphasize again that the obtained Minkowski and de Sitter minima are a
consequence of the opposite signs of the moduli contributions to both the gauge kinetic
function and the D-term in combination with the nonperturbative superpotential.

In the de Sitter vacua constructed this way supersymmetry is broken by a D-term
since, as discussed above, D > 0 in the physical region of the moduli space. Vanishing
F-terms, i.e. DSW = DTW = 0, would imply D∂ZW = 0, which is not possible for
D > 0 and a KKLT-type superpotential. Hence, as expected, supersymmetry is also
broken by F -terms and the Goldstino is a mixture of the gaugino and modulini, with
m3/2 ∼ 〈F 〉 ∼ 〈D〉. It is well known that no-scale models do not allow metastable de
Sitter vacua for arbitrary superpotentials [14]. In the above analysis this no-go theorem
is avoided by means of a gauged shift symmetry, a possibility which has already been
discussed previously in [15].

3 An example

In [22] we derive the low-energy effective action for a six-dimensional supergravity
model with a U(1) gauge field and a charged bulk matter field, compactified on an

2We have checked that these conclusions remain valid if the modulus U is included in the analysis,
with an additional term W2 exp (−a′U), in the superpotential (4). However, the resulting equations
are considerably more cumbersome than Eqs. (14). They will be given in [22].
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orbifold T 2/Z2 with magnetic flux. The antisymmetric tensor field couples to the U(1)
gauge field via a Chern-Simons term. The four-dimensional effective action involves
the Kähler potential (1) with a gauged shift symmetry in S and T . The Killing vectors
are given by

XT = −i f
`2
, XS = −ig2N + 1

(2π)2
, (15)

where f is the quantized flux, f = −4πN < 0, N ∈ N, and ` is a length scale in
Planck units. XS is a consequence of the Green-Schwarz term which is needed to
cancel bulk and fixed point anomalies. It represents a quantum correction which, to
our knowledge, has been neglected in previous analyses of moduli stabilization. Note
that the two Killing vectors contribute to the D-term with opposite signs: −iXT > 0,
−iXS < 0.

The orbifold compactification with N flux quanta generates N + 1 massless Weyl
fermions, as discussed in [21]. Their scalar superpartners φi obtain masses from the
D-term potential

VD =
g2

2h

(
N+1∑
i=1

|φi|2 +D

)2

, (16)

with D given by Eq. (7). The stabilization of the charged matter fields φi at the origin
requires D > 0, as assumed in the previous section. Note that all matter fields φi

have the same U(1) charge since they originate from the same bulk field. The size of
D determines the mass splitting within matter multiplets and therefore the scale of
supersymmetry breaking [27]. Furthermore, we want to point out that the quantity E
introduced above is always positive, E = iXS/s− iXT/t > 0, and ρ = D/E ∈ (0, 1).

As discussed in the previous section, the existence of de Sitter minima crucially
depends on the gauge kinetic function for which one obtains [22]

hS = 2 hT = −2g2`2

(2π)3
. (17)

At the classical level, the gauge kinetic function only depends on S. The contribution
proportional to T is a direct consequence of the Green-Schwarz term, and it is remark-
able that the sign of hT is indeed negative. Note that for XT , XS, hS and hT as given
in Eqs. (15) and (17), h > 0 always implies D > 0 for N ≥ 1. Hence, for nonzero flux,
the matter fields are always stabilized at the origin.

We are now ready to apply the general analysis of the previous section to our
example. For simplicity, we set ε = 0 in Eqs. (14) and look for Minkowski vacua.
Obviously, there exist very similar solutions for de Sitter vacua with ε & 0. Having
GUT scale extra dimensions and three generations in mind [28], we choose ` = 50,
g = 0.2 and N = 3. Using Eqs. (14) and writing az ≡ aS(s + κt), we find for a
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Figure 1: Minkowski minimum for the superpotential parameters (18). h vanishes along
the red dashed line (5) and D vanishes along the blue, dashed-dotted line (8). The
minimum is at (s, t) = (5.3, 9.4) as indicated by the orange star.

Minkowski minimum at (s, t) ' (5.3, 9.4) typical superpotential parameters,

aS ' 0.63 , W0 ' −9.1× 10−4 , W1 ' 6.9× 10−4 . (18)

For the effective gauge coupling we obtain geff = gh−1/2 ' 0.16, and the size of the
compact dimension is V2 = `2

√
st/(2g2) = (7×1015GeV)−2, implying GUT scale super-

symmetry breaking. Note that also larger extra dimensions can be obtained without
fine tuning for larger values of h, i.e. for smaller gauge couplings and smaller superpo-
tential parameters W0, W1. The masses of all moduli are of order 1014 GeV. In Fig. 1
the scalar potential is shown close to the Minkowski minimum. It diverges as s and t
approach the critical line h = 0.

4 Discussion

We have presented a new class of metastable de Sitter vacua. They arise in no-scale
supergravity models with a gauged shift symmetry involving two moduli fields, S and
T . This leads to two Fayet-Iliopoulos terms with different moduli dependence. Also
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the gauge kinetic function has contributions linear in S and T . The superpotential
of KKLT-type depends on the gauge invariant linear combination of S and T . As we
have shown, de Sitter or Minkowski vacua are naturally obtained if the T -dependent
contribution to the gauge kinetic function is negative.

It is remarkable that the low-energy effective action of six-dimensional supergrav-
ity with flux, compactified on an orbifold, fulfills the sufficient conditions for de Sit-
ter vacua. The T -dependent FI term is generated by magnetic flux, whereas the S-
dependent FI term and the T -dependent contribution to the gauge kinetic function are
due to the Green-Schwarz term needed to cancel the U(1) gauge anomaly. The Green
Schwarz-term leads to the negative sign of the T -dependent part in the gauge kinetic
function.

Flux and anomaly cancellation by the Green-Schwarz mechanism are generic ingre-
dients of string compactifications. We therefore believe that our discussion of de Sitter
vacua is relevant far beyond the six-dimensional supergravity example discussed in this
Letter. It will be interesting to study applications for the heterotic string as well as for
type IIB string theory and F-theory. Furthermore, it is intriguing that typical values
for the superpotential parameters and the gauge coupling lead to GUT scale extra di-
mensions and a related large supersymmetry breaking scale. This is a challenge for the
electroweak hierarchy problem, analogous to the cosmological constant problem which
is encoded in the fine tuning of the superpotential parameters.
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