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Abstract

If the Standard Model (SM) is an effective theory, as currently believed, it is valid

up to some energy scale Λ to which the Higgs vacuum expectation value is sensitive

throughout radiative quadratic terms. The latter ones destabilize the electroweak

vacuum and generate the SM hierarchy problem. For a given perturbative Ultra-

violet (UV) completion, the SM cutoff can be computed in terms of fundamental

parameters. If the UV mass spectrum involves several scales the cutoff is not unique

and each SM sector has its own UV cutoff Λi. We have performed this calculation

assuming the Minimal Supersymmetric Standard Model (MSSM) is the SM UV com-

pletion. As a result, from the SM point of view, the quadratic corrections to the

Higgs mass are equivalent to finite threshold contributions. For the measured values

of the top quark and Higgs masses, and depending on the values of the different

cutoffs Λi, these contributions can cancel even at renormalization scales as low as

multi-TeV, unlike the case of a single cutoff where the cancellation only occurs at

Planckian energies, a result originally obtained by Veltman. From the MSSM point

of view, the requirement of stability of the electroweak minimum under radiative

corrections is incorporated into the matching conditions and provides an extra con-

straint on the Focus Point solution to the little hierarchy problem in the MSSM.

These matching conditions can be employed for precise calculations of the Higgs

sector in scenarios with heavy supersymmetric fields.
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I. INTRODUCTION

In the Standard Model (SM) [1] as an effective field theory with a physical cutoff Λ,

the Higgs mass parameter is corrected by (uncalculable) quadratic divergences that can

destabilize the electroweak vacuum. This fact is usually associated with the SM hierarchy

problem [2]. In the presence of a perturbative Ultraviolet (UV) completion (beyond the

TeV scale) with heavy fields coupled to the Higgs sector, the quadratic divergences appear

as finite threshold effects, which can therefore be reliably computed in perturbation theory,

after the heavy states are integrated out at the matching scale between the Low-Energy

(LE) and the UV High-Energy (HE) effective theories. So, if the UV completion of the SM

is known and it is perturbative, the hierarchy problem is entirely due to calculable finite

effects and can be fully quantified. If the UV completion is non-perturbative, as it happens

in the case where the Higgs is composite, the calculation cannot rely on perturbation

theory, but the presence of a new scale, even if it is dynamically generated, makes it

possible to estimate the size of the threshold corrections to the Higgs mass [3]. Here we

will consider the former case where the UV completion is perturbative.

The absence of any departure from the SM predictions in current experimental data at

the LHC is pointing towards the existence of new physics at least in the multi-TeV region,

by which the naturalness problem is becoming more acute. This in turn is hinting at less

conventional solutions to the hierarchy problem, as e.g. hypothetical solutions provided

by the theory which breaks supersymmetry at the (high) scale where supersymmetry

breaking is transmitted from the hidden to the observable sector. It is therefore important

to compute the large radiative contributions to the hierarchy problem in order to settle

the required conditions at the high scale for the stability of the electroweak vacuum in

the effective theory (the SM) below the matching scale.

In this paper we will consider the SM as the LE effective theory of the Minimal Super-

symmetric Standard Model (MSSM), matching the two theories at the decoupling scale

Qm where the supersymmetric partners are integrated out. We assume the MSSM is valid

up to scales of the order of the Planck scale MP , where it can be understood as e.g. the flat

limit (MP →∞) of N = 1 supergravity [4], which should eventually be in turn UV com-

pleted by some more fundamental (superstring) theory. The hope is that the fundamental

theory could provide the requirements for solving the SM hierarchy problem, under the

form of some HE parameter relations. For that reason, in this paper we are trying to fix

the required conditions which could lead to stability of the electroweak minimum, but by

no means are we trying to claim any solution to the hierarchy problem, nor even a precise

quantification of the fine-tuning.

Threshold effects when matching the SM with the MSSM have been extensively studied

for dimensionless parameters, as e.g. the SM Yukawa and quartic couplings, thus fixing

the physical Higgs and fermion masses [5]. For dimensional parameters, as the Higgs
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mass parameter, the thresholds have not been systematically considered 1. However,

the hierarchy problem precisely resides in those dimensional parameters, as solving the

equations of minimum providing the electroweak vacuum expectation value (VEV) of

the Higgs field requires a certain amount of fine-tuning which quantifies the hierarchy

problem 2.

It is thus worth improving our knowledge on the dimensional parameter thresholds.

To this aim, in this paper we analyze the effects on the SM Higgs mass parameter from

the decoupling of the heavy MSSM fields. This will result in precise relations to be satis-

fied at the matching scale Qm, in order to have the stability of the electroweak minimum.

Technically, we perform the matching in the one-loop RG-improved approximation, as go-

ing beyond one-loop should not add qualitative complications or dominant contributions.

Similarly we perform the matching procedure in the symmetric phase for the MSSM, so

our results should be affected by tiny corrections of O(v2/Q2
m).

The outline of the paper goes as follows. In section II we present some general ideas

about the decoupling using the scale invariance of the effective potential in the one-

loop RG-improved approximation. We show that in the considered approximation the

decoupling scale Qm is arbitrary, although in view of minimizing (unconsidered) higher

loop corrections it is convenient to take it of the order of magnitude of the masses of

the decoupled fields. Simple toy models to illustrate the general matching procedure are

presented in section III, where we also stress the role, for scale invariance, of the anomalous

dimensions of scalar fields (included in the wave-function radiative corrections) which is

an ingredient alien to the effective potential, constructed at zero external momentum.

The case of the MSSM is reviewed in section IV and the detailed matching between

SM and MSSM Higgs mass parameters is performed in section V. The threshold effects

induced in the effective theory are computed in section VI. In particular we show that

for the MSSM scenario with degenerate soft breaking masses the finite correction to the

SM Higgs mass parameter precisely reproduces the result obtained by Veltman (in the

context of dimensional regularization in two dimensions) [8] if the SM cutoff is identified

with the common mass of the degenerate and heavy supersymmetric partners. Instead,

for the more general scenario with non degenerate heavy masses, the effective theory can

be often interpreted as a SM with different cutoffs for each (quarks, gauge bosons, . . . )

sector. In such a case the finite correction to the SM Higgs mass parameter consists in

a generalized Veltman result with deformations that can be negligible depending on the

hierarchy of the spectrum. In section VII we express the HE parameters evaluated at the

decoupling scale Qm in terms of their values at the scale M where the supersymmetry

breaking is transmitted to the observable sector, and we constrain these values to be

1 For a previous analysis in the MSSM in the broken electroweak symmetric phase, see Ref. [6].
2 The instability under radiative corrections coming from new heavy physics, which is the subject of the

present paper, should not be confused with the instability driven by the Renormalization Group (RG)

running of the quartic Higgs coupling towards negative values [7].
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compatible with sensible matching conditions. We then quantify the thresholds effects

and their impact on the Higgs sector. We focus on the parameter region corresponding to

the Focus Point (FP) solutions. The regions where the electroweak stability is not spoiled

by the finite corrections in the matching conditions can be understood as a generalized FP

solutions which include thresholds effects. Our conclusions are presented in section VIII,

as well as a discussion on the scale, gauge and renormalization scheme dependence of our

results. Finally, technical details of the calculation of the radiative corrections to the SM

Higgs mass parameter stemming from the different supersymmetric sectors are presented

in section A. A nice check of the consistency of our calculation is the explicit proof of the

one-loop scale invariance of our results, and this is presented in section B.

II. GENERAL IDEAS ABOUT THE DECOUPLING

Before putting forward the explicit relation of the effective potential V in the LE and HE

regions, let us review some general ideas about the effective potential [9]. The effective

potential improved by the RG depends, on top of the background value of fields φi,

on a number of running parameters λI (they include dimensionless couplings as well as

dimensionful parameters) and on the renormalization scale Q, in such a way that the

equation [
Q ∂

∂Q
+ βI

∂

∂λI
+ γiφi

∂

∂φi

]
V = 0 (1)

is fulfilled. This equation, where γi are the anomalous dimensions of the fields φi, and βI
the β-functions of the parameters λI , highlights the renormalization-scale independence

of the effective potential. The general solution of Eq. (1) reads as

V = V (Q(t), λI(t), φi(t)) (2)

where

Q(t) = Q exp(t) , βI(λI(t)) =
dλI(t)

dt
, γi(λI(t)) =

d log(φi(t)/φi)

dt
, (3)

together with the boundary conditions λI(0) ≡ λI , φi(0) ≡ φi.

In practice the scale independence of the effective potential (2) holds up to the level

of perturbation theory where the potential is computed. In particular if we make a loop

expansion of the operator V as

V =
∑
`≥0

V (`) , (4)

the RG-improved potential V (0) has a very strong scale dependence. This dependence

is reduced by considering V (0) + V (1), where V (1) includes the terms that correspond to

the field redefinitions φi(t) ≡ (1 + Z
(1)
i (t))φi, and the one-loop RG-improved Coleman-

Weinberg contribution ∆V (1). In fact, in V (0) +V (1) the whole one-loop scale dependence

cancels out and different choices of Q only affect higher order corrections. Whereas the
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explicit expression of Zi(t) depends on the specific model, the contribution ∆V (1) can be

generically written as [10] 3

∆V (1) =
1

64π2
STrM4(φi)

[
log
M2(φi)

Q2
− C

]
(5)

where STr includes the number of degrees of freedom of the different mass eigenstates as

well as a negative sign for fermions.

The electroweak-breaking condition, described as the solution to the equations of min-

imum
∂V

∂φi
= 0 , (6)

is also scale independent. Such condition can thus be deduced from the potential V at

any scale Q and any loop order. However since one is only able to compute ∆V (`) and

Z
(`)
i with ` ≤ n (i.e. up to some perturbative order n), and the minimization condition

should eventually be related to electroweak observables, in practical cases it is advisable

to minimize
∑

`≤n V
(`) (with scale dependence at n + 1 loop order) at the electroweak

scale Q = QEW . Employing this choice of renormalization scale is subtle when also heavy

fields are involved, as we describe now.

We consider a HE theory with light and heavy fields. Light fields have electroweak-

breaking and/or invariant masses of order (or below) QEW , whereas heavy fields have

masses M � QEW . To any fixed order in the loop expansion heavy fields can induce

large logarithms in the minimization condition evaluated at Q = QEW [11]. For this

reason, the minimization should still be performed at Q = QEW , but in the LE effective

theory where the heavy fields have been decoupled.

As we are considering mass-independent renormalization schemes the decoupling of

heavy fields has to be performed at some scale Qm. In such a case the effective description

at Q � Qm is obtained in two steps: i) Matching at Q = Qm of the HE Lagrangian to an

effective Lagrangian (which has all light-fields interactions allowed by the HE symmetry),

and ii) Running of the effective couplings fromQm toQEW . The matching of the couplings

of the light scalar sector can be obtained by exploiting the LE and HE effective potentials.

By construction, the HE and LE theories (in the presence of only light-field back-

grounds) have the same RG-improved potentials at the decoupling scale, i.e. VLE(Qm) =

V (Qm) (LE quantities carry a “LE” subscript; for HE quantities the subscript “HE” is

suppressed). In the ideal case of perfect scale invariance this equivalence is true at any

scale, and the choice of Qm at which one matches the two potentials is fully arbitrary.

3 As customary, in Eq. (5) the matrixM2 is the squared mass spectrum in the presence of the background

fields φi, and the diagonal matrix C depends on the renormalization-scheme. Note that in Eq. (5) the

t-dependence is implicit. Concerning the radiative corrections Zi(t), we remind that they appear due

to the canonical normalization of the kinetic terms and Zi(0) can contain finite contributions which

depend on the renormalization scheme.
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However, in realistic situations where the potentials are calculated at a given loop ap-

proximation, Qm has to be set at a value that presumably minimizes the unknown higher

order corrections coming from heavy fields. This motivates the choice Qm ∼M .

The decoupling procedure involves some technical details when applied to realistic

frameworks. The first issue arises when the HE theory contains several Higgses acquiring

VEVs. This complication does not lead to any difficulties in our analysis as we are

considering scenarios with the SM as an effective description. In fact we are restricting

ourselves to cases where all the multi-Higgs VEVs in the interaction-eigenstate basis can be

aligned along a unique VEV in the mass-eigenstate basis (and this direction corresponds to

the light Higgs of the SM). Clearly this is possible because we are assuming the mass of the

extra-Higgses to be M � QEW . A second issue arises when there are several heavy fields

with masses MI . If they differ by orders of magnitude, there exists no choice of Qm that

avoids large logarithms in the matching conditions. In this case the decoupling procedure

has to be repeated as many times as the number of hierarchically different heavy mass

thresholds. Of course when all MI are similar, the decoupling can be performed just once

with Qm fixed at some intermediate value among MI . The simplified concrete examples

of the next sections will better clarify the details of the decoupling procedure.

III. DECOUPLING IN SOME TOY MODELS

In this section we illustrate the previous ideas about decoupling. We first analyze a

toy model with only one heavy degree of freedom. Second we consider a case with sev-

eral scalar heavy particles and light fermions which contribute to the light scalar wave

function renormalization. The reader not interested in those technical details can jump

straightforwardly to section IV.

A. First toy model: scalars

We consider a toy model consisting of a light scalar φ and a heavy scalar S with a HE

Lagrangian

L = −Ω +
1

2
(∂φ)2 +

1

2
(∂S)2 − 1

2
m2φ2 − 1

4!
λφ4 − 1

2
M2S2 − 1

2
h2φ2S2 (7)

where for simplicity the quartic coupling of the S field has been set to zero, although it is

not protected by any symmetry. After decoupling the S-field the theory is described by

the effective Lagrangian

LLE = −ΩLE +
1

2
(∂φLE)2 − 1

2
m2
LEφ

2
LE −

1

4!
λLEφ

4
LE . (8)

In both Lagrangians the parameters are running with the scale Q.
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Since S does not acquire a VEV, the electroweak breaking field φ is aligned to φLE.

The tree-level (RG-improved) matching of the parameters at the scale Qm is then trivial:

ΩLE(Qm) = Ω(Qm), φLE(Qm) = φ(Qm), mLE(Qm) = m(Qm), λLE(Qm) = λ(Qm). (9)

At this point one could already run the LE parameters from Qm to QEW and obtain the

minimization condition. However the result would strongly depend on the choice of Qm.

Indeed, since the LE and HE parameters run very differently, one would obtain different

minimization conditions for different values ofQm in Eq. (9), even though the fundamental

HE parameters would be kept fixed. This problem is alleviated by performing a one-loop

matching. Hereafter we adopt the MS renormalization scheme to subtract the one-loop

divergences.

In the present model there is no one-loop wave function renormalization and the tree

level relation φLE(Qm) = φ(Qm) is preserved at one loop. The one-loop matching of the

other parameters can be obtained by matching the LE and the HE effective potentials

where all parameters are at the scale Qm. We thus impose the relation

V (φ) = VLE(φ) (10)

with

V (φ) = Ω +
1

2
m2φ2 +

1

4!
λφ4 +

1

64π2

∑
i=φ,S

m4
i

(
log

m2
i

Q2
m

− 3

2

)
, (11)

VLE(φ) = ΩLE +
1

2
m2
LEφ

2 +
1

4!
λLEφ

4 +
1

64π2
m4
φLE

(
log

m2
φLE

Q2
m

− 3

2

)
+O(φ6/M2) ,

where m2
φ = m2 + 1

2
λφ2, m2

S = M2 + h2φ2 and m2
φLE

= m2
LE + 1

2
λLEφ

2. This matching

leads to

ΩLE(Qm) =

[
Ω(Qm) +

M4

64π2
log

M2

Q2
m

]
− 3M4

128π2
,

m2
LE(Qm) =

[
m2(Qm) +

h2M2

16π2
log

M2

Q2
m

]
− h2M2

16π2
, (12)

λLE(Qm) =

[
λ(Qm) +

12

32π2
h4 log

M2

Q2
m

]
,

which holds up to two-loop corrections 4 and where all parameters are evaluated at the

scale Qm. In particular due to the one-loop scale invariance of the HE and LE effective

potentials, the arbitrariness of Qm in (12) is guaranteed at one-loop level. In fact, within

4 Notice that the difference between LE and HE parameters is at one-loop. Using the former or the

latter in the one-loop contribution to the effective potential makes a difference only at the two-loop

order.
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each parenthesis in (12) the logarithms compensate the one-loop running of the parameters

whose evolutions are given by the β-functions

βΩLE =
1

32π2
m4
LE, βΩ =

1

32π2
(m4 +M4) ,

βm2
LE

=
1

8π2
λLEm

2
LE, βm2 =

1

8π2
(λm2 + h2M2) , (13)

βλLE =
6

32π2
λ2
LE, βλ =

6

32π2
(λ2 + 4h4) .

This shows that in the one-loop approximation the running and matching procedures are

commutative and the LE theory is independent of the decoupling scale.

The one-loop freedom in the choice of Qm can be used to minimize the higher order

corrections to (12). To this aim it is sensible to choose Qm = M . In this particular case

the matching for m2
LE turns out to be

m2
LE(M) = m2(M)− h2

16π2
M2 . (14)

The second term is the large threshold correction that, in a more realistic theory as the

SM, would destabilize the electroweak vacuum and would introduce a hierarchy problem.

B. Second toy model: scalars and fermions

Further subtleties of the decoupling procedure can be described in a slightly more compli-

cated scenario. We consider a HE theory consisting of a light real scalar φ, a light Dirac

fermion Ψ, and a number of heavy scalars SI with masses MI of similar magnitude:

L = −Ω+
1

2
(∂φ)2−m

2

2
φ2− λ

4!
φ4+

1

2

∑
I

[
(∂SI)

2 − (M2
I + h2

Iφ
2)S2

I

]
+iΨ̄/∂Ψ−Y φΨ̄Ψ . (15)

This theory can be described at LE by

LLE = −ΩLE +
1

2
(∂φLE)2 − m2

LE

2
φ2
LE −

λLE
4!

φ4
LE + iΨ̄LE /∂ΨLE − YLEφLEΨ̄LE ΨLE (16)

and the dependence with respect to Q is implicit in Eqs. (15) and (16).

Since the SI fields do not acquire any VEV and their integration do not lead to any tree-

level correction to the LE couplings, the tree-level matching is trivial. Instead the one-loop

matching is less straightforward due, for instance, to the radiative corrections to the kinetic

terms. As we are interested in the one-loop electroweak-breaking conditions, we will focus

on the effective potential of the light scalar field. In particular we want to calculate the

RG-improved one-loop matching at the scale Qm. To this aim we first run all parameters

in (15) and (16) to Qm, and then we evaluate the LE and HE one-loop potentials. We
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thus absorb the kinetic-term radiative corrections 5 (1− 2Zφ(Qm)) and (1− 2ZφLE(Qm))

into field redefinitions of φ and φLE respectively, where d[Zi(Q)]/d logQ = γi(Q), the

anomalous dimension at one-loop order. The expansion of the HE RG-improved one-loop

potential at the scale Qm has to reproduce the LE one at the same scale. We hence impose

the matching

V (φ) = VLE(φ) (17)

with

V (φ) = Ω +
1

2
m2(1 + 2Zφ)φ2 +

1

4!
λ(1 + 4Zφ)φ4 +

∑
i=φ,SI ,Ψ

ni
m4
i

64π2

(
log

m2
i

Q2
m

− 3

2

)
,

VLE(φLE) = ΩLE +
1

2
m2
LE(1 + 2ZφLE)φ2

LE +
1

4!
λLE(1 + 4ZφLE)φ4

LE

+
∑

i=φLE ,ΨLE

ni
m4
i

64π2

(
log

m2
i

Q2
m

− 3

2

)
+O(φ6

LE/M
2) ,

where m2
φ = m2 + 1

2
λφ2, m2

SI
= M2

I + h2φ2, m2
Ψ = Y 2φ2, m2

φLE
= m2

LE + 1
2
λLEφ

2
LE,

m2
ΨLE

= Y 2
LEφ

2
LE, and ni = 1(−4) for real bosons (Dirac fermions). This implies

ΩLE(Qm) =

[
Ω(Qm) +

∑
I

M4
I

64π2
log

M2
I

Q2
m

]
−
∑
I

3M4
I

128π2
,

m2
LE(Qm) =

[
m2(Qm)[1 + 2Zφ(Qm)− 2ZφLE(Qm)] +

∑
I

h2
IM

2
I

16π2
log

M2
I

Q2
m

]
−
∑
I

h2
IM

2
I

16π2
,

λLE(Qm) = λ(Qm)[1 + 4Zφ(Qm)− 4ZφLE(Qm)] +
∑
I

12h4
I

32π2
log

M2
I

Q2
m

. (18)

where we are using the tree-level matching condition YLE(Qm) = Y (Qm) 6.

In this toy model only light degrees of freedom generate Zφ and ZφLE at one loop

via couplings that have trivial tree-level matching: it thus follows that Zφ = ZφLE
7.

Moreover, in view of minimizing higher loop corrections in the matching of m2
LE, one can

adopt the choice Qm = M̄ , where M̄ is defined as

log M̄2 =

∑
I h

2
IM

2
I log(M2

I )∑
I h

2
IM

2
I

, (19)

5 In the rest of the paper we will consider only the one-loop RG-improved Coleman-Weinberg potential

and wave function corrections. We then simplify the notation by omitting the superscript “(1)” in the

quantities Z
(1)
i and ∆V (1) introduced in section II.

6 The one-loop matching condition for the Yukawa coupling Y can be obtained diagrammatically. For

the purposes of the present paper we do not need to make it explicit.
7 Note that in scenarios (as the MSSM) where also some heavy fields contribute to Zφ, the Zφ − ZφLE

dependence on Qm is necessary to guarantee the scale independence of the one-loop matching condi-

tions.
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so that only the non-logarithmic one-loop contribution is left in the matching condition

for m2
LE:

m2
LE(M̄) = m2(M̄)−

∑
I

h2
I

16π2
M2

I . (20)

Of course the choice (19) is expected to reduce the higher order correction in the m2
LE

matching only if the relation log M̄2 ∼ logM2
I occurs for all I’s. Otherwise, as already

stressed in section II, it is worth reiterating the decoupling procedure at each mass scale

MI .

IV. THE SM/MSSM MATCHING

In this section we use the MSSM one-loop RG-improved effective potential to determine

the radiative corrections that can destabilize the electroweak breaking condition in such

a model. The Higgs sector contains two doublets H1 and H2 where in our convention

H2 gives the mass to the top quark and H1 to the bottom quark and tau lepton. The

MSSM Higgs Lagrangian, including only the one-loop wave function renormalization for

the Higgs doublets Zhi , can be written as

LMSSM =
∑
i

(1− 2Zhi)|DµHi|2 − V (H1, H2) (21)

where V (H1, H2) is the tree-level MSSM Higgs potential. Then the one-loop RG-improved

MSSM potential of the neutral Higgs fields hi = ReH0
i (i = 1, 2) is

V (h1, h2) = m2
1(1 + 2Zh1)h

2
1 +m2

2(1 + 2Zh2)h
2
2 − 2m2

3h1h2(1 + Zh1 + Zh2)

+
g2
Z

2
[h2

1(1 + 2Zh2)− h2
2(1 + 2Zh2)]

2 + ∆VMSSM(h1, h2) , (22)

where ∆VMSSM is the Coleman-Weinberg contribution generated by all fields of the MSSM

and 8

g2
Z ≡ (g2

Y + g2
2)/4, m2

1 ≡ m2
H1

+ µ2, m2
2 ≡ m2

H2
+ µ2. (23)

The above equation is understood at an arbitrary renormalization scale Q.

In view of the strong LHC bounds on the masses of supersymmetric particles we match

the MSSM with the SM at some high scale Qm, say (multi-)TeV. To this aim we employ

the effective potential techniques adopted in the previous examples. For simplicity, we

assume all parameters to be real although the extension to cases with complex parameters

(and CP violation) is straightforward.

Contrarily to the previous examples, the MSSM has two fields, in the gauge eigenstate

basis, that acquire VEVs. We then go to the mass eigenstate basis to work out the

8 We are using conventionally for the electroweak gauge couplings the notation: g′ ≡ gY and g ≡ g2. gY

is related to the U(1) gauge coupling g1 in the SU(5) normalization by gY =
√

3
5g1.
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matching (first at the tree-level, then at one-loop). The field rotation can be performed

by neglecting the O(v2/Q2
m) electroweak-breaking contributions (i.e. we proceed in the

electroweak symmetry unbroken phase) since the CP -odd Higgs mass mA is assumed to

be much heavier than the electroweak scale. The resulting potential can be matched to

the SM potential whose one-loop RG-improved expression is given by

VLE(hLE) = −m2
LE(1 + 2ZhLE)h2

LE +
λLE

2
(1 + 4ZhLE)h4

LE + ∆VSM(hLE) , (24)

where ∆VSM is the SM one-loop RG-improved Coleman-Weinberg potential in the pres-

ence of the background field hLE = ReH0
LE (with HLE being the SM Higgs doublet). In

Eq. (24) and hereafter the effective higher-order operators, which are small due the large

hierarchy between heavy and light fields, are neglected.

A. Tree-level matching

In order to derive the RG-improved tree-level matching we will focus on the quadratic

part of the tree-level MSSM potential, V (0)(h1, h2), which can be extracted from (22). At

the matching scale Qm we thus obtain

V (0)(h1, h2) = m2
1h

2
1 +m2

2h
2
2 − 2m2

3h1h2 +
g2
Z

2
(h2

1 − h2
2)2 . (25)

The potential V (0)(h1, h2) at Qm can be rewritten in the mass eigenstate basis as

V (0)(h,H) = −m2h2 +m2
HH

2 + · · · (26)

with m2 � m2
H = m2

1 +m2
2 +m2. This field transformation is achieved by the rotationh1

h2

 = Rβ

h

H

 , Rβ =

cos β − sin β

sin β cos β

 (27)

such that

(h1, h2)

 m2
1 −m2

3

−m2
3 m2

2

h1

h2

 = (h,H)

−m2 0

0 m2
H

h

H

 . (28)

Note that Eqs. (27) and (28) are equivalent to require

m4
3 = (m2

1 +m2)(m2
2 +m2) , (29)

tan 2β =
2m2

3

m2
2 −m2

1

(30)
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or, alternatively

m2
2 = m2

3/ tan β −m2 ,

m2
1 = m2

3 tan β −m2 , (31)

with tan β ≥ 1, as we are assuming m2
3 > 0 and m2

1 ≥ m2
2. In particular since we are

in the decoupling limit m2 � m2
H , our definition of tan β coincides with the MSSM one,

tan β = v2/v1 where vi ≡ 〈hi〉. Combining the above relations we also have the explicit

expression for the light mass eigenstate

m2 = −m2
1 cos2 β −m2

2 sin2 β +m2
3 sin 2β . (32)

In the mass eigenstate basis (h,H) it is easy to obtain the tree-level matching to the

SM. If one extracts the V
(0)
LE (hLE) part from the LE one-loop potential of hLE, Eq. (24),

and matches it to V (0)(h,H) at Qm, one obtains

hLE(Qm) = h(Qm), mLE(Qm) = m(Qm), λLE(Qm) = g2
Z(Qm) cos2 2β [tree level] . (33)

Similarly the matching of the LE and HE Yukawa interactions at Qm yields

yt(Qm) = Yt(Qm) sin β , yb,τ (Qm) = Yb,τ (Qm) cos β , [tree level] (34)

where yt,τ,b and Yt,τ,b are respectively the top quark, tau lepton and bottom quark Yukawa

couplings in the SM and in the MSSM.

Of course there might already be a problem at tree level: the right hand side of Eq. (32)

is a linear combination of potentially large masses squared while the left hand side is a

mass squared which is required to be at the electroweak scale. This fine-tuning is essen-

tially equivalent to that in Eq. (29). This is the main naturalness problem in the MSSM.

This problem cannot be tackled unless we know the (fundamental) theory responsible for

triggering supersymmetry breaking at the high scaleM in the hidden sector and dictating

the size of the supersymmetry breaking parameters in the observable sector. The FP so-

lution [12, 13] just uncovers the functional relationships between fundamental parameters

at the high scale M for which the naturalness problem is circumvented. However even if

we accept that the fundamental theory might provide a solution to the tree-level stability

we still have to worry for loop corrections, e.g. in the effective theory as those computed

in Ref. [8]. The matching including one loop corrections will be done in the next section.

B. One-loop level matching

We now proceed with the one-loop matching. Again we want to work in the mass eigen-

state basis. We then impose the tree-level matching conditions (31) in the one-loop term
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∆VMSSM of (22), and expand ∆VMSSM . Such expansion produces some new quadratic

contributions that we absorb as

V (h1, h2) = m̃2
1h

2
1 + m̃2

2h
2
2 − 2m̃2

3h1h2 + · · · (35)

where

m̃2
i = m2

i + 2Zhim
2
i + ∆m2

i , ∆m2
i =

∂∆VMSSM

∂h2
i

∣∣∣∣
hi=0

,

m̃2
3 = m2

3 + (Zh1 + Zh2)m
2
3 + ∆m2

3 , ∆m2
3 = −1

2

∂∆VMSSM

∂h1h2

∣∣∣∣
hi=0

, (36)

with i = 1, 2. As previously done for the tree-level matching, we diagonalize the quadratic

potential (35) by a rotation Rβ (whose angle differs from that of section IV A although

for notational simplicity we are keeping the same notation for both) leading to a light

mass eigenstate h with squared mass −m̃2 and a heavy eigenstate H with squared mass

m̃2
H = m̃2

1 + m̃2
2 + m̃2, where

m̃2 = m2 + 2m2Zh + ∆m2 ,

m2 = −m2
1 cos2 β −m2

2 sin2 β +m2
3 sin 2β , (37)

∆m2 = −∆m2
1 cos2 β −∆m2

2 sin2 β + ∆m2
3 sin 2β ,

and Zh ≡ cos2 βZh1 + sin2 βZh2 is the wave function renormalization in the MSSM for the

mass eigenstate h 9. This diagonalization requires

m̃2
2 = m̃2

3/ tan β − m̃2 ,

m̃2
1 = m̃2

3 tan β − m̃2 , (38)

which can be used to express, as it is customary in the MSSM, tan β and the lightest

eigenvalue −m̃2 as functions of the fundamental parameters:

m̃2 = −m̃2
1 cos2 β − m̃2

2 sin2 β + m̃2
3 sin 2β ,

tan 2β =
2 m̃2

3

m̃2
2 − m̃2

1

. (39)

In order to perform the complete one-loop matching, we would need to consider ∆VSM .

As the light (i.e. SM) fields provide the same contributions to ∆VSM and ∆VMSSM modulo

the tree-level matching of Yukawa couplings in Eq. (34) (cf. also section V), we can proceed

by taking into account only the heavy non-SM fields in ∆m2
1, ∆m2

2 and ∆m2
3. Then the

9 Notice that the identity Zhm
2 ≡ Zh1

m2
1 cos2 β +Zh2

m2
2 sin2 β − (Zh1

+Zh2
)m2

3 sin 2β is obtained after

using the tree-level matching conditions, Eq. (31), on the masses and mixing angle, as required by the

fact that the wave function renormalization is already a one-loop effect.
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one-loop RG-improved matching of the quadratic term in the HE and LE theories turns

out to be

m2
LE(Qm) = m2(Qm)(1 + 2∆Zh(Qm)) + ∆m2(Qm) , (40)

where

∆Zh(Qm) = Zh(Qm)− ZhLE(Qm) . (41)

We hence stress that the requirement m2(Qm) ∼ Q2
EW is not sufficient to guarantee

sensible electroweak breaking conditions as these could be destabilized by ∆m2 and ∆Zh.

V. ∆m2 IN THE MSSM WITH HIGH SUSY-BREAKING SCALE

We will now explain the main lines to determine ∆m2. We remind that all the

MSSM particles, except the SM ones, are assumed to be heavy. The one-loop potential

∆VMSSM(h1, h2) can be split into two separated terms: one term contains contributions

from the Higgs sector A,H,H± and the SM fields, and the second one does it from the

field superpartners f̃ (with f̃ representing the whole list of squarks, sleptons, charginos

and neutralinos). Due to the triviality of the tree-level matching conditions (33) and (34),

it is easy to see as we already noticed that the light fields provide the same contribution

to ∆VMSSM(h) and to ∆VSM(hLE). Because of this property the correction ∆m2 can be

calculated as in Eq. (37) with

∆m2
I =

∑
r=f̃ ,A,H,H±

∆m2
I,r , (42)

∆m2
i,r =

∂∆VMSSM,r

∂h2
i

∣∣∣∣
hi=0

∆m2
3,r = −1

2

∂∆VMSSM,r

∂h1h2

∣∣∣∣
hi=0

, (43)

where I = (i, 3), i = 1, 2 and ∆VMSSM,r is the MSSM one-loop potential generated by the

field r.

The explicit form of ∆m2
I,r depends on the renormalization scheme. In the MS scheme

(or equivalently at this level DR), for which C = (3/2)1 in Eq. (5) for scalars and fermions,

it results

∆m2
i,r =

nr
32π2

∂m2
r

∂h2
i

G(m2
r)

∣∣∣∣
hi=0

, ∆m2
3,r = − nr

64π2

∂m2
r

∂h1h2

G(m2
r)

∣∣∣∣
hi=0

, (44)

where nr stands for the number of degrees of freedom of the particle r and is positive

(negative) for bosons (fermions), while the function G(x2) is defined as

G(x2) ≡ x2

(
log

x2

Q2
m

− 1

)
. (45)

For simplicity we determine ∆m2 by neglecting the corrections coming from first and

second generations of squarks and sleptons (the expressions are however fully general and
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the first two generation sfermions could be easily included). Details of the calculation are

furnished in appendix A. Here we only report on the final result:

−∆m2 =
1

32π2

{
6y2

t [G(m2
Q) +G(m2

U)] + 6y2
b [G(m2

Q) +G(m2
D)] + 2y2

τ [G(m2
L) +G(m2

E)]

+ 6y2
tX

2
t

G(m2
Q)−G(m2

U)

m2
Q −m2

U

+ 6y2
bX

2
b

G(m2
Q)−G(m2

D)

m2
Q −m2

D

+ 2y2
τX

2
τ

G(m2
L)−G(m2

E)

m2
L −m2

E

− g2
Y

(
G(m2

Q)− 2G(m2
U) +G(m2

D)−G(m2
L) +G(m2

E)
)

cos 2β

− 6g2
2

M2
2G(M2

2 )− µ2G(µ2)

M2
2 − µ2

− 2g2
Y

M2
1G(M2

1 )− µ2G(µ2)

M2
1 − µ2

−
(

12g2
2M2µ

G(M2
2 )−G(µ2)

M2
2 − µ2

+ 4g2
YM1µ

G(M2
1 )−G(µ2)

M2
1 − µ2

)
sin β cos β

+G(m2
H)
(
−6g2

Z cos2 2β + 2g2
Z + g2

2

)}
, (46)

where the soft breaking terms Xt,b,τ are defined as

Xt = At −
µ

tan β
, Xb,τ = Ab,τ − µ tan β . (47)

In Eq. (46) the first two lines correspond to the contribution from sfermions, the third line

the Fayet-Iliopoulos contribution from scalars, the forth and fifth lines the contribution

from charginos and neutralinos, and the last line the contribution from the heavy scalar,

the pseudoscalar and charged Higgses. Notice that all supersymmetric parameters are

defined at the scale Qm.

We therefore conclude that in the MSSM with heavy non-SM particles, the Higgs

sector at LE appears like the one of the SM where the Higgs quadratic parameter at the

scale Qm is given by the relation of Eq. (40) with m2 and ∆m2 as in Eqs. (37) and (46)

and tan β given by Eq. (39). Moreover the explicit expression of ∆Zh
10 is not required

in first approximation as we will see in section VI. Finally, it is worth noting that, by

construction, in the considered heavy MSSM scenario the electroweak breaking condition

at Q = QEW can be evaluated in the LE theory (avoiding large logarithms) with no

one-loop dependence on the choice of Qm (cf. appendix B).

VI. THE STABILITY OF THE SM EFFECTIVE THEORY

As reminded in section IV, even in the case that the fundamental theory naturally

leads to m2 of the order of the electroweak scale, we still have to worry about the desta-

bilization and unnaturalness due to radiative corrections. In this section we sketch some

10 In general ∆Zh consists of two terms: one depending on the renormalization scale and proportional to

the anomalous dimension difference γh−γhLE
; and a second one leading to a one-loop scale-independent

difference between the LE and HE parameters (see e.g. [14]).
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relationships that would help to not destabilize the vacuum. These can be deduced af-

ter evaluating the size of the radiative corrections at Qm and forcing them to be in the

ballpark of m2(Qm).

Some preliminary observations are in order here:

• In general m2(Q) has a strong scale dependence and its value can span several

order of magnitudes. Its (one-loop) radiative correction is given by ∆m2(Q) +

2m2(Q)∆Zh(Q), which is also strongly scale dependent. Hence claiming m2 =

O(100 GeV)2 makes sense only at a specific running scale and, concerning the

hierarchy problem, the result is satisfactory only if at the same scale the radiative

corrections contain no large logarithms (to keep perturbation theory trustable) and

are of the order of the electroweak scale or below (to not destabilize the tree level

result). In this section we assume that the supersymmetry breaking theory yields

m2 = O(100 GeV)2 at the specific scale Qm.

• The strong (one-loop) scale dependences of m2(Q) and its radiative correction have

opposite signs and almost cancel out. Indeed the Q-dependence of these two terms

is equivalent to the one of m2
LE(Q) [cf. Eq. (40)], which amounts to the β-function

of the SM (cf. appendix B) and is thus negligible for our purposes 11.

• Heavy particles have masses well abovem2(Qm). This implies that the wave function

correction 2m2(Qm)∆Zh(Qm) can be neglected in comparison to ∆m2(Qm).

Therefore within the above approximations the stability of the electroweak breaking

conditions under radiative corrections can be evaluated by means of the “stability param-

eter”

S =

∣∣∣∣∆m2(Qm)

m2
LE(Qm)

∣∣∣∣ , (48)

where the running of m2
LE between QEW and Qm can be neglected. We now proceed

determining S in some specific scenarios.

A. Degenerate case

We first consider the simplest MSSM scenario where all mass parameters are degenerate

at some common value M :

mQ = mU = mD = mL = mE = M1 = M2 = µ = mH ≡M . (49)

11 We checked numerically that in the SM the quadratic term changes by about ∼10% for a running from

the electroweak to the Planck scale.
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In this case all radiative corrections depend on the single logarithm logM2/Q2
m and the

simplest choice for the decoupling scale is obviously Qm = M . Eq. (46) thus yields

∆m2(M) =
M2

32π2

{
12y2

t + 12y2
b + 4y2

τ − 6λ− 3

2
g2
Y −

9

2
g2

2

}
. (50)

Eq. (50) reproduces the SM Higgs mass quadratic divergence obtained in the case

that the SM has a cutoff Λ ≡ M [8, 15]: the first three terms correspond to the

quadratic divergences coming from exchange of top, bottom and tau fermions [with masses

mt,b,τ (hLE) = yt,b,τhLE], the fourth term corresponds to divergences coming from exchange

of the SM Higgs [with mass m2
h(hLE) = −m2 +3λh2

LE] and neutral and charged Goldstone

bosons [with masses m2
χ(hLE) = −m2 + λh2

LE], while the last two terms are equivalent to

those due to exchange of W and Z gauge bosons [with masses m2
W (hLE) = g2

2h
2
LE/2 and

m2
Z(hLE) = (g2

Y + g2
2)h2

LE/2]. In fact Eq. (50) can be written as a function of SM running

masses as

∆m2(M) =
M2

32π2v2

{∑
f

nfm
2
f − 3m2

h − 3m2
Z − 6m2

W

}
, (51)

where nf is the number of degrees of freedom of the fermion f .

As it is well known, for experimental values of the SM masses the requirement

∆m2(M) = 0 in Eq. (51), usually dubbed Veltman condition [8], is not fulfilled at weak

scales but at Planckian scales [16]. The value of this high scale is quantified in the left

panel of Fig. 1 where the contour lines of ∆m2(M) = 0 (or equivalently S = 0) are plotted

in the plane (log10M/GeV,Mt) (where Mt is the top quark pole mass), for different values

of mh and α3(mZ). The plot has been obtained by using the RG equations of the SM

parameters appearing in Eq. (50) at the NNLO (as done e.g. in [17]).

B. A simple non-degenerate case

A simple non-degenerate case is the scenario where at the scale Qm the sfermion, elec-

troweakino and Higgs sectors have each one a respective common mass M0, M1/2 and MH

as:

mQ = mU = mD = mL = mE ≡M0, M1 = M2 = µ ≡M1/2, mH ≡MH . (52)

In this case we can express ∆m2(Qm) as

∆m2(Qm) = ∆fm
2(Qm) + ∆`m

2(Qm) (53)
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FIG. 1: Left panel: Contour lines of S = 0 for different values of α3(mZ) in the degenerate case

of section VI A. The solid (dashed) lines are obtained taking mh = 126 (125) GeV. Right panel:

Contour lines of log10M0 as a function of rH and r1/2 leading to S = 0 in the non-degenerate

case of section VI B. We choose mh = 125.1 GeV, mt = 172.5 GeV, α3(mZ) = 0.1196 and

tanβ = 1 for definiteness. Along the dotted straight line (r1/2 = rH) the quadratic corrections

can be understood as a generalization of the Veltman condition.

with 12

∆fm
2(Qm) =

1

32π2

{
(12y2

t + 12y2
b + 4y2

τ )M
2
0 − 4GM2

1/2 − (6λ−G)M2
H

}
, (54)

∆`m
2(Qm) =

1

32π2

{
−
[
(12y2

t + 12y2
b + 4y2

τ )M
2
0 + (6y2

tX
2
t + 6y2

bX
2
b + 2y2

τX
2
τ )
]

log
M2

0

Q2
m

+ 4GM2
1/2fβ log

M2
1/2

Q2
m

+ (6λ−G)M2
H log

M2
H

Q2
m

}
, (55)

where G = (g2
Y + 3g2

2)/2, fβ = 2 + sin 2β and all parameters are understood at the scale

Qm. For definiteness we take Qm = M0 hereafter. It follows

∆fm
2(Qm) =

M2
0

32π2v2

{∑
f

nfm
2
f − 4(2m2

W +m2
Z)r2

1/2 − (3m2
h − 2m2

W −m2
Z)r2

H

}
, (56)

∆`m
2(Qm) =

M2
0

32π2v2

{
4fβ(2m2

W +m2
Z)r2

1/2 log r2
1/2 + (3m2

h − 2m2
W −m2

Z)r2
H log r2

H

}
,

(57)

12 The decomposition (53) separates the one-loop scale independent contribution from the dependent one,

∆fm
2(Qm) and ∆`m

2(Qm) respectively. This separation is defined up to an arbitrary one-loop scale

independent quantity, but our results do not depend on the convention we are choosing.
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where rH = MH/M0, r1/2 = M1/2/M0 and all masses are running.

For rH = r1/2 the right hand side of Eq. (56) coincides with the quadratic divergences

that one derives from the SM effective potential by using as regulators the cutoff ΛF = M0

for fermions and the cutoff ΛB = M1/2 = MH for bosons 13. In this case the requirement

∆fm
2 = 0 can be interpreted as a generalization of the Veltman condition expressing the

Higgs quadratic divergence in terms of SM parameters and cutoffs 14. However also the

logarithmic corrections are sizeable and contribute to destabilizing the potential. With

the constraint rH = r1/2, ∆`m
2 is negligible only when rH = r1/2 ≈ 1. Correspondingly

the condition ∆m2 = 0 with cutoffs at the TeV scale is not possible anymore.

However, for rH 6= r1/2 the stability under perturbative corrections can still be fulfilled

at scales of O(100 TeV) if one requires the cancellation of the total correction ∆m2. This

can be seen in the right panel of Fig. 1 where the constraints on rH and r1/2 leading

to S = 0 (solid curves) are plotted for several values of M0. The figure is obtained

using Eqs. (56) and (57) with tan β = 5, and running the SM parameter at NNLO with

boundary conditions mh = 125.1 GeV, Mt = 172 GeV and α3 = 0.1196 at the electroweak

scale as explained in Ref. [16]. The former case, rH = r1/2, is exhibited as the dotted

straight line in the right panel of Fig. 1 where we can see that stability can be achieved

for sub-Planckian scales.

C. General soft breaking terms

In principle one expects that all soft breaking parameters will be different at the scale Qm.

In this general case the finite threshold contribution to the SM Higgs mass parameter is

given by Eq. (46). The required condition for keeping ∆m2 at the order of the electroweak

scale is then a hypersurface in the multidimensional space of supersymmetric parameters

(mQ,mU ,mD,mL,mE, At, Ab, Aτ ,m1,m2, µ,M1,M2). In the next section some of these

hypersurfaces are analyzed numerically for the case of negligible Fayet-Iliopoulos (FI)

contribution 15.

Before closing this section a couple of comments are in order. In this section we have

assumed m2(Qm) at the electroweak scale without specifing the origin of such a value.

The main ideas to naturally produce m2(Qm) at the electroweak scale are twofold:

13 A similar interpretation is not clear for M1/2 6= MH due to the fact that both the heavy (neutral and

charged) Higgs sector and charginos and neutralinos contribute to the generalized Veltman condition

with terms proportional to squared gauge couplings.
14 In particular, for some choices of ΛB and ΛF at the TeV scale, the condition ∆fm

2 = 0 can be achieved

at low energies.
15 We remind that the FI contribution is a RG invariant. Our assumption is thus valid only if the FI

term is zero at the scale of supersymmetry breaking transmission. Otherwise it should be taken into

account although its (tiny) contribution should not change the qualitative conclusions.
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• If, i) the whole MSSM Higgs sector is at the electroweak scale (in which case the

LE effective theory is not the SM but a two Higgs doublet model), and ii) the

masses of the supersymmetric partners are in the low TeV region (i.e. Qm 6� QEW ),

then m2(Qm) is at the electroweak scale. Moreover the requirement |∆m2(Qm)| .
O(100 GeV)2 is also automatically satisfied. This parameter configuration might be

excluded soon by the LHC lower bounds on heavy Higgs and superpartner masses

and we will not further discuss it.

• For tan β � 1 the squared mass m2(Qm) is similar to m2
2(Qm) [cf. Eq. (37)]. The

value of the latter is naturally small in the FP parameter region of the MSSM. This

possibility has been broadly studied in the literature [12] although the modifications

due to ∆m2 have been overlooked.

In the next section we will analyze the effects that the one-loop corrections have on

the FP solution.

VII. NUMERICAL RESULTS: FOCUS POINT SOLUTIONS

In this section we concentrate on the FP solution including the one-loop radiative correc-

tion ∆m2. We stress that till now we have expressed m2(Qm) and ∆m2(Qm) as functions

of supersymmetric parameters evaluated at the scale Qm. However, in view of a more

fundamental supersymmetry-breaking description, m2 and ∆m2 should be re-expressed

in terms of the supersymmetric parameters evaluated at the messenger scaleM at which

supersymmetry breaking is transmitted to the observable sector. As, depending on the

supersymmetry breaking model, some of the parameters can unify at the messenger scale,

the number of independent parameters at the scale M can be smaller (than what would

show up at the scale Qm). So, the required relation to keep ∆m2 and m2(Qm) of the

order of the electroweak scale is simpler, and might appear more natural. This scenario

is considered in this section assuming, at the scale M, as a simple example the case 16

mQ(M) = mU(M) = M0, m1(M) = m2(M) = MH , Ma(M) = M1/2 . (58)

From Eqs. (39) and (40) we can write the matching conditions as

m2
LE ' m2(Qm) + ∆m2(Qm) =

1

tan2 β − 1
m̃2

1 −
tan2 β

tan2 β − 1
m̃2

2 (59)

where ∆m2 is given by Eq. (46), and the subleading radiative contribution 2m2∆Zh from

the wave function renormalization is neglected. For tan β � 1, µ = O(100 GeV) and

small ∆m2, the requirement m2(Qm) = O(100 GeV)2 implies
∣∣m2

H2

∣∣ = O(100 GeV)2,

16 Other cases can be obviously considered along similar lines. Here we just present the case of Eq. (58)

dubbed as NUHM1 [18].
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where m2
H1,2

are defined in Eq. (23). For heavy supersymmetric spectrum this size of m2
H2

can be generated in the neighborhood of the FP solution [13, 19] which is radiatively led

to m2
H2

= 0. However in the FP parameter region there is no general reason why ∆m2

should be small. In fact the presence of ∆m2 can distort the standard FP solution usually

considered in the literature. In this section we numerically analyze the parameter space

of these modified FP solutions 17.

As it was mentioned in the previous section, it is useful to re-express the supersymmet-

ric parameters of Eq. (59) in terms of their values at the high scale M. On dimensional

grounds we can rewrite them as

m2
X(Qm) = m2

X + ηXQ [Qm,M](m2
Q +m2

U +m2
2) +

∑
a,b

ηXab[Qm,M]MaMb

+
∑
a

ηXaA[Qm,M]MaA0 + ηXA [Qm,M]A2
0 ,

At(Qm) = A0 + fA[Qm,M]A0 +
∑
a

fa[Qm,M]Ma , (60)

where A0, m2
X and Ma (with X = Hi, QL, UR, DR and a = 1, 2, 3) are respectively the

stop tri-linear mixing parameter, the sfermion masses and the Majorana gaugino masses

at the scale M.

Concerning the numerical procedure, we assume moderately large values of tan β

(namely tan β ' 10) which allows to approximate Xt ' At and to safely neglect all

Yukawa couplings except that of the top quark. Moreover we set At at the mass scale

Q̃2 ≡ mQ(Qm)mU(Qm) in such a way that the SM RG evolution of the quartic coupling

λ(Q̃) =
1

4
(g2

2(Q̃) + g2
Y (Q̃)) cos2 2β +

3

8π
y4
t (Q̃)X2

t

(
1− X2

t

12

)
(61)

from Q̃ to QEW reproduces the Higgs mass observation, namely λ(QEW ) ≈ (mh/v)2/2.

For the functions ηX [Qm,M] and f [Qm,M], which were obtained semi-analytically for

Qm = 2 TeV and µ ∼ 100 GeV in Ref. [13], we use some simple generalized formulas

where the effect of possible heavy Higgsinos is incorporated 18. Finally, as fundamental

description of the supersymmetric parameters, we consider the relations in Eq. (58).

Figs. 2, 3, 4 and 5 display the values of fundamental parameters and their corresponding

mass spectra leading tom2
LE ∼ (100 GeV)2. In the left panels of the figures we plot contour

17 We remind that, in the absence of ∆m2, the FP solution is scale invariant with respect to a common

multiplicative factor on the boundary conditions (at the scaleM) of the supersymmetric masses. This

scale invariance is broken by ∆m2 which contains logarithms of the supersymmetry breaking masses

over Qm. Still, as radiative corrections are small as compared to the tree level values, the scale

invariance of the FP solutions is approximatively preserved
18 For the case of heavy Higgsinos we determine the one-loop RG evolution of the MSSM parameters by

neglecting the scale dependence of µ. This is justified by the fact that the variation of µ between Qm
and M is of the order of 1%.
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FIG. 2: Left panel: Contour lines of log10M/GeV (white labels) and stability parameter S
(orange labels) for M0 = 0, and light Higgsinos, µ = 100 GeV. The (yellow) external shadowed

region corresponds to mU (Qm) < 750 GeV and the (green) internal shadowed region corresponds

to m2
U (Qm) < 0. Middle panel: Corresponding contour lines of constant mQ(Qm) (solid black),

mU (Qm) (dashed blue) and mH(Qm) (dash dotted red). Right panel: Corresponding contour

lines of constant M3(Qm) (solid red), M2(Qm) (dashed blue) and M1(Qm) (dash dotted black).

Labels in the middle and right panels are in TeV units.
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FIG. 3: The same as in Fig. 2 but for M0 = 2 TeV.

(black dashed) lines for constant values of log10(M/GeV) such that Eq. (59) at tree level

is fulfilled, and contour (solid red) lines for the stability parameter S of the one-loop

radiative corrections (cf. Eqs. (46) and (48)). Similarly, the contour lines of mQ(Qm)

(solid black), mU(Qm) (dashed blue) and mH(Qm) (dash-dotted red) are shown in the

middle panels, whereas the contour lines of M3(Qm) (solid red), M2(Qm) (dashed blue)

and M1(Qm) (dash-dotted black) are depicted in the right panels. We remind that the

condition m2
LE ∼ (100 GeV)2 arises with no tuning between m2 and ∆m2 when S = O(1).

In Figs. 2 and 3 we consider the case µ ∼ 100 GeV, and M0 = 0, M0 = 2 TeV,

respectively, and in Figs. 4 and 5 the case with M0 = 2 TeV and heavy and superheavy
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FIG. 4: The same as in Fig. 3 but for µ = 2 TeV.
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FIG. 5: The same as in Fig. 3 but for µ = M1/2. In the (magenta) upper left shadowed region

the soft breaking terms m2
HU

= m2
HD

< 0 are tachyonic at the scale M, although m2
1 = m2

2 ≡
M2
H > 0.

Higgsinos, with µ = 2 TeV and µ = M1/2, respectively. The region with mU(Qm) < 750

GeV [m2
U(Qm) < 0] corresponds to the yellow [green] shadowed area. In fact the yellow

band corresponds to the FP for the light stop scenario [20].

As we can see from the general expression of radiative corrections, Eq. (46), gauge

coupling terms should tend to compensate top Yukawa coupling terms when M1/2, MH >

M0
19. This is the case for the models analyzed in Figs. 2-4 where the stability condition

is satisfied for M1/2, MH & 3 TeV. Finally this trend is broken for superheavy Higgsinos,

19 This kind of spectra, where the boundary conditions for gauginos are heavier than sfermions, can be

found e.g. in minimal gauge mediation (although the considered boundary conditions in our example

of Eq. (58) do not match those of minimal gauge mediation) with a largish number of messengers or

in some extra dimensional mechanisms of supersymmetry breaking as gaugino mediation [21, 22].
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as the µ = M1/2 case shown in Fig. 5. Here for very heavy gauginos, M1/2 � 1 TeV,

the value of M2
H = m2

Hu,d
+ µ2 becomes very large and the condition S = 1 is overshot.

Therefore the stability condition requires lighter gauginos than scalars as we can see in

Fig. 5.

VIII. OUTLOOK AND CONCLUSIONS

In view of the growing experimental evidence against the existence of sub-TeV new

physics, and having in mind the naturalness problem of electroweak interactions, it is

interesting to study the matching of the SM with possible UV completions solving the

grand hierarchy problem. In general we expect that the presence of heavy mass states,

coupled to the Higgs sector in the UV theory, would contribute at the matching scale Qm
as finite threshold corrections to the SM Higgs mass term: these finite contributions trig-

ger the hierarchy problem and destabilize the electroweak minimum. Determining these

corrections is then of utmost importance to quantify the stability/naturalness problem

and at least to find the parameter conditions that the underlying (final) theory at the

unification, or Planck, scale should eventually provide to solve it.

In this paper we have pursued this task for the simplest perturbative UV completion

of the SM solving the hierarchy problem: the MSSM. Although we have focused on this

model, the qualitative features presented in this paper are expected to hold in any pertur-

bative UV theory aiming to solve the grand hierarchy problem. The key ingredient of our

analysis is the one-loop effective potential improved by the renormalization group equa-

tions, and the renormalization-scale invariance of such a potential. As a battleground we

have considered the Landau gauge and dimensional regularization in the MS renormal-

ization scheme (at this level of the calculation, and for scalar and fermion fields integrated

out, equivalent to the DR). With these choices we have obtained the one-loop matching

between the SM and MSSM Higgs sectors at the multi-TeV matching scale Qm, where

the large leading logarithms between the high (unification) scale M and Qm have been

resummed.

Motivated by hints from experimental data, the matching has been performed assum-

ing a large mass hierarchy between SM and non-SM fields, which allows to work in the

unbroken electroweak symmetry phase. After having integrated the heavy fields out, the

final one-loop identification between the SM mass term, m2
SM , and the MSSM mass terms,

m2
I (with I = 1, 2, 3), is given by Eq. (40) which can be written as

m2
SM =

[
−m2

1c
2
β −m2

2s
2
β + 2m2

3sβcβ
]

(1 + 2∆Zh) + ∆m2 , (62)

where the radiative contributions ∆Zh and ∆m2 are respectively coming from the match-

ing between the wave functions and quadratic interactions of the SM and the MSSM

lightest CP-even Higgs. The main features of the matching are as follows:

• We have integrated out only heavy states from the MSSM in the effective potential.
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We have not integrated out the heavy modes from the light (SM) states, as in the

Wilsonian action, which would have created a cutoff in the low energy theory. In

this way we can still integrate momenta in the low energy theory up to infinity and

then keep on using dimensional regularization for them.

• Using the scale independence of the effective potential the matching scale Qm is

completely arbitrary in the considered one-loop approximation. If all heavy masses

are of similar order of magnitude (as in the high-scale supersymmetry scenario con-

sidered here), Qm can be arbitrarily fixed at some intermediate value around them

to avoid large logarithms and the breaking of perturbation theory at higher-loop

orders. If very different heavy scales are present (as e.g. in split supersymmetry [23])

then different matching processes should be subsequently applied (cf. e.g. Ref. [14]).

• The size of the squared mass parameter of the lightest-Higgs in the high energy

theory, m2 = −m2
1c

2
β−m2

2s
2
β+2m2

3sβcβ, is not physically meaningful as it is strongly

scale dependent. Its dependence is mostly compensated by the one of 2∆Zh and

∆m2, so that the final one-loop scale dependence of the right hand side of Eq. (62) is

as weak as that of the SM mass parameter (in particular the dependence including

large masses appears only at two loops). The natural scale of the SM electroweak

sector should hence be deduced considering the sum of m2 and ∆m2 (the ∆Zh effect

is in general subleading), possibly at the scale Qm to avoid perturbative problems.

In particular, once the magnitude of m2(Qm) is enforced to be of the order of the

electroweak scale, the stability of the electroweak breaking conditions is guaranteed

by S ≡ |∆m2(Qm)/m2
LE(Qm)| . 1.

We now present a short list of results obtained in the present paper:

• When the non-SM fields are heavy and degenerate, the expression for ∆m2 at the

matching scale Qm reproduces the result obtained by Veltman in the SM using di-

mensional regularization and extracting the “quadratic” divergence as the residue

of the pole in d = 2 dimensions. Veltman then interpreted this result as the co-

efficient of the cutoff Λ2, while we can express it as the coefficient of the common

supersymmetric mass squared. Our result is thus consistent with Veltman’s and

puts solid grounds in the understanding of the SM as an effective theory below the

MSSM. As it is well known, the vanishing of the Veltman coefficient can only be

achieved at (super)Planckian scales.

• When the MSSM fields are heavy, and of the same order of magnitude but not fully

degenerate, the stability of the electroweak minimum provides a generalization of

Veltman’s result, which amounts to introducing different cutoffs for the different

SM sectors, plus a modification that is negligible only for a strictly non-hierarchical

heavy spectrum. In particular by assuming the masses of the heavy Higgses and/or

gauginos to be larger than those of sfermions, one can easily achieve the vanishing

of ∆m2 at sub-Planckian scales.
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• We have analyzed several cases where the MSSM mass parameters are generated

at high scale, and transmitted to the observable sector by means of some medi-

ators between the hidden and observable sectors, and we have determined the

parameter regions where m2(Qm) ∼ (100 GeV)2. However also the requirement

∆m2(Qm) . O(100 GeV)2 should be imposed in order to achieve satisfactory elec-

troweak breaking conditions. The parameter regions where also this latter require-

ment is realized turn out to provide a sort of generalized focus point conditions

which include threshold effects.

Let us finally make some considerations about the physical significance of the (stability)

regions where both m2
LE(QEW ) = O(100 GeV)2 and S . 1 conditions are satisfied:

• As we have already mentioned, these regions are obtained by integrating out the

heavy fields at one-loop. The procedure is performed at a renormalization scale

nearby the energy scale of the heavy masses. The result is thus not jeopardized by

large logarithms and it has no relevant one-loop scale dependence.

• The stability regions do depend on the threshold contributions we obtain from

the effective potential in a particular (Landau) gauge. Therefore, in general, we

could expect a gauge dependence in our results. However as we have performed

the matching in the unbroken electroweak symmetry phase and upon integrating

out only scalars and fermions (neither gauge nor Goldstone bosons), it turns out

that our computation of the thresholds is gauge independent within the considered

approximations.

• The effective potential depends on the particular renormalization scheme, and we

have worked it out in the MS scheme which amounts to subtracting (to define the

counter-term) the infinite term proportional to 2
ε
− γE + log(4π)− δ with δ = 0. In

the MS scheme the finite term in the effective potential contributions coming from

heavy fermions and scalars is proportional to the constant C = 3/2 [cf. Eq. (5)].

Subtracting a different infinite counter term (with δ 6= 0, as e.g. in the MS renor-

malization scheme or a variant thereof) would then lead to a shift in the constant

C as C → C+ δ. Consequently for the degenerate and almost degenerate cases, the

stability condition S = 0 leading respectively to the exact and generalized Veltman

conditions (cf. sections VI A and VI B with r1/2 ' rH ' 1) would receive addi-

tional contributions. Therefore, the Veltman-like conditions we obtain from the

MSSM arise only in the DR scheme and are relevant for the matching with the SM

effective theory in the MS renormalization scheme.

To conclude, given a scheme of supersymmetry breaking involving soft terms above

the TeV scale, the threshold corrections to the Higgs mass parameters play a determinant

role in the stability of the electroweak breaking conditions and the masses of the Higgs

fields. In the present paper we have determined these threshold corrections in some

MSSM scenarios with no relevant hierarchy in the heavy mass spectrum, and looked for
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soft-parameter relations that could alleviate the little hierarchy problem. Of course it is

clear that a similar analysis can also be performed for any perturbative theory that UV

completes the SM. Moreover an equivalent analysis can be done even if the low energy

theory is itself some extension of the SM, as one in which there is an aligned extended

Higgs sector [24] giving rise to e.g. a two Higgs doublet model. If the UV completion of

the SM is not perturbative, as in the case of a composite Higgs, the calculation cannot

rely on perturbation theory and different methods to evaluate threshold effects should

be used [3]. In general, whatever the final UV completion of the SM is, we expect it

could provide an answer to the question on why our electroweak vacuum is stable and

insensitive to high scale physics.
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Appendix A: Radiative corrections to mass parameters

In this appendix we will present a detailed calculation of the radiative contributions to

the mass parameters ∆m2
1, ∆m2

2 and ∆m2
3 in the MSSM arising from the different sectors

of sfermions, charginos, neutralinos and the Higgs scalar sector.

1. Squarks and sleptons

The mass squared matrices for top and bottom squarks and for tau-sneutrinos and staus

can be written as

M2
t̃ =

m2
Q + Y 2

t h
2
2 + ΠũL Yt(Ath2 − µh1)

Yt(Ath2 − µh1) m2
U + Y 2

t h
2
2 + ΠũR

 (A1)
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M2
b̃

=

m2
Q + Y 2

b h
2
1 + Πd̃L

Yb(Abh1 − µh2)

Yb(Abh1 − µh2) m2
D + Y 2

b h
2
1 + Πd̃R

 (A2)

M2
ν̃τ =

m2
L + Πν̃L 0

0 m2
N

 (A3)

M2
τ̃ =

m2
L + Y 2

τ h
2
1 + ΠẽL Yτ (Aτh1 − µh2)

Yτ (Aτh1 − µh2) m2
E + Y 2

τ h
2
1 + ΠẽR

 (A4)

where

Πf̃ =
1

2

[
T3f̃

(
g2
Y + g2

2

)
−Qf̃g

2
Y

]
(h2

1 − h2
2) . (A5)

Using the expressions in Eq. (44) it is straightforward to find the corresponding contribu-

tions to ∆m2
1,2,3 as

∆m2
1 =

2

32π2

{
3Y 2

b [G(m2
Q) +G(m2

D)] + Y 2
τ [G(m2

L) +G(m2
E)] +

3Y 2
t µ

2

m2
Q −m2

U

[G(m2
Q)−G(m2

U)]

+
3Y 2

b A
2
b

m2
Q −m2

D

[G(m2
Q)−G(m2

D)] +
Y 2
τ A

2
τ

m2
L −m2

E

[G(m2
L)−G(m2

E)]

− g2
Y

2
[G(m2

Q)− 2G(m2
U) +G(m2

D)−G(m2
L) +G(m2

E)]

}
,

∆m2
2 =

2

32π2

{
3Y 2

t [G(m2
Q) +G(m2

U)] +
3Y 2

t A
2
t

m2
Q −m2

U

[G(m2
Q)−G(m2

U)]

+
3Y 2

b µ
2

m2
Q −m2

D

[G(m2
Q)−G(m2

D)] +
Y 2
τ µ

2

m2
L −m2

E

[G(m2
L)−G(m2

E)]

+
g2
Y

2
[G(m2

Q)− 2G(m2
U) +G(m2

D)−G(m2
L) +G(m2

E)]

}
,

∆m2
3 =

2

32π2

{
3Y 2

t µAt
m2
Q −m2

U

[G(m2
Q)−G(m2

U)] +
3Y 2

b µAb
m2
Q −m2

D

[G(m2
Q)−G(m2

D)]

+
Y 2
τ µAτ

m2
L −m2

E

[G(m2
L)−G(m2

E)]

}
,

with

G(m2
X) ≡ m2

X

[
log

m2
X

Q2
m

− 1− δ
]
. (A6)

Here the function G has been generalized to the subtraction schemes having C = 3/2 + δ

in the scalar contributions of Eq. (5). Eq. (A6) recovers Eq. (45) for the MS (or DR)

subtraction scheme where δ = 0.

If some of the masses are degenerate the following limit turns useful:

lim
y→x

G(x2)−G(y2)

x2 − y2
= log

x2

Q2
m

− δ . (A7)
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2. Charginos

The squared mass matrix for the charginos can be written as

M2
ch =

 M2
2 + g2

2h
2
2 g2(M2h1 + µh2)

g2(M2h1 + µ∗h2) µ2 + g2
2h

2
1

 . (A8)

We can then compute the corresponding contributions to ∆m2
1,2,3 as

∆m2
1 = ∆m2

2 = − 4

32π2

g2
2

M2
2 − µ2

[M2
2G(M2

2 )− µ2G(µ2)] , (A9)

∆m2
3 =

4

32π2

g2
2µM2

M2
2 − µ2

[G(M2
2 )−G(µ2)] , (A10)

with G defined in Eq. (A6). In case of degenerate spectra the following limit is useful:

lim
y→x

x2G(x2)− y2G(y2)

x2 − y2
= x2

(
−1− 2δ + 2 log

x2

Q2
m

)
(A11)

with δ = 0 in the MS or DR schemes.

3. Neutralinos

The squared mass matrix for the neutralinos can be written as

M2
ne =


M2

1 +
g2Y
2

(h2
1 + h2

2) −1
2
gY g2(h2

1 + h2
2) − gY√

2
(M1h1 + µh2) gY√

2
(M1h2 + µh1)

−1
2
gY g2(h2

1 + h2
2) M2

2 +
g22
2

(h2
1 + h2

2) g2√
2
(M2h1 + µh2) − g2√

2
(M2h2 + µh1)

− g1√
2
(M1h1 + µh2) g2√

2
(M2h1 + µh2) µ2 +

h21
2

(g2
Y + g2

2) −1
2
h1h2(g2

Y + g2
2)

gY√
2
(M1h2 + µh1) − g2√

2
(M2h2 + µh1) −1

2
h1h2(g2

Y + g2
2) µ2 +

h22
2

(g2
Y + g2

2)

 .

(A12)

The derivatives of the mass eigenvalues with respect to the backgrounds φj ≡ (h2
1, h

2
2, h1h2)

can be easily computed following the techniques introduced in Ref. [25]. The squared

mass eigenvalues are given by the solutions of the equation defined by the characteristic

polynomial

det(M †M − λ) ≡
∑
n

c(n)(φj)λ
n = 0 (A13)

where the coefficients of the characteristic polynomial are functions of h2
1, h2

2 and h1h2.

Differentiating (A13) with respect to φj we obtain the required expressions

∂λ

∂φj

∣∣∣∣
hi=0

= −
∑

n
∂c(n)(φj)

∂φj
λn∑

n nc
(n)(φj)λn−1

∣∣∣∣∣∣
hi=0

(A14)
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where on the right hand side λ denotes the squared mass eigenvalues.

The calculation of ∆m2
1,2,3 is now straightforward and gives

∆m2
1 = ∆m2

2 = − 2

32π2

{
g2
Y

M2
1 − µ2

[M2
1G(M2

1 )− µ2G(µ2)]

+
g2

2

M2
2 − µ2

[M2
2G(M2

2 )− µ2G(µ2)]

}
∆m2

3 =
2

32π2

{
g2
YM1µ

M2
1 − µ2

[G(M2
1 )−G(µ2)] +

g2
2M2µ

M2
2 − µ2

[G(M2
2 )−G(µ2)]

}
. (A15)

In the case of equal masses we can use the limiting behavior in Eqs. (A7) and (A11).

4. Higgs scalar sector

The general tree level potential for the scalar sector is given by

V = m2
1|H1|2 +m2

2|H2|2 +m2
3(H1 ·H2 + h.c.) +

g2
Z

2
(|H2|2 − |H1|2)2

+
g2

2

2
|H+

2 H
0∗
1 +H−∗1 H0

2 |2 (A16)

where H1 ·H2 = Ha
1 εabH

b
2 with ε12 = −1. The squared mass matrices for scalars [in the

basis (ReH0
1 ,ReH0

2 )], pseudoscalars [in the basis (ImH0
1 , ImH0

2 )] and charged scalars [in

the basis (H+
2 , H

−∗
1 )] are

M2
S =

m2
1 − g2

Z(h2
2 − 3h2

1) −m2
3 − 2g2

Zh1h2

−m2
3 − 2g2

Zh1h2 m2
2 + g2

Z(3h2
2 − h2

1)

 (A17)

M2
P =

m2
1 − g2

Z(h2
2 − h2

1) m2
3

m2
3 m2

2 + g2
Z(h2

2 − h2
1)

 (A18)

M2
C =

m2
2 + g2

Z(h2
2 − h2

1) +
g22
2
h2

1 m2
3 +

g22
2
h1h2

m2
3 +

g22
2
h1h2 m2

1 − g2
Z(h2

2 − h2
1) +

g22
2
h2

2

 . (A19)

For each of the previous matrices there are two eigenstates in the unbroken phase

(hi = 0), HSM = cβH1 + sβH̃
∗
2 with mass eigenvalue −m2, and Hh = −sβH1 + cβH̃

∗
2 with

mass eigenvalue m2
H = m2

1 +m2
2 +m2. The doublet HSM is identified with the SM Higgs

doublet, and we then exclude its contribution to ∆m2. Using Eq. (A14) one obtains that
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the heavy Higgs contributions are given by

∆m2
1 =

1

32π2

G(m2
H)

m2
1 +m2

2 + 2m2

[
2g2

Z(3m2
1 − 2m2

2 +m2) + g2
2(m2

2 +m2)
]

∆m2
2 =

1

32π2

G(m2
H)

m2
1 +m2

2 + 2m2

[
2g2

Z(3m2
2 − 2m2

1 +m2) + g2
2(m2

1 +m2)
]

∆m2
3 =

1

32π2

G(m2
H)

m2
1 +m2

2 + 2m2

[
−2g2

Z − g2
2

]
m2

3 . (A20)

Using now the matching conditions (31), Eqs. (A20) can be also written as

∆m2
1 =

1

32π2
G(m2

H)
[
−4g2

Z cos 2β + 2g2
Z sin2 β + g2

2 cos2 β
]

∆m2
2 =

1

32π2
G(m2

H)
[
4g2

Z cos 2β + 2g2
Z cos2 β + g2

2 sin2 β
]

∆m2
3 =

1

32π2
G(m2

H)
[
−2g2

Z − g2
2

]
sin β cos β . (A21)

Appendix B: One-loop scale invariance of the matching

In section III we showed that by construction the one-loop matching conditions obtained

via one-loop RG-improved effective potentials are independent of the choice of Qm. Here

we use this property to check our finding (46).

The matching condition (40) led to (cf. section III B)

m2
LE(Qm) = m2(Qm)[1 + 2∆Zh(Qm)] + ∆m2 , (B1)

where [cf. Eqs. (38) and (39)]

m2 = −m2
1 cos2 β −m2

2 sin2 β +m2
3 sin 2β , (B2)

∆m2 = −∆m2
1 cos2 β −∆m2

2 sin2 β + ∆m2
3 sin 2β , (B3)

tan 2β = 2m̃2
3/(m̃

2
2 − m̃2

1) . (B4)

The one-loop scale invariance imposes that in Eq. (B1) the one-loop Qm dependence of

the right hand side is the same of the SM. Here we check this issue.

The total derivative of the right hand side (RHS) in Eq. (B1) with respect to logQm
is given by 20

βRHS = −βm̃2
1

cos2 β − βm̃2
2

sin2 β + βm̃2
3

sin 2β +m2(1 + 2γh − 2γhLE) , (B5)

with

m̃2
I = m2

I + ∆m2
I = m2

I +
∑
r

∆m2
I,r , βm̃2

I
= βm2

I
+ β∆m2

I
≡ βm2

I
−
∑
r

∆r
I , (B6)

20 Note that the contribution to βRHS coming from derivatives of the angle β(Qm) cancels out after

imposing Eq. (B4).
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where the index r runs over the heavy fields as in Eq. (42). The (one-loop) contribution

∆mr
I can hence be deduced from the one-loop Q dependence of ∆m2

I,r. Each quantity

∆m2
I,r is provided in appendix A and can be decomposed into its logarithmic and non-

logarithmic contributions as follows:

∆m2
I,r = ∆r

`m
2
I + ∆r

fm
2
I ≡

1

32π2
`I,r +

1

32π2
fI,r . (B7)

In particular `I,r = 32π2∆m2
I,r(G→ G̃), with G̃(x2) ≡ x2 log(x2/Q2), represents all terms

proportional to logarithms of squared masses over Q2
m, and fI,r = 32π2∆m2

I,r(G → G)

with G(x2) ≡ −x2(1 + δ) contains all non-logarithmic terms (δ = 0 in the MS and DR).

At one loop each fI,r is thus independent of Qm, and it results ∆r
I = ∂∆m2

I,r/∂Q.

The values of
∑

r ∆r
I are determined in steps considering the contributions computed

in appendix A for each sector. It comes out from sfermions

(16π2)∆f̃
1 = 6Y 2

b (m2
Q +m2

D + A2
b) + 2Y 2

τ (m2
L +m2

E + A2
τ ) + 6Y 2

t µ
2

− 3

5
g2

1(m2
Q − 2m2

U +m2
D −m2

L +m2
E) ,

(16π2)∆f̃
2 = 6Y 2

t (m2
Q +m2

U + A2
t ) + 6Y 2

b µ
2 + 2h2

τµ
2

+
3

5
g2

1(m2
Q − 2m2

U +m2
D −m2

L +m2
E) ,

(16π2)∆f̃
3 = 6Y 2

t µAt + 6Y 2
b µAb + 2Y 2

τ µAτ , (B8)

from charginos

(16π2)∆χ̃±

1 = ∆χ̃±

2 = −4g2
2(M2

2 + µ2) ,

(16π2)∆χ̃±

3 = 4g2
2µM2 , (B9)

from neutralinos

(16π2)∆χ̃0

1 = ∆χ̃0

2 = −2g2
2(M2

2 + µ2)− 6

5
g2

1(M2
1 + µ2) ,

(16π2)∆χ̃0

3 = 2g2
2M2µ+

6

5
g2

1M1µ , (B10)

and from the scalar, pseudoscalar and charged Higgs sector

(16π2)∆H
1 =

m2
1 +m2

2 +m2

m2
1 +m2

2 + 2m2

[
2g2

Z(3m2
1 − 2m2

2 +m2) + g2
2(m2

2 +m2)
]
,

(16π2)∆H
2 =

m2
1 +m2

2 +m2

m2
1 +m2

2 + 2m2

[
2g2

Z(3m2
2 − 2m2

1 +m2) + g2
2(m2

1 +m2)
]
,

(16π2)∆H
3 = − m2

1 +m2
2 +m2

m2
1 +m2

2 + 2m2

[
2g2

Z + g2
2

]
m2

3 . (B11)
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Now using Eq. (B6) and the MSSM one-loop β-functions [26]

(16π2)βm2
1

= 6Y 2
b (m2

Q +m2
D +m2

1 + A2
b) + 2Y 2

τ (m2
L +m2

E +m2
1 + A2

τ )

+ (6Y 2
t − 6g2

2 −
6

5
g2

1)µ2 − 6g2
2M

2
2 −

6

5
g2

1M
2
1 −

3

5
g2

1S ,

(16π2)βm2
2

= 6Y 2
t (m2

Q +m2
U +m2

2 + A2
t )

+ (6Y 2
b + 2Y 2

τ − 6g2
2 −

6

5
g2

1)µ2 − 6g2
2M

2
2 −

6

5
g2

1M
2
1 +

3

5
g2

1S ,

(16π2)βm2
3

= (3Y 2
t + 3Y 2

b + Y 2
τ − 3g2

2 −
3

5
g2

1)m2
3

+ (6Y 2
t A

2
t + 6Y 2

b Ab + 2Y 2
τ Aτ + 6g2

2M2 +
6

5
g2

1M1)µ , (B12)

where S = m2
Q − 2m2

U +m2
D −m2

L +m2
E +m2

2 −m2
1, we can write

(16π2)βm̃2
1

= (6Y 2
b + 2Y 2

τ − 2g2
Z − g2

2)m2
1 −m2[(2g2

Z + g2
2) sin2 β + 6g2

Z cos 2β]

(16π2)βm̃2
2

= (6Y 2
t − 2g2

Z − g2
2)m2

2 −m2[(2g2
Z + g2

2) cos2 β − 6g2
Z cos 2β]

(16π2)βm̃2
3

= (3Y 2
t + 3Y 2

b + Y 2
τ − 2g2

Z − g2
2)m2

3 −m2(2g2
Z + g2

2) sin β cos β . (B13)

Plugging these expressions in Eq. (B5) yields

βRHS = 6Y 2
t (sin β cos β m2

3 − sin2 β m2
2) + (6Y 2

b + 2Y 2
τ )(sin β cos β m2

3 − cos2 β m2
1)

− (2g2
Z + g2

2)(− cos2 βm2
1 − sin2 βm2

2 + sin 2βm2
3) + (6g2

Zc
2
2β + 2∆γ)m2 , (B14)

where ∆γ = γh − γLE = γ1 cos2 β + γ2 sin2 β − γhLE = −3
2
(1

5
g2

1 + g2
2). (This difference

between γh and γLE is caused by the heavy electroweakinos.) Finally one imposes the

tree-level matching conditions of Eqs. (31) and (33), and obtains

βRHS =

(
6y2

t + 6y2
b + 2y2

τ + 6λ− 9

10
g2

1 −
9

2
g2

2

)
m2 . (B15)

Eq. (B15) thus agrees with the β function of the quadratic term in the SM [27]. Note that

in Eq. (B15) the use of tree-level relations within the one-loop β functions is justified by

the fact that we are working at one-loop order.

Before concluding, notice that the splitting (B7) turns out to be useful also for ∆m2.

In such a case it reads as

∆m2 = ∆`m
2 + ∆fm

2 ,

−∆`m
2 = ∆`m

2
1 cos2 β + ∆`m

2
2 sin2 β −∆`m

2
3 sin 2β ,

−∆fm
2 = ∆fm

2
1 cos2 β + ∆fm

2
2 sin2 β −∆fm

2
3 sin 2β (B16)

although, as we already noticed, the splitting into a logarithmic (or one-loop scale depen-

dent) and non-logarithmic (or one-loop scale independent) is not uniquely defined since
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e.g. in the function [G(x2)−G(y2)]/(x2−y2) the splitting process does not commute with

the limit x→ y (cf. Eq. (A7)).
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