
Theoretical computation of the polarization

characteristics of an X-ray Free-Electron Laser

with planar undulator

Gianluca Geloni a Vitali Kocharyan b Evgeni Saldin b

aEuropean XFEL GmbH, Hamburg, Germany
bDeutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

Abstract

We show that radiation pulses from an X-ray Free-Electron Laser (XFEL) with a
planar undulator, which are mainly polarized in the horizontal direction, exhibit a
suppression of the vertical polarization component of the power at least by a factor
λ2w/(4πLg)

2, where λw is the length of the undulator period and Lg is the FEL field
gain length. We illustrate this fact by examining the XFEL operation under the
steady state assumption. In our calculations we considered only resonance terms:
in fact, non resonance terms are suppressed by a factor λ3w/(4πLg)

3 and can be
neglected. While finding a situation for making quantitative comparison between
analytical and experimental results may not be straightforward, the qualitative
aspects of the suppression of the vertical polarization rate at XFELs should be easy
to observe. We remark that our exact results can potentially be useful to developers
of new generation FEL codes for cross-checking their results.
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1 Introduction

A Free-Electron Laser (FEL) amplifier which starts up from the shot noise in
the electron beam is known as a self-amplified spontaneous emission (SASE)
FEL. In the SASE case, the amplification process has its origins in the den-
sity fluctuations of the electron beam. SASE FELs are capable of producing
coherent, tunable FEL radiation down to a fraction of an Angstrom [1, 2]. A
SASE FEL which operates in the X-ray wavelength range is called XFEL.

With the advent of FELs, X-ray radiation pulses with unprecedented charac-
teristics were made available to the scientific community. Compared to conven-
tional synchrotron radiation sources, X-ray FELs (XFELs) offer an increase
in peak brightness of many orders of magnitude as well as ultrashort pulses
in the femtosecond time scale. In this paper we consider an additional feature
of XFEL pulses, which is useful in many experiments. Namely the fact that
the pulses produced by an XFEL with horizontal planar undulator exhibit an
extremely small component of the electric field in the vertical direction. In
particular, here we will show that for a typical XFEL setup the horizontally
polarized component of radiation is greatly dominant, and that only less that
one part in a million of the total intensity is polarized in the vertical plane.

The study of XFEL polarization characteristics is obviously deeply related
to the problem of electromagnetic wave amplification in XFEL, which refers
to a particular class of self-consistent problems. It can be separated into two
parts: the solution of the dynamical problem, i.e. finding the motion of the
electrons in the beam under the action of given electromagnetic fields, and
the solution of the electrodynamic problem, i.e. finding the electromagnetic
fields generated by a given contribution of charge and currents. The problem
is closed by simultaneous solution of the field equations and of the equations
of motion.

Let us consider the electrodynamic problem more in detail. The equation for
the electric field follows from Maxwell’s equations. One obtains, in Gaussian
units:

c2~∇× (~∇× ~E) = −∂
2 ~E

∂t2
− 4π

∂~j

∂t
. (1)

With the help of the identity

~∇× (~∇× ~E) = ~∇(~∇ · ~E)−∇2 ~E (2)
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and Poisson equation

~∇ · ~E = 4πρ (3)

we obtain the inhomogeneous wave equation for ~E

c2∇2 ~E − ∂2 ~E

∂t2
= 4πc2~∇ρ+ 4π

∂~j

∂t
. (4)

Once the charge and current densities ρ and ~j are specified as a function of
time and position, this equation allows one to calculate the electric field ~E at
each point of space and time [3]. The current density source provides the main
contribution to the radiation field in an FEL amplifier, and the contribution
of the charge density source to the amplification process is negligibly small.
This fact is commonly known and accepted in the FEL community. However,
we have been unable to find a proof of this fact in literature, except book [4]
and review [5], which are only the publications, to the authors’ knowledge,
dealing with this issue.

Due to linearity, without the gradient term the solution of Eq. (4) exhibits

the property that the radiation field ~E points in the same direction of the
current density ~j. An important limitation of such approximation arises when
we need to quantify the linear vertical field generated in the case of an XFEL
with planar undulator. In the case ~j points in the horizontal direction (for a
horizontal planar undulator), according to Eq. (4), which is exact, only the
charge term is responsible for a vertically polarized component of the field: if
it is neglected, one cannot quantify the linear vertical field anymore.

Similar to the process of harmonic generation, the process of generation of the
vertically polarized field component can be considered as a purely electrody-
namic one. In fact, the vertically polarized field component is driven by the
charge source, but the bunching contribution due to the interaction of the elec-
tron beam with the radiation generated by such source can be neglected. This
leads to important simplifications. In fact, in order to perform calculations of
the radiation including the vertically polarization component one can proceed
first by solving the self-consistent problem with the current source only. This
can either be done in an approximated way using an analytical model for the
FEL process or, more thoroughly, exploiting any existing FEL code. Subse-
quently, the solution to the self-consistent problem can be used to calculate
the first harmonic contents of the electron beam density distribution. These
contents enter as known sources in our electrodynamic process, that is Eq.
(4). Solution of that equation accounting for these sources gives the desired
polarization characteristics.
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Analytical descriptions allow for a proper understanding of the physical prin-
ciples underlying the phenomena under study, and also provide convenient
testing of numerical simulation codes. A SASE XFEL is rather difficult to
be described in a fully analytical way. In all generality, its radiation can be
represented as a non-stationary random process, and its analytical description
is further complicated by the fact that the electron bunch combines both the
features of the input signal and of the active medium with time-dependent
parameters.

Approximations particularly advantageous for our theoretical analysis include
the modeling of the electron beam density as uniform, and the introduction of
a monochromatic seed signal. Realistic conditions satisfying these assumptions
are the use of a sufficiently long electron bunch with a longitudinal stepped
profile and the application of a scheme in the SASE mode of operation for
narrowing down the radiation bandwidth. In the framework of this model it
becomes possible to describe analytically all the polarization properties of the
radiation from an XFEL 1 .

The simplicity of our model offers the opportunity for an almost completely
analytical description of an XFEL in the linear mode. As remarked above,
a complete description of the operation of an XFEL can be performed only
with time-dependent numerical simulation codes. Application of the numer-
ical calculations allows one to describe the most general situation, including
arbitrary electron beam quality and nonlinear effects. Finding an analytical
solution is always fruitful for testing numerical simulation codes. Up to now,
in conventional FEL codes, the contribution of the the charge source assumed
to be negligible small. However, the charge term alone is responsible for the
vertically polarized radiation component, which is our subject of interest. Our
analytical results for the high-gain linear regime are expected to serve as a
primary standard for testing future FEL codes upgrades.

1 Our model can be close to real situations, based on two techniques recently real-
ized at the LCLS. The first is a technique for producing a uniform electron bunch,
and is heavily relying on the use of a slotted spoiler foil in the last bunch compressor
chicane [6]. The method takes advantages of the high sensitivity of the FEL gain
process to the transverse emittance of the electron bunch. By spoiling the emit-
tance of most of the long nonuniform bunch while leaving short unspoiled temporal
slice, one can produce electron bunch with relatively uniform active medium. The
second technique is self-seeding, an active filtering technique allowing to narrow the
FEL bandwidth down to almost the Fourier limit [7]. Combination of these two
techniques is now widely used at the LCLS.
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2 XFEL radiation in resonance approximation

As has been discussed in the Introduction, a quantification of the linear ver-
tical field expected in FELs can be made on the basis of an electrodynamical
model. We will restrict our attention to FELs driven by planar undulators. A
more extended treatment of higher harmonic numbers is conceptually identical
to the treatment in this paper, and only differs as regards actual calculations.
Proper initial conditions following e.g. from start-to-end simulations are given
as input to an FEL self-consistent code, which calculates the electron beam
bunching from the interaction of the beam with the first harmonic radiation.
As discussed above, in FEL codes the first harmonic is conventionally calcu-
lated accounting only for the leading terms under the resonant approxima-
tion, which yields perfectly linearly polarized radiation. Therefore, the output
of these codes cannot be directly used to quantify the linear vertical field of
FELs. However, the electron beam bunching can be inserted into the field
equation as sources. A relatively simple electrodynamical model can then be
developed in order to calculate corrections to the leading resonant terms, and
therefore to calculate the linear vertical field.

Paraxial Maxwell’s equations in the space-frequency domain can be used to
describe radiation from ultra-relativistic electrons (see e.g. [8]). Let us define
temporal Fourier transform pairs as:

f̄(ω) =

∞∫
−∞

dt f(t) exp(iωt)↔ f(t) =
1

2π

∞∫
−∞

dωf̄(ω) exp(−iωt) (5)

and let us call the transverse electric field in the space-frequency domain, i.e.

the Fourier transform of the real electric field in the time domain, ~̄E⊥(z, ~r⊥, ω),
where ~r⊥ = x~ex + y~ey identifies a point on a transverse plane at longitudinal
position z, ~ex and ~ey being unit vectors in the transverse x and y directions.
Here the frequency ω is related to the wavelength λ by ω = 2πc/λ, c being
the speed of light in vacuum. From the paraxial approximation follows that

the electric field envelope ~̃E⊥ = ~̄E⊥ exp [−iωz/c] does not vary much along z
on the scale of the reduced wavelength λ/(2π). As a result, the following field
equation holds:

D
[
~̃E⊥(z, ~r⊥, ω)

]
= ~g(z, ~r⊥, ω) , (6)

where the differential operator D is defined by
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D ≡
(
∇⊥2 +

2iω

c

∂

∂z

)
, (7)

∇⊥2 being the Laplacian operator over transverse cartesian coordinates. Eq.
(6) is Maxwell’s equation in paraxial approximation. The source-term vector
~g(z, ~r⊥) is specified by the trajectory of the source electrons, and can be written

in terms of the Fourier transform of the transverse current density, ~̄j⊥(z, ~r⊥, ω),
and of the charge density, ρ̄(z, ~r⊥, ω), as

~g = −4π
(
iω

c2
~̄j⊥ − ~∇⊥ρ̄

)
exp

[
−iωz

c

]
. (8)

In this paper we will treat ~̄j⊥ and ρ̄ as macroscopic quantities, without in-

vestigating individual electron contributions. ~̄j⊥ and ρ̄ are regarded as given
data, that can be obtained from any FEL code. Codes actually provide the
charge density of the modulated electron beam in the time domain ρ(z, ~r⊥, t).
A post-processor can then be used in order to perform the Fourier transform
of ρ, that can always be presented as

ρ̄ = ρ̃(z, ~r⊥ − ~ro⊥(z), ω) exp

[
iω
so(z)

vo

]
, (9)

where ~ro⊥(z), so(z) and vo are the transverse position, the curvilinear abscissa
and the velocity of a reference electron with nominal Lorentz factor γo that is
injected on axis with no deflection and is guided by the planar undulator field.
Such electron follows a trajectory specified by ~ro⊥(z) = rox~ex + roy~ey with

rox(z) =
K

γokw
cos(kwz) , roy(z) = 0 . (10)

The corresponding velocity is described by ~vo⊥(z) = vox~ex + voy~ey with

vox(z) = −Kc
γo

sin(kwz) , voy(z) = 0 . (11)

In Eq. (10), K = λweHw/(2πmec
2) is the undulator parameter, λw = 2π/kw

being the undulator period, (−e) the negative electron charge 2 , Hw the max-
imal modulus of the undulator magnetic field on-axis, and me the rest mass of
the electron. In writing Eq. (9) we are assuming that ρ̄ varies approximately
as exp [iωso(z)/vo] over a distance z of order of several undulator periods.

2 The minus sign on the right hand side of Eq. (9) is introduced for notational
convenience and in agreement with the minus sign of the electron charge.
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We note that for a generic motion one has

ω

(
so(z2)− so(z1)

v
− z2 − z1

c

)
=

z2∫
z1

dz̄
ω

2cγ2z (z̄)
, (12)

where γz(z) = 1/
√

1− voz(z)2/c2 and voz(z) =
√
v2o − vo⊥(z)2. Thus, with the

help of Eq. (9), Eq. (8) can be presented as

~g = −4π exp

i z∫
0

dz̄
ω

2γ2z (z̄)c

 [iω
c2
~vo⊥(z)− ~∇⊥

]
ρ̃(z, ~r⊥ − ~ro⊥(z), ω) ,

(13)

where we used the fact that ~̄j⊥ = ~vo⊥ρ̄. In fact, for each particle in the beam the
relative deviation of the particles energy from γomec

2 is small, i.e. δγ/γo � 1.
Therefore we can neglect differences between the average transverse velocity

of electrons 〈~v⊥〉 and ~vo⊥, so that ~̄j⊥ ≡ 〈~v⊥〉ρ̄ ' ~vo⊥ρ̄. Because of this we will
also drop the subscript ”o” in γo.

With the help of Eq. (13), Eq. (6) can also be presented as:

(
∇2
⊥ +

2iω

c

∂

∂z

)
~̃E⊥(z, ~r⊥, ω) =

−4π exp

i z∫
0

dz̄
ω

2cγ2z (z̄)

 [iω
c2
~vo⊥ − ~∇⊥

]
ρ̃(z, ~r⊥ − ~ro⊥(z), ω) , (14)

where we have set

z∫
0

dz̄
ω

2cγ2z (z̄)
' K2

4γ2 −K2

ωz

c
− ωK2

8cγ2kw
sin (2kwz) . (15)

With the aid of the appropriate Green’s function an exact solution of Eq.
(14) can be found without any extra assumption about the parameters of the
problem:

~̃E⊥(z, ~r⊥, ω) =

∞∫
−∞

dz′
1

z − z′
∫
d~r′⊥

[
iω

c2
~vo⊥(z′)− ~∇′⊥

]

×ρ̃(z′, ~r′⊥ − ~ro⊥(z′), ω) exp

iω
[
| ~r⊥ − ~r′⊥ |2

2c(z − z′)

]
+ i

 z′∫
0

dz̄
ω

2cγ2z (z̄)


 ,
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(16)

where ~∇′⊥ represents the gradient operator with respect to the source point,
while (z, ~r⊥) indicates the observation point. Integration by parts of the gra-
dient terms leads to

~̃E⊥(z, ~r⊥, ω) =
iω

c

∞∫
−∞

dz′
1

z − z′
∫
d~r′⊥

(
~vo⊥(z′)

c
− ~r⊥ − ~r′⊥

z − z′

)

×ρ̃(z′, ~r′⊥ − ~ro⊥(z′), ω) exp
[
iΦT (z′, ~r′⊥, ω)

]
,

(17)

where the total phase ΦT is given by

ΦT =

 z′∫
0

dz̄
ω

2cγ2z (z̄)

+ ω

[
|~r⊥ − ~r′⊥|2

2c(z − z′)

]
. (18)

We now make use of a new integration variable ~l = ~r′⊥ − ~ro⊥(z′) so that

~̃E⊥(z, ~r⊥, ω) =
iω

c

∞∫
−∞

dz′
1

z − z′
∫
d~l

~vo⊥(z′)

c
− ~r⊥ − ~ro⊥(z′)−~l

z − z′


×ρ̃(z′,~l, ω) exp

[
iΦT (z′,~l, ω)

]
, (19)

and

ΦT =

 z′∫
0

dz̄
ω

2cγ2z (z̄)

+ ω

 |~r⊥ − ~ro⊥(z′)−~l|2

2c(z − z′)

 . (20)

Introducing the far zone approximation and making the appropriate substitu-
tions into Eq. (19) yields the following field contribution calculated along the
undulator:

~̃E⊥(z, ~r⊥, ω) =−iω
cz

∫
d~l

∞∫
−∞

dz′ρ̃(z′,~l, ω)exp
[
iΦT (z′,~l, ω)

]

×
[(
K

γ
sin (kwz

′) + θx

)
~ex + θy~ey

]
, (21)

where
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ΦT =ω

{
z′

2γ2c

[
1 +

K2

2
+ γ2

(
θ2x + θ2y

)]

− K2

8γ2kwc
sin (2kwz

′)− Kθx
γkwc

cos (kwz
′)

}

+ω

{
Kθx
kwγc

− 1

c
(θxlx + θyly) + (θ2x + θ2y)

z

2c

}
. (22)

Here θx and θy indicate the observation angles x/z and y/z. Moreover, since
in Eq. (21) we introduced explicitly the trajectory inside the undulator, we
need to limit the integration in dz′ to a proper range within the undulator.
We assume that this is done by introducing a proper function of z′ as a factor
ρ̃, which becomes zero outside properly defined range, thus effectively limiting
the integration range in z′.

In this article we are interested in considering fields and electromagnetic
sources originating from an FEL process. Imposing resonance condition be-
tween electric field and reference particle, the self-consistent FEL process au-
tomatically restricts the amplification of radiation at frequencies around the
first harmonic:

ω1o = 2kwcγ̄
2
z , (23)

where

γ̄2z =
γ2

1 +K2/2
, (24)

and at emission angles θ2max � 1/γ̄2z . Our focus onto FEL emission also ex-
plains the definition in Eq. (9). In fact, introduction of ρ̃ is useful when ρ̃ is
a slowly varying function of z on the wavelength scale. If the charge density
distribution under study originates from an FEL process a stronger condition
is satisfied, namely ρ̃ is slowly varying on the scale of the undulator period
λw and, as the FEL pulse itself, is peaked around the fundamental ω1o. The
words ”peaked” or ”around” the fundamental mean that the bandwidth is
∆ω/ω1o � 1. We quantify ”how near” the frequency ω is to ω1o introducing
the detuning parameter C, defined as

C =
ω

2cγ̄2z
− kw =

∆ω

ω1o

kw (25)

with ∆ω = ω−ω1o. The detuning parameter C should indeed be considered as
a function of z, C = C(z) because, in general, the parameters of the undulator
my be a function of z. All other dependencies on z, for example due to the fact
that the energy of particles actually deviates from γ and actually decelerate

9



during the FEL process, is accounted for in ρ̃. Indicating with ~̃E⊥1, we seek
to calculate the first harmonic contribution at frequencies ω around ω1o by
making use of the well-known expansion

exp [ia sin (ψ)] =
∞∑

p=−∞
Jp(a) exp [ipψ] , (26)

where Jp indicates the Bessel function of the first kind of order n. This allows
to cast Eq. (21) into a form that is still fully general, but more convenient
for enforcing the conditions, discussed above, related with FEL emission. One
obtains

~̃E1 =−iω1o

cz

∞∫
−∞

dlx

∞∫
−∞

dly

∞∫
−∞

dz′ρ̃(z′,~l, ω) (z′, ω) exp[iΦo]

×
∞∑

m=−∞

∞∑
n=−∞

Jm(u)Jn(v) exp
[
inπ

2

]

×
{[
− iK

2γ

(
exp {i[Rω + 1]kwz

′} − exp {i[Rω − 1]kwz
′}
)

+θx exp {iRωkwz
′}
]
~ex +

[
θy exp {iRωkwz

′}
]
~ey

}
, (27)

where

Rω =
ω

ω1

− n− 2m , (28)

with

1

ω1

=
1

ω1o

[
1 + γ̄2z

(
θ2x + θ2y

)]
. (29)

Moreover

u =
ω1o

ω1

K2 [1−K2/(4γ2)]

4
[
1 +K2/2 + γ2

(
θ2x + θ2y

)] ' K2

2(2 +K2)
, (30)

v =
ω1o

ω1

2Kγ [1−K2/(4γ2)] θx

1 +K2/2 + γ2
(
θ2x + θ2y

) ' 4Kγθx
2 +K2

(31)

and

Φo = ω1o

[
Kθx
kwγc

− 1

c
(θxlx + θyly) +

z

2c
(θ2x + θ2y)

]
. (32)
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Since the FEL process imposes that the magnitude of the charge density ρ̃
does not vary much in z′ over a period of the undulator λw, it follows that the
fast oscillations in the exponential function in the integrand of Eq. (27) tend
to suppress the integral unless Rω = 0, Rω = −1 or Rω = 1, that is when at
least one of the exponential function is simply unity. Using Eq. (25) and Eq.
(29)we rewrite Eq. (28) as

Rω =
(

1 +
C

kw

) [
1 + γ̄2z

(
θ2x + θ2y

)]
− n− 2m , (33)

Invoking again the FEL process, inspection of Eq. (33) shows that in the limit
for C � kw and θ2max � 1/γ̄2z the conditions above correspond to n = 1− 2m,
n = 2−2m and n = −2m respectively. Neglecting all other terms and imposing
ω = ω1 + ∆ω1 we obtain

~̃E⊥1 =−iω1o

cz

∞∫
−∞

dlx

∞∫
−∞

dly

∞∫
−∞

dz′ρ̃(z′,~l, ω) exp[iΦo] exp
{
i
∆ω1

ω1

kwz
′
}

×
∞∑

m=−∞

{[
− iK

2γ

(
Jm(u)J2−2m(v) exp

{
i[2− 2m]π

2

}

−Jm(u)J−2m(v) exp

{
i[−2m]π

2

})

+θxJm(u)J1−2m(v) exp

{
i[1− 2m]π

2

}]
~ex

+

[
θyJm(u)J1−2m(v) exp

{
i[1− 2m]π

2

}]
~ey

}
. (34)

For any value of K and θx much smaller than 1/γ̄z, v is a small parameter.
This allows one further mathematical step, that is the expansion of the Bessels
functions Jq(v) ∼ v|q| in Eq. (27). If one retains only the smallest indexes, one
obtains the usual expression for the first harmonic of the undulator field under
the resonance approximation, which is linearly polarized along the ~ex direction.
This can be done by keeping the current term with m = 1 (that is the first of
the two terms in the ~ex direction), and neglecting everything else. However,
here we want to investigate corrections to the field along the ~ey direction.
With this in mind, we also retain gradient terms corresponding to m = 0 and
m = −1, which correspond to the largest corrections along the ~ey Eq. (34)
then yields:

~̃E⊥1 =
ω1o

cz

[
K

2γ
AJJ~ex +

2Kγ

2 +K2
BJJθxθy~ey

] ∞∫
−∞

dlx

∞∫
−∞

dly

∞∫
−∞

dz′ exp [iΦo]

×ρ̃(z′,~l, ω) exp[iCz′] exp
[
iγ̄2z

(
θ2x + θ2y

)
kwz

′
]

(35)
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where we have defined

AJJ = J0

(
K2

2(2 +K2)

)
− J1

(
K2

2(2 +K2)

)
, (36)

BJJ = J0

(
K2

2(2 +K2)

)
+ J1

(
K2

2(2 +K2)

)
, (37)

and

Φo =
ω1o

c

[
−(θxlx + θyly) +

z

2
(θ2x + θ2y)

]
. (38)

Eq. (35) can be also written as:

~̃E⊥1 =
ω1o

cz
exp

[
i
ω1o

2c
z(θ2x + θ2y)

] [
K

2γ
AJJ~ex +

2Kγ

2 +K2
BJJθxθy~ey

]

×
∞∫
−∞

dlx

∞∫
−∞

dly

∞∫
−∞

dz′ exp
[
−iω1o

c
(θxlx + θyly)

]

× exp
[
i
ω1o

2c

(
θ2x + θ2y

)
z′
]
ρ̃(z′,~l, ω) exp[iCz′] , (39)

Note that usually computer codes present the product ρ̃(z′,~l, ω) exp[iCz′] com-
bined in a single quantity tipically known as the complex amplitude of the
electron beam modulation with respect to the phase ψ = kwz

′ + (ω/c)z′− ωt.
Regarding such product as a given function allows one not to bother about a
particular presentation of the beam modulation. Eq. (35) or, equivalently, Eq.
(39) are our most general result, and are valid independently on the model
chosen for the current density and the modulation and can be used together
with FEL simulation codes for detailed calculations of the evolution of the
vertically polarization contribution to the FEL radiation.

2.1 Discussion: other contributions to the vertically polarized field

Inspection of Eq. (35) shows that the vertical polarization component depends
on angles and roughly scales, aside for the K-dependent correction factor BJJ

of order unity, as 2Kγ̄zθxθy. Therefore, the ratio between vertical and horizon-
tal polarization components scales as 2γ̄2zθxθy. It is useful to underline that the
vertical-polarization correction was calculated on the basis of the leading reso-
nant contribution to the vertically polarized field. A natural question pertains
the magnitude of the non-resonant corrections, which -roughly speaking- are
expected to be suppressed due to fast oscillations in the exponential function
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in the integrand of Eq. (27). The leading non-resonant correction term is found
in Eq. (27) setting Rω = ±1 and choosing n = 0, which is justified because
v � 1. The oscillating integrand in dz′ suppresses the correction term of a
factor proportional to the inverse number of undulator periods involved in the
FEL process, that is those in a field gain length, N−1w , and the correction term
is therefore proportional to θy/Nw aside, again, for the K-dependent correction
factor BJJ of order unity. Therefore, altogether, the ratio between the lead-
ing non-resonant correction term and the horizontal polarization component
scales as γ̄zθy/Nw. It follows from the ratio with the horizontally polarized
main component of the radiation that the non-resonant correction terms can
be neglected whenever Nwγ̄zθx � 1. This means, for example, that on-axis
at θx = 0 the first non-resonant term is larger than the first resonant term,
and seems in contradiction with our choice to neglect non-resonant terms.
However, here we are interested in the different polarization contributions to
the angle-integrated powers, and not to the intensity at a fixed angle. As al-
ready discussed, the presence of the FEL process limits the detuning to values
C � kw and the angles of interest up to θ2max ∼ 1/(Nwγ̄

2
z ) � 1/γ̄2z . From

Eq. (35) follows that the contribution from the leading resonant term is of
order 4γ̄4z

∫ 2π
0 dφ

∫ θmax
0 dθ θ5 cos2(φ) sin2(φ) = π/(6γ̄2zN

3
w), while from Eq. (27)

one obtains that the contribution of the leading non-resonant term is of or-
der γ̄2zN

−2
w

∫ 2π
0 dφ

∫ θmax
0 dθ θ3 sin2(φ) = π/(4γ̄2zN

4
w). Therefore, the non-resonant

contribution to the angle-integrated polarization correction is fully negligible,
because the ratio between resonant and non-resonant contributions scales as
Nw � 1. Similar reasoning can be made, starting from Eq. (19), for the case
of any other non-resonant contribution arising from any part of the electron
trajectory, not only the undulator. The specific angular dependence will vary
from the kind of contribution but in general one will obtain a field scaling
as 1/Nw because it is non-resonant. The transverse distribution extends over
angles of order

√
Nw times larger than θmax for the same reason. Therefore,

one can generalize the argument above, saying that, as long as one consider
an angular acceptance of order θmax, the power contribution due to any non-
resonant terms will scale as 1/N4

w and will be negligible.

Summing up, in the case of an FEL, due to the presence of a maximum angle
θmax related with the self-consistent process, the angle-integrated correction to
the power from the horizontally polarized radiation component only includes
the leading resonant term, and Eq. (35) can always be used to calculate such
correction at the first harmonic.

3 Physical situations treatable analytically

In the previous section we calculated the two main different polarization con-
tributions to the radiation from an FEL with a planar undulator. One orig-
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inates from the horizontal component Ẽx of the electric field and the other
from the vertical component Ẽy, respectively the σ-mode and the π-mode.

We now restrict our attention to the steady-state model of an FEL amplifier.
As we will see in the first part of this section, the simplicity of the steady state
model offers the opportunity for an almost complete analytical description of
the polarization characteristics of an FEL amplifier in the high-gain linear
mode of operation. The second part of the section is devoted, instead, to an
analytical solution for the case of a constant electron density modulation.
This model is important from methodological point of view, since it allows
one to imitate the polarization characteristics of FEL radiation at saturation.
These analytical solutions can serve as a reliable basis for the development of
numerical methods.

Because of the steady state assumption we restrict our attention to one sin-
gle frequency. This means that, in the time domain, the electric field en-

velope ~̃E⊥1 must correspond to a real electric field at a certain frequency
ω̄ = ω1o(1 + Ckw) given by ~E(z, ~r⊥, t) = ~E⊥1(z, ~r⊥) exp[iω̄(z/c − t)] + C.C.,
where the symbol C.C. indicates complex conjugation. In the following we
will be interested in integrating the angular power distribution of radiation to
obtain the power fractions into the two modes of polarization. The power for
the σ- and π-polarization components of the first harmonic radiation can be
found remembering that the Poynting vector ~S = c/(4π) ~E× ~B represents the
energy flow per unit time and per unit area. The average power carried by an
electromagnetic signal per unit area can be found by averaging over the signal
duration. For a monochromatic signal, we further need to take a limit for an
infinitely long signal. Distinguishing between the two polarization modes this
procedure amounts to

dW(σ,π)

dS
=

c

4π
lim
T→∞

1

T

T/2∫
−T/2

dt
∣∣∣E(x,y)(z, ~r⊥, t)

∣∣∣2 , (40)

where we used the fact that in the paraxial approximation and in cgs units
| ~E| = | ~B|. From our previous discussion we can write

∣∣∣E(x,y)(z, ~r⊥, t)
∣∣∣2 = 4

∣∣∣E⊥1(x,y)(z, ~r⊥)
∣∣∣2 cos2[ω1ot+ φ(z)] . (41)

Substitution in Eq. (40) yields

dW(σ,π)

dS
=
c

π

∣∣∣E⊥1(x,y)(z, ~r⊥)
∣∣∣2 lim
T→∞

1

T

T/2∫
−T/2

dt cos2[ω1ot+ φ(z)]
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=
c

2π

∣∣∣E⊥1(x,y)(z, ~r⊥)
∣∣∣2 . (42)

Finally, integrating over dS, one obtains the average power for the two frac-
tions

W(σ,π) =
c

2π

∞∫
−∞

dx

∞∫
−∞

dy|E⊥1(x,y)(z, x, y)|2 , (43)

In order to find E⊥1(x,y) we note that the Fourier transform of our real monochro-
matic field is given by

~̄E⊥(z, ~r⊥, ω)

= 2π exp
(
i
ω

c
z
) [
~E⊥1(z, ~r⊥)δ(ω − ω̄) + ~E∗⊥1(z, ~r⊥)δ(ω + ω̄)

]
, (44)

where the last equality follows from direct application of the Fourier transform
shift theorem, since the dependence of the monochromatic field on time is
z/c− t. By definition of field envelope one has thus

~̃E⊥1(z, ~r⊥, ω) = 2π
[
~E⊥1(z, ~r⊥)δ(ω − ω̄) + ~E∗⊥1(z, ~r⊥)δ(ω + ω̄)

]
. (45)

Passing to the complex notation for the field in the time domain (i.e. dropping
the complex conjugate term), one can simplify the previous equation keeping
only the positive frequency ω̄ and write

~̃E⊥1(z, ~r⊥, ω) = 2π~E⊥1(z, ~r⊥)δ(ω − ω̄) . (46)

Summing up, in order to calculate W(σ,π) we should make use of Eq. (43). In
order to do so, we need an expression for E⊥1(x,y), which can be found in terms

of ~̃E⊥1 with the help of Eq. (46). Finally, one needs to calculate ~̃E⊥1, which
can be done using Eq. (39).

Let us therefore turn to the calculation of ~̃E⊥1 in Eq. (39), which requires spec-
ification of the bunching ρ̃. Formally, the one-dimensional steady state theory
of FEL amplifiers deals with the amplification of a plane electromagnetic wave
by an infinitely wide and infinitely long electron beam. The approximation of
an infinitely long electron beam is acceptable when one considers a uniformly
dense beam that is much longer than the slippage in a gain length. However,
even in this case the electron beam and the electromagnetic wave have fi-
nite transverse dimensions, and diffraction effects always take place. For the
one-dimensional model to be applicable diffraction losses must be negligible.
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In practice, such assumption is valid for XFELs operating in the hard X-ray
wavelength range. In this case, the asymptote for the field growth rate of the
fundamental TEM00 mode can be found from the cubic eigenvalue equation of
the one-dimensional model of FEL amplifier. We also assume that the trans-
verse current density of the electron beam can be modeled as a Gaussian.

With these assumptions, we may write the charge density ρ(z, ~r⊥, t) in the
time domain as

ρ(z, ~r⊥, t) =
1

vz
ρ⊥(~r⊥ − ~ro⊥)f

(
z, t− so

vo

)
. (47)

The quantity ρ⊥ has the meaning of transverse charge density distribution,
while f is the temporal electron number density distribution. If the bunch is
modulated at a given frequency ω̄, one has

f
(
z, t− so

vo

)
= f0

(
t− so

vo

)(
1 +

{
a(z) exp

[
iω̄
(
t− so

vo

)]
+ C.C.

})
(48)

where f0 is the temporal charge density distribution of an unmodulated bunch,
assumed to be constant along the undulator, while a is the modulation or
bunching amplitude. Note that in the general case, the bunching amplitude is
a complex function of the position in the undulator z.

We start the analysis for the case of a stepped profile electron pulse of finite
duration T and then we go over to the limit of an infinitely long pulse. The
beam current can be written in the form:

I =
(−e)N
T

HT

(
t− so

vo

)(
1 +

{
a(z) exp

[
iω̄
(
t− so

vo

)]
+ C.C.

})
,

(49)

where HT (t) = 1 in the range (−T/2, T/2) and zero otherwise, N is the
number of electrons in the pulse and (−e)N/T = −I0 is the average beam
current. Comparison with Eq. (48) yields

f =
1

T
HT

(
t− so

vo

)(
1 +

{
a(z) exp

[
iω̄
(
z, t− so

vo

)]
+ C.C.

})
. (50)

Assuming a Gaussian transverse charge density distribution of the electron
beam with rms size σ given by

ρ⊥(~r⊥) =
(−e)N
2πσ2

exp

(
− r2⊥

2σ2

)
(51)
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we thus obtain

ρ(z, ~r⊥, t) = − 1

vz

Io
2πσ2

exp

(
− r2⊥

2σ2

)
HT

(
z, t− so

vo

)
×
(

1 +
{
a(z) exp

[
iω̄
(
z, t− so

vo

)]
+ C.C.

})
. (52)

Let us study the asymptote for an infinitely long electron beam, that is the
limit for T −→ ∞, N −→ ∞ and (−e)N/T = constant = −I0. One needs to
calculate the temporal Fourier transform of ρ. Fourier-transforming Eq. (52)
and using Eq. (9) we write the expression for the slowly-varying amplitude

ρ̃(z, ~r⊥, ω) =
jo(~r⊥)

vz
2πa(z)δ(ω − ω0) , (53)

where we defined the current density

jo(~r⊥) = − Io
2πσ2

exp

(
− r2⊥

2σ2

)
, (54)

and where we dropped the term in δ(ω + ω̄) passing to complex notation, as
done before with the field.

3.1 High-gain linear regime

We first model the case of an FEL amplifier in the high-gain linear regime.
We proceed approximating the detuning parameter C as constant along the
undulator. Let us restrict, for simplicity, to the case of perfect resonance for
C = 0. This means that from now on ω̄ = ω1o. The high-gain asymptote of
the one-dimensional steady-state theory of FEL amplifiers yields

a(z) = af exp[(
√

3 + i)z/(2Lg)] , (55)

where we set the exit of the undulator (in the linear regime) at z = 0 and
af = constant is the modulation level at z = 0. Here Lg is the field gain
length. The number of undulator periods in the field gain length Lg is just
Nw = (4πρ1D)−1, where the FEL parameter ρ1D [9] is related to the problem
parameters through

ρ1D =
λw
4π

[
πI0K

2A2
JJ

IAσ2λwγ3

]1/3
, (56)
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where IA = mec
3/e ' 17 kA is the Alfven current. If we now integrate Eq.

(39) from z = −∞ to z = 0 we get

~̃E⊥1 =
2πafω1o

c2z
exp

[
i
ω1o

2c
z(θ2x + θ2y)

] [
K

2γ
AJJ~ex +

2Kγ

2 +K2
BJJθxθy~ey

]

×
∞∫
−∞

dlx

∞∫
−∞

dly

0∫
−∞

dz′ exp
[
−iω1o

c
(θxlx + θyly)

]

× exp
[
i
ω1o

2c

(
θ2x + θ2y

)
z′
]
jo
(
~l
)

exp

[
(
√

3 + i)z′

2Lg

]
δ(ω − ω1o) , (57)

where we substituted vz with c in Eq. (53), based on the fact that 1/γ2z � 1.

If we now substitute Eq. (54) in Eq. (57) and we perform all integrations, Eq.
(46) yields

~E⊥1 =−2Ioafω1oLg
c2z

exp
[
i
ω1o

2c
z(θ2x + θ2y)

] [
K

2γ
AJJ~ex +

2Kγ

2 +K2
BJJθxθy~ey

]

×
exp

[
−σ2ω2

1o

(
θ2x + θ2y

)
/(2c2)

]
(
√

3 + i)c+ iLgω1o

(
θ2x + θ2y

) . (58)

The next step is to calculate the two power fractions corresponding to the
σ and π polarization modes using Eq. (43). It is convenient to present the
expressions for Wσ and Wπ as a function of the Fresnel number N , defined as

N =
ω1oσ

2

cLw
, (59)

Since we integrated along z′ from −∞ to 0, we did not need to define explicitly
the length of the undulator. However, in order to compare the for Wσ and Wπ

(and more precisely their ratio Wσ/Wπ) with the results obtained above, we
still need to present the power as a function of the Fresnel number N , defined
exactly as before.

Explicit calculations yieldWσ

Wπ

 = Wo

AJJ
2ρ−11DGσ(N)

BJJ
2ρ1DGπ(N)

 , (60)

where
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Gσ(N) =
1

2
√

3
exp[(1− i

√
3)N ]

{
π + π exp

[
2i
√

3N
]

−i exp
[
2i
√

3N
]

Ei
(
N(−1− i

√
3)
)

+ iEi
(
iN(i+

√
3)
)}

(61)

Gπ(N) =
1

6

{
3

N
−
(
−3i+

√
3
)

exp[(1 + i
√

3)N ]
[
π − iEi

(
(−1− i

√
3)N

)]
−
(
3i+

√
3
)

exp[(1− i
√

3)N ]
[
π + iEi

(
i(i+

√
3)N

)]}
(62)

and

Wo = Wba
2
f

(
Io
γIA

)(
K2

2 +K2

)
(63)

with Wb = mec
2γIo/e is the total power of the electron beam.

The ratio between the fractions radiated in the two modes of polarization is
therefore conveniently expressed as a function of three separate factors:

Wπ

Wσ

= f(K)g(Nw)w(N) (64)

with

f(K) =

[
B2
JJ

A2
JJ

]
g(ρ1D) =

[
ρ21D

]
w(N) =

[
Gπ(N)

Gσ(N)

]
. (65)

The first factor, f(K), is only a function of the undulator K parameter and
is plotted in Fig. 1. As it can be seen from Fig. 1 it always remains between
about unity and 3, for any value of K. The second factor, g(ρ1D) scales as the
inverse number of undulator periods squared, and is a signature of the fact
that the gradient term in the equation for the electric field scales as the inverse
number of undulator periods. The third factor, w(N), is only a function of the
diffraction parameter that is, once the wavelength and the undulator length
are fixed, a function of the electron beam size only. It is also plotted in Fig. 1.
It is unity for values of the diffraction parameter around unity, but it quickly
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Fig. 1. Illustration of the behavior of f(K) (left) and w(N) (right).

decreases for larger values of N . Clearly the power fraction radiated in the
π mode increases drastically with the photon energy, partly due to a larger
number of undulator period per field gain-length, but mainly because of a
larger diffraction parameter.

For the sake of exemplification we apply the model in the linear regime dis-
cussed in this paragraph to one particular case, calculated from start-to-end
simulations for the SASE1 and SASE2 line of the European XFEL. We con-
sider a 250 pC electron beam at a photon energy of about 9 keV. The electron
energy is 17.5 GeV and K ' 3.6. The peak current is about 5 kA, and the rms
sizes of the electron beam in the horizontal and vertical directions are about
σx ' 15 µm and σy ' 18 µm respectively. For our purposes of exemplifica-
tion 3 we consider a round beam with σ = 16µm. The peak current density
can then be estimated as I0/(2πσ

2). Finally, the undulator period is λw = 40
mm. From these numbers we obtain the parameter ρ1D ' 8 · 10−4. Plugging
these numbers in Eq. (72) and remembering the definition in Eq. (59)we ob-
tain f(K) ' 2.5, g(ρ1D) ' 6.4 · 10−7, N ' 3 and w(N) ' 0.072, so that the
overall ratio Wπ/Wσ ' 1.13 · 10−7.

3.2 Constant density modulation

In analogy with the previous paragraph, we now proceed to study the case of a
constant density modulation along an undulator of fixed length Lw, imitating
the behavior of an FEL at saturation. We can still set C(z) = 0. At variance
with the previous model we now write

ρ̃(z,~l) = jo
(
~l
)

2πafHLg(z)δ(ω − ω1o) . (66)

3 If the electron beam is not round, one can easily modify the model for the electron
beam distribution in this paragraph.
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Here af = const a constant modulation level, HLw(z) = 1 for z in the range
(−Lw/2, Lw/2) and zero otherwise, with Lw the undulator length, and jo is
defined as in Eq. (54). In this case, Eq. (39) can be written as

~̃E⊥1 =
2πafω1o

c2z
exp

[
i
ω1o

2c
z(θ2x + θ2y)

] [
K

2γ
AJJ~ex +

2Kγ

2 +K2
BJJθxθy~ey

]

×
∞∫
−∞

dlx

∞∫
−∞

dly

∞∫
−∞

dz′ exp
[
−iω1o

c
(θxlx + θyly)

]

× exp
[
i
ω1o

2c

(
θ2x + θ2y

)
z′
]
jo
(
~l
)
HLw(z′)δ(ω − ω1o) . (67)

The integral in d~l amounts to the spatial Fourier transform of jo
(
~l
)
. We

proceed similarly as in the previous paragraph and obtain

~E⊥1 =−Ioafω1oLw
c2z

exp
[
i
ω1o

2c
z(θ2x + θ2y)

]
×
[
K

2γ
AJJ~ex +

2Kγ

2 +K2
BJJθxθy~ey

]

×sinc
[
Lwω1o

4c

(
θ2x + θ2y

)]
exp

[
−σ

2ω2
1o

2c2

(
θ2x + θ2y

)]
. (68)

The final step, as in the previous paragraph, consists is the calculation of
the angle-integrated first harmonic power. As before the power for the x- and
y-polarization components of the first harmonic radiation are given by Eq.
(43).

Both integrals for the horizontal polarization component and the vertically
polarized correction can be calculated analytically by exploiting the cylindrical
symmetry of the model. One is then left withWσ

Wπ

 = Wo

 AJJ
2(4πNw)Fσ(N)

BJJ
2(4πNw)−1Fπ(N)

 , (69)

where

Fσ(N) = arctan
(

1

2N

)
+N ln

(
4N2

4N2 + 1

)
, (70)

Fπ(N) =
1

N(1 + 4N2)
, (71)
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Fig. 2. Illustration of the behavior of h(N).

and where parameters N and Wo are given by Eq. (59) and Eq. (63).

Similarly as before, the ratio between the two fractions radiated into the two
modes of polarization is conveniently expressed as a function of three separate
factors:

Wπ

Wσ

= f(K)g(Nw)h(N) (72)

with

f(K) =

[
B2
JJ

A2
JJ

]

g(Nw) =

[
1

(4πNw)2

]

h(N) =

[
Fπ(N)

Fσ(N)

]
. (73)

The function f has been defined in the previous paragraph. Concerning the
second factor g, we have an expression which is similar to that in Eq. (65).
The only difference is that here we replaced ρ1D with (4πNw)−1, with Nw

the number of undulator periods in the undulator. The number of undulator
periods in a field gain length is just Nw = (4πρ1D)−1, and therefore the second
factor in Eq. (72) just amounts to ρ21D for an undulator length Lw = Lg, Lg
being, as before, the field gain length. By setting the undulator length equal
to the field gain length the two models can be directly compared by studying
w(N) as defined in Eq. (65) and h(N) defined in Eq. (73). We plot h(N)
explicitly in Fig. 3.2. As one can see it differs from Fig. 1, due to the different
model used.

Considering the same example made in the previous paragraph we find again
f(K) ' 2.5, g(ρ1D) ' 6.4 · 10−7, N ' 3. Plugging the value for N into Eq.
(73) we obtain h(N) ' 0.097, so that the overall ratio Wπ/Wσ ' 1.5 · 10−7.
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3.3 Polarization characteristics for the second harmonic

So far we have discussed the values of the two polarization components σ and
π. We have shown that, typically, in the case of an XFEL with a horizontal
planar undulator, only less that one part in a million of the total power at
the first harmonic is polarized in the vertical direction. For some experiments
even such small fraction of the π mode is of importance.

In addition to the radiation at the first harmonic, however, there are several
other background contributions to the vertically polarized power fraction from
higher harmonic radiation. It is useful to be able to estimate what is the typical
fraction of the π mode component at higher harmonics. There is an important
distinction to be made between odd harmonics and even harmonics. The π-
mode contribution from all odd harmonics (ω = 3ω1o, ω = 5ω1o, etc.) can be
completely disregarded, while in practice even harmonics (ω = 2ω1o, ω = 4ω1o,
etc.) can still be an important source of vertically polarized radiation. Since
the total power contained in each harmonic is proportional to the square of
the bunching amplitude, only the contribution due to the second harmonic is
of practical interest.

The contribution of the second harmonic can be calculated using results in
[10]. We proceed to study the case of a constant density modulation. The
ratio between the fraction of total power radiated into π mode at ω = 2ω1o

and radiated into the σ-mode at ω = ω1o can be expressed as a function of
separate factors [10]:

W2π

W1σ

=
1

4πNw

2 +K2

K2

a22
a2f

B2

A2
JJ

F2π(N)

Fσ(N)
, (74)

where N and Fσ are given, respectively 4 by Eq. (59) and Eq. (70), AJJ is
given by Eq .(36), a2 and af are the amplitudes of the beam modulation at
ω = 2ω1o and ω = ω1o respectively,

B = J1

(
K2

2 +K2

)
(75)

and

F2π = ln
(

1 +
1

16N2

)
(76)

4 Note that N in [10] is defined twice larger with respect to what is reported here.
In fact, in [10] all results refer to the Fresnel number for the second harmonic.

23



Fig. 3. Illustration of the behavior of F2(N)/Fσ(N).

We plot F2(N)/Fσ(N) explicitly in Fig. 3. Considering the same example made
above we find

W2π

W1σ

∼ 10−4
a22
a2f

(77)

The contribution from the even harmonics scales therefore as a22/a
2
f , and can

be completely disregarded when the XFEL operates in linear regime. At satu-
ration, the contribution from the second harmonic can be comparable with the
first harmonic in the case when X-ray optics harmonic separation is absent.

4 Conclusions

One attractive feature of radiation from X-ray Free-Electron Lasers (XFELs) is
its high degree of polarization. This paper shows that for an FEL with a planar
undulator with the electron motion on the horizontal plane, the horizontally
polarized component of radiation from greatly dominates the photon beam
characteristics and only less than one part in a million of the total intensity
is polarized in the vertical plane. This feature that can be useful in different
experimental situations. When describing physical principles, analytical de-
scriptions are always important: they allow for a proper understanding of the
principles, in our case those of FEL physics, and also for testing numerical
simulation codes. From this point of view, a SASE XFEL is a rather com-
plicated subject. In fact, in all generality, its radiation can be represented as
a non-stationary random process whose analytical description is complicated
by the fact that the electron bunch combines both the features of the input
signal and of the active medium with time-dependent parameters. Approxi-
mations are therefore needed. In particular, it is important to find a model
allowing for an analytical description without loss of essential information
about the features of the FEL process. A model satisfying these conditions
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is that of a stepped profile electron bunch, together with the application of
self-seeding scheme for narrowing the radiation bandwidth. In the framework
of this model it becomes possible to describe the polarization properties of the
radiation from an XFEL in a fully analytical way. Using Maxwell’s equations
one can write an explicit expression for calculating the electric field with given
charge and current sources. Up to now, in all FEL codes the contribution of
the charge term is assumed to be negligibly small. However, in our case of
interest, the charge term is the only responsible for the vertically polarized
radiation component. Our analytical results, in particular those for the high-
gain linear regime, are therefore expected to serve as a primary standard for
testing future FEL codes including the charge term as electromagnetic source.
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