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1 Introduction

Charged Higgs bosons go along with many extensions of the Standard Model, such as supersymmet-

ric versions of the Standard Model or general Two-Higgs-Doublet models. The neutral Higgs-like

particle with a mass ' 125 GeV, discovered by the ATLAS and CMS experiments [1, 2], behaves

within the presently still sizeable experimental uncertainties like the Higgs boson of the Standard

Model (see [3, 4] for latest results), but on the other hand leaves ample room for interpretations

within extended models with a richer spectrum. A scenario of particular interest thereby is the

Minimal Supersymmetric Standard Model (MSSM) with two scalar doublets accommodating five

physical Higgs bosons, at lowest order given by the light and heavy CP -even h and H, the CP -

odd A, and the charged H± Higgs bosons. The discovery of a charged Higgs boson would constitute

an unambiguous sign of physics beyond the Standard Model, providing hence a strong motivation

for searches for the charged Higgs boson.

Experimental searches for the charged Higgs bosons of the MSSM (or a more general Two-Higgs-

Doublet Model) have been performed at LEP [5] yielding a robust bound of >∼ 80 GeV [6]. The

Tevatron bounds [7] are meanwhile superseeded by the constraints from the searches for charged

Higgs bosons at the LHC [8].

The Higgs sector of the MSSM can be parametrized at lowest order in terms of the gauge

couplings g1 and g2, the mass mA of the CP -odd Higgs boson, and the ratio of the two vacuum

expectation values, tanβ ≡ v2/v1; all other masses and mixing angles are predicted in terms of

these quantities. Higher-order contributions, however, give in general substantial corrections to the

tree-level relations.

The status of higher-order corrections to the masses and mixing angles in the neutral Higgs sector

is quite advanced. A remarkable amount of work has been done for higher-order calculations of the

mass spectrum, for real SUSY parameters [9–23] as well as for complex parameters [24–30]. They

are based on full one-loop calculations improved by higher-order contributions to the leading terms

from the Yukawa sector involving the large top and bottom Yukawa couplings. Quite recently,

the O
(
α2
t

)
terms for the complex version of the MSSM were computed [29, 30]; they are being

implemented into the program FeynHiggs [31–33].

Also the mass of the charged Higgs boson is affected by higher-order corrections when expressed

in terms of mA. The status is, however, somewhat less advanced as compared to the neutral Higgs

bosons. Approximate one-loop corrections were already derived in [34–36]. The first complete

one-loop calculation in the Feynman-diagrammatic approach was done in [37], and more recently

the corrections were re-evaluated in [28, 38, 39]. At the two-loop level, important ingredients for

the leading corrections are the O(αtαs) and O
(
α2
t

)
contributions to the charged H± self-energy.

The O(αtαs) part was obtained in [27] for the complex MSSM, where it is required for predicting

the neutral Higgs-boson spectrum in the presence of CP -violating mixing of all three neutral CP

eigenstates with the charged Higgs-boson mass used as an independent (on-shell) input parameter

instead of mA. In the CP -conserving case, on the other hand, with mA conventionally chosen

as independent input quantity, the corresponding self-energy contribution has been exploited for

obtaining corrections of O(αtαs) to the mass of the charged Higgs boson [39]. In an analogous

way, the recently calculated O(α2
t ) part of the H± self-energy in the complex MSSM [29, 30], can

now be utilized for the real, CP -conserving, case to derive the O(α2
t ) corrections to the charged

Higgs-boson mass as well.

In the present paper we combine the new two-loop terms of O(α2
t ) with the complete one-loop

and O(αtαs) two-loop contributions to obtain an improved prediction for the mass of the charged

Higgs boson. The results will become part of the code FeynHiggs. An overview of the calculation

is given in Section 2, followed by a numerical evaluation and discussion of the two-loop corrections

in Section 3 and Conclusions in Section 4.
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2 Higgs-boson mass correlations

2.1 Tree-level relations

We consider the Higgs potential of the MSSM with real parameters, at the tree-level given by

VHiggs = m2
1H
†
1H1 +m2

2H
†
2H2 +

(
m2

12 εabHa1Hb2 + h. c.
)

+
1

8

(
g21 + g22

) (
H†2H2 −H†1H1

)2
+

1

2
g22

(
H†1H2

)(
H†2H1

)
,

(2.1)

with the mass parameters m2
1,m

2
2,m

2
12, and the gauge-coupling constants g1, g2. The two scalar

Higgs doublets in the real MSSM can be decomposed according to

H1 =

(
v1 + 1√

2
(φ1 − iχ1)

−φ−1

)
, H2 =

(
φ+2

v2 + 1√
2
(φ2 + iχ2)

)
, (2.2)

with real vacuum expectation values v1 and v2. The ratio v2/v1 is denoted as tanβ ≡ tβ . The

mass-eigenstate basis is obtained by the transformations(
h

H

)
=

(
−sα cα
cα sα

)(
φ1
φ2

)
,

(
H±

G±

)
=

(
−sβc

cβc

cβc
sβc

)(
φ±1
φ±2

)
,

(
A

G

)
=

(
−sβn

cβn

cβn
sβn

)(
χ1

χ2

)
, (2.3)

[with sx ≡ sinx and cx ≡ cosx ], where h,H,A and H± denote the physical neutral and charged

Higgs bosons, and G0, G± the unphysical neutral and charged (would-be) Goldstone bosons.

The Higgs potential in the real MSSM can be written as the following expansion in terms of the

components h,H,A,H±, G± [with (H−)† = H+, (G−)† = G+],

VHiggs = −Th h− TH H +
(
H−, G−

)( m2
H± m2

H−G+

m2
G−H+ m2

G±

)(
H+

G+

)

+
1

2

(
h, H, A, G

)
m2
h m2

hH 0 0

m2
hH m2

H 0 0

0 0 m2
A m2

AG

0 0 m2
AG m2

G



h

H

A

G

+ . . . ,

(2.4)

omitting higher powers in the field components. Explicit expressions for the entries in the mass

matrices are given in Ref. [28] for the general complex MSSM [the special case here is obtained for

setting TA = 0 in those expressions]. Of particular interest for the correlation between the neutral

CP -odd and the charged Higgs-boson masses are the entries for m2
A and m2

H± , reading

m2
A = m2

1 s
2
βn

+m2
2 c

2
βn

+m2
12 s2βn

− 1
4 (g21 + g22)(v21 − v22) c2βn

,

m2
H± = m2

1 s
2
βc

+m2
2 c

2
βc

+m2
12 s2βc

− 1
4 (g21 + g22)(v21 − v22) c2βc + 1

2g
2
2(v1cβc + v2sβc)2 .

(2.5)

At lowest order, after applying the minimization conditions for the Higgs potential, the tadpole

coefficients Th, TH vanish and the mass matrices become diagonal for βc = βn = β, yielding

m2
H± = m2

A +M2
W , (2.6)

m2
h,H =

1

2

(
m2
A +M2

Z ∓
√

(m2
A +M2

Z)
2 − 4m2

AM
2
Z c

2
2β

)
, (2.7)

when α is chosen according to

tan(2α) =
m2
A +m2

Z

m2
A −m2

Z

tan(2β) , with − π

2
< α < 0 . (2.8)

The Goldstone bosons G0 and G± remain massless.

In the following we focus on the modification of the relation (2.6) by higher-order contributions,

which allows to derive the charged Higgs-boson mass in terms of the A-boson mass mA and the

model parameters entering through quantum loops.
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2.2 The charged Higgs-boson mass beyond lowest order

Beyond the lowest order, the entries of the mass matrix of the charged Higgs bosons are shifted

by adding their corresponding renormalized self-energies. The higher-order corrected mass MH±

of the physical charged Higgs bosons, the pole mass, is obtained from the zero of the renormalized

two-point vertex function,

M2
H± = <e(s0) , Γ̂H+H−

(
p2
)∣∣∣
p2 = s0

= i
[
p2 −m2

H± + Σ̂H+H−
(
p2
)]
p2 = s0

= 0 . (2.9)

Therein, Σ̂H+H−
(
p2
)

denotes the renormalized self-energy for the charged Higgs bosons H±, which

we treat as a perturbative expansion,

Σ̂H+H−
(
p2
)

= Σ̂
(1)
H+H−

(
p2
)

+ Σ̂
(2)
H+H−

(
p2
)

+ · · · . (2.10)

At each loop order k, the renormalized self-energy Σ̂
(k)
H+H− is composed of the unrenormalized

self-energy Σ
(k)
H+H− and a corresponding counterterm δ(k)mZ

H± , according to

Σ̂
(k)
H+H−

(
p2
)

= Σ
(k)
H+H−

(
p2
)
− δ(k)mZ

H±
(
p2
)
. (2.11)

At the one-loop level the counterterm is given by

δ(1)mZ
H±
(
p2
)

=
(
m2
H± − p2

)
δ(1)ZH±H± + δ(1)m2

H± , (2.12)

and at the two-loop level by

δ(2)mZ
H±
(
p2
)

=
(
m2
H±− p2

) [
δ(2)ZH±H± + 1

4

(
δ(1)ZH±H±

)2]
− p2 1

4

(
δ(1)ZH±G±

)2
(2.13)

+ δ(1)ZH±H± δ(1)m2
H± + 1

2 δ
(1)ZH±G±

(
δ(1)m2

H−G+ + δ(1)m2
G−H+

)
+ δ(2)m2

H±

involving field-renormalization constants and genuine mass counterterms of one- and two-loop order;

they are specified in Ref. [30], from where conventions and notations have been taken over and

simplified to the case of the real MSSM.

Whereas the one-loop self-energy Σ̂
(1)
H+H−(p2) of the charged Higgs boson is completely known,

at the two-loop level only results in the approximation for p2 = 0 have become available, namely

the O(αtαs) corrections calculated earlier [27, 39], and the two-loop Yukawa contributions O
(
α2
t

)
which are presented in this paper. The evaluation of these terms is performed in the gaugeless limit

and the bottom-quark mass set to zero (as done in Ref. [39]), thus yielding the top-Yukawa-coupling

enhanced parts. Detailed analytical results of the two-loop self-energy and renormalization were

published in Ref. [30]. The diagrammatic calculation of the self-energies and counterterms was

performed with FeynArts [40], FormCalc [41], and TwoCalc [42]. The full list of Feynman diagrams

of O
(
α2
t

)
for the self-energy of the charged Higgs boson is illustrated in Fig. 1.

Within our approximations for the two-loop part of the charged Higgs-boson self-energy,

Σ̂
(2)
H+H−(0) = Σ

(2)
H+H−(0)− δ(2)mZ

H±(0) , (2.14)

the two-loop counterterm (2.13) simplifes to

δ(2)mZ
H±(0) = m2

H±

[
δ(2)ZH±H± + 1

4

(
δ(1)ZH±H±

)2]
+ δ(2)m2

H±

+ δ(1)ZH±H± δ(1)m2
H± + 1

2 δ
(1)ZH±G±

(
δ(1)m2

H−G+ + δ(1)m2
G−H+

)
.

(2.15)
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Figure 1. Full list of two-loop self-energy diagrams for the charged Higgs bosons. Each cross denotes a

one-loop counterterm insertion. Φ0 = h, H, A, G; Φ− = H−, G−.

The genuine mass counterterms δ(k)m2
H± are determined by Eq. (2.5) and setting βn = βc = β (see

also Ref. [30]). In the gaugeless limit they are given by (for k = 1, 2)

δ(k)m2
H± = δ(k)m2

A . (2.16)

The other genuine mass counterterms are determined by the relation

δ(1)m2
H−G+ = δ(1)m2

G−H+ = − e

2 swMW
δ(1)TH −m2

H± c2β δ
(1)tβ , (2.17)

involving the tadpole counterterm δ(1)TH and the counterterm δ(1)tβ for the renormalization of

tanβ.

In the real MSSM, the mass of the CP -odd Higgs boson mA is conventionally chosen as a free

input parameter; it can thus be renormalized on-shell at each order. Accordingly, the corresponding

renormalization conditions in our present approximation read in terms of the renormalized A-boson

self-energy as follows,

Σ̂
(k)
A (0) = Σ

(k)
A (0)− δ(k)mZ

A(0) = 0 . (2.18)
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Figure 2. Full list of two-loop self-energy diagrams for the A-boson. Each cross denotes a one-loop

counterterm insertion. Φ0 = h, H, A, G; Φ0
P = A, G; Φ− = H−, G−.

The unrenormalized self-energy Σ
(2)
A corresponds to the Feynman diagrams depicted in Fig. 2. The

counterterms in (2.18) at the one-loop and two-loop level read as follows,

δ(1)mZ
A(0) = m2

A δ
(1)ZAA + δ(1)m2

A , (2.19a)

δ(2)mZ
A(0) = m2

A

[
δ(2)ZAA + 1

4

(
δ(1)ZAA

)2]
+ δ(2)m2

A

+ δ(1)ZAA δ
(1)m2

A + δ(1)ZAG δ
(1)m2

AG .

(2.19b)

The one-loop non-diagonal mass counterterm δ(1)m2
AG therein is given by

δ(1)m2
AG = − e

2 swMW
δ(1)TH −m2

A c
2
β δ

(1)tβ . (2.20)

From the conditions (2.18) for k = 1, 2 the renormalization constants δ(k)m2
A are determined and

thus the mass counterterms δ(k)m2
H+ for the charged Higgs bosons in Eq. (2.16), required for

the two-loop counterm (2.15) in the charged Higgs-boson self energy. All field-renormalization con-

stants δ(k)Z{AA,AG,H±H±,H±G±} are linear combinations of the basic field-renormalization constants

δ(k)ZHi
for the two scalar doublets (2.2), as given in Ref. [30].

In addition to the mass counterterms δ(k)m2
A, the independent renormalization constants re-

quired for renormalization of the charged Higgs-boson self-energy are: the field renormalization

constants δ(1)ZHi
, the renormalization constant δ(1)tβ for tanβ, and the tadpole renormalization

constants δ(1)Th, δ(1)TH (the two-loop field renormalization constants cancel in the renormalized

self-energies in the p2 = 0 approximation). Moreover, for the one-loop subrenormalization, we need

the counterterms for the top quark and squark masses δ(1)mt, δ
(1)mt̃1

, δ(1)mt̃2
and for the trilinear

coupling δ(1)At, as well as the counterterm for the bilinear coefficient of the superpotential, δ(1)µ.

They are fixed in the same way as described in Ref. [30] and we do not repeat them here.
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3 Numerical analysis

In this section we compute numerically the charged Higgs-boson mass MH± in the real MSSM in

terms of mA chosen as an input parameter. For this purpose, we combine in the renormalized

charged Higgs-boson self-energy our new O
(
α2
t

)
contribution described in the previous section with

the already known complete one-loop term and the O(αtαs) contribution,

Σ̂H+H−(p2) = Σ̂
(1)
H+H−(p2) + Σ̂

(αtαs)
H+H−(0) + Σ̂

(α2
t )

H+H−(0) , (3.1)

as the currently best approximation for (2.10). The resulting charged Higgs-boson mass MH± is

obtained via Eq. (2.9) with the help of FeynHiggs.

In the following numerical analysis we use the input parameters as listed in Tab. 1 (giving also

those parameters not needed for the two-loop self-energies, but required for specifiying the input

for the other terms in (3.1) and for FeynHiggs). The other parameters of the MSSM not contained

in Table 1 are kept variable and are given in the figures. The quantities µ, tβ and the Higgs field-

renormalization constants are defined in the DR scheme at the scale mt (see also Ref. [30] for more

details).

Table 1. Default input values of the MSSM and SM parameters.

MSSM input SM input

M2 = 200 GeV, mt = 173.2 GeV,

M1 =
(
5s2w

)/(
3c2w
)
M2 , mb = 4.2 GeV,

ml̃1
= mẽR = 2000 GeV, mτ = 1.777 GeV,

mq̃1 = mũR = md̃R
= 2000 GeV, MW = 80.385 GeV,

Au = Ad = Ae = 0 MZ = 91.1876 GeV,

ml̃2
= mµ̃R = 2000 GeV, GF = 1.16639 · 10−5,

mq̃2 = mc̃R = ms̃R = 2000 GeV, αs = 0.118,

Ac = As = Aµ = 0.

The shifts in the charged Higgs-boson mass resulting from the O
(
α2
t

)
contributions are in general

small. In Fig. 3 the dependence of MH± on the Higgs-sector input parameter mA and on the third-

generation soft-breaking squark mass parameter mt̃ ≡ mq̃3 = mt̃L
= mt̃R

is depicted, showing a

decreasing size of the two-loop mass shift (red) for increasing values of both variables. The upper

section of the figure shows the charged Higgs-boson mass as obtained at the one-loop level (dashed),

and with the inclusion of the O(αtαs) contributions (green) and also the O
(
α2
t

)
terms (blue). The

lower section of Fig. 3 shows the mass shift originating solely from the O
(
α2
t

)
two-loop part.

Thereby, the O
(
α2
t

)
corrections appear as negative, thus diminishing the two-loop contribution

of O(αtαs). In total, the two-loop terms still yield a positive shift upon the one-loop result for MH± .

Fig. 4 contains the charged Higgs-boson mass MH± , together with the two-loop shift of O
(
α2
t

)
,

for a typical low-mH scenario (left) [43] and for a scenario with heavier H± (right), versus the

Higgsino mass µ. For large values of µ, the charged Higgs-boson mass MH± decreases, but the

mass shift ∆MH± resulting from the O
(
α2
t

)
contributions becomes more sizeable, reaching 1 GeV

and more for the low MH± case. In the scenario shown in the right panel of Fig. 4 the two-loop

contributions are smaller in comparison to the one in the left panel, which is a consequence of the

smaller Yukawa couplings for larger values of mA and tanβ.

In all cases, the O
(
α2
t

)
contributions appear with negative sign and reduce slightly the positive

mass shift arising from O(αtαs). In general, the combined two-loop corrections result in a positive

shift, which can amount to several GeV, on top of the one-loop prediction for MH± .
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Figure 3. Upper parts: prediction for the charged Higgs-boson mass MH± including all known contribu-
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)
contributions (green) and without any two-loop corrections (black dashed)

[mH± is the tree-level mass according to Eq. (2.6)]. Lower parts: the mass shift ∆MH± by the O
(
α2
t

)
con-

tributions (red). Left: mt̃ ≡ mq̃3 = mt̃R
= mb̃R

= 1000 GeV. Right: mA = 500 GeV. The other input pa-

rameters are tβ = 10, µ = 2000 GeV, m˜̀
3

= mτ̃R = 1000 GeV, At = Ab = Aτ = 1.5mt̃, mg̃ = 1500 GeV,

for both cases.
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contributions (green) and without any two-loop corrections (black dashed).

Lower parts: the mass shift ∆MH± by the O
(
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)
contributions (red). Left: tβ = 7, mA = 120 GeV,

At = Ab = Aτ = 2.5mq̃3 . Right: tβ = 10, mA = 500 GeV, At = Ab = Aτ = 1.5mq̃3 . The other input pa-
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= 1000 GeV, m˜̀
3

= mτ̃R = 1000 GeV, mg̃ = 1500 GeV, for both cases.
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4 Conclusions

We have calculated the two-loop O
(
α2
t

)
contributions to the mass MH± of the charged Higgs

boson when derived from the A-boson mass mA as an on-shell input parameter within the real,

CP -conserving, MSSM and combined them with the complete one-loop and the two-loop O
(
α2
t

)
contributions. We have presented numerical studies for scenarios of current phenomenological

interest and discussed the effects of the various two-loop terms.

The O
(
α2
t

)
two-loop corrections appear with opposite sign and smaller size with respect to the

O(αtαs) contributions; in combination, the two-loop terms yield a positive shift to the mass of the

charged Higgs boson as calculated at one-loop order. This shift in MH± can be at the level of

several GeV for small mA and tanβ, and thus of a size that may be relevant for the LHC (and a

future electron-positron collider), especially for the interesting region of a low A-boson mass.

The set of two-loop corrections considered here are expected to be particularly relevant in pa-

rameter ranges of the real MSSM where the top-Yukawa terms provide a good approximation to

the complete one-loop result, i.e. in particular for relatively low values of tanβ and mA. Our results

for the charged Higgs-boson mass will become part of the Fortran code FeynHiggs.
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