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Abstract

We return to our study [BEH] of invariant spin fields and spin tunes for polarized
beams in storage rings but in contrast to the continuous-time treatment in [BEH], we
now employ a discrete-time formalism, beginning with the Poincaré maps of the con-
tinuous time formalism. We then substantially extend our toolset and generalize the
notions of invariant spin field and invariant frame field. We revisit some old theorems
and prove several theorems believed to be new. In particular we study two transfor-
mation rules, one of them known and the other new, where the former turns out to
be an SO(3)-gauge transformation rule. We then apply the theory to the dynamics
of spin-1/2 and spin-1 particle bunches and their density matrix functions, describing
semiclassically the particle-spin content of bunches. Our approach thus unifies the spin-
vector dynamics from the T-BMT equation with the spin-tensor dynamics and other
dynamics. This unifying aspect of our approach relates the examples elegantly and
uncovers relations between the various underlying dynamical systems in a transparent
way. As in [BEH], the particle motion is integrable but we now allow for nonlinear
particle motion on each torus.

Since this work is inspired by notions from the theory of bundles, we also provide
insight into the underlying bundle-theoretic aspects of the well-established concepts of
invariant spin field, spin tune and invariant frame field. Thus the group theoretical
notions hidden in [BEH] and in its forerunners [DK73, Yo2] will be exhibited. Since
we neglect, as is usual, the Stern-Gerlach force, the underlying principal bundle is of
product form so that we can present the theory in a fashion which does not use bundle
theory at all. Nevertheless we occasionally mention the bundle-theoretic meaning of
our concepts and we also mention the similarities with the geometrical approach to
Yang-Mills Theory.

∗PACS numbers: 02.20.Bb,02.40.Re,03.65.Sq,05.45.-a,29.27.Hj

1

http://arxiv.org/abs/1501.02747v1


Contents

1 Introduction 4

2 Spin-orbit systems 7
2.1 Deriving the discrete-time particle-spin-vector motion from the continuous-

time particle-spin-vector motion . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The torus Td as the arena of the particle motion . . . . . . . . . . . . . . . . 9
2.3 Introducing the set SOS(d, j) of spin-orbit systems . . . . . . . . . . . . . . 12
2.4 Group actions and cocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Polarization-field trajectories and invariant polarization fields 19
3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Invariant polarization fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Transforming spin-orbit systems 22
4.1 The transformation rule of spin-orbit systems . . . . . . . . . . . . . . . . . 22
4.2 Transforming particle-spin-vector trajectories and polarization-field trajecto-

ries. Topological G-maps of G-spaces . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Remarks on conjugate 1-turn particle-spin-vector maps and structure preserv-

ing homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 H-normal forms and the subsets CBH(d, j) of SOS(d, j) 27
5.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 SO(2)-normal forms. The IFF Theorem . . . . . . . . . . . . . . . . . . . . 28

6 ACB(d, j) and the notions of spin tune and spin-orbit resonance 30
6.1 The subset ACB(d, j) of SOS(d, j) . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Spin tunes and spin-orbit resonances . . . . . . . . . . . . . . . . . . . . . . 36

7 Polarization 39
7.1 Estimating the polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 The Uniqueness Theorem of invariant spin fields . . . . . . . . . . . . . . . . 41

8 Unified treatment of spin-orbit systems by using the Technique of Associ-
ation (ToA) 43
8.1 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2 Defining the ToA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.2.1 The maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2.2 The trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.2.3 The First ToA Transformation Rule . . . . . . . . . . . . . . . . . . . 47
8.2.4 The Normal Form Theorem (NFT) . . . . . . . . . . . . . . . . . . . 49
8.2.5 The decomposition method. Invariant sets for (E, l) particle-spin dy-

namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2.6 The Second ToA Transformation Rule . . . . . . . . . . . . . . . . . 56

8.3 The Isotropy-Conjugacy Lemma (ICL) and the Decomposition Theorem (DT) 59

2



8.3.1 The Isotropy-Conjugacy Lemma . . . . . . . . . . . . . . . . . . . . . 59
8.3.2 The Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . . 61
8.3.3 Applying the Decomposition Theorem in the case

(E, l) = (E ′, l′) = (R3, lv) . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.4 Applying the ToA to (Et, lt) . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.4.1 Basic properties of (Et, lt) . . . . . . . . . . . . . . . . . . . . . . . . 67
8.4.2 Applying the Normal Form Theorem to (Et, lt) . . . . . . . . . . . . . 71

8.5 Applying the Decomposition Theorem in the case (E, l) = (R3, lv) and (E ′, l′) =
(Et, lt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.5.1 A corollary to the DT . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.5.2 The 2-snake model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.6 Applying the ToA to density matrix functions . . . . . . . . . . . . . . . . . 79
8.6.1 Spin-1/2 particles. Applying the ToA to (E

1/2
dens, l

1/2
dens) . . . . . . . . . 79

8.6.2 Spin-1 particles. Applying the ToA to (E1
dens, l

1
dens) . . . . . . . . . . 83
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1 Introduction

In [BEH] we undertook an extensive study of the concept of spin tune in storage rings on the
basis of the Thomas–Bargmann–Michel–Telegdi (T–BMT) equation [Ja] of spin precession.
This naturally included a discussion of the invariant spin field and the invariant frame field.
This work is a sequel to [BEH] and is based largely on mathematical concepts and ideas in
the PhD Thesis [He2] of the first author (KH), where a method from Dynamical-Systems
Theory is exploited to distil some essential features of particle-spin motion in storage rings.
As to be seen in Chapter 8 this method clarifies and considerably extends the current theory
of [BEH]. In fact it generalizes the concepts of invariant frame field, spin tune, spin-orbit
resonances, invariant polarization field and invariant spin field to an arbitrary subgroup H of
SO(3) by using the concept of H-normal form and invariant (E, l)-field. This leads us to the
Normal Form Theorem and various theorems which generalize some standard theorems that
are also presented in this work. For short versions of the present work, see [HBEV1, HBEV2].

In [BEH] we assumed the particle motion to be independent of the spin, i.e., we neglected
the Stern-Gerlach force. Also, the particle motion was described by an integrable Hamilto-
nian system in action-angle variables, J, φ ∈ Rd. We further assumed that the electric and
magnetic fields were of class C1, i.e., continuously differentiable) both in φ and θ. Thus the
T–BMT equation became a linear system of ordinary differential equations (ODE) for the
particle-spin-vector motion with smooth coefficients depending quasiperiodically on θ. This
quasiperiodic structure led us to a generalization of the Floquet theorem and a new approach
to the spin tune.

Although accelerator physicists tend to concentrate on studying specific models of particle-
spin motion in real storage rings, many of the issues surrounding the spin tune and the
invariant spin field depend just on the structure of the equations of particle-spin motion and
can be treated in general terms. This is the strategy to be adopted here and it clears the
way for the focus on purely mathematical matters and in particular for the exploitation of
methods from Dynamical-Systems Theory and the theory of bundles.

In storage-ring physics there are two main approaches for dealing with the independent
variable in the equations of motion (EOM), namely use of the flow formalism or the map
formalism. In the flow formalism the EOM is an ODE, whence the independent variable is the
continuous variable θ ∈ R describing the distance around the ring. In the map formalism
the independent variable in the EOM is the discrete variable n ∈ Z labelling thef turn
number where Z denotes the set of integers. In Dynamical-Systems Theory it is common
practice to refer to the independent variable in the EOM, such as θ, the “time” and that is
the convention that we will use here. Thus there is a continuous-time and a discrete-time
formalism. In [BEH] we used the former, here the emphasis is on discrete time. Nevertheless
it would be possible to present the machinery of this work in the continuous-time formalism.

The external electrodynamic fields inside an accelerator’s vacuum chamber are smooth,
i.e., of class C∞. So the C1 assumption adopted in [BEH] appears to be perfectly reasonable.
On the other hand, practical numerical spin–orbit tracking simulations are usually carried
out with fields which cut off sharply at the ends of magnets and/or with thin-lens approx-
imations. Thus in [BEH] our formalism involved class C1 in the time variable θ although
numerical calculations cited there in Sec. X had been obtained using hard-edged and thin-lens
fields. However, hard-edged and thin-lens ring elements fit naturally into the discrete-time
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formalism. In particular, for this, we merely require that the fields are continuous (i.e., of
class C0) in the orbital phases and we allow jump discontinuities in θ. Of course, this still
allows study of systems with fields smooth in θ and/or the orbital phases. The way that the
discrete-time formalism derives from the continuous-time formalism is explained in Section
2.1.

This work is designed so that it can be read independently of [BEH]. However, we wish to
avoid repeating the copious contextual material contained in [BEH]. We therefore invite the
reader to consult the Introduction and the Summary and Conclusion in [BEH] in order to
acquire a better appreciation of the context. In this work, as in [BEH], the particle motion is
integrable and we allow the number of angle variables, d, to be arbitrary (but ≥ 1) although
for particle-spin motion in storage rings, the case d = 3 is the most important. We use the
symbols φ = (φ1, ..., φd)

t, J = (J1, ..., Jd)
t and ω(J) = (ω1(J), ..., ωd(J))

t respectively for
the lists of orbital angles, orbital actions and orbital tunes where t denotes the transpose
and where with continuous time dφ/dθ = ω(J). In the continuous-time formalism, the T–
BMT equation is written as dS/dθ = Ω(θ, J, φ(θ)) × S where the 3-vector S is the spin
expectation value (“the spin vector”) in the rest frame of a particle and Ω is the precession
vector obtained as indicated in [BEH] from the electric and magnetic fields on the particle
trajectory. For the purposes of this work we don’t need to consider the whole (J, φ) phase
space since it will suffice to confine ourselves to a fixed J-value, i.e., to particle motion on
a single torus. Thus the actions J are just parameters. However it is likely that our work
can be easily generalized to arbitrary particle motion if one maintains our condition that the
particle motion is unaffected by the spin motion.

This work, in which we aim to present particle-spin motions in terms of Dynamical-
Systems Theory, is structured as follows. In Section 2.1 we discuss the continuous-time
formalism which will motivate, in Section 2.3, the discrete-time concept of the “spin-orbit
system” (j, A) which characterizes a given setup by its 1-turn particle map j on the torus
Td. While j characterizes the integrable particle dynamics, A is the 1-turn spin transfer
matrix function, the latter being a continuous function from Td to SO(3). In the special
case of the torus translation we have j = Pω where ω is the orbital tune and Pω is the
corresponding translation on the torus after one turn. Thus in Section 2.1 we derive the
discrete-time Poincaré map formalism from the continuous-time formalism and in Section
2.2 we introduce the torus T

d as a topological space. For the torus the angle variable φ
is replaced by the angle variable z. Then in Section 2.3 we define the set SOS(d, j) of
spin-orbit systems (j, A) to be considered in this work. and in Section 2.4 we introduce
three important tools: the topological group, the group action, and the cocycle. These
will carry us through the whole work and will reveal a host of well-known and less well-
known structures underlying spin-orbit systems. In Chapter 3 we define polarization field
trajectories and these lead to the definition of the invariant spin field (ISF). A transformation
rule, (j, A) 7→ (j, A′), is introduced in Chapter 4. This partitions SOS(d, j) into equivalence
classes and spin-orbit systems belonging to the same equivalence class have similar properties.
For the notions of partition and equivalence class, see Appendix A.2. It also leads us to
structure-preserving transformations of particle-spin-vector trajectories and to structure-
preserving transformations of polarization-field trajectories. In Chapter 5 the partition of
SOS(d, j) leads us to several important subsets of SOS(d, j) which are denoted by CBH(d, j).
Each of these subsets of SOS(d, j) is defined in terms of a simple form of A. In particular

5



a (j, A) in SOS(d, j) belongs to CBH(d, j) iff it can be transformed to a (j, A′) such that
A′ is H-valued where H is a subgroup of SO(3). Then (j, A′) is said to be an “H-normal
form” of (j, A). The concept of H-normal form is also the driving force which leads us to the
general theory of Chapter 8. In Chapter 5 we also formulate and prove a standard theorem,
which connects the notions of ISF and invariant frame field (IFF) and which will turn out
in Chapter 8 as the special case H = SO(2) of the Normal Form Theorem.

In Chapter 6 the partition of SOS(d, j) leads us to the important subset ACB(d, j) of
SOS(d, j). This subset ACB(d, j) of SOS(d, j) is defined in terms of another simple form
of A. In particular a (j, A) in SOS(d, j) belongs to ACB(d, j) iff it can be transformed to
a (j, A′) such that A′ is constant. On the other hand spin tunes describe constant rates of
precession in appropriate reference frames so that one needs special spin-orbit systems which
can be reached by transforming from the original spin-orbit systems to such frames. Indeed,
it is ACB(d, j) which leads in Section 6.2 to the notion of spin tune and to the notion of
spin-orbit resonance. Chapter 7 covers the topic of polarization. In particular in Section 7.1
we derive various formulas which estimate the bunch polarization with special emphasis on
the situation where only two ISF’s exist. In Section 7.2 we state and prove an important and
well-known theorem which provides conditions under which only two ISF’s exist. Then, in
Chapter 8 we revisit and generalize the studies of the previous chapters using an approach
that we call the “Technique of Association”(ToA) by which the SO(3)-spaces (E, l) label
the different “contexts”, covering all the different spin variables. The basic features of the
ToA are defined in Section 8.2 and finer details in Sections 8.3 and 8.7 whereas applications
are considered in Sections 8.4-8.6 and the bundle-theoretic origins of the ToA in Section
8.8. With the ToA we will see that the particle-spin-vector motion, i.e., the particle-spin-
vector trajectories and the polarization-field trajectories introduced in Chapters 2-7 turn
out to be tied to the special context, (E, l) = (R3, lv), of the ToA where the R3-valued spin
variable is the spin vector S and where lv(r, S) = rS. In [BEH] we didn’t go beyond (R3, lv)
but in this work we do. For example we will study (Et, lt) (see, e.g., Section 8.4) which
encompasses the behavior of the spin tensor needed for spin-1 particles, and we will study
other important (E, l) as well, in particular those needed for density matrices. With Chapter
8 it also becomes clear which of the concepts of Chapters 2-7 are (E, l)-dependent and which
not. For example, the concepts of spin-orbit system, particle 1-turn map, spin transfer
matrix function, spin tune, spin-orbit resonance, invariant frame field, H-normal form are
(E, l)-independent since they only depend on (j, A). Clearly (E, l)-independent concepts are
very general. In contrast the concepts of invariant field and the two ToA transformation rules
are (E, l)-dependent. While the main dynamical themes of Chapter 8 are the Normal Form
Theorem and various invariant-field theorems, a host of other results will be found along the
way as well. In Appendix A we introduce the basic analytic notions like continuous functions
and partitions. Appendix B contains some of our proofs.

Although many of our concepts, and in particular the ToA of Sections 8.1-8.7, have their
origin in bundle theory as outlined in Section 8.8 we do not explicitly use bundle theory
in those sections. Thus it is appropriate to briefly mention that the bundle machinery
has many similarities with the so-called geometrical approach to Yang-Mills Theory. The
hallmark of most bundle approaches is a carefully chosen principal bundle which allows
one to store all data in the associated bundles of that principal bundle. Of course, one
of the associated bundles is the principal bundle itself. In our application the underlying
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principal bundle carries the data from the particle motion and of the spin transfer matrix
functions. Moreover the associated bundles are labeled by the SO(3)-spaces (E, l), i.e.,
they correspond to the above-mentioned “contexts”. Thus each associated bundle carries a
specific spin variable x, e.g., the spin vector S for the T–BMT spin motion, or a matrix M
for the spin tensor motion needed for spin-1 particles. The specific design of our underlying
principal bundle takes advantage of the fact that in polarized beam physics one neglects
the Stern-Gerlach force, thereby allowing us to use techniques which were developed by
R.J.Zimmer, R. Feres and others since the 1980’s to study so-called rigidity problems in
Dynamical-Systems Theory (see [Fe, Zi2, Zi3] and Chapter 9 in [HK1]). In contrast, in the
geometrical approach to Yang-Mills Theory one picks a principal bundle which carries the
data from the space-time and from the gauge potentials and gauge fields while the matter
fields (leptons, quarks, Higgs particles, magnetic monopoles etc.) reside in specific associated
bundles. The advantage of the use of bundles is its great flexibility and its ability to store and
reveal data and structures. For example in our application we take advantage of the cocycle
structure of the spin transfer matrix functions, of a SO(3)-gauge transformation structure
connecting different spin-orbit systems, and of the duality of particle-spin and field motion.
The duality provides the practically important ability to track polarization field trajectories,
tensor field trajectories etc. in terms of the accelerator’s particle trajectories. In the special
case (E, l) = (R3, lv) the above duality is the duality between particle-spin-vector trajectories
and polarization-field trajectories.

2 Spin-orbit systems

A central aim of this work is a study of the 1-turn particle-spin-vector map P[j, A] given by
(2.23), i.e.,

P[j, A](z, S) :=

(

j(z)
A(z)S

)

,

where z is the angle variable on the torus and where j represents the 1-turn particle map
whereas, in the case of real spin motion, a spin vector S would be mapped to A(z)S after
one turn according to the 1-turn spin transfer matrix function A derived from the T-BMT
equation. These objects will be defined in detail in this section and the above map will be
generalized in Chapter 8, from spin vectors to other objects related to spin. In Section 2.2
we discuss the torus as a topological space. In Section 2.3 we discuss the basic properties of
P[j, A] and in Section 2.4 we define some group theoretical notions underlying P[j, A].

2.1 Deriving the discrete-time particle-spin-vector motion from

the continuous-time particle-spin-vector motion

We begin our study by deriving our discrete-time particle-spin-vector motion from a continous-
time initial value problem (IVP) which takes the form

dφ

dθ
= ω , φ(0) = φ0 ∈ R

d , (2.1)
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dS

dθ
= A(θ, φ)S , S(0) = S0 ∈ R

3 , (2.2)

where ω ∈ Rd and where the matrix-valued function A : Rd+1 → R3×3 is continuous in
φ and piecewise continuous in θ. More precisely, A is either continuous or has not more
than finitely many jump discontinuities at θ values θ1, ..., θN such that A is continuous on
(R \ {θ1, ..., θN})× R

d and such that A(θ1; ·), ...,A(θN ; ·) are continuous. For the · notation
see Appendix A.1. Moreover we assume that A is 2π-periodic in each of its d+1 arguments
and that it is skew–symmetric, i.e., At(θ, φ) = −A(θ, φ). Without loss of generality and for
simplicity of notation we choose θ = 0 as the initial time. We denote the set of A, where A
satisfies the above conditions, by BMT (d).

As is clear from the above and the Introduction, the above IVP and the assumptions on
A are motivated by our underlying interest in particle-spin-vector motion in storage rings.
In the application to particle-spin-vector motion in storage rings, S is a column vector of
components of the spin S andA(θ, φ) ≡ AJ(θ, φ) represents the rotation rate vectorΩ(θ, J, φ)
of the T–BMT equation [BEH]. Here J, φ are the action-angle variables of an integrable
particle motion. Note that A(θ, φ) is 2π-periodic in θ because we deal with storage rings and
A(θ, φ) is 2π-periodic in the d components of φ since the latter are angle variables. Moreover
A is skew-symmetric by its origin in the T–BMT equation, thus preserving the norm of S.
We suppress the J , except for a few occasions where we need it, since we work mainly on a
fixed-J torus. The set BMT (d) includes standard particle-spin-vector motion but need not,
and is only restricted by the above mentioned constraints on A, in keeping with our wish to
investigate the properties of any system defined by (2.1) and (2.2).

Since the system (2.1),(2.2) is periodic in θ it is convenient to study the behavior of
solutions in terms of the Poincaré map (PM) [AP, HK2]. We now derive a convenient
representation for the PM. Solving (2.1) gives

φ(θ) = φ0 + ωθ , (2.3)

whence (2.2) reads as

dS

dθ
= A(θ, φ0 + ωθ)S , S(0) = S0 ∈ R

3 . (2.4)

Since A(θ;φ) is piecewise continuous in θ it can be shown [Cr] that the IVP (2.4) has a
unique solution S in the sense that

S(θ) = S0 +

∫ θ

0

A(t, φ0 + ωt)S(t)dt . (2.5)

It follows that S(θ) is continuous in θ. The proof in Cronin [Cr] does not include the
parameter φ0 but it is easily added.

Since (2.4) is linear in S the general solution of (2.5) can be written as

S(θ) = ΦCT [ω,A](θ;φ0)S0 , (2.6)

where, with (2.5), the function ΦCT [ω,A] : R× Rd → SO(3) satisfies

ΦCT [ω,A](θ;φ0) = I3×3 +

∫ θ

0

A(t, φ0 + ωt)ΦCT [ω,A](t;φ0)dt , (2.7)
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and where I3×3 is the 3 × 3 unit matrix and where the subscript “CT” indicates “contin-
uous time”. Since the values of A are real skew–symmetric 3 × 3 matrices, ΦCT [ω,A] is
SO(3)-valued where SO(3) is the set of real 3 × 3–matrices R for which RtR = I3×3 and
det(R) = 1. By adding the parameters φ0 and ω in Cronin’s proof, and using the fact that
A(θ;φ) is continuous in φ, we conclude from (2.7) that ΦCT [ω,A] ∈ C(Rd+1, SO(3)) where
C(Rd+1, SO(3)) is the set of continuous functions from Rd+1 into SO(3). See Appendix A.4
too. Furthermore ΦCT [ω,A](θ, φ) is 2π-periodic in the components of φ. Using (2.3) and
(2.6), the solution of the IVP (2.1),(2.2) can now be written

(

φ(θ)
S(θ)

)

= ϕ(θ;φ0, S0) , (2.8)

where the function ϕ ∈ C(Rd+4,Rd+3), is defined by

ϕ(θ;φ, S) :=

(

φ+ ωθ
ΦCT [ω,A](θ, φ)S

)

. (2.9)

The PM on Rd+3 is defined by ϕ(2π; ·) and it reads as

ϕ(2π;φ, S) =

(

φ+ 2πω
ΦCT [ω,A](2π;φ)S

)

. (2.10)

With (2.10) the Poincaré map ϕ(2π; ·) is determined by the parameters ω and A. With this
the study of the non-autonomous continuous-time Dynamical System (DS) of (2.1),(2.2) has
now been replaced by a study of an autonomous discrete-time DS given by the PM (2.10). In
the following section we will see how the Poincaré map (2.10), which is expressed in terms of
the angle variable φ, will be expressed in terms of the angle variable z on the torus, leading
us to the Poincaré map PCT [ω,A] in (2.19) below.

2.2 The torus T
d as the arena of the particle motion

Since φ is an angle variable and since we will have to prove many analytic properties later,
it is very convenient to replace Rd by the torus Td. One often defines a torus as the space
obtained by the function from φ ∈ Rd to φ mod 2π. However continuity plays a significant
role in our study and so we give a definition suited for defining continuity in terms of a
topology, i.e., in terms of open sets. For the basic topological notions, see Appendix A.3. A
reader familiar with the torus can imagine (2.10) on the torus and safely move to Section
2.3. We define

T
d := {φ+ Z̃d : φ ∈ R

d} , (2.11)

where

φ+ Z̃d := {φ+ φ̃ : φ̃ ∈ Z̃
d} = {φ+ 2πn : n ∈ Z

d} , (2.12)

and where Z̃d := {2πn : n ∈ Zd}. So on Td, a chosen φ is accompanied by a countable
infinity of points separated by 2π in each component of φ. In other words the elements of Td
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are countably infinite subsets of Rd. These subsets form a partition of Rd. For the definition
of partition see Appendix A.2. Each element of Td can be represented by a unique element
of [0, 2π)d and so [0, 2π)d is a “representing set” of the partition T

d of Rd. For the definition
of representing set of partition see Appendix A.2. Clearly φ′ + Z̃d = φ + Z̃d iff there exists
an m ∈ Zd such that φ′ − φ = 2πm. The topology on Td is defined in a standard way using
the topology of Rd.

As we will now show, with this definition of Td, the PM (2.10) can be written as in (2.19)
as

PCT [ω,A](z, S) :=

(

Pω(z)
ACT [ω,A](z)S

)

,

using the definitions in (2.17) and (2.18). The reader who is satisfied with this result might
wish to jump to the summary of this subsection on a first reading. In any case we now
continue with a rigorous justification and proof of the continuity of (2.19).

For that we now consider the onto function (surjection) πd : R
d → Td where

πd(φ) := φ+ Z̃
d = {φ+ 2πn : n ∈ Z

d} , (2.13)

then a subset B ⊂ Td is said to be open iff the inverse image, π−1
d (B) ⊂ Rd, of B under

πd is open (for the notion of inverse image see also Appendix A.1). Thus the function πd
and the natural topology on Rd are used to define a topology on Td. It is common to say
that the topology on Td is “co-induced by πd” [wiki]. See Appendix A.6 too. Of course, πd
is continuous, i.e., πd ∈ C(Rd,Td). Furthermore the topology on T

d is the largest for which
πd is continuous. We will see many more co-induced topologies (on sets different from Td)
in this work. In an older terminology the above topology on Td is called the “identification
topology” w.r.t. πd and πd is called an “identification map” [Du, Hu].

Remark:

(1) Another common definition of the torus is a cartesian product of circles, i.e., a subset T̂d

of R2d. Here the topology is defined in terms of the Euclidean norm on R2d giving the
Euclidean metric. The two topological spaces T̂d and Td are homeomorphic whence the
topology of Td has an underlying metric and thus continuity could be defined in terms
of the standard “ǫ − δ” approach. For the notion of “homeomorphic” see Appendix
A.4. However for the purposes of this work it is easier to work with the equivalent
open-set definition of continuity. ✷

Clearly, by (2.11) and (2.13) and the remarks after (2.12),

T
d = {πd(φ) : φ ∈ [0, 2π)d} = {πd(φ) : φ ∈ R

d} . (2.14)

We can now prepare for the definition of the Poincaré map PCT [ω,A] and the demonstration
of its continuity. As a first step we use the above topology on Td to obtain the following
lemma:
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Lemma 2.1 (Torus Lemma)
Let Y be a topological space and F : Rd → Y be 2π-periodic in each of its d arguments. Then
a unique function f : Td → Y exists such that

F = f ◦ πd . (2.15)

Moreover if F is continuous then f is continuous, i.e., f ∈ C(Td, Y ).

The situation in (2.15) is illustrated by the commutative diagram in Fig. 1.

Y Td

Rd

f

F

πd

✛

❄

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟✟✙

Figure 1: Commutative diagram for Lemma 2.1

Proof of Lemma 2.1: Given the function F we define the function f : Td → Y by

f(z) := F (φ), φ ∈ z , (2.16)

where the elements of the set z are defined by (2.13) so that, by (2.14), φ ∈ z iff πd(φ) = z.
The function f is well defined since F (φ) has, by periodicity, the same value for every choice
of φ ∈ z. Clearly f satisfies (2.15). Furthermore, since πd is a surjection, f is the only
function which satisfies (2.15). Let F be continuous. To see that f is continuous we need to
show that the inverse image f−1(V ) is open for all open subsets V of Y . In fact, by (2.15),
we compute, for the inverse images, π−1

d (f−1(V )) = (f ◦ πd)−1(V ) = F−1(V ). Thus if V is
open, F−1(V ) = π−1

d (f−1(V )) is open since F is continuous. Thus indeed f is continuous.
Note that the second part of the proof also follows from the Continuity Lemma in Appendix
A.6. ✷

Remark:

(2) We have the following simple corollary to the Torus Lemma.

Let g ∈ C(Td, Y ) and let F ∈ C(Rd, Y ) be defined by F := g ◦ πd. Then a function
f : Td → Y exists such that (2.15) holds and f = g.

Proof: Clearly F is continuous and 2π-periodic in all of its arguments. Thus we can
apply Lemma 2.1 to F giving us a unique function f : Td → Y which satisfies (2.15).
Thus and since F = g ◦ πd we have f = g. ✷

Since πd is continuous and 2π-periodic in all of its arguments, a trivial application of
Lemma 2.1 is where F = πd and f = idTd where idTd is the identity function on Td (for the
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latter see also Appendix A.1). More importantly, with Lemma 2.1 we can now rewrite the
PM (2.10) in terms of Td. First we define the function Pω : Td → Td by

Pω(z) := (φ+ 2πω) + Z̃
d , φ ∈ z . (2.17)

This represents the particle dynamics on Td and it simply is a linear translation on the torus
which shifts the set z = φ+ Z̃

d to the set (φ+ 2πω) + Z̃
d. Secondly, we define the function

ACT [ω,A] : Td → SO(3) by

ACT [ω,A](z) := ΦCT [ω,A](2π;φ) , φ ∈ z . (2.18)

Here the functions ACT [ω,A] resp. ΦCT [ω,A](2π; ·) correspond to f resp. F of Lemma 2.1
and thus ACT [ω,A] is continuous. Thus the PM (2.10) will be rewritten as the function
PCT [ω,A] : Td × R3 → Td × R3 defined by

PCT [ω,A](z, S) :=

(

Pω(z)
ACT [ω,A](z)S

)

. (2.19)

We now argue that PCT [ω,A] is continuous. It is easy to show, by (2.17), that F (φ) :=
(Pω ◦ πd)(φ) = πd(φ + 2πω) whence, and since πd is continuous and 2π-periodic in its
arguments, F belongs to C(Rd,Td) and is 2π-periodic in all of its arguments so that, by
Lemma 2.1, a unique function f : Td → Td exists such that F = f ◦ πd and f is continuous.
Of course since F = Pω ◦πd we have f = Pω whence Pω ∈ C(Td,Td). Since P−ω is the inverse
of Pω we can write, due to the discussion after (2.19), Pω ∈ Homeo(Td). Here Homeo(Y )
denotes the set of homeomorphisms on the topological space Y (see also Appendix A.4).
Since ACT [ω,A] ∈ C(Td, SO(3)), (2.19) implies that PCT [ω,A] ∈ C(Td × R3,Td × R3).

In summary, we have reduced the study of the continuous-time non-autonomous DS
(2.1),(2.2) to the study of the discrete-time autonomous DS given by the map of (2.19).
This map is determined by ω and ACT [ω,A]. Thus we define

SOSCT (d, ω) := {(Pω, ACT [ω,A]) : A ∈ BMT (d)} . (2.20)

In the next section we will generalize (2.19) to the maps that we will consider in this work.

2.3 Introducing the set SOS(d, j) of spin-orbit systems

We now generalize SOSCT (d, ω) to SOS(d, j) by generalizing Pω and ACT [ω,A] to j and A
giving us

SOS(d, j) := {(j, A) : A ∈ C(Td, SO(3))} , (2.21)

where j ∈ Homeo(Td) and where the matrix function A is arbitrary in C(Td, SO(3)) and
thus is not necessarily derived from the A of (2.1),(2.2).

Since Pω ∈ Homeo(Td), and since the function ACT [ω,A] belongs to C(Td, SO(3)), we
see from (2.20) and (2.21) that

SOSCT (d, ω) ⊂ SOS(d,Pω) , (2.22)
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and it will be shown below that the inclusion in (2.22) is proper, i.e., that SOSCT (d, ω) 6=
SOS(d,Pω).

We call every pair (j, A) in SOS(d, j) a “spin-orbit system”. We call A the “1-turn spin
transfer matrix function” of a spin-orbit system (j, A). We call ω the “orbital tune vector”
of a spin-orbit system (Pω, A). We denote the union of the SOS(d, j) over j by SOS(d).

Motivated by (2.19), we define, for every (j, A) in SOS(d, j), the function P[j, A] :
Td × R3 → Td × R3 by

P[j, A](z, S) :=

(

j(z)
A(z)S

)

, (2.23)

and we call P[j, A] the “1-turn particle-spin-vector map of (j, A)”. The map is invertible
with inverse

P[j, A]−1(z, S) :=

(

j−1(z)
At(j−1(z))S

)

. (2.24)

Clearly P[j, A] and P[j, A]−1 belong to C(Td × R3,Td × R3) whence P[j, A] is a homeomor-
phism and we write P[j, A] ∈ Homeo(Td × R3). In the special case where the spin-orbit
system (j, A) belongs to SOSCT (d, ω) the 1-turn particle-spin-vector map of (j, A) carries
the data of the PM, i.e., j = Pω and

PCT [ω,A] = P[Pω, ACT [ω,A]] . (2.25)

See also (2.18) and (2.19). In particular PCT [ω,A] ∈ Homeo(Td × R3).
All physical applications we have in mind have j = Pω and so in this case j is just a

shorthand. However, since for most notions and results of this work a general j is perfectly
applicable, we do not confine ourselves to j = Pω.

A central aim of this paper is a study of the DS defined by (2.23). We find it convenient
to work in the more general setting of SOS(d, j) and (2.23) rather than the special setting
of SOSCT (d, ω). However the main physical interest is in a small subset of SOSCT (d, ω).
There is a natural question: given (Pω, A) in SOS(d,Pω), does it belong to SOSCT (d, ω)?
This is an analogue of the following question from beam dynamics: given a symplectic map,
can it be generated as the 1-turn map of a Hamiltonian system? We do not deal with
this question. However, to show that the inclusion (2.22) is proper consider ω ∈ R and
(Pω, A) ∈ SOS(1,Pω) with A ∈ C(T1, SO(3)) where m is an integer and

A(z) :=





cosmφ − sinmφ 0
sinmφ cosmφ 0

0 0 1



 , φ ∈ z . (2.26)

It can be shown with Lemma 2.1 that A in (2.26) is well defined and continuous as we did
for ACT [ω,A] after (2.18), thus (Pω, A) ∈ SOS(1,Pω). It was shown in [He2, Section 7.2],
by using simple arguments from Homotopy Theory, that (Pω, A) ∈ SOSCT (1,Pω) iff m is
even. Thus for m odd we have an example showing that the inclusion (2.22) is proper. Note
also that (Pω, A

2) ∈ SOSCT (1,Pω) for every integer m.
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We now discuss the DS defined by (2.23). It is a special case of a DS defined by a
homeomorphism f ∈ C(Y, Y ) on a topological space Y . The iterates are given by

y(n+ 1) = f(y(n)) , y(0) = y0 , n ∈ Z , (2.27)

thus y(1) = f(y0), y(−1) = f−1(y0), y(2) = (f ◦ f)(y0), y(−2) = (f−1 ◦ f−1)(y0), etc. The
solution of (2.27) can be written as

y(n) = ψ(n; y0) , ψ(0; y0) = y0 , (2.28)

where the function ψ : Z× Y → Y satisfies

ψ(n+m; y) = ψ(n;ψ(m; y)) , ψ(0; y0) = y . (2.29)

Let fn be the n-fold composition of f with itself. Then ψ(n; y0) = fn(y0) and we call fn the
n-th iterate of f . We use the standard topology on Z (see Section 2.4) in which case a function
on Z × Y is continuous iff it is continuous in the second argument. Thus ψ ∈ C(Z × Y, Y ).
One proves (2.29) by noting that both H1(n) = ψ(n + m; y) and H2(n) = ψ(n;ψ(m; y))
satisfy (2.27) with H1(0) = H2(0). Thus by uniqueness they are equal for all n.

For our case we have Y = T
d × R

3, f = P[j, A] and

y(n) =

(

z(n)
S(n)

)

(2.30)

whence, by (2.23),

(

z(n + 1)
S(n+ 1)

)

=

(

j(z(n))
A(z(n))S(n)

)

(2.31)

with z(0) = z0 and S(0) = S0 given. We call z(·) a “particle trajectory of (j, A)” and S(·)
a “spin-vector trajectory of (j, A)”. Moreover we call a function (z(·), S(·)) a “particle-spin-
vector trajectory of (j, A)”. The notion of particle-spin-vector trajectory will be generalized
in Chapter 8 where we generalize the spin vector to an arbitrary variable related to spin.

We now derive a convenient representation for ψ in our case where f = P[j, A]. We follow
the procedure in Section 2.1 going from (2.1) and (2.2) to (2.9). Clearly z(n) = jn(z0). Define
L[j] : Z× Td → Td via

L[j](n; z) := jn(z) , (2.32)

then

L[j](n +m, z) = L[j](n;L[j](m; z)) , (2.33)

and S(n+ 1) = A(L[j](n; z0))S(n) and S(−n) = At(L[j](−n; z0))S(−n+ 1) so that

S(n) = A(L[j](n− 1; z)) · · ·A(L[j](1; z))A(z)S0 , (n = 1, 2, ...) (2.34)

S(n) = At(L[j](n; z)) · · ·At(L[j](−1; z))S0 , (n = −1,−2, ...) ,
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where we used the fact that At(z)A(z) = I3×3. Thus

S(n) := Ψ[j, A](n; z0)S0 , (2.35)

where

Ψ[j, A](0; z) = I3×3 ,

Ψ[j, A](n; z) = A(L[j](n− 1; z)) · · ·A(L[j](1; z))A(z) , (n = 1, 2, ...) ,

Ψ[j, A](n; z) = At(L[j](n; z)) · · ·At(L[j](−1; z)) , (n = −1,−2, ...) .

(2.36)

We now have the desired representation for ψ given by the function L[j, A] : Z×Td ×R3 →
Td × R3 defined by the nth iteration of P[j, A]:

L[j, A](n; z, S) := P[j, A]n(z, S) =

(

L[j](n; z)
Ψ[j, A](n; z)S

)

. (2.37)

With (2.28) or (2.37) the solution of (2.31) is

(

z(n)
S(n)

)

= L[j, A](n, z0, S0) . (2.38)

Also from (2.29) or (2.37) we get

L[j, A](n +m, z, S) = L[j, A](n;L[j, A](m; z, S)) , L[j, A](0; z, S) =

(

z
S

)

. (2.39)

Inserting (2.37) into (2.39) gives

Ψ[j, A](n+m; z) = Ψ[j, A](n;L[j](m; z)) Ψ[j, A](m; z) . (2.40)

We now introduce some additional terminology which will be useful in the following. We
call the n-th iterate P[j, A]n = L[j, A](n; ·) the “n-turn particle-spin-vector map of (j, A)”,
we call Ψ[j, A] the “spin transfer matrix function” of (j, A) and we call Ψ[j, A](n; ·) the
“n-turn spin transfer matrix function” of (j, A). Since Ψ[j, A](n; ·) is continuous, every spin
transfer matrix function is a continuous function due to the standard topology on Z. Clearly

Ψ[j, A](1; z) = A(z) , (2.41)

which justifies calling A the 1-turn spin transfer matrix function.
The behavior of the spin-vector trajectories in (2.35) depends on the values of A reached

by the particle motion L[j](n; z0) in its argument, which in turn depends on j. In the case
j = Pω the argument z(n) of A in (2.31) will remain in a confined subset of the torus for
some values of ω and for other values it will cover the torus densely. To be more precise we
define resonance. We say χ ∈ Rn is resonant if there exists a non-zero integer vector k ∈ Zn

such that k · χ = 0 and nonresonant if not resonant. If j = Pω and (1, ω) is nonresonant
then the argument z(n) of A in (2.31) covers the torus densely and since A is continuous all
values of A affect the spin-vector trajectory whereas if (1, ω) is resonant the values of A are
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only sampled by its values on a sub-torus. The spin-orbit system (Pω, A) is said to be “off
orbital resonance” if (1, ω) is nonresonant and “on orbital resonance” if (1, ω) is resonant.
Thus spin-vector trajectories may exhibit significantly different qualitative behaviors on and
off orbital resonance. We will now generalize the notion “off orbital resonance”. One says
that j ∈ Homeo(Td) is “topologically transitive” if a z0 ∈ Td exists such that the set
B := {jn(z0) : n ∈ Z} is dense in Td, i.e., B = Td where B denotes the topological closure
of B, see Appendix A.3. An important special case is when j = Pω: then j is topologically
transitive iff (1, ω) is nonresonant.

It is interesting to relate again the motion defined by (2.1),(2.2) to the motion defined
by (2.23). Let φ0 ∈ Rd and ω ∈ Rd,A ∈ BMT (d) and let S be a solution of the IVP (2.4).
Defining the function Ŝ : Z → R

3 by Ŝ(n) := S(2πn) we observe that Ŝ(·) is a spin-vector
trajectory of (Pω, ACT [ω,A]), i.e., in addition to (2.25) we get

Ψ[Pω, ACT [ω,A]](n;φ0 + Z̃
d) = ΦCT [ω,A](2πn;φ0) . (2.42)

2.4 Group actions and cocycles

We now continue with the DS defined by (2.23) and we will define some group theoretical
notions underlying Ψ[j, A], L[j] and L[j, A] which will be crucial for the remainder of this
work.

Definition 2.2 (Group)
A “group” is a pair (G, ∗) where G is a set and ∗ is a binary operation such that

(G0) (Binary operation) ∀g1,g2∈G (g1 ∗ g2) ∈ G ,

(G1) (Associativity) ∀g1,g2,g3∈G (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) ,
(G2) (Identity element eG) ∃eG∈G ∀g∈G eG = eG ∗ g = g ∗ eG ,
(G3) (Inverse elements) ∀g1∈G ∃g2∈G eG = g1 ∗ g2 = g2 ∗ g1 .

We will abbreviate (G, ∗) as G when the operation ∗ is clear from the context and we often
write g1 ∗ g2 as g1g2 when the operation ∗ is clear from the context. The inverse element
of a g ∈ G is denoted by g−1. If H is a subset of G and if g, g′ ∈ G then we define
gHg′ := {ghg′ : h ∈ H}.

A subset G′ of G is called a “subgroup of G” if it is a group w.r.t. to the restriction of
∗ to G′. Two elements g′, g′′ of a group G are called “conjugate” if g ∈ G exists such that
g′′ = gg′g−1. Two subgroups G′, G′′ of a group G are called “conjugate” if g ∈ G exists such
that G′′ = gG′g−1.

A group (G, ∗) is called “Abelian” if

(G4) (Commutativity) ∀g1,g2∈G g1 ∗ g2 = g2 ∗ g1 ,

in which case ∗ is often replaced by +. ✷

Important examples of groups in Section 2.3 are (Z,+), (SO(3), ∗) (in the latter case the
binary operation is matrix multiplication).
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Definition 2.3 (G-action, G-set, isotropy group)
Consider a group G and a set E. Then a function l : G× E → E is called a “G-action on
E” if, for g1, g2 ∈ G, x ∈ E,

l(eG; x) = x (2.43)

l(g1g2; x) = l(g1; l(g2; x)) . (2.44)

If l is a G-action on E then the pair (E, l) is called a “G-set”.
Let x ∈ E. Then we denote by Iso(E, l; x) the set of those g ∈ G for which x is a fixed

point of l(g; ·) i.e.,
Iso(E, l; x) := {g ∈ G : l(g; x) = x} . (2.45)

Using (2.43) and (2.44) it is a simple exercise to show that Iso(E, l; x) is a subgroup of G,
and it is called the “isotropy group” (or “stabilizer group”) of (E, l) at x. ✷

If (E, l) is a G-set then, for each g ∈ G, the function l(g; ·) : E → E is onto since, for every
y ∈ E, the equality l(g; x) = y is solved by l(g−1; y) = x. Moreover l(g; ·) is one-one since
the equality l(g; x) = l(g; y) implies that x = l(g−1; l(g; x)) = l(g−1; l(g; y)) = y. Thus l(g; ·)
is a bijection with inverse l(g−1; ·). For the definition of “bijection”, see Appendix A.1.

It is clear by (2.33) that L[j] is a Z-action on Td whence (Td, L[j]) is a Z-set. Analogously
it follows from (2.39) that L[j, A] is a Z-action on Td × R3 and that (Td × R3, L[j, A]) is a
Z-set. Apart from this Z-set we will see many more Z-sets in this work which are tied with
(j, A). In particular in Chapter 8 we will define an infinite collection of Z-sets tied with
(j, A).

Definition 2.4 ((E, l)-orbit)
Let (E, l) be a G-set. If x ∈ E then the set {l(g; x) : g ∈ G} is called the “(E, l)-orbit of
x”. We denote the set of (E, l)-orbits by E/l and define the function l(G; ·) : E → E/l by
l(G; x) := {l(g; x) : g ∈ G}. Thus l(G; x) is the (E, l)-orbit of x.

A G-set is called “transitive” if it has only one orbit, i.e., if E is the (E, l)-orbit of every
x in E. ✷

The E/l in Definition 2.4 is a partition of E (see Appendix A.2) and thus l(G; ·) is well
defined and a surjection. Isotropy groups are important tools for dealing with G-sets since
they allow one to conveniently deal with the (E, l)-orbits. In fact the isotropy groups of
SO(3)-sets will be used in this capacity in Chapter 8 - in particular they will give us more
insights into particle-spin-vector motions and polarization-field motions (the latter being
defined in Chapter 3).

Definition 2.5 (Topological group)
A “topological group” is a group (G, ∗) where G is a topological space, where the binary
operation ∗ is continuous and where the function g 7→ g−1 on G is also continuous. ✷

The above-mentioned groups Z and SO(3) in Section 2.3 are topological as we consider them
to be equipped with their standard topologies. Thus the topology of Z is discrete, i.e., every
subset of Z is open, and SO(3) is equipped with the subspace topology from R3×3 (for the
latter notion, see Appendix A.3). In this work we are often interested in G-sets where G
and E have a topology and l is continuous. This is formalized in the following definition.
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Definition 2.6 (G-space)
Let (E, l) be a G-set, let E be a topological space, G be a topological group, and let l ∈
C(G× E,E) where G× E carries the product topology. For the latter notion, see Appendix
A.5. Then the pair (E, l) is called a “G-space”.

The definitions of “transitive”,“isotropy group”, (E, l)-orbit and E/l are the same as for
G-sets. Also, we equip each (E, l)-orbit with the subspace topology from E. ✷

If (E, l) is a G-space then each l(g; ·) is a homeomorphism. Moreover in the important
subcase when the topology of G is discrete (e.g., when G = Z) the condition that l is
continuous is equivalent to l(g; ·) being continuous for all g ∈ G.

Since, by (2.32), L[j](n; ·) is continuous it is clear that the Z-set (Td, L[j]) is a Z-space
and L[j](n; ·) ∈ Homeo(Td). Recalling that Ψ[j, A] is continuous, it is equally clear by (2.37)
that L[j, A](n; ·) is continuous whence the Z-set (Td × R3, L[j, A]) is also a Z-space and
L[j, A](n; ·) ∈ Homeo(Td × R3).

There are many books which cover G-spaces. A useful book, dedicated exclusively to
G-sets and G-spaces, is [Ka]. Clearly G-sets and G-spaces are 2-tuples (E, l). The use of
the terms set and space in this context simply arise out of the need for simple names and
the fact that E is either a set or a topological space. The term G-set is synonymous with
the term “transformation group” often used in the physics literature.

The spin transfer matrix function is an example of a cocycle and (2.40) is the cocycle
condition. We thus define:

Definition 2.7 (Cocycle)
Let (E, l) be a G-space and K be a topological group. Then a function f ∈ C(G × E,K) is
called a “K cocycle over the G-space (E, l)” if, for g, g′ ∈ G, x ∈ E,

f(gg′; x) = f(g; l(g′; x))f(g′; x) . (2.46)

Here G× E carries the product topology. ✷

For literature on cocycles, see, e.g., [KR, Zi1] and Chapter 1 in [HK1]. The reader will easily
appreciate the similarity between the structures of (2.40) and (2.46) and the correspondence
between the functions Ψ[j, A] ∈ C(Z × Td, SO(3)) and f ∈ C(G × E,K). Since (Td, L[j])
is a Z-space and SO(3) is a topological group, the set of SO(3) cocycles over (Td, L[j]) is
well defined. In fact since Ψ[j, A] ∈ C(Z × Td, SO(3)) it follows from (2.40) that, for every
(j, A) ∈ SOS(d, j), Ψ[j, A] is a SO(3) cocycle over (Td, L[j]). Conversely, every SO(3)
cocycle Ψ over (Td, L[j]) is the spin transfer matrix function of a spin-orbit system since,
by defining A := Ψ(1; ·), we have Ψ[j, A] = Ψ so that Ψ is the spin transfer matrix function
of (j, A). Clearly the cocycle property of the spin transfer matrix function Ψ[j, A] is an
important structure of the particle-spin-vector motion of spin-orbit systems and in Section
8.2.2 their importance will be extended to more general spin variables. Furthermore cocycles
are of key importance in the underlying bundle theory (see Section 8.8).
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3 Polarization-field trajectories and invariant polariza-

tion fields

In this chapter we introduce the notions of polarization field, invariant polarization field,
spin field and invariant spin field and we present their most basic properties.

3.1 Generalities

High precision measurements of the spin-dependent properties of the interactions of colliding
particles in storage rings depend on the equilibrium spin polarization being maximized. This,
in turn, is facilitated by an understanding of the meaning of the term equilibrium, both as
it applies to the value of the polarization and to its direction at each point in phase space.
We will return to these matters in Section 7.1 but continue now with a definition and an
exploration of the effects of maps.

Suppose therefore that (j, A) ∈ SOS(d, j) and that, at time n = 0, a spin vector Sz0 has
been assigned to every point z0 = φ0 + Z̃d ∈ Td of the “particle torus” and consider their
evolution according to (2.35). Let Sz0(·) denote the spin-vector trajectory with the initial
value S0 = Sz0(0). We define the field trajectory S = S(n, z) by S(n, jn(z)) = Sz(n) where
n and z vary over Z and Td respectively. Clearly S(n, ·) is the distribution of spins which
started at n = 0 with the assignments Sz0 and evolved under the dynamics of (2.35). Since
(2.35) gives us Sz(n+ 1) = A(jn(z))Sz(n), we have

S(n + 1, z) = A

(

j−1(z)

)

S
(

n, j−1(z)

)

. (3.1)

Definition 3.1 (Polarization-field trajectory, invariant polarization field, ISF)
Let (j, A) ∈ SOS(d, j). We call a function S ∈ C(Z×Td,R3) a “polarization-field trajectory
of (j, A)”, if it satisfies the evolution equation (3.1). Clearly S(n, ·) ∈ C(Td,R3) and we call
S(0, ·) the “initial value of S”. A function f ∈ C(Td,R3) is called an “invariant polarization
field of (j, A)” if it satisfies

f ◦ j = Af . (3.2)

A polarization-field trajectory S is also called a “spin-field trajectory” if |S| = 1. An invariant
polarization field f is called an “invariant spin field (ISF)” if |f | = 1. We denote the set of
invariant spin fields of (j, A) by ISF (j, A). ✷

At (2.23) we defined the function P[j, A](z, S) for transporting particles and their spin
vectors.

The IRT, Theorem 8.15 in Section 8.7.1, will show that the ISF is a rather deep concept.
We now define the function P̃ [j, A] : C(Td,R3) → C(Td,R3) for the field evolution by

P̃[j, A](f) := (Af) ◦ j−1 , (3.3)
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i.e., (P̃[j, A](f))(z) := A(j−1(z))f(j−1(z)) where f ∈ C(Td,R3). It is an easy exercise to
show that, for (j, A) ∈ SOS(d, j) and (j′, A′) ∈ SOS(d, j′),

P̃[j′, A′] ◦ P̃[j, A] = P̃[j′ ◦ j, A′′] , (3.4)

where A′′ ∈ C(Td, SO(3)) is defined by A′′ := (A′ ◦ j)A, whence

P̃[j, A] = P̃[j, Ad,0] ◦ P̃ [idTd , A] , (3.5)

where Ad,0 ∈ C(Td, SO(3)) is defined by Ad,0(z) := I3×3. Then the inverse, P̃[j, A]−1, of
P̃[j, A] is given by

P̃[j, A]−1 = P̃ [idTd , At] ◦ P̃ [j−1, Ad,0] = P̃[j−1, At ◦ j−1] . (3.6)

Thus P̃[j, A] is a bijection so that the function L̃[j, A] : Z× C(Td,R3) → C(Td,R3), defined
by

L̃[j, A](n; ·) := P̃ [j, A]n , (3.7)

is a Z-action on C(Td,R3) where P̃ [j, A]n denotes the n-th iteration of P̃ [j, A]. Clearly
(C(Td,R3), L̃[j, A]) is a Z-set. Note that, by (2.36), (3.3) and (3.7),

L̃[j, A](n; f) =

(

Ψ[j, A](n; ·)f
)

◦ L[j](−n; ·) , (3.8)

i.e., (L̃[j, A](n; f))(z) = Ψ[j, A](n;L[j](−n; z))f(L[j](−n; z)). Of course, with (3.3) the evo-
lution equation (3.1) can be written as S(n + 1, ·) = P̃[j, A](S(n, ·)) whence, by (3.7), for
every polarization-field trajectory S

S(n, ·) = L̃[j, A](n;S(0, ·)) . (3.9)

3.2 Invariant polarization fields

In this section we take a closer look at invariant polarization fields.
We first recall from (3.1) that if S is a polarization-field trajectory of (j, A) then

S(n + 1, j(z)) = A(z)S(n, z) , (3.10)

whence if S is also time-independent then

S(n, j(z)) = S(n + 1, j(z)) = A(z)S(n, z) . (3.11)

It follows from (3.10) and (3.11) and Definition 3.1 and by induction in n that if S is a
polarization-field trajectory of (j, A) then S is time-independent iff its initial value S(0, ·) is
an invariant polarization field of (j, A).

Invariant polarization fields play an important role in polarized beam physics since they
can be used to estimate the maximum attainable polarization of a bunch as we explain
in Section 7.1, and since they are closely tied to the notions of spin tune and spin-orbit

20



resonance (see Chapter 6). In fact as indicated in the Introduction invariant polarization
fields are central to this work. This becomes especially clear when we generalize the notions
of invariant polarization field to the notion of invariant (E, l)-field in Chapter 8 whereby
(3.2) will turn out to be a so-called stationarity equation.

We now make some comments on the question of the existence of the ISF for spin-orbit
systems in SOS(d, j). It should be clear that the constraints involved in the definition of
the ISF are nontrivial. However, if a spin-orbit system (j, A) has an ISF f then −f is also
an ISF of (j, A). So since f 6= −f , if (j, A) has a finite number of ISF’s, then this number is
even. The important subcase where (j, A) has exactly two ISF’s is dealt with in Chapter 7.

It is also known [BV1] and examined in Section 8.5.2 that spin-orbit systems exist which
are on orbital resonance and which have no continuous ISF of the kind that we treat here.
At the same time there are some indications, mainly from numerical computations on ISF’s,
that practically relevant spin-orbit systems which have no ISF are “rare”. Thus we state
the following conjecture, which we call the “ISF-conjecture”: If (j, A) is a spin-orbit system
such that j is topologically transitive then (j, A) has an ISF. Note that a special case of this
conjecture is: If a spin-orbit system (Pω, A) is off orbital resonance, then it has an ISF.

The ISF-conjecture is, at least to our knowledge, unresolved. The question of the ex-
istence of the ISF is widely considered important both as a theoretical matter and as it
relates to the practical matter of deciding whether a beam can have stable, non-vanishing
polarization. Chapter 8 presents a new framework for discussing it.

Since the ISF-conjecture deals with topologically transitive j we state the following the-
orem which considers this situation.

Theorem 3.2 Let (j, A) ∈ SOS(d, j) where j is topologically transitive. If f is an invariant
polarization field of (j, A) then |f | is constant, i.e., |f(z)| is independent of z. Also (j, A)
has an ISF iff it has an invariant polarization field which is not identically zero.

Proof of Theorem 3.2: Let f be an invariant polarization field of (j, A). Then, by Definition
3.1, f ∈ C(Td,R3) and

|f(j(z))| = |f(z)| . (3.12)

We pick a z0 ∈ Td such that the set B := {jn(z0) : n ∈ Z} is dense in Td, i.e., B = Td and
we define S0 := f(z0). Since f is an invariant polarization field we have B ⊂ C := {z ∈ T

d :
|f(z)| = |S0|}. On the other hand, the sphere of radius |S0|, i.e., the set {S ∈ R3 : |S| = |S0|}
is a closed subset of R3 whence, because f is continuous, C is a closed subset of Td. Therefore
Td = B ⊂ C = C so that Td = C. Thus, by the definition of C, we conclude that |f(z)| = |S0|
for all z ∈ Td.

To prove the second claim, let f be an invariant polarization field of (j, A) which is not
identically zero. Clearly by the first claim |f | is constant and takes a nonzero value because
|f | is not identically zero. Thus we define g ∈ C(Td,R3) by g := f/|f | whence, by Definition
3.1, g is an ISF of (j, A). Conversely every ISF of (j, A) is an invariant polarization field of
(j, A) which is not identically zero. ✷

In the special case when j = Pω with (1, ω) nonresonant one can prove Theorem 3.2
alternatively by some simple Fourier Analysis of f [He2]. With Theorem 3.2, the ISF con-
jecture is equivalent to the following statement: If j is topologically transitive then (j, A)
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has an invariant polarization field which is not identically zero. Note also that Theorem 3.2
will be generalized by Lemma 8.4.

A less formal picture surrounding Theorem 3.2 is as follows. When j is topologically
transitive, the whole of Td can effectively be reached from any starting position z0 by repeated
application of j. Moreover, by a corresponding repeated application of A, f(z0) generates
f(z) at effectively all points on Td. So the f(z) on Td are all “connected”. Also, since A is
SO(3)-valued all the |f(z)| are the same. On the other hand, if j is not transitive, the f(z)
at different z need not be connected. For example the f(z) at adjacent z could have opposite
signs. We will encounter a related situation in Section 8.5.2 for j = Pω with ω = 1/2 and in
Remark 12 of Chapter 8.

4 Transforming spin-orbit systems

In this chapter we introduce the transformation of any (j, A) ∈ SOS(d, j) under any T ∈
C(Td, SO(3)) and we show how this is accompanied by a transformation of P[j, A] and
P̃[j, A] as well as by a transformation of particle-spin-vector trajectories and polarization-
field trajectories.

4.1 The transformation rule of spin-orbit systems

We now show how to partition SOS(d, j) into subsets within which the dynamics is similar.
Consider (j, A) ∈ SOS(d, j) and let (z(·), S(·)) be a particle-spin-vector trajectory of (j, A),
i.e., let (2.31) hold so that S(·) is a spin-vector trajectory of (j, A) and thus S(n + 1) =
A(z(n))S(n). For arbitrary T ∈ C(Td, SO(3)), the function S ′ : Z → R3 defined by S ′(n) :=
T t(z(n))S(n) satisfies S ′(n+1) = T t(z(n+1))A(z(n))T (z(n))S ′(n). So S ′(·) is a spin-vector
trajectory of a new spin-orbit system, namely of (j, A′) ∈ SOS(d, j) which is defined by

A′(z) := T t(j(z))A(z)T (z) . (4.1)

Note that (4.1) implies A(z) = T (j(z))A′(z)T t(z). Thus (z(·), S ′(·)) is a particle-spin-

vector trajectory of (j, A′). Recalling from (2.23) that P[j, A](z, S) =

(

j(z)
A(z)S

)

and

P[j, A′](z, S) =

(

j(z)
A′(z)S

)

it is easy to show that (4.1) holds iff

P[idTd , T ]−1 ◦ P[j, A] ◦ P[idTd , T ] = P[j, A′] . (4.2)

Eq. (4.1) gives rise to a partition of SOS(d, j) as we formalize in the next two definitions.

Definition 4.1 (Transformation rule of spin-orbit systems)
Let (j, A) and (j, A′) be in SOS(d, j). Then a T in C(Td, SO(3)) is called a “transfer field
from (j, A) to (j, A′)” iff (4.1) holds. We also say that “(j, A′) is the transform of (j, A) under
T”. We denote the collection of all transfer fields from (j, A) to (j, A′) by T F(A,A′; d, j).
Note that if T ∈ T F(A,A′; d, j) then T t ∈ T F(A′, A; d, j), i.e., (j, A) is the transform of
(j, A′) under T t. ✷
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Clearly T F(A,A′; d, j) 6= ∅ iff (j, A′) is a transform of (j, A) as in (4.1). Note that in general
we don’t have transfer fields, i.e., T F(A,A′; d, j) = ∅ (see, e.g., Remark 9 in Chapter 6).

Following Appendix A.2 we make the definition:

Definition 4.2 Let (j, A) and (j, A′) be in SOS(d, j). Then we write (j, A) ∼ (j, A′) and
say that (j, A) and (j, A′) are “equivalent” iff (j, A′) is a transform of (j, A) under some
T ∈ C(Td, SO(3)). Clearly the relation ∼ is symmetric, reflexive, and transitive and thus
is an equivalence relation on SOS(d, j). Let (j, A) := {(j, A′′) : (j, A′′) ∼ (j, A)}, i.e., the
equivalence class of (j, A) under ∼. As outlined in Appendix A.2, the sets (j, A) partition
SOS(d, j). ✷

Two spin-orbit systems which are equivalent share many important properties, e.g., the
existence or nonexistence of an ISF (see Remark 3 below). We will see other properties
shared by equivalent spin-orbit systems throughout this work. For checking those shared
properties it can be convenient to check them for a “simple” element of (j, A) (see especially
Chapters 5 and 6).

The transformation rule (j, A) −→ (j, A′) also gives the following transformation rule of
spin transfer matrix functions:

Ψ[j, A] −→ Ψ[j, A′] . (4.3)

It follows from (2.40) and (4.1) and by induction in n that, if T ∈ T F(A,A′; d, j), with
T ∈ C(Td, SO(3)) then the spin transfer matrix functions of (j, A) ∈ SOS(d, j) and (j, A′) ∈
SOS(d, j) are related by

Ψ[j, A′](n; z) = T t(L[j](n; z))Ψ[j, A](n; z)T (z) . (4.4)

Recall from Section 2.4 that Ψ[j, A] and Ψ[j, A′] are cocycles. Then (4.4) implies that the
cocycles Ψ[j, A] and Ψ[j, A′] are “cohomologous”. For this notion, see, e.g., [He2, KR, Zi1]
and Chapter 1 in [HK1].

4.2 Transforming particle-spin-vector trajectories and polarization-

field trajectories. Topological G-maps of G-spaces

With Definition 4.1 we arrive at the following transformation rule of Z-actions:

L[j, A] −→ L[j, A′] , (4.5)

L̃[j, A] −→ L̃[j, A′] , (4.6)

where A,A′ are related by (4.1) with T ∈ C(Td, SO(3)) and (j, A) ∈ SOS(d, j). It is easy
to see how the Z-actions L[j, A] and L[j, A′] in the transformation rule (4.5) are related. In
fact it follows from (4.2) that

P[idTd , T ]−1 ◦ P[j, A]n ◦ P[idTd , T ] = P[j, A′]n . (4.7)

Therefore, by (2.37), L[j, A′](n; ·) = P[idTd , T ]−1 ◦ L[j, A](n; ·) ◦ P[idTd , T ], so that

P[idTd , T ]−1 ◦ L[j, A](n; ·) = L[j, A′](n; ·) ◦ P[idTd , T ]−1 . (4.8)
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Moreover it is easy to see how the Z-actions L̃[j, A] and L̃[j, A′] in the transformation rule
(4.6) are related. In fact we conclude from (3.4) that

P̃ [idTd , T t] = P̃[idTd , T ]−1 , (4.9)

P̃ [idTd , T ]−1 ◦ P̃ [j, A] ◦ P̃[idTd , T ] = P̃[j, A′] , (4.10)

whence, by (3.7),

P̃[idTd , T ]−1 ◦ L̃[j, A](n; ·) = L̃[j, A′](n; ·) ◦ P̃ [idTd , T ]−1 . (4.11)

The following definition provides a simple classification of the relations (4.8) and (4.11).
Recall that G-sets and G-spaces are defined in Definitions 2.3 and 2.6.

Definition 4.3 (G-maps of G-sets, topological G-maps of G-spaces)
a) Consider G-sets (E1, l1) and (E2, l2). A function f : E1 → E2 is called a “G-map from
(E1, l1) to (E2, l2)” if, for every g ∈ G, f ◦l1(g; ·) = l2(g; f(·)), i.e., if for every g ∈ G, x ∈ E1,

f(l1(g; x)) = l2(g; f(x)) . (4.12)

b) Consider the G-spaces (E1, l1) and (E2, l2) and let f ∈ C(E1, E2). If f satisfies (4.12)
then f is called a “topological G-map from (E1, l1) to (E2, l2)”. ✷

If f is a G-map from the G-set (E1, l1) to the G-set (E2, l2) and if f is a bijection, then f−1

is a G-map from (E2, l2) to (E1, l1) and (E2, l2) and (E1, l1) are said to be “isomorphic”. We
then also say that l2 and l1 are “isomorphic” and that f is an “isomorphism” from (E1, l1)
to (E2, l2). Note that isomorphic G-sets share many properties.

Analogously, when f is a topological G-map from the G-space (E1, l1) to the G-space
(E2, l2) and if f is a homeomorphism then (E2, l2) and (E1, l1) are said to be “isomorphic”.
We then also say that f is an “isomorphism” from (E1, l1) to (E2, l2). Clearly then f−1 is an
isomorphism from (E2, l2) to (E1, l1). Note that isomorphic G-spaces share many properties.

It is clear how the relations (4.8) and (4.11) can be formulated in terms of Definition 4.3.
First, since P[idTd , T ]−1 ∈ Homeo(Td ×R3) it follows from (4.8) and Definitions 4.1 and 4.3
that if T is a transfer field from (j, A) to (j, A′) then P[idTd , T ]−1 is an isomorphism from
the Z-space (Td × R3, L[j, A]) to the Z-space (Td × R3, L[j, A′]). In particular, the trans-
formation rule (4.5) relates isomorphic Z-spaces. Secondly, since P̃ [idTd, T ]−1 is a bijection
it follows from (4.11) and Definition 4.3 that P̃[idTd , T ]−1 is an isomorphism from the Z-set
(C(Td,R3), L̃[j, A]) to the Z-set (C(Td,R3), L̃[j, A′]).

The transformation rules (4.5) and (4.6) will be generalized in Section 8.2.3. In particular,
as we point out in Section 8.8, they derive from an SO(3)-gauge transformation rule.

The transformation rules (4.5) and (4.6) transform Z-actions, i.e., they transform dynam-
ics. We now supplement (4.5) and (4.6) by transformation rules of the underlying histories,
i.e., transformation rules of particle-spin-vector trajectories and polarization-field trajecto-
ries. First of all, as mentioned at the beginning of this section, we arrive at the transformation
rule of particle-spin-vector trajectories:

(z(·), S(·)) −→ (z(·), S ′(·)) , S ′(n) := T t(z(n))S(n) . (4.13)
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Clearly if (z(·), S(·)) is a particle-spin-vector trajectory of (j, A) then (z(·), S ′(·)) is a particle-
spin-vector trajectory of (j, A′).

In parallel to (4.13) one can also transform polarization-field trajectories. In fact if f
is the initial value of a polarization-field trajectory S of (j, A) then we can relate it to the
polarization-field trajectory S ′ of (j, A′) whose initial value is P̃[idTd , T ]−1(f) = T tf . Thus,
by (3.9),

S(n, ·) = L̃[j, A](n; f) , S ′(n, ·) = L̃[j, A′](n;T tf) , (4.14)

whence, by (3.7) and (4.10),

S ′(n, ·) = L̃[j, A′](n;S ′(0, ·))
= P̃ [j, A′]n(S ′(0, ·)) = (P̃[idTd , T ]−1 ◦ P̃[j, A]n ◦ P̃[idTd , T ])(S ′(0, ·))

= (P̃[idTd , T ]−1 ◦ P̃[j, A]n ◦ P̃[idTd , T ] ◦ P̃[idTd , T ]−1)(f) = P̃ [idTd, T ]−1(P̃ [j, A]n(f))

= P̃[idTd , T ]−1(L̃[j, A](n, f)) = P̃ [idTd, T ]−1(S(n, ·)) , (4.15)

i.e.,

S ′(n, ·) = P̃ [idTd , T ]−1(S(n, ·)) . (4.16)

We conclude from (4.16) that if S is a polarization-field trajectory of (j, A) then S ′, defined
by (4.16), is a polarization-field trajectory of (j, A′). Thus with (4.16) we have a natural
transformation rule of polarization-field trajectories. Note that (3.3) and (4.16) give us

S −→ S ′ , S ′(n, z) := T t(z)S(n, z) . (4.17)

With (4.17) and by the remarks after (3.11) we have the following transformation rule of
invariant polarization fields:

f −→ f ′ , f ′(z) := T t(z)f(z) . (4.18)

In fact if f is an invariant polarization field of (j, A) then f ′, defined by (4.18), is an invariant
polarization field of (j, A′). In Section 8.2 we will generalize the notions of particle-spin-
vector trajectory, polarization-field trajectory, and invariant polarization field. Then the
transformation rules (4.13), (4.17) and (4.18) will be generalized accordingly.

Remarks:

(1) The transformation rules (4.5), (4.6), (4.13), (4.17) and (4.18) are no strangers to the
polarized-beam community. In fact when researchers deal with the topics of spin tune,
spin frequency, spin resonances, resonance strengths etc. then they often appeal more
or less directly to these transformation rules. In those applications the aim, typically,
is to transform (j, A) to a “simple” (j, A′).

(2) The transformation rule (4.13) could be generalized to

(z(·), S(·)) −→ (z(·), S ′(·)) , S ′(n) := Rt(n, z(·))S(n) , (4.19)

where R(n, z(·)) generalizes T (z(n)) by allowing an arbitrary dependence on the par-
ticle trajectory z(·). However, as can be easily shown [He2], if (Pω, A) ∈ SOS(d,Pω)
then, in general the (z(·), S ′(·)) in (4.19) is not the particle-spin-vector trajectory of
any (Pω, A

′) ∈ SOS(d,Pω)!
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(3) It is clear that (4.17) maps the polarization-field trajectories of (j, A) bijectively onto
the set of polarization-field trajectories of (j, A′). It is equally clear that (4.18) maps
ISF (j, A) bijectively onto ISF (j, A′). In particular equivalent spin-orbit systems have
the same number of ISF’s.

(4) When transforming (j, A) to a “simple” (j, A′) the polarization-field trajectories of the
latter are “simple” too whence (4.17) allows one to compute polarization-field trajec-
tories by transforming “simple” polarization-field trajectories. For this philosophy see
Chapters 5 and 6 too. ✷

4.3 Remarks on conjugate 1-turn particle-spin-vector maps and

structure preserving homeomorphisms

Note that Homeo(Td × R
3) forms a group, where the group multiplication is understood to

be the composition of functions. Thus, since P[j, A] ∈ Homeo(Td×R3), it follows from (4.2)
and Definitions 2.2 and 4.2 that if (j, A) ∼ (j, A′) then P[j, A] and P[j, A′] are conjugate
elements of the group Homeo(Td×R3), i.e., a T ∈ Homeo(Td×R3) exists such that P[j, A′] =
T −1 ◦ P[j, A] ◦ T . In fact T = P[idTd , T ] with T ∈ T F(A,A′; d, j) is an example. We call a
T ∈ Homeo(Td×R3) “structure preserving for a (j, A) ∈ SOS(d, j)” if the homeomorphism
T −1 ◦ P[j, A] ◦ T in Homeo(Td × R3) is of the form P[j′, A′] for some (j′, A′) ∈ SOS(d, j′).
We call a T ∈ Homeo(Td × R3) “structure preserving” if it is structure preserving for all
(j, A) ∈ SOS(d, j). As we discovered in Section 4.1, every P[idTd , T ] with T ∈ C(Td, SO(3))
is structure preserving.

Thus three natural questions arise. First, what are the structure-preserving T ∈ Homeo(Td×
R3) of a given (j, A) ∈ SOS(d, j)? Secondly, which T ∈ Homeo(Td × R3) are structure
preserving? Thirdly, which T F(A,A′; d, j) are nonempty? While these questions from
Dynamical-Systems Theory will not be fully addressed in this work we now give a brief
glimpse. Let (j, A) ∈ SOS(d, j) and (j, A′) ∈ SOS(d, j) and let T ∈ Homeo(Td × R3).
Writing T in terms of components T = (Tpart, Tv) we compute

(T ◦ P[j, A′])(z, S) = T (j(z), A′(z)S) = (Tpart(j(z), A
′(z)S), Tv(j(z), A

′(z)S)) ,

(P[j, A] ◦ T )(z, S) = P[j, A](Tpart(z, S), Tv(z, S))

= (j(Tpart(z, S)), A(Tpart(z, S))Tv(z, S)) ,

whence P[j, A′] = T −1 ◦ P[j, A] ◦ T iff

Tpart(j(z), A
′(z)S) = j(Tpart(z, S)) ,

Tv(j(z), A
′(z)S) = A(Tpart(z, S))Tv(z, S) .

(4.20)

The system of equations (4.20) plays a central role when one addresses the aforementioned
questions. Of course in the special case T = P[idTd , T ] with T ∈ C(Td, SO(3)) we see that
Tpart = idTd and Tv(z, S)) = T (z)S so that in that case we recover the fact from Section
4.1 that P[j, A′] = T −1 ◦ P[j, A] ◦ T iff T ∈ T F(A,A′; d, j). We finally mention that there
are structure preserving T ∈ Homeo(Td × R3) which are different from any P[idTd , T ]. For
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example, defining T ∈ Homeo(Td × R3) by T = (Tpart, Tv) where Tpart(z) = z, Tv(z, S) =




1 0 0
0 1 0
0 0 −1



S one easily sees that T is structure preserving and is different from any

P[idTd , T ]. The latter follows from the fact that





1 0 0
0 1 0
0 0 −1



 has determinant −1.

5 H-normal forms and the subsets CBH(d, j) of SOS(d, j)
As in Section 4.3, we wish to know which T F(A,A′; d, j) are nonempty, i.e., which spin-orbit
systems in SOS(d, j) are equivalent. In fact, by Remark 9 in Chapter 6, every SOS(d, j)
is partitioned into uncountably many equivalence classes if j is of the form Pω. We have
already remarked on the advantages of transforming to a “simple” (j, A′). Now Remark 9 in
Chapter 6 suggests that to gain insight into the partition of SOS(d, j) it is fruitful to find
“simple” elements (j, A′) in an equivalence class (j, A) and to compare different equivalence
classes in terms of their “simple” elements. In this chapter we apply this philosophy by
focusing on those “simple” elements (j, A′) in (j, A) for which A′ is H-valued where H is a
fixed subgroup of SO(3). Then (j, A′) is called an H-normal form of (j, A). Note that the
notion of H-normal form is different from the usual definition of normal form for spin [Yo2]
but it is inspired by the SO(2)-normal forms studied in [Yo1].

We will proceed as follows. In Section 5.1 we will define the notion of H-normal form.
Then in Section 5.2 we will consider the important case H = SO(2) where SO(2) is defined
by (5.5) and we will see that the notion of SO(2)-normal form is not new and is connected
with the notion of the ISF via the IFF Theorem, Theorem 5.4b.

5.1 Generalities

Definition 5.1 (H-normal form, CBH(d, j))
Consider a subgroup, H, of SO(3) and let (j, A) be in SOS(d, j). Then we call a (j, A′)
in SOS(d, j) an “H-normal form of (j, A)” if A′ is H-valued and (j, A) ∼ (j, A′), i.e.,
(j, A′) ∈ (j, A). We denote by CBH(d, j) the set of all spin-orbit systems in SOS(d, j) which
have an H-normal form. Thus (j, A) ∈ CBH(d, j) iff T ∈ C(Td, SO(3)) exists such that

T t(j(z))A(z)T (z) ∈ H , (5.1)

holds for every z ∈ Td. The acronym CB will be explained in Remark 6 of Chapter 6. We
also define

T FH(j, A) :=

{

T ∈ C(Td, SO(3)) : (∀ z ∈ T
d) T t(j(z))A(z)T (z) ∈ H

}

. (5.2)

Thus (j, A) ∈ CBH(d, j) iff T FH(j, A) is nonempty. Note that the elements of T FH(j, A)
are the transfer fields from (j, A) to those (j, A′) for which A′ is H-valued. ✷
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In Chapter 8 we will take a deeper look into H-normal forms for arbitrary subgroups H of
SO(3). See for example the Normal Form Theorem, Theorem 8.1, in Section 8.2.4.

We now make some remarks on Definition 5.1.

Remarks:

(1) Definition 5.1 gives us another property shared by equivalent spin-orbit systems since
it implies that if (j, A) belongs to CBH(d, j) then every spin-orbit system in (j, A)
belongs to CBH(d, j).

(2) Let (j, A) be in SOS(d, j) and let H ′ and H be subgroups of SO(3) such that H ⊂ H ′.
Then, by Definition 5.1, T FH(j, A) ⊂ T FH′(j, A). On the other hand, by Definition
5.1, if (j, A) ∈ CBH(d, j) then T FH is nonempty whence T FH′ is nonempty so that,
by Definition 5.1, (j, A) ∈ CBH′(d, j). Thus

CBH(d, j) ⊂ CBH′(d, j) . (5.3)

This fact is even true under more general conditions than H ⊂ H ′ as explained after
Definition 5.2. This fact also implies that the “larger H” the more likely it is that a
given (j, A) has an H-normal form. For more details on this aspect see the remarks
after the NFT in Section 8.2.4.

(3) Let (j, A) be in SOS(d, j), let H be a subgroup of SO(3) and r ∈ SO(3). Then it is an
easy exercise to show, by Definition 5.1, that T F rHrt(j, A) = {Trt : T ∈ T FH(j, A)}.
✷

To relate H-normal forms for different H we make the following definition:

Definition 5.2 Let H and H ′ be subsets of SO(3). We write H✂H ′ if an r ∈ SO(3) exists
such that rHrt ⊂ H ′. For the notation rHrt see Definition 2.2. Recalling Appendix A.2,
✂ is a relation on the set of subsets of SO(3) and it is easy to show that ✂ is reflexive and
transitive but not symmetric. ✷

Note that H✂H ′ if H ⊂ H ′. If H,H ′ are subgroups of SO(3) then H✂H ′ iff H is conjugate
to a subgroup of H ′. It is an easy exercise to show, by Remarks 2 and 3, that (5.3) holds
if H ✂ H ′ (this strengthens Remark 2). Thus via ✂ one can order spin-orbit tori in terms
of their normal forms. It is also a simple exercise to show that if H and H ′ are conjugate
subgroups of SO(3) then H ′ ✂H and H ✂H ′ whence, by (5.3),

CBH′(d, j) = CBH(d, j) . (5.4)

The relation ✂ is well-known in Mathematics and will become an important tool in Chapter
8.

5.2 SO(2)-normal forms. The IFF Theorem

In this section we considerH-normal forms in the special caseH = SO(2) where the subgroup
SO(2) of SO(3) is defined by

SO(2) :=

{





cos(x) − sin(x) 0
sin(x) cos(x) 0

0 0 1



 : x ∈ R

}
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= {exp(xJ ) : x ∈ R} = {exp(xJ ) : x ∈ [0, 2π)} , (5.5)

with

J :=





0 −1 0
1 0 0
0 0 0



 . (5.6)

For reasons that will become clear below, we now come to:

Definition 5.3 (Invariant frame field)
Let (j, A) ∈ SOS(d, j). We call every element of T FSO(2)(j, A) an “Invariant Frame
Field (IFF) of (j, A)”. Clearly, by Definition 5.1, T FSO(2)(j, A) is nonempty iff (j, A) ∈
CBSO(2)(d, j). ✷

Moreover, for any subgroup H 6= SO(2) of SO(3), we will view the elements of T FH(j, A)
as generalized IFF’s of (j, A). Definition 5.3 sets the stage for:

Theorem 5.4 a) (SO(2)-Lemma) A matrix r in SO(3) belongs to SO(2) iff r(0, 0, 1)t =
(0, 0, 1)t.

b) (IFF Theorem) Let (j, A) ∈ SOS(d, j). Then T is an IFF of (j, A) iff T ∈ C(Td, SO(3))
and the third column of T is an ISF of (j, A). In other words, a T ∈ C(Td, SO(3)) belongs
to T FSO(2)(j, A) iff f(z) := T (z)(0, 0, 1)t satisfies (3.2).

Proof of Theorem 5.4a: The claim follows immediately from (5.5). ✷

Proof of Theorem 5.4b: “⇒”: Let T ∈ T FSO(2)(j, A). Then, by Definition 5.1,
T t(j(z))A(z)T (z) ∈ SO(2) whence, by Theorem 5.4a, T t(j(z))A(z)T (z)(0, 0, 1)t = (0, 0, 1)t

so that A(z)T (z)(0, 0, 1)t = T (j(z))(0, 0, 1)t whence, by Definition 3.1, T (0, 0, 1)t is an ISF
of (j, A).

“⇐”: Let T ∈ C(Td, SO(3)) and let T (0, 0, 1)t be an ISF of (j, A) whence, by Definition
3.1, A(z)T (z)(0, 0, 1)t = T (j(z))(0, 0, 1)t so that T t(j(z))A(z)T (z)(0, 0, 1)t = (0, 0, 1)t. Thus,
by Theorem 5.4a, T t(j(z))A(z)T (z) ∈ SO(2). It now follows from Definition 5.1 that T ∈
T FSO(2)(j, A). ✷

By Theorem 5.4b, IFF’s are those continuous T ’s whose third columns are ISF’s. In fact
this is to be expected given the definition of the IFF in the continuous-time formalism in
[BEH]. There, we begin with the ISF at each point in phase space, and then construct the
IFF by attaching two unit vectors to the ISF at each point so as to form a local orthonormal
coordinate system for spin at each point in phase space. Spin vector motion within the
IFF is then a simple precession around the ISF. Here, in constrast, we come from the
opposite direction by noting that by definition spin vector motion w.r.t. an element of
T ∈ T FSO(2)(j, A) as obtained by a transformation of the kind in (4.13) (say), is a simple
precession around the third axis. We then discover that the third axis must be an ISF.
In this way we prepare to state and prove two general theorems in Chapter 8. In fact the
Normal Form Theorem, Theorem 8.1 in Section 8.2.4, will generalize Theorem 5.4b. Most
importantly Theorem 5.4b connects the concepts of normal form and invariant field and the
Normal Form Theorem will generalize this connection from SO(2) to an arbitrary subgroup
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H of SO(3) using a generalization of the notion of invariant polarization field. In fact it will
turn out that SO(2) is an isotropy group closely related to ISF’s and IFF’s. The second
general theorem to be mentioned is the Cross Section Theorem, Theorem 8.19 in Section
8.7.2 which will show that the IFF is a rather deep concept. See Remark 30 of Chapter 8
too.

Remarks:

(4) A question closely related to Theorem 5.4b is: if f ∈ C(Td,R3) with |f | = 1, is there
a T ∈ C(Td, SO(3)) such that f is the third column of T ? In fact it is well-known,
as pointed out in Section 8.7.2, that in general such a T does not exist. The above
question will also be generalized in Chapter 8 - see Section 8.2.4.

(5) One can show, e.g., as in Appendix C in [He2], that if A ∈ C(Td, SO(3)) is SO(2)-valued
then a constant N ∈ Zd and an a ∈ C(Td,R) exist such that

A(z) = exp(J [N · φ+ 2πa(z)]) , (5.7)

where φ ∈ z. The fact that a is continuous is the only nontrivial detail of (5.7).

(6) If (j, A) belongs to CBSO(2)(d, j) then (j, A) ∼ (j, A′) where A′ is SO(2)-valued whence,
by Remark 5, a constant N ′ ∈ Zd and an a′ ∈ C(Td,R) exist such that

A′(z) = exp(J [N ′ · φ+ 2πa′(z)]) , (5.8)

where φ ∈ z. It is noteworthy that the constant N ′ in (5.8) carries interesting informa-
tion about A′. For example, as shown in Section 7.2 of [He2] by using simple arguments
from Homotopy Theory, for (Pω, A

′) to belong to SOSCT (d, ω) it is necessary that all
d components of N ′ are even integers.

If (z(·), S ′(·)) is a particle-spin-vector trajectory of (j, A′) then, by (2.31) and (5.8), S ′

evolves simply as:

S ′(n+ 1) = exp

(

J [N ′ · φ1 + 2πa′(L[j](n; z(0)))]

)

S ′(n) , (5.9)

where φ1 ∈ L[j](n; z(0)). Note that the spin vector motion in (5.9) is planar, i.e., the
points S ′(n) lie in a plane parallel to the 1-2-plane.

If T ∈ T F(A,A′; d, j) and if (z(·), S(·)) is a particle-spin-vector trajectory of (j, A)
then, by the transformation rule (4.13), (z(·), S(·)) transforms into the particle-spin-
vector trajectory (z(·), S ′(·)) of (j, A′) where S ′(n) := T t(z(n))S(n). Thus S ′(·) obeys
(5.9). ✷

6 ACB(d, j) and the notions of spin tune and spin-orbit

resonance

As mentioned at the beginning of Chapter 5, it is natural to ask which (j, A) in SOS(d, j)
are equivalent and it is fruitful to find “simple” elements (j, A′) in an equivalence class (j, A)
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and to compare different equivalence classes in terms of their “simple” elements. In this
chapter we apply this philosophy by focusing on those “simple” elements (j, A′) in (j, A) for
which A′ is constant, i.e., for which A′(z) is independent of z. This leads us in Section 6.1
to the definition and main basic properties of the subset ACB(d, j) of SOS(d, j).

In Section 6.2 this approach will enable us to associate tunes in addition to ω, namely
spin tunes, with our spin-orbit systems. As in other dynamical systems, tunes can lead
to the recognition of resonances and consequent instabilities. Here, spin tunes will lead to
recognition of spin-orbit resonances. In the case of real spin vector motion, where spins are
subject to the electric and magnetic fields on synchro-betatron trajectories, the definition of
spin-orbit resonance allows us to predict at which orbital tunes spin vector motion might be
particularly unstable. The definition of spin tune is also closely related with the concept of
H-normal form as Theorem 6.2 will reveal.

6.1 The subset ACB(d, j) of SOS(d, j)
We first define:

Definition 6.1 (ACB(d, j))
We denote by ACB(d, j) the set of those (j, A) ∈ SOS(d, j) for which (j, A) contains a (j, A′)
such that A′ is constant, i.e., such that A′(z) is independent of z. ✷

The set ACB(d, j) contains the most important spin-orbit systems in SOS(d, j) when it
comes to applications. See the remarks after Definition 6.3 too. However, as explained in
Section 7.6 in [He2], it is easy to artificially construct (j, A) ∈ SOS(d, j) which are not in
ACB(d, j) (for an example, see Section 8.5.2). The problem of deciding whether a given
spin-orbit system is in ACB(d, j), is fruitful both theoretically and practically.

Remarks:

(1) Definition 6.1 gives us another property shared by equivalent spin-orbit systems since
it implies that if (j, A) belongs to ACB(d, j) then every spin-orbit system in (j, A)
belongs to ACB(d, j).

(2) Let (j, A) ∈ SOS(d, j) such that A is constant. Then, by (2.36),

Ψ[j, A](n; z) = An , (6.1)

whence every n-turn spin transfer matrix function of (j, A) is a constant function
so that, by Definition 6.1, a spin-orbit system belongs to some ACB(d, j) iff it is
equivalent to a spin-orbit system for which every n-turn spin transfer matrix function
is a constant function. This motivates our acronym ACB in Definition 6.1 since the
spin transfer matrix functions of the spin-orbit systems in any ACB(d, j) are so-called
“almost coboundaries” (see, e.g., [KR]).

(3) If (Pω, A) ∈ SOS(d,Pω) such that A is constant, then (Pω, A) ∈ SOSCT (d, ω) since
one easily shows that a function A : Rd+1 → R3×3 exists which is constant and whose
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constant value is a skew-symmetric matrix and such that A = exp(2πA). Then we see,
by (2.18), that

ACT [ω,A] = A , (6.2)

whence, by (2.20), indeed (Pω, A) ∈ SOSCT (d, ω). ✷

The following theorem gives us insights into ACB(d, j) and for that purpose we need some
notation. We begin by defining, for every ν ∈ [0, 1) and every positive integer d, the constant
function Ad,ν ∈ C(Td, SO(3)) as

Ad,ν(z) := exp(2πνJ ) =





cos(2πν) − sin(2πν) 0
sin(2πν) cos(2πν) 0

0 0 1



 . (6.3)

Clearly, for every j ∈ Homeo(Td), the spin-orbit system (j, Ad,ν) belongs to ACB(d, j) since
Ad,ν is a constant function. Secondly, for every ν ∈ [0, 1) we define

Gν := {exp(2πnνJ ) : n ∈ Z} = {exp(2π(nν +m)J ) : m,n ∈ Z} , (6.4)

where the, trivial, second equality highlights the fact that Gν consists of matrices exp(2πµJ )
where µ ∈ [0, 1). It is clear by (5.5) that Gν is a subgroup of SO(2). Due to (6.3) every
Ad,ν is Gν-valued and G0 = {I3×3} is the trivial subgroup of SO(3). Finally, for every
(j, A) ∈ SOS(d, j) we define the set

Ξ(j, A) := {ν ∈ [0, 1) : (j, Ad,ν) ∈ (j, A)} . (6.5)

The following theorem shows some relationships between these concepts. Note that the
main purpose of part c) is to help prove part d).

Theorem 6.2 a) Let (j, A) ∈ SOS(d, j). Then (j, A) ∈ ACB(d, j) iff a ν ∈ [0, 1) exists
such that (j, Ad,ν) belongs to (j, A).

b) Let (j, A) ∈ SOS(d, j). Then (j, A) ∈ ACB(d, j) iff Ξ(j, A) is nonempty.

c) Let ν ∈ [0, 1) and A ∈ C(Td, SO(3)) be Gν-valued. Then A is a constant function.

d) Let j ∈ Homeo(Td). Then

ACB(d, j) =
⋃

ν∈[0,1)

CBGν
(d, j) . (6.6)

e) Let T ∈ C(Td, SO(3)) and let (j, A′) ∈ SOS(d, j) be the transform of (j, A) ∈ SOS(d, j)
under T , i.e., T ∈ T F(A,A′; d, j). Then T belongs to

⋃

ν∈[0,1) T FGν
(j, A) iff T is an IFF

of (j, A) and A′ is a constant function.

f) Let (Pω, A) ∈ SOS(d,Pω). If ν ∈ Ξ(Pω, A) then

Ξ(Pω, A) = [0, 1) ∩
{

εν +m · ω + n : ε ∈ {1,−1}, m ∈ Z
d, n ∈ Z

}

. (6.7)
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Proof of Theorem 6.2a: If ν ∈ [0, 1) exists such that (j, Ad,ν) belongs to (j, A) then, by
Definition 6.1, (j, A) ∈ ACB(d, j) since Ad,ν is constant. To prove the converse, let (j, A) ∈
ACB(d, j). Then, by Definition 6.1, (j, A) contains a (j, A′) such that A′ is constant with
constant value, say r. By some simple Linear Algebra, a ν ∈ [0, 1) and a W ∈ SO(3) can be
found such that

r =W exp(2πνJ )W t . (6.8)

See, e.g., Lemma 2.1 of [BEH]. Thus, defining the constant function T ∈ C(Td, SO(3))
by T (z) := W we observe by (6.8) and Definition 4.1 that T ∈ T F(A′, Ad,ν , d, j) whence

(j, A′) ∼ (j, Ad,ν) so that (j, A) ∼ (j, Ad,ν) which implies that (j, Ad,ν) belongs to (j, A). ✷

Proof of Theorem 6.2b: The claim is a simple consequence of (6.5) and Theorem 6.2a. ✷

Proof of Theorem 6.2c: Since A is Gν-valued it follows from (6.4) that a function ñ : Td → Z

exists such that A(z) = exp(J 2πνñ(z)) whence

A(z) = exp(J 2πνñ(z)) . (6.9)

Clearly A is SO(2)-valued whence, by Remark 5 in Chapter 5, a constant N ∈ Zd and an
a ∈ C(Td,R) exist such that

exp(J 2πνñ(z)) = A(z) = exp(J [N · φ+ 2πa(z)]) , (6.10)

where φ ∈ z and where in the first equality we used (6.9). It follows from (5.6) and (6.10)
that a function k : Td → Z exists such that

2πνñ(φ+ Z̃
d) + 2πk(φ+ Z̃

d) = N · φ+ 2πa(φ+ Z̃
d) . (6.11)

Since ñ(φ+ Z̃d), k(φ+ Z̃d) and a(φ + Z̃d) are 2π-periodic in the components of φ it follows
from (6.11) that N ·φ is 2π-periodic in the components of φ whence N = 0 so that, by (6.11),
for all z ∈ Td

νñ(z) + k(z) = a(z) . (6.12)

Since ñ and k are Z-valued, the function νñ + k can take at most countably many values
whence, by (6.12), the function a can take at most countably many values. On the other
hand since a is continuous and since its domain, Td, is a path-connected topological space,
the range of a is a path-connected subset of R , i.e., an interval, say I (for the notion of range
see also Appendix A.1). However since a takes at most countably many values, I contains at
most only countably many points whence, being an interval, I contains just one point which
implies that a is constant. Since a is constant and N = 0 it follows from (6.10) that A is
constant. ✷

Proof of Theorem 6.2d: “⊂”: Let (j, A) ∈ ACB(d, j). Then, by Theorem 6.2a, a ν ∈ [0, 1)
exists such that (j, Ad,ν) belongs to (j, A). By a remark after (6.4), Ad,ν is Gν-valued whence,
by Definition 5.1, (j, A) ∈ CBGν

(d, j).
“⊃”: Let ν ∈ [0, 1) and (j, A) ∈ CBGν

(d, j) whence, by Definition 5.1, T FGν
(j, A) is

nonempty. So pick a T ∈ T FGν
(j, A). Then, by Definitions 4.1 and 5.1, T ∈ T F(A,A′; d, j)
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where A′ is Gν-valued. Since A
′ is Gν-valued it follows from Theorem 6.2c that A′ is constant

which implies, by Definition 6.1, that (j, A) ∈ ACB(d, j). ✷

Proof of Theorem 6.2e: “⇒”: Let T ∈ T FGν
(j, A). Since Gν is a subgroup of SO(2) we

conclude from Remark 2 in Chapter 5 that T ∈ T FSO(2)(j, A) so that T is an IFF of (j, A).
Also, A′ is Gν-valued whence, by Theorem 6.2c, A′ is constant.
“⇐”: Let T be an IFF of (j, A) and let A′ be constant. Clearly, by Definition 5.3, A′ is
SO(2)-valued whence ν ∈ [0, 1) exists such that A′ = Ad,ν which implies that A′ is Gν-valued
so that T ∈ T FGν

(j, A). ✷

Proof of Theorem 6.2f: The claim is proved in Chapter 8 of [He2] by using the tool of
quasiperiodic functions [He2]. ✷

Theorem 6.2d provides the insight that every ACB(d, j) can be understood in terms of
H-normal forms, a fact that is not obvious by Definition 6.1. The purpose of Theorem 6.2e
is to lead us to the definition of the uniform IFF in Remark 5 below. As shown in Remark
9 below, Theorem 6.2f gives an insight into how the SOS(d,Pω) are partitioned w.r.t. to
the equivalence relation ∼ and it will also play a role for the notion of spin-orbit resonance
in Section 6.2. Theorem 6.2a will be used in Remark 5 and was used for proving Theorems
6.2b and 6.2d while Theorem 6.2b will be used in Remark 5 and in Section 6.2.

Remarks:

(4) Let j ∈ Homeo(Td) and ν ∈ [0, 1). By a remark after (6.4) we have Gν ⊂ SO(2)
whence, by (5.3),

CBGν
(d, j) ⊂ CBSO(2)(d, j) . (6.13)

It follows from (6.13) and Theorem 6.2d that

ACB(d, j) ⊂ CBSO(2)(d, j) . (6.14)

Then, by Definition 5.3, (j, A) ∈ ACB(d, j) has an IFF whence, by Theorem 5.4b,
(j, A) has an ISF, say f . In fact, recalling Section 3.2, (j, A) has at least the two
ISF’s f and −f . For example, the constant functions on T

d with values (0, 0, 1)t and
(0, 0,−1)t are ISF’s of every spin-orbit system of the form (j, Ad,ν).

(5) Let (j, A) ∈ SOS(d, j). A T ∈ C(Td, SO(3)) is called a “uniform IFF of (j, A)” iff it
is an IFF of (j, A) and A′, defined by (4.1), is a constant function. It is clear that the
uniform IFF’s are the discrete-time analogues of the so-called uniform invariant frame
fields introduced in the continuous-time formalism of [BEH]. Also, by Theorem 6.2e,
the elements of

⋃

ν∈[0,1) T FGν
(j, A) are the uniform IFF’s of (j, A). This implies, by

Theorem 6.2c, that A′, defined by (4.1), is of the form Ad,ν . It thus follows that the
set of uniform IFF’s of (j, A) reads as

⋃

ν∈[0,1)

T FGν
(j, A) =

⋃

ν∈[0,1)

T F(A,Ad,ν ; d, j) =
⋃

ν∈Ξ(j,A)

T F(A,Ad,ν ; d, j) , (6.15)

where in the second equality we used (6.5). Using (6.15) and Theorem 6.2b we also
observe that a (j, A) has a uniform IFF iff (j, A) ∈ ACB(d, j).
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Note that if (j, A) has a uniform IFF, say T , then TAd,µ is also a uniform IFF of (j, A)
where µ ∈ [0, 1) whence every (j, A) ∈ ACB(d, j) has uncountably many uniform
IFF’s. Note also, by (6.15), that (j, A) has at least as many uniform IFF’s as there
are elements in Ξ(j, A). This is especially evident in the case when j = Pω and
(j, A) ∈ ACB(d, j) since then, by (6.7), Ξ(j, A) has at most countably many elements
so here the uniform IFF’s considerably outnumber the elements of Ξ(j, A). On the
other hand, if (Pω, A) ∈ ACB(d, j) it rarely happens that Ξ(Pω, A) has finitely many
elements since one can show [He1] that this only happens iff all d components of ω are
rational numbers.

(6) Let (j, A) ∈ CBG0
(d, j). Thus, by Definition 5.1, T FG0

(j, A) is nonempty and every T
in T FG0

(j, A) satisfies (T t ◦ j)AT = Ad,0 so that, by (4.4),

Ψ[j, A](n; z) = T (L[j](n; z))T t(z) . (6.16)

Eq. (6.16) motivates the acronym CB in Definition 5.1 since the spin transfer matrix
function Ψ[j, A] in (6.16) belongs to that class of cocycles which are called “cobound-
aries” (see [HK2] and Chapter 1 in [HK1]).

(7) Let (Pω, A) ∈ SOS(d,Pω). It can be easily shown, by using (6.5), that (Pω, A) ∈
CBG0

(d,Pω) iff 0 ∈ Ξ(Pω, A).

(8) Let (j, A) ∈ SOS(d, j). It is easy to show, by (6.3), (6.4) and (6.5) and for every ν ∈
[0, 1), that either T FGν

(j, A) is empty or there exist integers m,n such that (mν+n) ∈
Ξ(j, A) (note that n ensures that (mν + n) ∈ [0, 1)). This implies, by Theorem 6.2f,
that if j is of the form Pω then a subset B of [0, 1) exists which has at most countably
many elements and such that

⋃

ν∈[0,1) T FGν
(Pω, A) =

⋃

ν∈B T FGν
(Pω, A).

(9) As mentioned in Section 4.3, in this work we do not fully address how the SOS(d, j)
are partitioned w.r.t. to the equivalence relation ∼. Thus it may come as a surprise
that Theorem 6.2f sheds light on this issue. In fact if j is of the form Pω then SOS(d, j)
contains uncountably many equivalence classes as follows.

To prove this claim we first of all note that SOS(d,Pω) has uncountably many elements
since ν is a continuous parameter whence there are uncountably many Ad,ν , i.e., the
spin-orbit systems (Pω, Ad,ν) form an uncountable subset, say B, of SOS(d,Pω) (note

that ω is fixed but ν varies over [0, 1)). Note also that both B and (Pω, Ad,ν) have

uncountably many elements but, as will be shown below, B ∩ (Pω, Ad,ν) has at most

countably many elements. In fact in our proof the sets B ∩ (Pω, Ad,ν) for each ν will
play a key role and we already note here that they form a partition of B since the
(Pω, Ad,ν), being equivalence classes, are mutually disjoint. In particular, if (Pω, Ad,ν)

and (Pω, Ad,µ) are different then they are disjoint and belong to different equivalence
classes of the equivalence relation ∼. The crucial question now is: how many of the
sets B ∩ (Pω, Ad,ν) are different? In other words how common is it that two spin-orbit
systems in B are equivalent? This is where Theorem 6.2 engages. In fact, by (6.7),
each set Ξ(Pω, Ad,ν) contains at most countably many elements. On the other hand if

ν, µ ∈ [0, 1) then, by (6.5), (Pω, Ad,µ) ∈ (Pω, Ad,ν) iff µ ∈ Ξ(Pω, Ad,ν). Thus every set of
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the form B∩ (Pω , Ad,ν) contains at most countably many elements of B. Thus we need

uncountably many of the sets B∩(Pω, Ad,ν) to overlap B whence the B∩(Pω, Ad,ν) form

an uncountable partition of B. Since different B ∩ (Pω, Ad,ν) are contained in different
equivalence classes we thus have shown that there are uncountably many equivalence
classes of the form (Pω, Ad,ν). Thus, as was to be shown, SOS(d,Pω) is partitioned
into uncountably many equivalence classes w.r.t. to the equivalence relation ∼. ✷

6.2 Spin tunes and spin-orbit resonances

Definition 6.1 and Theorem 6.2 lead us naturally to the notions of spin tune and spin-orbit
resonance. A ν ∈ [0, 1) is said to be a spin tune for (j, A) ∈ SOS(d, j) if (j, A) is equivalent
to (j, A′) with A′(z) = exp(2πνJ ), i.e., if (j, Ad,ν) belongs to (j, A). We thus arrive at the
following definition:

Definition 6.3 (Spin tune, spin-orbit resonance)
We call the elements of Ξ(j, A) the spin tunes of (j, A). We say that (Pω, A) is “on spin-
orbit resonance (SOR)” if (Pω, A) ∈ ACB(d,Pω) and if for every ν ∈ Ξ(Pω, A) we can find
m ∈ Zd, n ∈ Z such that

ν = m · ω + n . (6.17)

We say that (Pω, A) is “off spin-orbit resonance” iff (Pω, A) ∈ ACB(d,Pω) and if (Pω, A)
is not on spin-orbit resonance. Note that a spin-orbit system which has no spin tunes is
neither on nor off spin-orbit resonance. This happens in particular when j is not a torus
translation. ✷

It follows from Definition 6.3 and Theorem 6.2b that a (j, A) ∈ SOS(d, j) has spin tunes
iff (j, A) ∈ ACB(d, j). This has the implication that, by Theorem 6.2d, spin tunes can be
understood in terms of normal forms. Furthermore it has the implication, by Remark 5, that
(j, A) has a spin tune iff it has a uniform IFF.

In [BEH] spin-orbit systems with spin tunes belong to the class of “well tuned” systems
and most of the systems with no spin tunes are said to be “ill-tuned”.

In [He2] the spin tune and spin-orbit resonances defined here are called spin tune of
the first kind and spin-orbit resonances of the first kind respectively since [He2] finds it
convenient to distinguish between two kind of spin tune. That distinction is not needed
here.

If one considers a family (jJ , AJ)J∈Λ of spin-orbit systems (see the Introduction and
Chapter 7) and if every (jJ , AJ) has a spin tune, say νJ , then νJ is called an amplitude
dependent spin tune (ADST). Recall from Remark 5 that if TJ is a uniform IFF of (jJ , AJ)
then T t

J(j(z))AJ (z)TJ (z) = Ad,νJ (z) = exp(2πνJJ ).
As stated at the beginning of this chapter spin-orbit resonance can lead to a large an-

gular spread of the ISF and that can lead to unacceptably low equilibrium polarization as
explained in Chapter 7. The large angular spread also means that if a particle beam oc-
cupies a large volume of phase space at injection while the spins all point in roughly the
same direction, the polarization of the beam can be very unstable while the spin precess
around their individual ISF’s. See [Ho] for an example of this. See [Ho],[Ma],[Vo],[Yo1] for
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formalisms and calculations which have demonstrated the potential for a large spread of the
ISF near spin-orbit resonances. For detailed further comments see Section X in [BEH].

Moreover, since the ADST can vary with orbital amplitude J , particles at one amplitude
can be close to spin-orbit resonance while particles as nearby amplitudes need not be. Man-
ifestations of this are beautifully demonstrated in [Ho, Vo, BHV00, HV] where the value of
a rigorous definition of spin tune is made crystal clear. Note that as shown in those works,
spin-orbit resonances tend to be rather repelling than attractive. The rigorous definition
of spin tune and of spin-orbit resonance also will lead us in Chapter 7 to the Uniqueness
Theorem for the ISF [Yo1, DK73]. In summary, a rigorous definition, as in Definition 6.3, is
very important for a detailed understanding of real spin vector motion.

As explained in Section X of [BEH] and in [BV1], as well as in other literature, a real
spin-orbit system (Pω, A) on orbital resonance normally has no spin tune. One exception
is the so-called single resonance model underlying the model with two Siberian snakes in
Section 8.5.2. Nevertheless, such a system can, but need not, have an ISF of the continuous
kind defined here. An example of a spin-orbit system on orbital resonance which has no ISF,
and thus no spin tune, is studied in Section 8.5.2. If the d components of ω are rational
numbers then it is easy to calculate an ISF f by finding the real eigenvector f(z) of the
matrix Ψ[Pω, A](n; z) for the number of turns n for which the particle returns to its starting
position z. The discontinuous “ISF” of [BV1] can also be calculated in this way (and this is
also done in our example in Section 8.5.2). Recall also from the ISF conjecture in Chapter
3 that we expect an ISF to exist off orbital resonance.

The ISF and the ADST for real spin vector motion off orbital resonance in storage
rings can be computed in a number of ways [Be],[Fo],[HH],[Ho],[Ma],[Vo],[Yo3]. Here we
describe two of them and we start with a method of computing the ADST, implemented
in the computer code SPRINT [He2, Ho, Vo] (as an alternative method, SPRINT offers
an implementation of the SODOM-2 algorithm). The calculations proceed in two steps
[BEH00, BHV98, Ho, Vo]. For simplicity we consider a fixed but arbitrary action value J
and assume that the spin-orbit system belongs to ACB(d,Pω) and is off orbital resonance
and off spin-orbit resonance. As we will see in Chapter 7, by the Uniqueness Theorem,
Theorem 7.1b, the given spin-orbit system (Pω, A) has only two ISF’s, say f and −f . Of
course f and −f in general are unknown and in fact one only attempts to compute a
discretization of them. In the first step, f is computed at some point z on the torus at
some point θ on a ring using stroboscopic averaging [EH, HH] giving us f(z). By Remark
4 an IFF, say T , exists and, due to Theorem 5.4b, the third column of T is either f or
−f and here T (z) is constructed by a simple orthonormalization procedure in which f(z)
is the third column is T (z). The axis represented by the second column of T (z) could, for
example, be chosen so as to have no component along the direction of the beam. In the
next step the spin value f(z) is tracked forwards turn by turn, according to (3.2), resulting
in the discretization f(z), f(Pω(z)), f(P2

ω(z)), ..., f(PN
ω (z)) of f for some large integer N .

Accordingly T (z), T (Pω(z)), T (P2
ω(z)), ..., T (PN

ω (z)) are constructed at the end of each turn
according to the chosen prescription. Then, the average spin precession angle around the
ISF w.r.t. this IFF is computed for a very large number of turns N . In fact since T is an

37



IFF, by Remark 6 in Chapter 5, an N ∈ Zd and an a ∈ C(Td,R) exist such that

T t

(

(

φ+ 2π(n+ 1)ω

)

+ Z̃
d

)

A

(

(

φ+ 2πnω

)

+ Z̃
d

)

T

(

(

φ+ 2πnω

)

+ Z̃
d

)

= exp

(

J [N · (φ+ 2πnω) + 2πa

(

(φ+ 2πnω) + Z̃
d

)

]

)

, (6.18)

where φ ∈ z and n = 0, ..., N . One can show [He2, Vo] that the average < a > of a, given by

< a >:=
1

(2π)d

∫

[0,2π]d
a(πd(φ))dφ , (6.19)

is a spin tune of (Pω, A). On the other hand, (6.18), gives us a(z), a(Pω(z)), a(P2
ω(z)), ..., a(PN

ω (z))
which allows one to approximate the average of a. This delivers an ADST for the given J
but the member of the set Ξ(Pω, A) that emerges will depend on the convention used to
choose the first and second axes of T .

Another practical way to compute spin tunes is by using the spectrum of the spin vector
motion as follows. For simplicity we consider a fixed but arbitrary action value J and
assume that the spin-orbit system belongs to ACB(d,Pω). Then let (Pω, A) have a spin-
vector trajectory S(·). The discrete Fourier transform (DFT) of S(0), ..., S(N) is defined by
Ŝ where

Ŝ(k) :=
1

N + 1

N
∑

n=0

S(n) exp(−2πink/(N + 1)) , (6.20)

and where k = 0, ..., N . We define, for λ ∈ [0, 1) and nonnegative integer N ,

aN(S, λ) := (N + 1)−1
N
∑

n=0

S(n) exp(−2πinλ) . (6.21)

It can be easily shown [He2] that aN (S, λ) converges as N → ∞ and we denote the limit
of aN (S, λ) by a(S, λ) and we define the “spectrum Λ(S) of S” by Λ(S) := {λ ∈ [0, 1) :
a(S, λ) 6= 0}. From (6.20) and (6.21) it is clear that a(S, λ) can be approximated by using
standard DFT software. Then, as can be easily shown [He2], spin tunes are contained in the
spectrum since

Λ(S) ⊂ Ξ(Pω, A) ∪ {l · ω + n : l ∈ Z
d, n ∈ Z} . (6.22)

Moreover, the spectrum can contain many of the spin tunes in Ξ(Pω, A). Theorem 9.1c in
the continuous-time formalism of [BEH] reaches the same conclusions. With this we have
a direct relationship between the set Ξ(Pω, A) appearing in Theorem 6.2 and a “measure-
able” quantity, namely the spectrum. This way of getting ADST’s has been essential for
interpreting spin vector motion near to resonance with oscillating external magnetic fields
[Ba].

Remark:
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(10) By (6.7) and Definition 6.3 an (Pω, A) ∈ ACB(d,Pω) is on spin-orbit resonance iff
(6.17) holds for just one choice of m ∈ Zd, n ∈ Z, ν ∈ Ξ(Pω, A). Thus a single spin
tune ν of (Pω, A) is sufficient to determine if (Pω, A) is on spin-orbit resonance. Note
also, by (6.7) and Definition 6.3, that a spin-orbit system (Pω, A) ∈ SOS(d,Pω) is
on spin-orbit resonance iff 0 ∈ Ξ(Pω, A). Thus, by Remark 7, (Pω, A) is on SOR iff
(Pω, A) ∈ CBG0

(d,Pω). ✷

In analogy with Theorem 5.4b we now state:

Theorem 6.4 a) Let (j, A) ∈ SOS(d, j) and T ∈ C(Td, SO(3)). Then T satisfies

T ◦ j = AT , (6.23)

iff it belongs to T FG0
(j, A).

b) (SOR Theorem) Let (Pω, A) ∈ SOS(d,Pω). Then (Pω, A) is on SOR iff T FG0
(Pω, A) is

nonempty, i.e., iff (Pω, A) ∈ CBG0
(d,Pω).

Proof of Theorem 6.4a: By Definition 5.1, T ∈ T FG0
(j, A) iff T t(j(z))A(z)T (z) ∈ G0

whence, by (6.4), T ∈ T FG0
(j, A) iff T t(j(z))A(z)T (z) = I3×3 which proves the claim. ✷

Proof of Theorem 6.4b: By Remark 10, (Pω, A) is on SOR iff 0 ∈ Ξ(Pω, A) iff (Pω, A) ∈
CBG0

(d,Pω). The claim now follows from Definition 5.1. ✷

We will use Theorem 6.4 in the proof of the Uniqueness Theorem, Theorem 7.1b. More-
over the Normal Form Theorem, Theorem 8.1 in Section 8.2.4, will generalize Theorem 6.4a
from G0 to an arbitrary subgroup H of SO(3). It will thereby turn out that (6.23) is an
example of a so-called stationarity equation. The second general theorem to be mentioned is
the Cross Section Theorem, Theorem 8.19 in Section 8.7.2 which will show that the SOR is
a rather deep concept. Spin-orbit resonances will be further studied in the following chapter
7.

7 Polarization

In this chapter we tie together the concepts of polarization field and polarization.

7.1 Estimating the polarization

Consider a family (jJ , AJ)J∈Λ of spin-orbit systems where (jJ , AJ) ∈ SOS(d, jJ) and Λ ⊂ Rd

is the set of action values.
We note (see also [BH, BV1]) that, for every J ∈ Λ, we have a so-called “local polariza-

tion”, say Sloc,J , which by definition is a polarization-field trajectory of (jJ , AJ) satisfying

|Sloc,J | ≤ 1 . (7.1)

The associated polarization on the torus J at time n is then given by

PJ(n) := (
1

2π
)d
∣

∣

∣

∣

∫

[0,2π]d
dφSloc,J(n, πd(φ))

∣

∣

∣

∣

. (7.2)
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We will see below how PJ can be estimated by (7.5) which makes PJ a convenient tool for
analyzing the bunch polarization. In the so-called “spin equilibrium” the polarization-field
trajectory Sloc,J is, by the definition of the spin equilibrium, time-independent for every J
whence its initial value, Sloc,J(0, ·) is an invariant polarization field of (jJ , AJ). Thus for the
spin equilibrium we get

PJ(n) = PJ(0) = (
1

2π
)d
∣

∣

∣

∣

∫

[0,2π]d
dφSloc,J(0, πd(φ))

∣

∣

∣

∣

. (7.3)

Let jJ be topologically transitive. Then, by Theorem 3.2, |Sloc,J(0, z)| is independent of z
and, if Sloc,J(0, ·) is not the zero function, then |Sloc,J(0, z)| > 0 and Sloc,J(0, ·)/|Sloc,J(0, ·)|
is an ISF of (jJ , AJ) whence, by (7.1),(7.3),

PJ(n) = PJ(0) = (
1

2π
)d
∣

∣

∣

∣

∫

[0,2π]d
dφ|Sloc,J(0, πd(φ))|

Sloc,J(0, πd(φ))

|Sloc,J(0, πd(φ))|

∣

∣

∣

∣

≤ (
1

2π
)d
∣

∣

∣

∣

∫

[0,2π]d
dφ

Sloc,J(0, πd(φ))

|Sloc,J(0, πd(φ))|

∣

∣

∣

∣

, (7.4)

so that

PJ(n) = PJ(0) ≤ PJ,max , (7.5)

where

PJ,max := (
1

2π
)d sup

{∣

∣

∣

∣

∫

[0,2π]d
dφf(πd(φ))

∣

∣

∣

∣

: f ∈ ISF (jJ , AJ)

}

. (7.6)

Of course (7.5) also holds if Sloc,J(0, ·) is the zero function because in that case PJ(n) =
PJ(0) = 0. Thus (7.5) holds for the spin equilibrium if jJ is topologically transitive and
(jJ , AJ) has an ISF. We conclude from (7.5) that the ISF’s provide an upper bound for PJ

and this is one reason why they are so important in practice. One can simplify (7.6) in
the important case where the spin-orbit system (jJ , AJ) in (7.6) has exactly two ISF’s, say
fJ ,−fJ . Then (7.6) simplifies to

PJ,max = (
1

2π
)d
∣

∣

∣

∣

∫

[0,2π]d
dφfJ(πd(φ))

∣

∣

∣

∣

. (7.7)

Clearly PJ,max is small if the range of fJ is spread out. In Section 7.2 we will see how the
Uniqueness Theorem leads to the situation underlying (7.7).

Of course PJ can also be used for an estimation of the bunch polarization which is given
by

P (n) = (
1

2π
)d
∣

∣

∣

∣

∫

Λ

dJρeq(J)

∫

[0,2π]d
dφSloc,J(n, πd(φ))

∣

∣

∣

∣

, (7.8)

where ( 1
2π
)dρeq is the equilibrium particle phase-space density (for more details underlying

(7.8) see Section 8.6.1). Thus the bunch polarization for the combined beam equilibrium
and spin equilibrium reads as

P (n) = P (0) = (
1

2π
)d
∣

∣

∣

∣

∫

Λ

dJρeq(J)

∫

[0,2π]d
dφSloc,J(0, πd(φ))

∣

∣

∣

∣

. (7.9)
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Let the conditions underlying (7.5) hold for almost all J , i.e., let a set M ⊂ Λ exist which
has Lebesgue measure zero and such that, for every J ∈ (Λ \ M), the spin-orbit system
(jJ , AJ) has an ISF and jJ is topologically transitive. Then, by (7.3),(7.5),(7.9), we have for
the spin equilibrium

P (n) = P (0) ≤ (
1

2π
)d
∫

Λ

dJρeq(J)

∣

∣

∣

∣

∫

[0,2π]d
dφSloc,J(0, πd(φ))

∣

∣

∣

∣

=

∫

Λ

dJρeq(J)PJ(0) ≤
∫

Λ

dJρeq(J)PJ,max . (7.10)

Note that we assume that ρeq(J) and PJ,max depend on J regularly enough to ensure that
the integrals in (7.8), (7.9) and (7.10) are meaningful. Using (7.7) one can simplify (7.10) in
the case where, for every J ∈ (Λ \M), the spin-orbit system (jJ , AJ) has two ISF’s fJ ,−fJ
and no others. Then (7.10) simplifies, thanks to (7.7), to

P (n) = P (0) ≤ (
1

2π
)d
∫

Λ

dJρeq(J)

∣

∣

∣

∣

∫

[0,2π]d
dφfJ(πd(φ))

∣

∣

∣

∣

, (7.11)

where we also assume that the functional dependences of ρeq(J) and fJ on J are regular
enough to ensure that the integrals in (7.11) are meaningful. For more details on estimating
the bunch polarization, also for non-equilibrium spin fields, see [Ho, Vo].

7.2 The Uniqueness Theorem of invariant spin fields

We saw in (7.5) and (7.7), how in a situation where only two ISF’s exist, the invariant spin
fields govern the estimation of PJ . In this section we will see that this situation is very
common off spin-orbit resonance.

Let (j, A) ∈ ACB(d, j). Then, by Remark 4 in Chapter 6, (j, A) has an ISF and so it
natural to ask about the impact of the set Ξ(j, A) on ISF (j, A). In fact, if j = Pω and
(Pω, A) is off orbital resonance, this question is partially answered by part b) of the following
theorem.

Theorem 7.1 a) Let (j, A) ∈ SOS(d, j) and let f and g be invariant polarization fields of
(j, A). Then h ∈ C(Td,R3), defined by h(z) := f(z)× g(z), is an invariant polarization field
of (j, A) where × denotes the vector product.

b) (The Uniqueness Theorem) Let (Pω, A) ∈ ACB(d,Pω) be off orbital resonance, i.e., let
(1, ω) be nonresonant. Also, let (Pω, A) be off spin-orbit resonance. Then (Pω, A) has an
ISF, say F , and F and −F are the only ISF’s of (Pω, A).

Proof of Theorem 7.1a: Since f and g are invariant polarization fields of (j, A) it follows
from Definition 3.1 that f ◦ j = Af and g ◦ j = Ag whence

h(j(z)) = (f(j(z))× g(j(z))) = (A(z)f(z)× A(z)g(z)) = A(z)(f(z)× g(z)) = A(z)h(z) ,

so that, by Definition 3.1, h is an invariant polarization field of (j, A). ✷
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Proof of Theorem 7.1b: Let (Pω, A) ∈ ACB(d,Pω) be off orbital resonance. The claim to be
proved is equivalent to its contrapositive which is the following claim: If the total number
of ISF’s of (Pω, A) is not 2, then (Pω, A) is not off spin-orbit resonance. Now, we know from
Remark 4 in Chapter 6 that (Pω, A) has at least two ISF’s so that if the number of ISF’s
differs from 2, there are more than two ISF’s. Also, since (Pω, A) ∈ ACB(d,Pω) we know
from a remark after Definition 6.3 that (Pω, A) has spin tunes. Then if the system is not off
spin-orbit resonance, it must be on spin-orbit resonance. Thus the above claim we have to
prove is equivalent to the following claim: If the total number of ISF’s of (Pω, A) is larger
than two, then (Pω, A) is on spin-orbit resonance.

In fact we will now prove the latter claim. So let (Pω, A) have more than two ISF’s.
Recalling Section 3.2, we then conclude that (Pω, A) has ISF’s, say f and g, such that
g 6= f and g 6= −f . Note that f,−f and g are three different ISF’s of (Pω, A). We define
h ∈ C(Td,R3) by h(z) := f(z) × g(z) and observe, by Theorem 7.1a, that h is an invariant
polarization field of (Pω, A). On the other hand, since (Pω, A) is off orbital resonance,
Pω is topologically transitive whence, by Theorem 3.2, |h| is constant, i.e., |h(z)| =: λ is
independent of z. We first consider the case where λ = 0, i.e., where f × g is the zero
function. Then a function h̃ : Td → R exists such that g = h̃f whence g · f = h̃|f |2 = h̃
which implies that h̃ is continuous. On the other hand 1 = |g| = |h̃f | = |h̃| whence h̃ can
take values only in {1,−1} whence, since h̃ is continuous and Td is pathwise connected, h̃ is
constant. Thus either g = f or g = −f which is a contradiction. So the case where λ = 0
cannot occur. Thus λ > 0. Since h is an invariant polarization field of (Pω, A) and since
the real number λ is positive we define k ∈ C(Td,R3) by k(z) := h(z)/λ = h(z)/|h(z)| and
observe, by using Definition 3.1, that k is an invariant polarization field of (Pω, A). Of course
|k(z)| = |h(z)|/|h(z)| = 1 whence k is an ISF of (Pω, A). We also define l ∈ C(Td,R3) by
l(z) := k(z)× f(z) and observe, by Theorem 7.1a, that l is an invariant polarization field of
(Pω, A). Of course f(z) · k(z) = (f(z) · h(z))/|h(z)| = f(z) · (f(z)× g(z))/λ = 0 whence, for
every z ∈ Td,

0 = l(z) · k(z) = l(z) · f(z) = f(z) · k(z) . (7.12)

Clearly |l(z)| = |k(z) × f(z)| =
√

|k(z)|2 |f(z)|2 − (k(z) · f(z))2 =
√

1− (k(z) · f(z))2 = 1
which implies that l is an ISF of (Pω, A) and that

1 = |l(z)| = |k(z)| = |f(z)| . (7.13)

It follows from (7.12) and (7.13) that

[l(z), k(z), f(z)]t[l(z), k(z), f(z)] = I3×3 . (7.14)

Moreover, by (7.13), det([l(z), k(z), f(z)]) = l(z) · (k(z) × f(z)) = |l(z)|2 = 1 whence, by
(7.14), for every z ∈ T

d, the 3× 3-matrix [l(z), k(z), f(z)] belongs to SO(3). We thus define
T ∈ C(Td, SO(3)) by T (z) := [l(z), k(z), f(z)]. Since all three columns of T are invariant
polarization fields of (Pω, A) we have, by Definition 3.1,

A(z)T (z) = A(z)[l(z), k(z), f(z)] = [A(z)l(z), A(z)k(z), A(z)f(z)]

= [l(Pω(z)), k(Pω(z)), f(Pω(z))] = T (Pω(z)) ,
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whence T ◦Pω = AT so that, by Theorem 6.4a, T belongs to T FG0
(j, A). Thus, by Theorem

6.4b, (Pω, A) is on spin-orbit resonance as was to be shown. ✷

The claim of Theorem 7.1b that (Pω, A) has an ISF is trivial because of Remark 4 in
Chapter 6. Thus the essence of the claim of Theorem 7.1b is that (Pω, A) has only two ISF’s.
Recall also from Chapter 3 that the set of ISF’s of a spin-orbit system is either infinite or
contains an even number of elements. Note that in this work the term “finite number”
includes the case of zero. Indeed if a spin-orbit system has no ISF then its number of ISF’s
is zero, an even number!

8 Unified treatment of spin-orbit systems by using the

Technique of Association (ToA)

8.1 Orientation

We now come to our generalization of the notions of particle-spin-vector motion and polarization-
field motion by introducing our “Technique of Association” (ToA). With this we will see that
while the spin-orbit systems are still the same, they can be exploited further to generate and
encompass new perspectives. We thereby see that while the spin-orbit systems do not change,
their scope widens. By the ToA the well established notions of invariant polarization field
and invariant spin field are generalized to invariant (E, l)-fields where (E, l) is an SO(3)-
space. The origin of the ToA is an underlying principal bundle and its associated bundles,
hence the terminology. However since the principal bundle is of product form, we can easily
present the theory in a fashion which does not use bundle theory. For a short account of
the bundle aspect see Section 8.8 where we also briefly mention the relation to Yang-Mills
Theory. Several major theorems are presented, among them the Normal Form Theorem
which ties invariant fields with the notion of normal form, the Decomposition Theorem,
which allows one to compare different invariant fields, the Invariant Reduction Theorem,
which gives new insights into the question of existence of invariant fields (and in particular
invariant spin fields), and the Cross Section Theorem which supplements the Invariant Re-
duction Theorem. It thus turns out that the well established notions of invariant frame field,
spin tune, and spin-orbit resonance are generalized by the normal form concept whereas the
well established notions of invariant polarization field and invariant spin field are general-
ized to invariant (E, l)-fields. In particular we see that the SO(3)-space (R3, lv) has been
implicitly used in Chapters 2-7. With the flexibility in the choice of (E, l) we also have a
unified way to study the dynamics of spin-1/2 and spin-1 particles. Accordingly the special
cases (E, l) = (R3, lv) (for spin vectors) and (E, l) = (Et, lt) (for spin tensors) are discussed
in some detail.

8.2 Defining the ToA

8.2.1 The maps

For given (E, l) each particle carries, in addition to its position z on the torus Td, an E-
valued quantity x that we call spin. Depending on the choice of (E, l), x can be the spin
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vector S or another quantity related to spin motion. We consider the autonomous DS given
by the 1-turn particle-spin map

(

z
x

)

7→
(

z′

x′

)

=

(

j(z)
l(A(z); x)

)

=: P[E, l, j, A](z, x) , (8.1)

where z, z′ ∈ Td, x, x′ ∈ E. In our formalism, (8.1) is the most general description of particle-
spin dynamics and the choice of (E, l) depends on the situation, e.g., (E, l) = (R3, lv) for
spin-1/2 particles - see below (in that case x is the spin vector S). Note that the function
P[E, l, j, A] : Td×E → T

d×E, defined by (8.1), belongs to Homeo(Td×E) since its inverse
is P[E, l, j−1, At ◦ j−1].
For an E-valued field f : Td → E set x = f(z) in (8.1) so that the particle motion moves z
to j(z) and the field value at j(z) becomes l(A(z); f(z)). Thus the field f evolves into the
field f ′ : Td → E where f ′(z) := l(A(j−1(z)); f(j−1(z))). Therefore we have obtained a map
of fields, i.e., the autonomous discrete-time DS given by the 1-turn field map

f 7→ f ′ := l

(

A ◦ j−1; f ◦ j−1

)

=: P̃[E, l, j, A](f) . (8.2)

We are only interested in continuous fields, i.e., f ∈ C(Td, E) so that f ′ ∈ C(Td, E)) too.
Note that the function P̃ [E, l, j, A] : C(Td, E) → C(Td, E), defined by (8.2), is a bijection
since its inverse is P̃ [E, l, j−1, At ◦ j−1]. We call an f ∈ C(Td, E) an “invariant (E, l)-field of
(j, A)” if it is mapped by (8.2) into itself, i.e., if

f ◦ j = l(A; f) . (8.3)

We call (8.3) the “(E, l)-stationarity equation of (j, A)”. Clearly an f ∈ C(Td, E) is an
invariant (E, l)-field of (j, A) iff P̃[E, l, j, A](f) = f . We call an f ∈ C(Td, E) an “invariant
n-turn (E, l)-field of (j, A)” iff P̃ [E, l, j, A]n(f) = f where n is a positive integer. Of course
the notions of invariant (E, l)-field and invariant 1-turn (E, l)-field are identical. Invariant n-
turn (E, l)-fields with n > 1 play a role for spin-orbit systems j = Pω with (1, ω) nonresonant
(see Remark 12 and Section 8.5.2).

Remark:

(1) Consider the special case (E, l) = (R3, lv) where we define the function lv : SO(3) ×
R3 → R3 by

lv(r, S) := rS . (8.4)

Then the above particle-spin and field maps of (8.1) and (8.2) become the particle-
spin-vector and polarization field maps we know from Chapters 2-7. In fact it is a
simple exercise to show that (R3, lv) is an SO(3)-space and that, by (2.23), the map
(8.1) becomes

(

z
S

)

7→
(

j(z)
lv(A(z);S)

)

=

(

j(z)
A(z)S

)

= P[j, A](z, S) , (8.5)
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i.e., P[R3, lv, j, A] = P[j, A] and, by (3.3), the map (8.2) becomes

f 7→ f ′ = lv

(

A ◦ j−1; f ◦ j−1

)

= (Af) ◦ j−1 = P̃[j, A](f) , (8.6)

i.e., P̃ [R3, lv, j, A] = P̃ [j, A].

With (8.5) and (8.6) we see that it is the special case (E, l) = (R3, lv) that underlies
the particle-spin-vector and polarization field motion of Chapters 2-7. Thus the ToA
is a generalization of the particle-spin-vector and polarization field motion of Chapters
2-7 to arbitrary (E, l).

We also recover the notion of invariant polarization field. In fact an f ∈ C(Td, E) is an
invariant (R3, lv)-field of (j, A) iff it satisfies the (R3, lv)-stationarity equation of (j, A),
f ◦ j = lv(A; f), i.e., iff f ◦ j = Af . Thus, by Definition 3.1, the notion of invariant
polarization field is identical with the notion of “invariant (R3, lv)-field”. Since we use
the terminology “field” so often, it is important to mention that the notions of IFF
and uniform IFF are different from the notion of invariant (E, l)-field. ✷

The SO(3)-spaces (E, l) can take a variety of forms. For example in addition to (R3, lv) we
will consider (Et, lt) where Et ⊂ R3×3 is defined in Section 8.4.1. This SO(3)-space is used
for studies of polarized beams of spin-1 particles like deuterons.

8.2.2 The trajectories

Iterating the particle-spin map (8.1), the particle-spin trajectories (z(·), x(·)) are defined by

(

z(n + 1)
x(n + 1)

)

=

(

j(z(n))
l(A(z(n)); x(n))

)

, (8.7)

with z(0) = z0, x(0) = x0 whence

(

z(n)
x(n)

)

=





jn(z0)

l

(

A(jn−1(z0))A(j
n−2(z0)) · · ·A(z0)); x0)



 . (8.8)

It is convenient to introduce the corresponding Z-action which is the function L[E, l, j, A] :
Z× T

d × E → T
d ×E defined by

L[E, l, j, A](n; z, x) := P[E, l, j, A]n(z, x) =

(

L[j](n; z)
l(Ψ[j, A](n; z); x)

)

. (8.9)

It is easy to show that (Td×E,L[E, l, j, A]) is a Z-space. In the study of this Z-space, which
will not be fully addressed in this work, it is of key importance that Ψ[j, A] is a cocycle
(recall Definition 2.7). With (2.32) and L[E, l, j, A] the solution (8.8) of (8.7) can be written
as

(

z(n)
x(n)

)

= L[E, l, j, A](n, z0, x0) . (8.10)
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For the record, we call a function (z(·), x(·)) : Z → Td × E an (E, l)-trajectory (or, just
“particle-spin trajectory”) of (j, A) if (8.10) holds for all n ∈ Z (i.e., if (8.7) holds for all
n ∈ Z).

On iteration of the field map (8.2), the field trajectories F emerge in terms of the equation
of motion

F (n+ 1, z) = l

(

A(j−1(z));F (n, j−1(z))

)

, (8.11)

whence

F (n, z) = l

(

Ψ[j, A](n;L[j](−n; z));F (0, L[j](−n; z))
)

, (8.12)

where, as always, Ψ[j, A](n; ·) is the spin transfer matrix function of (j, A). For the record,
we call a continuous function F : Z × T

d → E an (E, l)-field trajectory of (j, A) if it
satisfies (8.11) or, equivalently, (8.12)). The terminology “trajectory” is justified since the
function n 7→ F (n, ·) is a “trajectory” of fields belonging to C(Td, E). Clearly an (E, l)-
field trajectory is time-independent iff its initial value F (0, ·) ∈ C(Td, E) is an invariant
(E, l)-field. The notion of (E, l)-field trajectory generalizes the notion of polarization-field
trajectory as pointed out in Remark 2 below.

We define the Z-action L̃[E, l, j, A] : Z× C(Td, E) → C(Td, E) by

L̃[E, l, j, A](n; f) := g , g(z) := l

(

Ψ[j, A]

(

n;L[j](−n; z)
)

; f(L[j](−n; z))
)

. (8.13)

With (8.13) we can write (8.12) as

F (n, ·) = L̃[E, l, j, A](n, F (0, ·)) . (8.14)

Clearly a continuous function F : Z × Td → E is an (E, l)-field trajectory of (j, A) iff it
satisfies (8.14).

If F is an (E, l)-field trajectory and z(·) is an particle trajectory of (j, A) then by (8.12)
the function n 7→ (z(n), F (n, z(n)) is an (E, l)-trajectory of (j, A). Thus the particle-spin
motion can be viewed as a characteristic motion of the field motion. Of course in the special
case (E, l) = (R3, lv) this is well-known and is the basic fact underlying all spin vector
tracking methods.

Remark:

(2) In the special case where (E, l) = (R3, lv) the above trajectories become trajectories
from Chapters 2-7. In fact, by (2.37), we have L[R3, lv, j, A] = L[j, A]. This implies
that the notion of “(R3, lv)-trajectory is identical to the notion of “particle-spin-vector
trajectory”.

Moreover, by (3.7), we have L̃[R3, lv, j, A] = L̃[j, A]. This implies that the notion of
“(R3, lv)-field trajectory is identical to the notion of “polarization-field trajectory”. ✷
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Since we work in the framework of topological dynamical systems, A, j, l are continuous
functions and we therefore require our fields to be continuous, in particular the invariant
(E, l)-fields. Thus every (E, l)-field trajectory F fulfills two different conditions: the “dy-
namical” condition (8.11) and the “regularity” condition that F (0, ·) is continuous. However,
in contrast to the dynamical condition, the regularity condition is a matter of choice. While
in this work, and in [He2], we choose continuity as the regularity property, this property can
basically vary between the extremes “Borel measurable” and “of class C∞”.

8.2.3 The First ToA Transformation Rule

The First ToA Transformation Rule generalizes the transformation rule given by (4.2) and
(4.10) to (8.21) and (8.27), i.e., it is a generalization from (R3, lv) to (E, l) whence it is
closely related to the concept of the H normal form. We aim to understand the dependence
of particle-spin and field motions on A in the general ToA setting just as we did in the
(E, l) = (R3, lv) setting of Chapters 2-7. By the transformation rule (4.13), the map (8.5),
i.e.,

(

z
S

)

7→
(

j(z)
A(z)S

)

, (8.15)

is transformed into the map
(

ζ
σ

)

7→
(

ζ ′

σ′

)

=

(

j(ζ)
A′(ζ)σ

)

, (8.16)

where
(

ζ
σ

)

:=

(

z
T t(z)S

)

, (8.17)

with T ∈ C(Td, SO(3)) and A′ ∈ C(Td, SO(3)) defined by (4.1), i.e.,
A′(z) := T t(j(z))A(z)T (z). It is easy to generalize the transformation rule (8.15) and (8.16)
by replacing (R3, lv) with (E, l). Thus the map (8.1), i.e.,

(

z
x

)

7→
(

j(z)
l(A(z); x)

)

, (8.18)

is transformed into the map
(

ζ
ξ

)

7→
(

ζ ′

ξ′

)

=

(

j(ζ)
l(A′(ζ); ξ)

)

, (8.19)

where
(

ζ
ξ

)

:=

(

z
l(T t(z); x)

)

, (8.20)

with T ∈ C(Td, SO(3)) andA′ ∈ C(Td, SO(3)) defined by (4.1), i.e., A′(z) := T t(j(z))A(z)T (z).
Remark:

47



(3) Using the notation of (8.1) one sees that P[E, l, j, A] is the map (8.18) and that
P[E, l, j, A′] is the map (8.19) whence P[E, l, j, A] is transformed into P[E, l, j, A′].
Moreover it is a simple exercise to show that

P[E, l, j, A′] = P[E, l, idTd , T ]−1 ◦ P[E, l, j, A] ◦ P[E, l, idTd , T ] . (8.21)

In fact by defining T := P[E, l, idTd , T ]−1 we first note that

T −1(z, x) =

(

z
l(T (z); x)

)

, (8.22)

whence, by (2.32),(4.1) and (8.1),

(

T ◦ P[E, l, j, A] ◦ T −1

)

(z, x) =

(

T ◦ P[E, l, j, A]

)(

z
l(T (z); x)

)

= T
(

j(z)
l(A(z); l(T (z); x))

)

= T
(

j(z)
l(A(z)T (z); x)

)

=





j(z)

l

(

T t(j(z)); l(A(z)T (z); x)

)



 =





j(z)

l

(

T t(j(z))A(z)T (z); x

)





= P[E, l, j, A′](z, x) ,

as was to be shown. ✷

By iteration of the maps, the First ToA Transformation Rule, (8.18) and (8.19), delivers the
following transformation rule of trajectories:

(z(·), x(·)) −→ (z(·), x′(·)) , x′(n) := l(T t(z(n)); x(n)) , (8.23)

and we observe that if (z(·), x(·)) is an (E, l)-trajectory of (j, A) then (z(·), x′(·)) is a (E, l)-
trajectory of (j, A′). In the special case where (E, l) = (R3, lv) the transformation rule (8.23)
becomes (4.13).

Remark:

(4) By iterating (8.21) it is an easy exercise to show that P[E, l, idTd , T ]−1 is an isomor-
phism from the Z-space (Td × E,L[E, l, j, A]) to the Z-space (Td × E,L[E, l, j, A′]).
Thus the particle-spin motion of (j, A′) is redundant since it can be covered by the
particle-spin motion of (j, A). ✷

With fields we proceed analogously. In fact the map (8.2), i.e.,

f 7→ f ′ := l

(

A ◦ j−1; f ◦ j−1

)

, (8.24)

is transformed into the map

g 7→ g′ := l

(

A′ ◦ j−1; g ◦ j−1

)

, (8.25)
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where

g := l(T t; f) , (8.26)

with T ∈ C(Td, SO(3)) and A′ ∈ C(Td, SO(3)) defined by (4.1).

Remark:

(5) Using the notation of (8.2) one sees that P̃[E, l, j, A] is the map (8.24) and that
P̃[E, l, j, A′] is the map (8.25) whence P̃ [E, l, j, A] is transformed into P̃[E, l, j, A′].
Moreover it is a simple exercise to show that

P̃[E, l, j, A′] = P̃ [E, l, idTd, T ]−1 ◦ P̃[E, l, j, A] ◦ P̃[E, l, idTd , T ] . (8.27)

✷

By iteration of maps the First ToA Transformation Rule, (8.24) and (8.25), delivers the
following transformation rule of (E, l)-field trajectories:

F −→ F ′ , F ′(n, z) := l(T t(z);F (n, z)) , (8.28)

and we observe that if F is an (E, l)-field trajectory of (j, A) then F ′ is a (E, l)-field trajectory
of (j, A′) with T ∈ C(Td, SO(3)) and A′ ∈ C(Td, SO(3)) defined by (4.1). In the special case
where (E, l) = (R3, lv) the transformation rule (8.28) becomes (4.17).

Remark:

(6) By iterating (8.27) it is an easy exercise to show that P̃ [E, l, idTd, T ]−1 is an isomor-
phism from the Z-set (C(Td, E), L̃[E, l, j, A]) to the Z-set (C(Td, E), L̃[E, l, j, A′]). So
the field motion of (j, A′) is redundant since it can be covered by the field motion of
(j, A). ✷

While in the First ToA Transformation Rule (E, l) and j are held fixed and A is transformed,
we will also introduce, in Section 8.2.6, the Second ToA Transformation Rule where j and
A are held fixed and (E, l) is transformed.

8.2.4 The Normal Form Theorem (NFT)

In this section we generalize the IFF Theorem, Theorem 5.4b, and Theorem 6.4a into the
NFT. With this we expect the latter to have implications for the concepts of ISF, IFF and
SOR. In fact its importance goes even beyond this as will become evident later. Recall that
Theorems 5.4b and 6.4a are linked to the groups SO(2) and G0 respectively. In fact we will
show in the examples in Remarks 8 and 9 below that in Theorems 5.4b and Theorem 6.4a
the groups SO(2) and G0 play the role of isotropy groups. The NFT links the notions of
invariant (E, l)-field and H-normal form for arbitrary subgroups H of SO(3).

Theorem 8.1 (NFT) Let (E, l) be an SO(3)-space, fix x ∈ E and define
H(x) := Iso(E, l; x) = {r ∈ SO(3) : l(r; x) = x}. Moreover, let T ∈ C(Td, SO(3)), (j, A) ∈
SOS(d, j) and define the function f ∈ C(Td, E) by

f(z) := l(T (z); x) . (8.29)
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Then, for all z ∈ Td,

T t(j(z))A(z)T (z) ∈ H(x) , (8.30)

iff, for all z ∈ Td,

f(j(z)) = l(A(z); f(z)) . (8.31)

In other words, T ∈ T FH(x)(j, A) iff f is an invariant (E, l)-field of (j, A).

Proof of Theorem 8.1: “⇒”: Let T satisfy (8.30), i.e., let l(T t(j(z))A(z)T (z); x) = x. We
compute

f(j(z)) = l(T (j(z)); x) = l

(

T (j(z)); l(T t(j(z))A(z)T (z); x)

)

= l(A(z)T (z); x) = l(A(z); l(T (z); x)) = l(A(z); f(z)) ,

whence f is an invariant (E, l)-field of (j, A).
“⇐”: Let f satisfy the (E, l)-stationarity equation (8.31) of (j, A). Thus, by (8.29),

l(T (j(z)); x) = f(j(z)) = l(A(z); f(z))

= l

(

A(z); l(T (z); x)

)

= l(A(z)T (z); x) ,

whence x = l

(

T t(j(z)); l(A(z)T (z); x)

)

= l

(

T t(j(z))A(z)T (z); x

)

which implies (8.30) by

(2.45). ✷

The moral of the NFT is that f and T are effectively equivalent, i.e., that one can
view invariant fields from two different perspectives: the perspective of Definition 3.1 and
the perspective of H-normal form. To shed further light on this we note that f in (8.29)
takes values in only one (E, l)-orbit. In fact if (E, l) is an SO(3)-space and x ∈ E and if
f ∈ C(Td, E) takes values only in l(SO(3); x) then we call T ∈ C(Td, SO(3)) an “(E, l)-lift
of f” if (8.29) holds. Thus the NFT says that if an invariant (E, l)-field has an (E, l)-lift,
say T , then T ∈ T FH(x)(j, A) where H(x) := Iso(E, l; x) and x ∈ E has the property that
f takes only values in l(SO(3); x). Thus the notion of (E, l)-lift will give us insight into
invariant fields via isotropy groups. Note that, by the IFF Theorem, Theorem 5.4b, for an
ISF the notions of IFF and (R3, lv)-lift are identical. Experience with ISF’s lets us believe
that in practice an ISF has an (R3, lv)-lift. Thus, by the ISF conjecture in Chapter 3, we
expect that an IFF exists in practice if j is topologically transitive, i.e., that (j, A) has an
H-normal form with H ✂ SO(2). However it is well-known, as pointed out in Section 8.7.2,
that f ∈ C(Td,R3) exist such that f takes values only in lv(SO(3); (0, 0, 1)

t) and which have
no (R3, lv)-lift. In any case, the NFT gives insight into invariant (E, l)-fields which have
an (E, l)-lift. In fact if an f ∈ C(Td, E) has an (E, l)-lift and then, by the NFT, f can
only be an invariant (E, l)-field of a spin-orbit system (j, A) if (j, A) ∈ CBH(x)(d, j) where
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H(x) := Iso(E, l; x). Thus if H(x) is “large enough”, e.g., SO(2)✂H(x) then chances are
that f is an invariant (E, l)-field of (j, A) and if H(x) is small then chances are that f is not
an invariant (E, l)-field of (j, A). We will come back to this point of view in Section 8.4.1
where we will deal with large and small isotropy groups. We will also consider lifts in more
detail in the CST in Section 8.7.2.

It is also clear that the NFT deals with arbitrary SO(3)-spaces (E, l). Moreover it can
also be easily seen that it deals with arbitrary subgroups H of SO(3) since every subgroup
H of SO(3) is an isotropy group of some SO(3)-space (E, l) [He1].

The following remark compares the NFT for x, x′ belonging to the same (E, l)-orbit and
at the same time it provides us with the useful formula (8.32).

Remark:

(7) Let (E, l) be an SO(3)-space, let x ∈ E and let x′ ∈ l(SO(3); x), i.e., let r ∈ SO(3)
such that x′ = l(r; x). We define H := Iso(E, l; x), H ′ := Iso(E, l; x′). Then, by (2.45),

H ′ = Iso(E, l; x′) = Iso(E, l; l(r; x)) = {r′ ∈ SO(3) : l(r′; l(r; x)) = l(r; x)}
= {r′ ∈ SO(3) : l(r′r; x) = l(r; x)} = {r′ ∈ SO(3) : l(rt; l(r′r; x)) = x}
= {r′ ∈ SO(3) : l(rtr′r; x) = x} = {rr′rt : r′ ∈ SO(3), l(r′; x) = x}
= r{r′ ∈ SO(3) : l(r′; x) = x}rt = rIso(E, l; x)rt = rHrt , (8.32)

whence isotropy groups on the same orbit are conjugate.

We now consider the NFT. So let (j, A) ∈ SOS(d, j) and T ∈ T FH(j, A) whence, by
the NFT, the function f ∈ C(Td, E) defined by f := l(·; x)◦T is an invariant (E, l)-field
of (j, A).

Because of (8.32) and Remark 3 in Chapter 5 the function T ′ ∈ C(Td, SO(3)) defined by
T ′(z) := T (z)rt belongs to T FH′(j, A). Thus, by the NFT, the function f ′ ∈ C(Td, E),
defined by f ′(z) := l(T ′(z); x′) is an invariant (E, l)-field of (j, A). However f ′(z) =
l(T ′(z); x′) = l(T (z)rt; x′) = l(T (z); l(rt; x′)) = l(T (z); x) = f(z) whence, as perhaps
expected, the function f is independent of the chosen “reference point” x. ✷

The following remark shows that Theorem 5.4b is a special case of the NFT.

Remark:

(8) We now show that Theorem 5.4b is a special case of the NFT when (E, l) = (R3, lv).
We first define, for λ ∈ [0,∞), Sλ := λ(0, 0, 1)t. Let x = Sλ = λ(0, 0, 1)t where λ > 0.
First, if T ∈ C(Td, SO(3)) then f in (8.29) is the function f ∈ C(Td,R3) defined by
f(z) := lv(T (z), Sλ) = T (z)Sλ. Secondly, by (2.45) and (8.4),

Iso(R3, lv;Sλ) = {r ∈ SO(3) : lv(r;λ(0, 0, 1)
t) = λ(0, 0, 1)t}

= {r ∈ SO(3) : r(0, 0, 1)t = (0, 0, 1)t} = SO(2) , (8.33)

where in the third equality we used the SO(2)-Lemma, Theorem 5.4a. We conclude
by Remark 2 that in the case, where (E, l) = (R3, lv) and x = Sλ with λ > 0, the NFT
reads as follows: If T ∈ C(Td, SO(3)) and (j, A) ∈ SOS(d, j) then T ∈ T FSO(2)(j, A) iff
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TSλ is an invariant polarization field of (j, A). Thus, in the special case λ = 1, the NFT
reads as follows: If T ∈ C(Td, SO(3)) and (j, A) ∈ SOS(d, j) then T ∈ T FSO(2)(j, A)
iff the third column of T is an ISF of (j, A). Thus indeed Theorem 5.4b is the NFT in
the special case where (E, l) = (R3, lv) and x = (0, 0, 1)t. We also see that l(T (z); x)
generalizes the concept of “third column of T (z)” from R3, lv, (0, 0, 1)

t to E, l, x. For
more details on the isotropy groups of (R3, lv) see Section 8.3.3. ✷

The following remark shows that Theorem 6.4a is a special cases of the NFT.

Remark:

(9) We now show that Theorem 6.4a is the special case of the NFT for which (E, l) =
(SO(3), lSOR) and x = I3×3 where the SO(3)-space (SO(3), lSOR) is defined in terms
of the function lSOR : SO(3)× SO(3) → SO(3) given by

lSOR(r
′; r) := r′r , (8.34)

where r, r′ ∈ SO(3). It is a simple exercise to show that (SO(3), lSOR) is an SO(3)-
space.

To make our point we first note that, if T ∈ C(Td, SO(3)), then f in (8.29) is the
function f ∈ C(Td, SO(3)) defined by f(z) := lSOR(T (z), I3×3) = T (z), i.e., f = T .
Secondly, by (2.45), (6.4) and (8.34),

Iso(SO(3), lSOR; I3×3) = {r ∈ SO(3) : lSOR(r; I3×3) = I3×3}
= {r ∈ SO(3) : r = I3×3} = G0 . (8.35)

We conclude that in the case where (E, l) = (SO(3), lSOR) and x = I3×3 the NFT reads
as follows: If T ∈ C(Td, SO(3)) and (j, A) ∈ SOS(d, j) then T ∈ T FG0

(j, A) iff T is an
invariant (SO(3), lSOR)-field of (j, A). On the other hand, by (8.3), the (SO(3), lSOR)-
stationarity equation of (j, A) reads as T ◦ j = AT so that indeed Theorem 6.4a is the
NFT in the special case where (E, l) = (SO(3), lSOR) and x = I3×3.

We also conclude from Theorem 6.4a and Remark 5 in Chapter 6 that every continuous
solution of the (SO(3), lSOR)-stationarity equation of (j, A) is a uniform IFF of (j, A).

For (E, l) = (SO(3), lSOR) and arbitrary x = r0 ∈ SO(3) it is an easy exercise to
show that the NFT reads as follows: If T ∈ C(Td, SO(3)) and (j, A) ∈ SOS(d, j) then
T ∈ T FG0

(j, A) iff T satisfies, for all z ∈ Td, T (j(z))r0 = A(z)T (z)r0. Of course since
r0 cancels out, this is equivalent to the case r0 = I3×3, i.e., equivalent to
Theorem 6.4a. ✷

Remarks 8 and 9 illustrate how, by feeding in appropriate objects, the NFT is capable of
covering seemingly disparate aspects of the dynamics. In fact with the ISF and SOR, two
kinds of invariance are covered by the NFT by suitable choice of (E, l).
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8.2.5 The decomposition method. Invariant sets for (E, l) particle-spin dynam-
ics

Recall from Definition 2.6 that l(SO(3); x) is the (E, l)-orbit of x and that the (E, l)-orbits
form a partition E/l of E. Since a particle-spin trajectory satisfies

(

z(n)
x(n)

)

=





jn(z(0))

l

(

Ψ[j, A](n; z(0)); x(0)

)



 , (8.36)

we see that (z(n), x(n)) belongs to Td × l(SO(3); x(0)) for all n ∈ Z. Thus, for every
x ∈ E, the set Td × l(SO(3); x) is invariant under the particle-spin motion. This implies,
as the following lemma shows, that for the description of the particle-spin motion we can
replace L[E, l, j, A] by the L[l(SO(3); x), ldec[x], j, A] where, for arbitrary x ∈ E, the function
ldec[x] : SO(3)× l(SO(3); x) → l(SO(3); x) is defined as a restriction of the function l, i.e.,

ldec[x](r; y) := l(r; y) , (8.37)

where y ∈ l(SO(3); x), r ∈ SO(3). It is easy to show that ldec[x] is a group action of the
group SO(3) on the subset l(SO(3); x) of E. In fact since ldec[x] is a restriction of l, it is
even easy to show that (l(SO(3); x), ldec[x]) is an SO(3)-space (recall Definition 2.6). We
now summarize this in a lemma for further reference.

Lemma 8.2 Let (E, l) be an SO(3)-space. For every x ∈ E, (l(SO(3); x), ldec[x]) is a
transitive SO(3)-space. Let (j, A) ∈ SOS(d, j) and let (z(·), x(·)) be an (E, l)-trajectory

of (j, A). Then (z(·), x(·)) is also an

(

l(SO(3); x(0)), ldec[x(0)]

)

-trajectory of (j, A). ✷

Each set Td × l(SO(3); x) is invariant under the particle-spin motion of (8.1) so that the
“decomposition method” decomposes Td×E into the Td×l(SO(3); x). Thus for particle-spin
motion, the SO(3)-space (E, l) can be replaced by the SO(3)-spaces (l(SO(3); ldec[x]) where
x ranges over E.

The following remark considers the special case where (E, l) = (R3, lv).

Remark:

(10) In the special case where (E, l) = (R3, lv) the (E, l)-orbits are spheres. In fact it follows
from (8.4) and Definition 2.4 that the (R3, lv)-orbit of an arbitrary S ∈ R3 reads as

lv(SO(3), S) = {S ′ ∈ R
3 : |S ′| = |S|} = S

2
|S| , (8.38)

where S2
λ := {S ∈ R3 : |S| = λ} with λ ∈ [0,∞). Thus the (R3, lv)-orbits are the

spheres S2
λ of radius λ ∈ [0,∞) around (0, 0, 0)t. Moreover Rv := {Sλ : λ ∈ [0,∞)} is a

representing set of the partition R
3/lv of R

3 (recall from Remark 8 that Sλ = λ(0, 0, 1)t).
Note that all values of λ are of physical importance as can be seen for example in Section
8.6 where spin vectors appear as coefficients in the density matrix functions of spin-1/2
and spin-1 particles. ✷
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For the field dynamics the situation is analogous. For the following it is useful to keep
in mind from Section 8.2.1 that if f ∈ C(Td, E) and z ∈ Td then (z, f(z)) is mapped into
(j(z), f ′(z)) where the field f evolves into the field f ′ where f ′(z) := l(A(j−1(z)); f(j−1(z)))
and that f ′ = f iff f is invariant.

Let f ∈ C(Td, E) and let us define for every x ∈ E the inverse image of l(SO(3); x) under
the function f , i.e., the set

Σx[E, l, f ] := f−1(l(SO(3); x)) := {z ∈ T
d : f(z) ∈ l(SO(3); x)} , (8.39)

where the second equality is just the definition of the inverse image. Then the nonempty
among the Σx[E, l, f ] form a partition of Td which tells us how the values of f are dis-
tributed over the various (E, l)-orbits. Note that Σx[E, l, f ] is nonempty iff f takes a
value in l(SO(3); x). For each x such that Σx[E, l, f ] is nonempty, we define the function
fx : Σx[E, l, f ] → l(SO(3); x) by

fx(z) := f(z) . (8.40)

Remark:

(11) Let us illustrate (8.39) and (8.40) in the special case, where (E, l) = (R3, lv). Due
to (8.40) and for every f in C(Td,R3) and every S ∈ R3 the values of fS lie on the
sphere S2

|S|. To give a concrete example we consider the function f : T1 → R3 defined

by f(z) ≡ f(φ + Z̃) := cos(φ)(0, 0, 1)t where φ ∈ z. It follows from (8.39), for every
S ∈ R3, that

ΣS[R
3, lv, f ] = {z ∈ T

1 : f(z) ∈ lv(SO(3);S)} = {z ∈ T
1 : |f(z)| = |S|}

= {π1(φ) : φ ∈ R, |f(π1(φ))| = |S|} = {π1(φ) : φ ∈ R, | cos(φ)| = |S|} ,

where in the second equality we used Remark 10. Clearly ΣS[R
3, lv, f ] is nonempty iff

|S| ≤ 1 whence f takes values in the infinitely many (R3, lv)-orbits S
2
λ (0 ≤ λ ≤ 1).

Note also, by (2.13), that f(πd(φ)) = cos(φ)(0, 0, 1)t whence f ◦ πd is continuous so
that, by the Torus Lemma, Lemma 2.1, f is continuous. ✷

The following lemma shows us how the time evolution of f changes the Σx[E, l, f ].

Lemma 8.3 Let (E, l) and x ∈ E and let (j, A) ∈ SOS(d, j). Let us map f ∈ C(Td, E)
under (j, A) into f ′ ∈ C(Td, E) which is given by (8.2). Then Σx[E, l, f

′] is the image
of Σx[E, l, f ] under j, i.e., Σx[E, l, f

′] = j(Σx[E, l, f ]) (for the notion of “image”, see
also Appendix A.1). Moreover if f is an invariant (E, l)-field of (j, A) then Σx[E, l, f ] =
j(Σx[E, l, f ]).

Proof of Lemma 8.3: By (8.2) and (8.39)

Σx[E, l, f
′] = {z ∈ T

d : f ′(z) ∈ l(SO(3); x)}
= {z ∈ T

d : l(A(j−1(z)); f(j−1(z))) ∈ l(SO(3); x)}
= {z ∈ T

d : f(j−1(z)) ∈ l(SO(3); x)} = {j(z′) : z′ ∈ T
d, f(z′) ∈ l(SO(3); x)}
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= j({z′ ∈ T
d : f(z′) ∈ l(SO(3); x)}) = j(Σx[E, l, f ]) , (8.41)

where in the third equality we used the fact that l is a group action and where in the fifth
and sixth equalities we dealt with images under j.

If f is, in addition, an invariant (E, l)-field of (j, A) then f ′ = f whence (8.41) implies
Σx[E, l, f ] = j(Σx[E, l, f ]) which proves the second claim. ✷

With Lemma 8.3 we see that if f is an invariant (E, l)-field of (j, A) then, at least locally,
fx behaves like an invariant (E, l)-field since, for all z ∈ Σx[E, l, f ], we have fx(j(z)) =
l(A(z); fx(z)) and, by (8.37),

fx(j(z)) = ldec[x](A(z); fx(z)) . (8.42)

With (8.42) it is thus natural to generalize the notion of invariant field to a notion of a “local-
ized” invariant field whose domain is Σx[E, l, f ]. This also implies that if f ∈ C(Td, E) takes
only values in one (E, l)-orbit, say l(SO(3); x), then fx is an invariant (l(SO(3); x), ldec[x])-
field of (j, A) on Td iff f is an invariant (E, l)-field of (j, A). Indeed our focus in this work is
on invariant fields which take values in just one orbit. This restriction of ours is for brevity
and because (see Lemma 8.4 below) the most important invariant fields have this property.

Thus for field motion, the SO(3)-space (E, l) can be replaced by the SO(3)-spaces
(l(SO(3); ldec[x]) where x ranges over E. The benefit of this is, as we will see further
below, that the (l(SO(3); x), ldec[x])-stationarity equations are easier to handle than the
(E, l)-stationarity equations and allow us to use methods which are not available for (E, l)
when (E, l) is not transitive (we use these methods in the Decomposition Theorem, Theorem
8.9, of Section 8.3).

We now will show that invariant (E, l)-fields often take values in only one (E, l)-orbit. In
fact the following lemma is a straightforward generalization of Theorem 3.2 (see also Remark
13 below).

Lemma 8.4 Let (E, l) be an SO(3)-space and let E be Hausdorff (for the notion of “Haus-
dorff” see Appendix A.5). Let also (j, A) ∈ SOS(d, j) such that j is topologically transitive.
Then every invariant (E, l)-field of (j, A) takes values in only one (E, l)-orbit.

Proof of Lemma 8.4: Let f be an invariant (E, l)-field of (j, A). We pick a z0 ∈ Td such that
the set B := {jn(z0) : n ∈ Z} is dense in Td. Because the nonempty among the Σx[E, l, f ]
form a partition of Td we can pick an x ∈ E such that z0 ∈ Σx[E, l, f ] whence, by Lemma
8.3 and since f is invariant, B ⊂ Σx[E, l, f ]. On the other hand, the continuous function
l(·; x) : SO(3) → E has the range l(SO(3); x) whence, since SO(3) is compact, the range
l(SO(3); x) of this function is a compact subset of E [Mu]. Because E is Hausdorff the
compact subset l(SO(3); x) of E is a closed subset of E [Mu] whence, since f is continuous,
it follows from (8.39) that Σx[E, l, f ] is a closed subset of Td. Because B is a dense subset
of Td, we get Td = B ⊂ Σx[E, l, f ] so that, since Σx[E, l, f ] is a closed subset of Td, we
conclude that Td ⊂ Σx[E, l, f ] which implies that Td = Σx[E, l, f ]. Thus, by the definition
of Σx[E, l, f ], we conclude that f takes values only in l(SO(3); x). ✷

The above lemma tells us that invariant fields, which take values in only one orbit, are of
major importance and thus in the sequel most of our theorems are stated for that situation.
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Note also that the contexts of the NFT and of Lemma 8.4 overlap since the NFT makes
statements about invariant fields which take values in only one (E, l)-orbit (see (8.29)).

Remark:

(12) Consider the SO(3)-space (E, l) where E is Hausdorff. Clearly one can apply Lemma
8.4 when j = Pω with (1, ω) nonresonant. Perhaps surprisingly one can even use
Lemma 8.4 to get analogous results when j = Pω and (1, ω) is resonant. In fact in
such an approach invariant n-turn fields and tori with dimension smaller than d play
a role [He1]. ✷

Since R3 is Hausdorff, we can apply Lemma 8.4 to (E, l) = (R3, lv) as the following remarks
shows.

Remark:

(13) Let (j, A) ∈ SOS(d, j) with j topologically transitive and let f be an invariant po-
larization field of (j, A), i.e., by Remark 1, an invariant (R3, lv)-field of (j, A). Since
R3 is Hausdorff we can apply Lemma 8.4 and conclude that f takes values in only
one (R3, lv)-orbit, say S2

|S| whence |f(z)| = |S|. Note that we already proved that

unknowingly in Theorem 3.2. Of course ΣS[R
3, lv, f ] = Td. ✷

By iterating the above procedure which led to Σx[E, l, f ] and fx one arrives at the function
Fx :

⋃

n∈Z ({n} × jn(Σx[E, l, f ])) → l(SO(3); x) defined by

Fx(n, z) := F (n, z) , (8.43)

where F : Z×Td → E is the (E, l)-field trajectory of (j, A) with initial value F (0, ·) = f(·).
Since F is a field trajectory we find, by (8.12) and (8.43), that

Fx(n, z) = l

(

Ψ[j, A](n;L[j](−n; z)); fx(L[j](−n; z))
)

. (8.44)

Clearly a necessary condition for Fx to be time-independent is that, for all x, j(Σx[E, l, f ]) =
Σx[E, l, f ].

8.2.6 The Second ToA Transformation Rule

The Second ToA Transformation Rule tells us how the motions of different SO(3)-spaces
(E, l) are related. This point of view will render the decomposition method into a useful
tool in Sections 8.3-8.5. While in the First ToA Transformation Rule (E, l) and j are held
fixed and A is transformed, in the Second ToA Transformation Rule j and A are held fixed
and (E, l) is transformed into another SO(3)-space.

Let (E1, l1) and (E2, l2) be SO(3)-spaces and suppose there exists a topological SO(3)-
map β from (E1, l1) to (E2, l2), i.e., β ∈ C(E1, E2) and β(l1(r; x)) = l2(r; β(x)). Let also
(j, A) ∈ SOS(d, j) be fixed but arbitrary.

Consider the mappings (8.1) for these SO(3)-spaces, i.e.,
(

z
x

)

7→
(

z′

x′

)

=

(

j(z)
l1(A(z); x)

)

, (8.45)
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(

ζ
ξ

)

7→
(

ζ ′

ξ′

)

=

(

j(ζ)
l2(A(ζ); ξ)

)

. (8.46)

From (8.45) β(x′) = β(l1(A(z); x)) = l2(A(z); β(x)). Thus if ξ in (8.46) is β(x) then ξ′ =
l2(A(z); β(x)) = β(x′). It follows that if (z(n), x(n)) is the solution of the IVP of (8.45) with
(z(0), x(0)) = (z0, x0) then (ζ(n), ξ(n)) = (z(n), β(x(n))) is the solution of the IVP of (8.46)
with (ζ(0), ξ(0)) = (z(0), β(x(0))) = (z0, β(x0)).

If β is not one-one, two IVP’s for (8.45) can give rise to the same IVP of (8.46). If β is
not onto, then some IVP’s of (8.46) are not related to any IVP of (8.45), e.g., pick ξ(0) not
in the range of β. The most interesting case is if β is a surjection, then every solution of
the IVP of (8.46) is related to a solution of an IVP of (8.45). Thus the (E1, l1)-particle-spin
motion gives insights into all (E2, l2)-particle-spin motions. If β is a homeomorphism then
every IVP of (8.46) can be written in terms of an IVP of (8.45) (and vice versa).

Remark:

(14) We will identify and study several important examples of the function β in later sec-
tions. We already mention two examples of the function β here. First of all the function
β defined by (8.75) and (8.76) maps S2

λ onto S
2
µ and demonstrates how β can provide a

way to connect and relate motions of the same spin variable. Moreover the function β
defined by (8.111) in Section 8.5.1 maps S2

λ into R3×3 and is a striking example of how
β can connect and relate very different spin variables. The Isotropy-Conjugacy Lemma
in Section 8.3.1 will show how examples like these are enabled by certain subgroups of
SO(3). ✷

The following remark summarizes the above Second ToA Transformation Rule for particle-
spin motion in a concise way:

Remark:

(15) Consider the SO(3)-spaces (E1, l1) and (E2, l2) and let β be a topological SO(3)-map
from (E1, l1) to (E2, l2). Moreover let (j, A) ∈ SOS(d, j). Using Definition 4.3 it is an
easy exercise to show that

P[E2, l2, j, A] ◦ βtot = βtot ◦ P[E1, l1, j, A] , (8.47)

where the function βtot ∈ C(Td × E1,T
d × E2) is defined, for z ∈ Td, x ∈ E1, by

βtot(z, x) := (z, β(x)). If β is a homeomorphism then βtot ∈ Homeo(Td × E1,T
d × E2)

and

β−1
tot ◦ P[E2, l2, j, A] = P[E1, l1, j, A] ◦ β−1

tot . (8.48)

✷

With fields we proceed analogously. Consider the mappings (8.2) for the SO(3)-spaces
(E1, l1) and (E2, l2):

f 7→ f ′ := l1

(

A ◦ j−1; f ◦ j−1

)

, (8.49)
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g 7→ g′ := l2

(

A ◦ j−1; g ◦ j−1

)

. (8.50)

From (8.49) β(f ′(z)) = β(l1

(

A(j−1(z)); f(j−1(z))

)

) = l2

(

A(j−1(z)); β(f(j(z)))

)

. Thus, if

g = β ◦ f , (8.51)

then g′ = β ◦ f ′.
We now formulate this and some consequences as a theorem which will become important

for the decomposition method (see Section 8.3).

Theorem 8.5 Let (E1, l1) and (E2, l2) be SO(3)-spaces and suppose there exists a topologi-
cal SO(3)-map β from (E1, l1) to (E2, l2). If f ∈ C(Td, E1) and g ∈ C(Td, E2) then the field
mappings (8.49),(8.50) satisfy:

a) If g = β ◦ f then g′ = β ◦ f ′.

b) If g = β ◦f and f is an invariant (E1, l1)-field of (j, A) then g is an invariant (E2, l2)-field
of (j, A).

c) If β is a homeomorphism and g = β ◦ f is an invariant (E2, l2)-field of (j, A) then f is
an invariant (E1, l1)-field of (j, A).

d) If F is the solution of the IVP of (8.49) with F (0, z) = F0(z) then G given by G(n, z) =
β(F (n, z)) is the solution of the IVP of (8.50) with G(0, z) = β(F (0, z)) = β(F0(z)). ✷

If β is not onto then some IVP’s of (8.50) have solutions which are not related to any
IVP of (8.49). If β is not one-one, then two IVP’s of (8.49) can give rise to the same IVP of
(8.50).

The following remark summarizes the above Second ToA Transformation Rule for the
field motion in a concise way:

Remark:

(16) Let (E1, l1) and (E2, l2) be SO(3)-spaces and let β be a topological SO(3)-map from
(E1, l1) to (E2, l2). Let also (j, A) ∈ SOS(d, j). Using Definition 4.3 it is a simple
exercise to show that

P̃[E2, l2, j, A] ◦ β̃ = β̃ ◦ P̃[E1, l1, j, A] , (8.52)

where the function β̃ : C(Td, E1) → C(Td, E2) is defined, for f ∈ C(Td, E1), by β̃(f) :=
β ◦ f . If β is a homeomorphism then β̃ is a bijection and

β̃−1 ◦ P̃ [E2, l2, j, A] = P̃ [E1, l1, j, A] ◦ β̃−1 . (8.53)

✷

Two questions naturally arise: when do topological SO(3)-maps exist and what form do
they take? This is the subject of Section 8.3.
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8.3 The Isotropy-Conjugacy Lemma (ICL) and the Decomposi-
tion Theorem (DT)

In this section we address the two questions from the end of Section 8.2.6 for the important
case when (E1, l1) and (E2, l2) both are transitive, i.e., have only one orbit. Most importantly
we also address these questions in the case of the decomposition of any given SO(3)-spaces
(E, l) and (E ′, l′) where (E1, l1) = (l(SO(3); x), ldec[x]) and (E2, l2) = (l′(SO(3); x′), l′dec[x

′]).
All this is achieved by the ICL which we then apply to the field dynamics, leading us to the
DT.

8.3.1 The Isotropy-Conjugacy Lemma

The first question from the end of Section 8.2.6 is answered by the following proposition
which relates topological SO(3)-maps with isotropy groups.

Proposition 8.6 Let (E1, l1) and (E2, l2) be transitive SO(3)-spaces and let E1, E2 be Haus-
dorff. For arbitrary x1 ∈ E1 and x2 ∈ E2 the following hold.

a) A topological SO(3)-map from (E1, l1) to (E2, l2) exists iff Iso(E1, l1; x1)✂ Iso(E2, l2; x2).

b) The SO(3)-spaces (E1, l1) and (E2, l2) are isomorphic iff Iso(E1, l1; x1), Iso(E2, l2; x2) are
conjugate. ✷

The reader finds the proof of this proposition at the end of this section. In fact this propo-
sition is a simple corollary of the ICL.

In our applications we start with SO(3)-spaces (E, l) and (E ′, l′) which are not transitive
(for example, (R3, lv)) and we work with the decompositions (E1, l1) = (l(SO(3); x), ldec[x])
and (E2, l2) = (l′(SO(3); x′), l′dec[x

′]). To formulate the ICL we make the following definition:

Definition 8.7 Let (E, l) and (E ′, l′) be SO(3)-spaces and let x ∈ E and x′ ∈ E ′. We
denote by B(E, l, E ′, l′; x, x′) the set of all topological SO(3)-maps from (l(SO(3); x), ldec[x])
to (l′(SO(3), x′), l′dec[x

′]). In the case where (E ′, l′) = (E, l) we abbreviate B(E, l, E ′, l′; x, x′)
by B(E, l; x, x′).

If H and H ′ are subsets of SO(3) then we define

N(H,H ′) := {r ∈ SO(3) : rHrt ⊂ H ′} . (8.54)

Note that, by Definition 5.2, N(H,H ′) is nonempty iff H ✂H ′.
If Iso(E, l; x)✂ Iso(E ′, l′; x′), i.e., if N(Iso(E, l; x), Iso(E ′, l′; x′)) is nonempty then we

can pick r0 ∈ N(Iso(E, l; x), Iso(E ′, l′; x′)) and so we get r0Iso(E, l; x)r
t
0 ⊂ Iso(E ′, l′; x′).

Then we define the function β̂[E, l, E ′, l′; x, x′, r0] : l(SO(3); x) → l′(SO(3); x′) by

β̂[E, l, E ′, l′; x, x′, r0](l(r1; x)) := l′(r1r
t
0; x

′) . (8.55)

That β̂[E, l, E ′, l′; x, x′, r0] is a function, i.e., is single-valued, is shown below. Clearly
β̂[E, l, E ′, l′; x, x′, r0] is a surjection. In the case where (E ′, l′) = (E, l) we abbreviate
β̂[E, l, E ′, l′; x, x′, r0] by β̂[E, l; x, x

′, r0]. The ICL will show us that all elements of
B(E, l, E ′, l′; x, x′) are of the form β̂[E, l, E ′, l′; x, x′, r0] if E and E ′ are Hausdorff. ✷
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To show that β̂[E, l, E ′, l′; x, x′, r0] is a function, i.e., is single-valued, let
r0 ∈ N(Iso(E, l; x), Iso(E ′, l′; x′)). If l(r1; x) = l(r2; x) then h := rt1r2 ∈ Iso(E, l; x) whence
we get, by (8.55),

β̂[E, l, E ′, l′; x, x′, r0](l(r2; x)) = l′(r2r
t
0; x

′) = l′(r1hr
t
0; x

′) = l′(r1r
t
0r0hr

t
0; x

′)

= l′(r1r
t
0; l

′(r0hr
t
0; x

′)) = l′(r1r
t
0; x

′) = β̂[E, l, E ′, l′; x, x′, r0](l(r1; x)) ,

where in the fifth equality we used that r0Iso(E, l; x)r
t
0 ⊂ Iso(E ′, l′; x′). Thus indeed

β̂[E, l, E ′, l′; x, x′, r0] is a function.
If H and H ′ are nonempty subsets of SO(3) then it is an easy exercise to show that

N(H,H ′) =
⋂

h∈H

⋃

h′∈H′

N({h}, {h′}) =
⋂

h∈H

N({h}, H ′) . (8.56)

The sets N(H,H ′) are well-known and will become convenient below.

Lemma 8.8 (ICL)
Let (E, l) and (E ′, l′) be SO(3)-spaces and let E,E ′ be Hausdorff. Let also x ∈ E and x′ ∈ E ′.
Then the following hold.

a) B(E, l, E ′, l′; x, x′) is nonempty iff Iso(E, l; x)✂ Iso(E ′, l′; x′). Moreover

B(E, l, E ′, l′; x, x′) =

{

β̂[E, l, E ′, l′; x, x′, r0] : r0 ∈ N

(

Iso(E, l; x), Iso(E ′, l′; x′)

)

}

. (8.57)

b) Let Iso(E, l; x) ✂ Iso(E ′, l′; x′) and pick a r0 ∈ N(Iso(E, l; x), Iso(E ′, l′; x′)). Let also
y ∈ l(SO(3); x), y′ ∈ l′(SO(3), x′), i.e., r1, r2 ∈ SO(3) exist such that y = l(r1; x) and
y′ = l′(r2; x

′). Then (r2r0r
t
1) ∈ N(Iso(E, l; y), Iso(E ′, l′; y′)) and Iso(E, l; y)✂ Iso(E ′, l′; y′)

as well as β̂[E, l, E ′, l′; y, y′, r2r0r
t
1] = β̂[E, l, E ′, l′; x, x′, r0]. Moreover one can choose y, y′

such that Iso(E, l; y) ⊂ Iso(E ′, l′; y′).
Remark: Since B(E, l, E ′, l′; x, x′) = B(E, l, E ′, l′; y, y′), the choice of y, y′ such that
Iso(E, l; y) ⊂ Iso(E ′, l′; y′) can be helpful for the computation of B(E, l, E ′, l′; x, x′) since
in that case I3×3 ∈ N(Iso(E, l; y), Iso(E ′, l′; y′)) and since β̂[E, l, E ′, l′; y, y′, I3×3] is easy to
handle. In fact in all our applications we make use of this choice of y, y′.

c) Iso(E, l; x), Iso(E ′, l′; x′) are conjugate iff the SO(3)-spaces (l′(SO(3), x′), l′dec[x
′]),

(l(SO(3); x), ldec[x]) are isomorphic. Also, for every r0 ∈ SO(3) such that r0Iso(E, l; x)r
t
0 =

Iso(E ′, l′; x′), β̂[E, l, E ′, l′; x, x′, r0] is an isomorphism from (l(SO(3); x), ldec[x]) to
(l′(SO(3), x′), l′dec[x

′]). Moreover if Iso(E, l; x), Iso(E ′, l′; x′) are conjugate then one can
choose y ∈ l(SO(3); x), y′ ∈ l′(SO(3), x′) such that Iso(E, l; y) = Iso(E ′, l′; y′).
Remark: In all our applications we make use of this choice of y, y′.

Proof of Lemma 8.8: See Appendix B.1. The Hausdorff property of E,E ′ is needed for
proving (8.57) and, as in the proof of Lemma 8.4, the compactness of SO(3) is used as well.
✷
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The following remark mentions some interesting facts which are not addressed by Lemma
8.8 (in order to keep its proof short) and which will be confirmed by our examples.

Remark:

(17) Let (E, l) be an SO(3)-space, let E be Hausdorff and x ∈ E. We first mention
the trivial fact that Iso(E, l; x) is closed (this follows from the fact that the sin-
gleton {x} is a closed subset of the Hausdorff space E and that Iso(E, l; x) is the
inverse image of {x} under the continuous function l(·; x)). Let also (E ′, l′) be an
SO(3)-space, let E ′ be Hausdorff and x′ ∈ E ′. Since Iso(E, l; x), Iso(E ′, l′; x′) are
closed and SO(3) is compact it follows [Ka, 1.71,1.72] that either all elements of
B(E, l, E ′, l′; x, x′) are isomorphisms or none of them (by Lemma 8.8c the former case
occurs iff Iso(E, l; x), Iso(E ′, l′; x′) are conjugate and then B(E, l, E ′, l′; x, x′) is the set
of isomorphisms from (l(SO(3); x), ldec[x]) to (l′(SO(3), x′), l′dec[x

′])). Moreover since
Iso(E, l; x) is closed and SO(3) is compact it follows [Ka, 1.70] that

N(Iso(E, l; x), Iso(E, l; x)) = {r0 ∈ SO(3) : r0Iso(E, l; x)r
t
0 = Iso(E, l; x)} ,

which implies that N(Iso(E, l; x), Iso(E, l; x)) is a subgroup of SO(3) and that
Iso(E, l; x), Iso(E ′, l′; x′) are conjugate iff Iso(E, l; x)✂ Iso(E ′, l′; x′) and
Iso(E ′, l′; x′)✂Iso(E, l; x). The latter fact implies that if Iso(E, l; x), Iso(E ′, l′; x′) are
not conjugate then either B(E, l, E ′, l′; x, x′) or B(E ′, l′, E, l; x′, x) is empty (or both).
✷

Proof of Proposition 8.6: The claims follow by setting (E, l) = (E1, l1) and (E ′, l′) = (E2, l2)
in Lemma 8.8a and 8.8c and using Definition 8.7. ✷

8.3.2 The Decomposition Theorem

In this section we first state the DT which is the main corollary to Lemma 8.8. Then we
show how Lemma 8.8 and the DT turn the decomposition method into a useful instrument
of classifying field motions.

Theorem 8.9 (DT)
Let (E, l) and (E ′, l′) be a SO(3)-spaces where the topological spaces E,E ′ are Hausdorff and
let x, x′ ∈ E. Moreover let (j, A) ∈ SOS(d, j). Then the following hold.

a) Let Iso(E, l; x) ✂ Iso(E ′, l′; x′) and pick r0 ∈ N(Iso(E, l; x), Iso(E ′, l′; x′)). Let f ∈
C(Td, E) take values only in the (E, l)-orbit l(SO(3); x) of x and let f ′ ∈ C(Td, E) be de-
fined by f ′ := P̃[E, l, j, A](f). Let the functions g, g′ ∈ C(Td, E ′) be defined by g(z) :=
β̂[E, l, E ′, l′; x, x′, r0](f(z)) and g

′ := P̃ [E ′, l′, j, A](g). Then g′(z) = β̂[E, l, E ′, l′; x, x′, r0](f
′(z)).

Remark: f ′ takes values only in l(SO(3); x). Also, g, g′ take values only in l′(SO(3); x′).
Moreover if f = f ′ then g = g′, i.e., if f is an invariant (E, l)-field of (j, A) then g is an
invariant (E ′, l′)-field of (j, A).

b) Let Iso(E ′, l′; x′), Iso(E, l; x) be conjugate, i.e., r0 ∈ SO(3) exists such that
r0Iso(E, l; x)r

t
0 = Iso(E ′, l′; x′). Let f ∈ C(Td, E) be a function which takes values only in the
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(E, l)-orbit of x. Let the function g ∈ C(Td, E ′) be defined by g(z) := β̂[E, l, E ′, l′; x, x′, r0](f(z)).
Then f is an invariant (E, l)-field of (j, A) iff g is an invariant (E ′, l′)-field of (j, A).
Remark: Thus the invariant (E ′, l′)-fields which take values only in l′(SO(3); x′) are redun-
dant since they can be referred to invariant (E, l)-fields.

Proof of Theorem 8.9: See Appendix B.2. ✷

Of course since Theorem 8.9 deals with functions which take values in only one orbit, it
is naturally applied in the situation when j is topologically transitive. While the claims of
Theorem 8.9 are focused on fields, it is easy to see how the corresponding statements for the
particle-spin trajectories would look like.

If f in Theorem 8.9a is an invariant field then, as the theorem tells us, this is a sufficient
condition for g to be invariant, too. However this is not a necessary condition as we will see
by the example of the 2-snake model in Section 8.5.2. In fact Theorem 8.9a will play an active
role for the 2-snake model for which we will apply it in the situation of an f ∈ C(T1,R3)
which is not an ISF (in fact the 2-snake model does not have an ISF).

Remark:

(18) Clearly the central task when applying the DT to (E, l) and (E ′, l′) is to deter-
mine for every x ∈ E, x′ ∈ E ′ whether Iso(E, l; x) ✂ Iso(E ′, l′; x′), i.e., whether

N

(

Iso(E, l; x), Iso(E ′, l′; x′)

)

is nonempty. If Iso(E, l; x), Iso(E ′, l′; x′) are conjugate,

l′(SO(3); x′)-valued (E ′, l′)-fields are redundant whence, in this situation, the elements
of B(E, l, E ′, l′; x, x′) are of no great importance in the present work (note also that
by Remark 17 that in this case all elements of B(E, l, E ′, l′; x, x′) are isomorphisms).
Moreover, by Remark 7, isotropy groups on the same orbit are conjugate whence the
above strategy amounts to restricting ourselves to those x ∈ E which belong a repre-
senting set of the partition E/l of E and to those x′ ∈ E ′ which belong a representing
set of the partition E ′/l′ of E ′. We will apply this strategy in the following to several
important choices of (E, l), (E ′, l′). ✷

Our first application of the DT and of the strategy of Remark 18 is the case of spin-orbit
resonance, i.e., when (E, l) = (SO(3), lSOR) and where (E ′, l′) is kept arbitrary, i.e., (E ′, l′)
is an SO(3)-space and E ′ is Hausdorff. This case will show that, on spin-orbit resonance,
invariant (E ′, l′)-fields always exist. Note that SO(3) is Hausdorff whence indeed we can
apply the DT. It is clear, by (8.34), that the SO(3)-space (SO(3), lSOR) is transitive whence
we only have one orbit and so we choose, as in Remark 9, x = I3×3 and recall from (8.35)
that Iso(SO(3), lSOR; I3×3) = G0. Thus Iso(SO(3), lSOR; I3×3) = G0 ⊂ Iso(E ′, l′; x′) whence
Iso(SO(3), lSOR; I3×3) ✂ Iso(E ′, l′; x′). To compute B(SO(3), lSOR, E

′, l′; I3×3, x
′) we first

note, by (8.54), that

N(Iso(SO(3), lSOR, I3×3), Iso(E
′, l′; x′)) = N(G0, Iso(E

′, l′; x′)) = SO(3) , (8.58)

whence, by Lemma 8.8a,

B(SO(3), lSOR, E
′, l′; I3×3, x

′) = {β̂[SO(3), lSOR, E
′, l′; I3×3, x

′, r0] : r0 ∈ SO(3)} . (8.59)
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If r0, r ∈ SO(3) then, by (8.34),(8.55),

β̂[SO(3), lSOR, E
′, l′; I3×3, x

′, r0](r) = β̂[SO(3), lSOR, E
′, l′; I3×3, x

′, r0](lSOR(r; I3×3))

= l′(rrt0; x
′) . (8.60)

Thus if r0, r1 ∈ SO(3) then β̂[SO(3), lSOR, E
′, l′; I3×3, x

′, r0] = β̂[SO(3), lSOR, E
′, l′; I3×3, x

′, r1]
iff, for all r ∈ SO(3), l′(rrt0; x

′) = l′(rrt1; x
′), i.e., iff r0r

t
1 ∈ Iso(E ′, l′; x′). Thus

β̂[SO(3), lSOR, E
′, l′; I3×3, x

′, r0] = β̂[SO(3), lSOR, E
′, l′; I3×3, x

′, r1] iff rt1 ∈ rt0Iso(E
′, l′; x′).

In other words, B(SO(3), lSOR, E
′, l′; I3×3, x

′) has as many elements as there are left cosets
rIso(E ′, l′; x′). To apply the DT let (j, A) ∈ SOS(d, j), let f ∈ C(Td, SO(3)) and let
g ∈ C(Td, E ′) be defined by g(z) := β̂[SO(3), lSOR, E

′, l′; I3×3, x
′, r0](f(z)) for fixed but arbi-

trary r0 ∈ SO(3). Since (SO(3), lSOR) is transitive, all values of f are in the (SO(3), lSOR)-
orbit of I3×3. Note also that g takes values only in the (E ′, l′)-orbit of x′. Let f be an
invariant (SO(3), lSOR)-field of (j, A) (note, by Remark 9, such an f is a uniform IFF of
(j, A), i.e., it exists iff (j, A) is on spin-orbit resonance). It follows from Theorem 8.9a that
g is an invariant (E ′, l′)-field of (j, A). Thus on spin-orbit resonance invariant (E ′, l′)-fields
always exist if E ′ is Hausdorff. In the subcase (E ′, l′) = (R3, lv) this result is not surprising
because if we pick x′ = (0, 0, 1)t then, by the IFF Theorem, the third column of the uniform
IFF f is an ISF! We finally look if we can apply Theorem 8.9b as well. In fact, for every
r ∈ SO(3), rI3×3r

t = I3×3 whence G0 is conjugate to Iso(E ′, l′; x′) only in the exceptional
case when Iso(E ′, l′; x′) = G0 (e.g., if (E ′, l′) = (SO(3), lSOR)).

8.3.3 Applying the Decomposition Theorem in the case
(E, l) = (E ′, l′) = (R3, lv)

In this section we apply the DT to the case (E, l) = (E ′, l′) = (R3, lv). This case serves
to illustrate the basic technique because it is more involved than our first example above.
However, unlike the above example, it does not add to our basic knowledge about spin
motion. Thus the reader who is interested in the more important applications of the DT in
Sections 8.4-8.5 may go straight to those sections.

We will see that the representing set Rv = {Sλ : λ ∈ [0,∞)} = {λ(0, 0, 1)t : λ ∈ [0,∞)}
of the partition R3/lv of R3 is very convenient (see also Remark 10). Choosing Rv we
must determine for given λ, µ ∈ [0,∞) whether Iso(R3, lv;Sλ) ✂ Iso(R3, lv;Sµ) or whether
Iso(R3, lv;Sλ), Iso(R

3, lv;Sµ) are even conjugate.
To compute the isotropy groups we use (2.45) and (8.4) to get, for λ ∈ [0,∞),

Iso(R3, lv;Sλ) = {r ∈ SO(3) : lv(r;Sλ) = Sλ}

= {r ∈ SO(3) : λr(0, 0, 1)t = λ(0, 0, 1)t} =

{

SO(2) if λ > 0
SO(3) if λ = 0 ,

(8.61)

where again we used the SO(2)-Lemma, Theorem 5.4a. Since the group SO(2) is convenient
to deal with, we see by (8.61) that it was prescient to have chosen the Sλ to be the elements
of Rv. With (8.61) we are led to consider the following four separate cases: λ > 0, µ > 0;
λ = 0, µ = 0; λ = 0, µ > 0; λ > 0, µ = 0.

We first consider the case when λ, µ > 0 and we will find that B(R3, lv;Sλ, Sµ) has
only two elements. Thus, by (8.61), Iso(R3, lv;Sλ) = SO(2) = Iso(R3, lv;Sµ) whence
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I3×3Iso(R
3, lv;Sλ)I

t
3×3 = Iso(R3, lv;Sµ) so that

Iso(R3, lv;Sλ) and Iso(R
3, lv;Sµ) are conjugate. To compute B(R3, lv;Sλ, Sµ) we first note,

by (8.61), that

N(Iso[R3, lv;Sλ], Iso[R
3, lv;Sµ]) = N(SO(2), SO(2)) . (8.62)

To compute N(SO(2), SO(2)) let r0 ∈ N(SO(2), SO(2)) so that, by (8.54), r0SO(2)r
t
0 ⊂

SO(2) whence, by (5.5), for every ν ∈ R there exists an ν ′ ∈ R such that r0 exp(2πνJ )rt0 =
exp(2πν ′J ). Thus

exp(2πνJ )rt0(0, 0, 1)
t = rt0(0, 0, 1)

t , (8.63)

and it is clear that if r0 ∈ N(SO(2), SO(2)) then (8.63) holds for every ν ∈ R. This implies
that if r0 ∈ N(SO(2), SO(2)) then (8.63) holds for ν = 1/2, i.e.,

diag(−1,−1, 1)rt0(0, 0, 1)
t = rt0(0, 0, 1)

t , (8.64)

where, for y1, y2, y3 ∈ R, we use the abbreviation

diag(y1, y2, y3) :=





y1 0 0
0 y2 0
0 0 y3



. It follows from (8.64) that rt0(0, 0, 1)
t is a normal-

ized eigenvector of diag(−1,−1, 1) with eigenvalue 1 whence rt0(0, 0, 1)
t = ±(0, 0, 1)t. If

rt0(0, 0, 1)
t = (0, 0, 1)t then, by the SO(2)-Lemma, r0 ∈ SO(2) and if rt0(0, 0, 1)

t = −(0, 0, 1)t

then, by the SO(2)-Lemma, r0 ∈ K1SO(2) where

K0 := I3×3 , K1 := diag(1,−1,−1) , K2 := diag(−1,−1, 1) , K3 := diag(−1, 1,−1) ,

(8.65)

and where K0,K2,K3 will come into play later. Thus we have shown that
N(SO(2), SO(2)) ⊂ (SO(2) ⊲⊳ Z2) where

SO(2) ⊲⊳ Z2 := {rr′ : r ∈ Z2, r
′ ∈ SO(2)} , Z2 := {K0,K1} . (8.66)

It is a simple exercise to show that SO(2) ⊲⊳ Z2 is a subgroup of SO(3), the so-called “knit
product” (or “Zappa-Szep product”) of the subgroups SO(2) and Z2 of SO(3). It is also an
easy exercise to show that N(SO(2), SO(2)) ⊃ (SO(2) ⊲⊳ Z2) whence, by (8.62),

N(Iso[R3, lv;Sλ], Iso[R
3, lv;Sµ]) = N(SO(2), SO(2)) = SO(2) ⊲⊳ Z2 . (8.67)

Thus N(Iso[R3, lv;Sλ], Iso[R
3, lv;Sµ]) is a group. Since Iso(R3, lv;Sλ) and Iso(R3, lv;Sµ)

are conjugate, this group property is no surprise due to Remark 17. It follows from (8.66),
(8.67) and Lemma 8.8a that

B(R3, lv;Sλ, Sµ) = B(R3, lv,R
3, lv;Sλ, Sµ) = {β̂[R3, lv;Sλ, Sµ, r0] : r0 ∈ (SO(2) ⊲⊳ Z2)}

= {β̂[R3, lv;Sλ, Sµ, r0] : r0 ∈ SO(2)} ∪ {β̂[R3, lv;Sλ, Sµ, r0] : r0 ∈ K1SO(2)} . (8.68)

We now show that both sets on the rhs of (8.68) are singletons. If r0 ∈ SO(2) and r ∈ SO(3)
then, by (8.55),

β̂[R3, lv;Sλ, Sµ, r0](lv(r;Sλ)) = lv(rr
t
0;Sµ) = lv(r; lv(r

t
0;Sµ))
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= lv(r;Sµ) = β̂[R3, lv;Sλ, Sµ, I3×3](lv(r;Sλ)) , (8.69)

i.e.,

{β̂[R3, lv;Sλ, Sµ, r0] : r0 ∈ SO(2)} = {β̂[R3, lv;Sλ, Sµ, I3×3]} , (8.70)

where in the third equality of (8.69) we used the relation SO(2) = Iso(R3, lv;Sµ) from (8.61).
In analogy to (8.69), if r0 ∈ K1SO(2), i.e., r0 = K1r1 with r1 ∈ SO(2) and if r ∈ SO(3)
then, by (8.55) and (8.65),

β̂[R3, lv;Sλ, Sµ, r0](lv(r;Sλ)) = lv(rr
t
0;Sµ) = lv(rr

t
1K1;Sµ)

= lv(rr
t
1; lv(K1;Sµ)) = −lv(rrt1;Sµ) = −lv(r; lv(rt1;Sµ)) = −lv(r;Sµ)

= lv(r; lv(K1;Sµ)) = lv(rK1;Sµ) = β̂[R3, lv;Sλ, Sµ,K1](lv(r;Sλ)) ,

(8.71)

i.e.,

{β̂[R3, lv;Sλ, Sµ, r0] : r0 ∈ K1SO(2)} = {β̂[R3, lv;Sλ, Sµ,K1]} . (8.72)

In the sixth equality of (8.71) we again used the relation SO(2) = Iso(R3, lv;Sµ) from (8.61).
We conclude from (8.68),(8.70) and (8.72) that B(R3, lv;Sλ, Sµ) has only two elements:

B(R3, lv;Sλ, Sµ) = {β̂[R3, lv;Sλ, Sµ,K0], β̂[R
3, lv;Sλ, Sµ,K1]} . (8.73)

We now take a closer look at these two elements and we first note that if r0 ∈ (SO(2) ⊲⊳ Z2)
then, by (8.4) and (8.55),

β̂[R3, lv;Sλ, Sµ, r0](rSλ) = rrt0Sµ . (8.74)

It follows from (8.74) and Remark 10 that, for r ∈ SO(3), β̂[R3, lv;Sλ, Sµ, I3×3](λr(0, 0, 1)
t) =

µr(0, 0, 1)t, whence, for every S in the domain S2
λ of β̂[R3, lv;Sλ, Sµ, I3×3],

β̂[R3, lv;Sλ, Sµ, I3×3](S) =
µ

λ
S . (8.75)

It also follows from (8.74) and Remark 10 that, for r ∈ SO(3),
β̂[R3, lv;Sλ, Sµ,K1](λr(0, 0, 1)

t) = µrK1(0, 0, 1)
t = −µr(0, 0, 1)t whence, for every S in the

domain S2
λ of β̂[R3, lv;Sλ, Sµ,K1],

β̂[R3, lv;Sλ, Sµ,K1](S) = −µ
λ
S . (8.76)

With (8.73), (8.75) and (8.76) it is a simple exercise to show that both elements ofB(R3, lv;Sλ, Sµ)
are not only topological SO(3)-maps but also isomorphisms (and, since Iso(R3, lv;Sλ) and
Iso(R3, lv;Sµ) are conjugate, this is predicted by Remark 17). To apply the DT let (j, A) ∈
SOS(d, j), let f ∈ C(Td,Rd) take values only in the (R3, lv)-orbit S

2
λ of Sλ and let g0, g1 ∈

C(Td,Rd) be defined by g0(z) := β̂[R3, lv;Sλ, Sµ,K0](f(z)) and g1(z) := β̂[R3, lv;Sλ, Sµ,K1](f(z)).
Then g0 and g1 take values only in the (R3, lv)-orbit S

2
µ of Sµ. Moreover, by Theorem 8.9b, f
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is an invariant polarization field of (j, A) iff g0 is an invariant polarization field of (j, A) and
f is an invariant polarization field of (j, A) iff g1 is an invariant polarization field of (j, A).
This completes our treatment of the first case.

We now consider the case when λ = 0, µ = 0. Then, by (8.61), Iso(R3, lv;Sλ) = SO(3) =
Iso(R3, lv;Sµ) whence I3×3Iso(R

3, lv;Sλ)I
t
3×3 = Iso(R3, lv;Sµ) so that

Iso(R3, lv;Sλ) and Iso(R
3, lv;Sµ) are conjugate. Since the (R3, lv)-orbit S

2
0 of S0 = (0, 0, 0)t

only contains S0, the only element of B(R3, lv;Sλ, Sµ) is the constant (0, 0, 0)t-valued func-
tion. Since Iso(R3, lv;Sλ) and Iso(R3, lv;Sµ) are conjugate it is no surprise that the only
element of B(R3, lv;Sλ, Sµ) is an isomorphism (see Remark 17).

We now consider the case when λ = 0, µ > 0. Thus, by (8.61), Iso(R3, lv;Sλ) =
SO(3), Iso(R3, lv;Sµ) = SO(2). Since, for every r0 ∈ SO(3), one has r0SO(3)r

t
0 = SO(3) we

conclude from (8.54) that N(SO(3), SO(2)) is empty so that
N(Iso(R3, lv;Sλ), Iso(R

3, lv;Sµ)) is empty which implies, by Lemma 8.8a, that
B(R3, lv;Sλ, Sµ) is empty. Note also that the only subgroup of SO(3) which is conjugate
to SO(3) is SO(3). Thus SO(2) and SO(3) are not conjugate so that the emptiness of
N(SO(3), SO(2)) is predicted by Remark 17.

We finally consider the case when λ > 0, µ = 0. Then, by (8.61),
Iso(R3, lv;Sλ) = SO(2), Iso(R3, lv;Sµ) = SO(3) whence, by (8.54),
N(Iso(R3, lv;Sλ), Iso(R

3, lv;Sµ)) = SO(3). Recalling from above that SO(2) and SO(3) are
not conjugate we observe that Iso(R3, lv;Sλ) and Iso(R

3, lv;Sµ) are not conjugate. As in the
second case, the only element of B(R3, lv;Sλ, Sµ) is the constant (0, 0, 0)t-valued function.
Since Iso(R3, lv;Sλ) ✂ Iso(R3, lv;Sµ) and since Iso(R3, lv;Sλ) and Iso(R3, lv;Sµ) are not
conjugate it is no surprise that the only element of B(R3, lv;Sλ, Sµ) is a topological SO(3)-
map which is not an isomorphism (see Remark 17).

We finally mention some further features of the example (E, l) = (E ′, l′) = (R3, lv):

Remark:

(19) It follows from (8.61) that for given λ, µ ∈ [0,∞) either
Iso(R3, lv;Sλ)✂Iso(R

3, lv;Sµ) or Iso(R
3, lv;Sµ)✂Iso(R

3, lv;Sλ). This is quite remark-
able since in general two subgroups of SO(3) are not related by ✂. Thus more gener-
ally, by Lemma 8.8b, for arbitrary S, S ′ ∈ R3, either Iso(R3, lv;S)✂ Iso(R3, lv;S

′) or
Iso(R3, lv;S

′)✂Iso(R3, lv;S). We also see by (8.61) that if Iso(R3, lv;Sλ)✂Iso(R
3, lv;Sµ)

then Iso(R3, lv;Sλ) ⊂ Iso(R3, lv;Sµ). The latter inclusion is another reason why we
have chosen the Sλ to be the elements of Rv (note also that this inclusion is predicted
by Lemma 8.8b). Since the Sλ are the elements of a representing set of the partition
R3/lv of R3 it also follows from (8.32) and (8.61) that every isotropy group of (R3, lv)
is either conjugate to SO(2) or to SO(3). ✷

We have thus shown in the simple example of the this section how the DT classifies invariant
fields in terms of the isotropy groups of the SO(3)-spaces (E, l) and (E ′, l′) at hand and
how Definition 8.7 and the ICL play a key role. So, for example, for the case λ > 0, µ > 0,
we decomposed (E, lv) into the two (E, lv) orbits lv(SO(3);Sλ) and lv(SO(3);Sµ) (both of
them spheres of nonzero radius). Then we showed how invariant fields with values confined
to these spheres are related and thus classified via the functions β̂[R3, lv;Sλ, Sµ, I3×3] and

β̂[R3, lv;Sλ, Sµ,K1] which in fact are the only ones there are. A key role was played by
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N(Iso[R3, lv;Sλ], Iso[R
3, lv;Sµ]) which turned out to be the subgroup SO(2) ⊲⊳ Z2 of SO(3).

This will also play a major role in Section 8.4 (but for a different reason). We also saw that
the invariant fields with values confined to the sphere Sµ are redundant since both betas are
isomorphisms (and this implied that the subset N(Iso[R3, lv;Sλ], Iso[R

3, lv;Sµ]) of SO(3) is
a group).

8.4 Applying the ToA to (Et, lt)

The SO(3)-space (E, l) = (R3, lv) is needed for describing polarized beams of arbitrary
nonzero spin. However, it does not always suffice. In particular, for spin-1 particles like
deuterons [BV2] we need a framework for handling the spin tensor variable M which is a
real, symmetric and traceless 3 × 3 matrix. See [BV2] for the dynamics of M under the
influence of the T-BMT equation. This inspires (8.77) below which leads to the correct
1-turn map in (8.78). See [BV2] and Section 8.6.2 for the way in which M appears in the
spin-1 density matrix function. So in this section we introduce the SO(3)-space (Et, lt) to
encompass the spin tensor and allow us to use the ToA for spin-1 particles [BV2]. As in
Section 8.3 the focus is on the field motion.

We will proceed as follows. In Section 8.4.1, after defining (Et, lt), we will obtain the
representing set Rt of the partition Et/lt of Et and compute the isotropy groups of (Et, lt)
allowing us to apply the DT in the case (E, l) = (E ′, l′) = (Et, lt). Then in Section 8.4.2 we
apply the NFT to (Et, lt).

8.4.1 Basic properties of (Et, lt)

We define Et := {M ∈ R3×3 : M t = M,Tr[M ] = 0} and equip Et with the subspace
topology from R3×3. Thus, and since R3×3 with its natural topology is a Hausdorff space,
Et is a Hausdorff space, too. We also define the function lt : SO(3)×Et → Et by

lt(r;M) := rMrt , (8.77)

with r ∈ SO(3),M ∈ Et. It is an easy exercise to show that (Et, lt) is an SO(3)-space. Note
that matrices, which belong to the same (Et, lt)-orbit, are similar, in particular they have
the same number of distinct eigenvalues. If M ∈ Et then we denote by #(M) the number
of its distinct eigenvalues.

The 1-turn map (8.1) in the present case is P[Et, lt, j, A], given by

P[Et, lt, j, A](z,M) =

(

j(z)
A(z)MA(z)

)

, (8.78)

and the 1-turn field map (8.2) by

P̃[Et, lt, j, A](f) = (AfAt) ◦ j−1 . (8.79)

In the following remark we compute the (Et, lt)-orbits, giving us the partition Et/lt of
Et.

Remark:
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(20) It follows from (8.77), Definition 2.4 and some simple Linear Algebra [He1] that the
(Et, lt)-orbit of an arbitrary M ∈ Et reads as

lt(SO(3);M) = {M ′ ∈ Et : (det(M
′), T r[M ′2]) = (det(M), T r[M2])} . (8.80)

Note that (8.80) follows easily from the fact that the characteristic polynomial of M
is the function det(M − xI3×3) = −x3 + 1

2
Tr[M2]x+det(M) and that this polynomial

is the same for all elements of the (Et, lt)-orbit of M . We now define

Rt :=

{

diag(y1, y2,−y1 − y2) : (y1, y2) ∈ (Λ1 ∪ Λ2 ∪ Λ3)

}

⊂ Et , (8.81)

where Λ1 := {(0, 0)},Λ2 := {(y, y) : 0 6= y ∈ R},Λ3 := {(y, y′) : y ∈ (0,∞), y′ ∈
(−y/2, y)}. The matrices diag(y1, y2,−y1 − y2) with (y1, y2) ∈ Λj have a simple in-
terpretation: they are those matrices M in Rt which have #(M) = j. This implies,
since matrices of the same (Et, lt)-orbit are similar, that an arbitrary matrix M ∈ Et

has #(M) = j if its (Et, lt)-orbit contains a matrix M ′ = diag(y1, y2,−y1 − y2) with
(y1, y2) ∈ Λj [He1] (of course M

′ is unique). By (8.80), each element of Rt belongs to a
different (Et, lt)-orbit. Moreover, by some simple Linear Algebra, one can show [He1]
that every element M of Et belongs to the (Et, lt)-orbit of some M ′ ∈ Rt. In other
words, Rt is a representing set of the partition Et/lt of Et (recall from Remark 10 that
Rv is a representing set of the partition R3/lv of R

3). As with Rv, the choice Rt is very
convenient as will become clear below. ✷

Note that the above technique of using det(M), T r[M2] as “invariants” of M is also used
sometimes for the emittance matrix in four-dimensional linear beam optics.

Remark 20 allows us, in the following remark, to parametrize the elements of Et in terms
of normalized vectors.

Remark:

(21) By the above, the set of those M in Et for which #(M) = j is given by

{rdiag(y1, y2,−y1 − y2)r
t : r ∈ SO(3), (y1, y2) ∈ Λj} , (8.82)

and, for (y1, y2) ∈ R2,

diag(y1, y2,−y1 − y2) = y1I3×3 + diag(0, y2 − y1,−2y1 − y2)

= y1I3×3 + (y2 − y1)(0, 1, 0)(0, 1, 0)
t − (2y1 + y2)(0, 0, 1)(0, 0, 1)

t . (8.83)

✷

The following remark shows the impact of Lemma 8.4 on invariant (Et, lt)-fields.

Remark:

(22) Let (j, A) ∈ SOS(d, j) where j is topologically transitive. Let f be an invariant
(Et, lt)-field of (j, A). Then, by Lemma 8.4, f takes values in only one (Et, lt)-
orbit, say lt(SO(3);M). By Remark 20 we can choose M to belong to Rt, i.e.,
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M = diag(y1, y2,−y1 − y2) where (y1, y2) ∈ Λi with #(M) = i. Thus, by Remark
21, a function T : Td → SO(3) exists such that f(z) = lt(T (z);M) and

f(z) = y1I3×3 + (y2 − y1)k̃(z)k̃
t(z)− (2y1 + y2)k(z)k

t(z) , (8.84)

where the functions k, k̃ : Td → R3 are defined by

k(z) := T (z)(0, 0, 1)t , k̃(z) := T (z)(0, 1, 0)t . (8.85)

Of course #(f(z)) = i for all z ∈ Td. In the special case where i = 2, i.e., y1 = y2 =: y
with 0 6= y ∈ R, (8.84) reads as

f(z) = yI3×3 − 3yk(z)kt(z) , (8.86)

and in the special case where i = 1, i.e., M = diag(0, 0, 0), (8.84) reads as f(z) =
diag(0, 0, 0). ✷

Using (2.45),(5.5),(8.66), (8.77) and (8.81) it is a simple exercise [He1] to show that for
M ∈ Rt

Iso(Et, lt;M) =







SO(3) if #(M) = 1
SO(2) ⊲⊳ Z2 if #(M) = 2
SOdiag(3) if #(M) = 3 ,

(8.87)

where

SOdiag(3) := SO(3) ∩ {diag(y1, y2, y3) : y1, y2, y3 ∈ R} = {K0,K1,K2,K3} . (8.88)

Clearly SOdiag(3) is a subgroup of SO(3) and it is the set of diagonal matrices in SO(3).
Note that, by (8.66) and (8.88),

SOdiag(3) ⊂ (SO(2) ⊲⊳ Z2) ⊂ SO(3) . (8.89)

Since the groups SO(2) ⊲⊳ Z2 and SOdiag(3) are conveniently handled, we see by (8.87) that
it was prescient to have chosen Rt as in (8.81).

The following remark mentions some implications of (8.87).

Remark:

(23) We conclude from (8.87) and (8.89) that, if M,M ′ ∈ Rt, then
Iso(Et, lt;M)✂ Iso(Et, lt;M

′) iff #(M) ≥ #(M ′) (and, by Lemma 8.8b, this holds for
arbitrary M,M ′ ∈ Et since Rt is a representing set of Et/lt). Thus, quite remarkably
we see that for allM,M ′ ∈ Et either Iso(Et, lt;M)✂Iso(Et, lt;M

′) or Iso(Et, lt;M
′)✂

Iso(Et, lt;M).

We also see, by (8.87) and (8.89), that ifM,M ′ ∈ Rt and Iso(Et, lt;M)✂Iso(Et, lt;M
′)

then Iso(Et, lt;M) ⊂ Iso(Et, lt;M
′). The latter inclusion is another reason why we

have chosen Rt as in (8.81) (note also that this inclusion is predicted by Lemma 8.8b).
We recall from Section 8.3.3 that SO(3) is only conjugate to itself. Also, by Definition
2.2, the finite group SOdiag(3) is not conjugate to infinite groups and the infinite group
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SO(2) ⊲⊳ Z2 is not conjugate to finite groups. Thus it follows from (8.87) that, if
M,M ′ ∈ Rt, then Iso(Et, lt;M) and Iso(Et, lt;M

′) are conjugate iff #(M) = #(M ′)
(and this holds for arbitraryM,M ′ ∈ Et since Rt is a representing set of Et/lt). In fact
for arbitrary M ∈ Et we have #(M) = 1 iff Iso(Et, lt;M) is conjugate to SO(3), we
have #(M) = 2 iff Iso(Et, lt;M) is conjugate to SO(2) ⊲⊳ Z2, and we have #(M) = 3
iff Iso(Et, lt;M) is conjugate to SOdiag(3). ✷

Recalling the remarks after the NFT, the isotropy groups in (8.87) will give us insight into the
possibility of invariant (Et, lt)-fields. In fact if (j, A) has an ISF then, as we will see in Section
8.5.1, (j, A) has an invariant (Et, lt)-field whose values are matrices M with #(M) = 2. This
follows from the fact that SO(2) ⊂ (SO(2) ⊲⊳ Z2). Thus, by the remarks after the NFT,
we believe that in practice invariant (Et, lt)-fields exist whose values are matrices M with
#(M) = 2. On the other hand, by (8.87) and the remarks after the NFT, an invariant
(Et, lt)-field which has an (Et, lt)-lift and whose values are matrices M with #(M) = 3 can
only exist if (j, A) has an SOdiag(3)-normal form (for the notion of “lift”, see the remarks
after the NFT). However SOdiag(3) is “small” since it contains only four elements thus we
expect that (j, A) has an SOdiag(3)-normal form only if it has a G0-normal form, i.e., if (j, A)
is on spin-orbit resonance. Since in practice we expect that the assumption of an (Et, lt)-lift
is not strong, we expect that in practice invariant (Et, lt)-fields whose values are matrices M
with #(M) = 3 only exist on spin-orbit resonance. On spin-orbit resonance those invariant
(Et, lt)-fields exist, as is explained after Remark 18. Note also that the diag(0, 0, 0)-valued
function is always an invariant (Et, lt)-field whence invariant (Et, lt)-fields always exist whose
values are matrices M with #(M) = 1. Note that #(M) = 1 is of physical importance as
can be seen for example in Section 8.6 where spin tensors M appear as coefficients in the
density matrix functions of spin-1 particles.

We now apply the DT to the case (E, l) = (E ′, l′) = (Et, lt). This is interesting since it
deals with invariant (Et, lt)-fields and since the latter have been much less studied than in-
variant polarization fields. We follow the strategy of Remark 18 and use again the convenient
representing set Rt of the partition Et/lt. Thus we have to determine for given M,M ′ ∈ Rt

whether Iso(Et, lt;M) ✂ Iso(Et, lt;M
′) or whether Iso(Et, lt;M) and Iso(Et, lt;M

′) are
even conjugate. In fact by Remark 23 we know that Iso(Et, lt;M) ✂ Iso(Et, lt;M

′) iff
#(M) ≥ #(M ′) and that Iso(Et, lt;M) and Iso(Et, lt;M

′) are conjugate iff #(M) = #(M ′).
Recalling Remark 18, the latter case compares invariant (Et, lt)-fields which have identical
behavior. To keep the discussion short we confine ourselves to the case where i = 3, k = 2
and which is interesting since it involves the two most important isotropy groups of (Et, lt):
SOdiag(3) and SO(2) ⊲⊳ Z2.

The computations are analogous to those in Section 8.3.3. So we focus here on the results
and leave the somewhat lengthy Linear Algebra [He1] to the reader. In fact, by Definition
8.7, one gets

N([Iso(Et, lt;M), Iso(Et, lt;M
′)) = N(SOdiag(3), SO(2) ⊲⊳ Z2)

= (SO(2) ⊲⊳ Z2) ∪ (SO(2) ⊲⊳ Z2)K4 ∪ (SO(2) ⊲⊳ Z2)K5 , (8.90)

70



where

K4 :=





0 0 −1
0 1 0
1 0 0



 , K5 :=





1 0 0
0 0 −1
0 1 0



 . (8.91)

Thus, by Lemma 8.8a, and some further Linear Algebra one gets

B(Et, lt,M,M ′) = B(Et, lt, Et, lt,M,M ′) = {β̂[Et, lt;M,M ′,K0], β̂[Et, lt;M,M ′,K4],

β̂[Et, lt;M,M ′,K5]} . (8.92)

Since SO(2) ⊂ (SO(2) ⊲⊳ Z2) it is no surprise by Lemma 8.8a that B(Et, lt,M,M ′) is
nonempty. We now can apply the DT to the current case. So let f ∈ C(Td, Et) take values
only in the (Et, lt)-orbit of M , i.e., let a function T : Td → SO(3) exist such that

f(z) := lt(T (z),M) . (8.93)

Then f satisfies (8.84), i.e., f(z) = y1I3×3 + (y2 − y1)k̃(z)k̃
t(z) − (2y1 + y2)k(z)k

t(z) where
the functions k, k̃ : Td → R3 are defined by (8.85). Also let gn ∈ C(Td, Et) be defined by
gn(z) := β̂[Et, lt;M,M ′,Kn](f(z)) where n = 0, 4, 5. Then

g0(z) = yI3×3 − 3yk(z)kt(z) , (8.94)

g4(z) = −2yI3×3 + 3yk̃(z)k̃t(z) + 3yk(z)kt(z) , (8.95)

g5(z) = yI3×3 − 3yk̃(z)k̃t(z) . (8.96)

Moreover if (j, A) ∈ SOS(d, j) and f is an invariant (Et, lt)-field of (j, A) then g0, g4, g5 are
invariant (Et, lt)-fields of (j, A). Note that g0, g4, g5 take values only in lt(SO(3);M

′). Thus
each value of the functions g0, g4, g5 is a matrix with two distinct eigenvalues. It is thus easy
to show, by part b) of the DT, that g0, g4, g5 are equivalent, i.e., are related by isomorphisms
of SO(3)-spaces.

8.4.2 Applying the Normal Form Theorem to (Et, lt)

We have already applied the NFT to the cases of (R3, lv) and (SO(3), lSOR) in Remarks 8 and
9. Now with Section 8.4.1 we are equipped to apply the Normal Form Theorem to (Et, lt).

Theorem 8.10 Let M ∈ Et have #(M) = i, i.e., let r ∈ SO(3) exist such that
M = lt(r; diag(y1, y2,−y1 − y2)) where (y1, y2) ∈ Λi. Moreover let (j, A) ∈ SOS(d, j) and
T ∈ T FH(j, A) where we define H := Iso(Et, lt;M). Then f ∈ C(Td, Et), defined by (8.93),
i.e., f(z) := lt(T (z),M), is an invariant (Et, lt)-field of (j, A). Moreover #(f(z)) = i and

f(z) = y1I3×3 + (y2 − y1)l̃(z)l̃
t(z)− (2y1 + y2)l(z)l

t(z) , (8.97)

where the functions l, l̃ ∈ C(Td,R3) are defined by

l(z) := T (z)r(0, 0, 1)t , l̃(z) := T (z)r(0, 1, 0)t . (8.98)
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Remark 1: Note that |l(z)| = |l̃(z)| = 1.
Remark 2: In the special case where i = 2, i.e., where y1 = y2 =: y with 0 6= y ∈ R, (8.97)
reads as

f(z) = yI3×3 − 3yl(z)lt(z) , (8.99)

and in the special case where i = 1, i.e., M = diag(0, 0, 0), (8.97) reads as f(z) =
diag(0, 0, 0).

Proof of Theorem 8.10: That f in (8.93) is an invariant (Et, lt)-field of (j, A) follows from
the NFT, Theorem 8.1. Moreover, by (8.77) and (8.93)

f(z) = lt(T (z),M) = lt(T (z), lt(r; diag(y1, y2,−y1 − y2)))

= lt(T (z)r; diag(y1, y2,−y1 − y2)) = T (z) r diag(y1, y2,−y1 − y2) r
t T (z) ,

whence (8.97) follows from (8.83) and (8.98). The remaining claim follows from Remark 21.
✷

Since SO(2) ⊂ (SO(2) ⊲⊳ Z2), the case i = 2 in Theorem 8.10 shows the impact of IFF’s
on invariant (Et, lt)-fields as the following remark demonstrates.

Remark:

(24) LetM ∈ Et have #(M) = 2, i.e., let r ∈ SO(3) exist such thatM = lt(r; diag(y, y,−2y))
where 0 6= y ∈ R. Also let (j, A) ∈ SOS(d, j) and T be an IFF of (j, A), i.e., by Section
5.2, T ∈ T FSO(2)(j, A). We define H := Iso(Et, lt; diag(y, y,−2y)) = SO(2) ⊲⊳ Z2 and
H ′ := Iso(Et, lt;M) where we also used (8.87). It follows from (8.32) that H ′ = rHrt.
On the other hand, by (8.66), SO(2) ⊂ (SO(2) ⊲⊳ Z2) whence, by Remark 2 in Chap-
ter 5, T FSO(2)(j, A) ⊂ T FH(j, A) so that T ∈ T FH(j, A). Now define the function
T ′ ∈ C(Td, SO(3)) by T ′(z) := T (z)rt. Thus, by Remark 7, T ′ ∈ T FH′(j, A) whence
T ′ is a generalized IFF of (j, A) and, by Theorem 8.10, the function f ∈ C(Td, E),
defined by f(z) := lt(T

′(z),M) is an invariant (Et, lt)-field of (j, A). Note also that
f(z) = lt(T (z), diag(y, y,−2y)). This demonstrates how IFF’s lead to (SO(2) ⊲⊳ Z2)-
normal forms and invariant (Et, lt)-fields. ✷

8.5 Applying the Decomposition Theorem in the case (E, l) =
(R3, lv) and (E ′, l′) = (Et, lt)

In this section we apply the DT to the case (E, l) = (R3, lv) and (E ′, l′) = (Et, lt) and
thereby illustrate the connection between invariant (Et, lt)-fields and invariant polarization
fields. Moreover, we give insights into a model with two Siberian snakes (the “2-snake
model”).

We proceed as follows. In Section 8.5.1 we apply the DT to arrive at Theorem 8.11. Then
in Section 8.5.2 we consider the 2-snake model which has normalized, piecewise continuous
solutions of the (R3, lv)-stationarity equation but none of them continuous whence the 2-
snake model has no ISF. However we will show that it has a nonzero invariant (Et, lt)-field
whose values are matrices M with #(M) = 2 (and the latter will be derived from Theorem
8.11).
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8.5.1 A corollary to the DT

To apply the DT in the case where (E, l) = (R3, lv) and (E ′, l′) = (Et, lt) we follow the
strategy of Remark 18 and again use the convenient representing sets Rv and Rt of R

3/lv
and Et/lt respectively. Thus we have to determine for given Sλ ∈ Rv,M ∈ Rt whether
Iso(R3, lv;Sλ) ✂ Iso(Et, lt;M) or whether Iso(R3, lv;Sλ), Iso(Et, lt;M) are conjugate. In
fact, by (8.61) and (8.87) and Remarks 19 and 23, we only have to consider three cases
defined as follows. In the first case λ = 0 and #(M) = 1, in the second case λ > 0
and #(M) = 1, and in the third case λ > 0 and #(M) = 2. In the remaining case
N(Iso(R3, lv;Sλ), Iso(Et, lt;M)) = ∅ whence B(R3, lv, Et, lt;S0,M) = ∅. The following re-
mark considers the first two cases.

Remark:

(25) In the first case, where S0 = (0, 0, 0)t,M = diag(0, 0, 0), we have, by (8.61) and (8.87),
Iso(R3, lv;S0) = SO(3) = Iso(Et, lt;M) whence Iso(R3, lv;S0) and Iso(Et, lt;M) are
conjugate andB(R3, lv, Et, lt;S0,M) is a singleton containing the constant, diag(0, 0, 0)-
valued function which, by the DT, results in the constant diag(0, 0, 0)-valued invariant
(Et, lt)-field. Since Iso(Et, lt;M) and Iso(Et, lt;M

′) are conjugate it is no surprise that
the only element of B(R3, lv, Et, lt;S0,M) is an isomorphism (see Remark 17).

In the second case where λ > 0,M = diag(0, 0, 0) we have, by (8.61) and (8.87),
Iso(R3, lv;Sλ) = SO(2) ⊂ SO(3) = Iso(Et, lt;M). Since SO(3) is only conjugate
to itself, SO(2), SO(3) are not conjugate whence, according to our strategy, we will
compute the elements of B(R3, lv, Et, lt;Sλ,M). By (8.54) we have N(SO(2), SO(3)) =
SO(3). If r0 ∈ SO(3) then, by (8.4), (8.55) and (8.77), β̂[R3, lv, Et, lt;Sλ,M, r0](rSλ) =
rrt0Mr0r

t = diag(0, 0, 0) whence, for every S ∈ S2
λ,

β̂[R3, lv, Et, lt;Sλ,M, r0)(S) = diag(0, 0, 0) . (8.100)

Thus β̂[R3, lv, Et, lt;Sλ,M, r0) is independent of the choice of r0 and so
B(R3, lv, Et, lt;Sλ,M) contains only one element:

B(R3, lv, Et, lt;Sλ,M) = {β̂[R3, lv, Et, lt;Sλ,M, I3×3]} . (8.101)

Thus the only element of B(R3, lv, Et, lt;Sλ,M) is the constant diag(0, 0, 0)-valued
function which, by the DT, results in the constant diag(0, 0, 0)-valued invariant (Et, lt)-
field. Since Iso(R3, lv;Sλ)✂ Iso(Et, lt;M) and since Iso(R3, lv;Sλ) and Iso(Et, lt;M)
are not conjugate it is no surprise that the only element of B(R3, lv, Et, lt;Sλ,M) is a
topological SO(3)-map which is not an isomorphism (recall Remark 17). ✷

We finally consider the third case where λ > 0,#(M) = 2 and with this case we can fulfill
the above mentioned aims in the situation where (E, l) = (R3, lv) and (E ′, l′) = (Et, lt). In
the present case where λ > 0,M = diag(y, y,−2y) with 0 6= y ∈ R we have, by (8.61), (8.87),
Iso(R3, lv;Sλ) = SO(2) ⊂ (SO(2) ⊲⊳ Z2) = Iso(Et, lt;M) whence

N(Iso(R3, lv;Sλ), Iso(Et, lt;M)) = N(SO(2), SO(2) ⊲⊳ Z2) . (8.102)
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Since SO(2) is Abelian and SO(2) ⊲⊳ Z2 is not Abelian, SO(2), SO(2) ⊲⊳ Z2 are not conjugate
whence, according to our strategy, we will compute the elements of
B(R3, lv, Et, lt;Sλ,M), i.e., by Lemma 8.8a and (8.102) we have to compute
N(SO(2), SO(2) ⊲⊳ Z2). It is a simple exercise to show, by (5.5),(8.56) and (8.66), that

N(SO(2), SO(2) ⊲⊳ Z2) ⊃ (SO(2) ⊲⊳ Z2) , (8.103)

and we now show that N(SO(2), SO(2) ⊲⊳ Z2) = SO(2) ⊲⊳ Z2, i.e., we will show that the
inclusion, which is the converse to (8.103), holds too. For this we use (8.56) and (8.66) to
obtain

N(SO(2), SO(2) ⊲⊳ Z2) =
⋂

h∈SO(2)

⋃

h′∈(SO(2)⊲⊳Z2)

N({h}, {h′})

=
⋂

h∈SO(2)

⋃

h′∈(SO(2)

(

N({h}, {h′}) ∪N({h}, {K1h
′})
)

=
⋂

h∈SO(2)

(

N({h}, SO(2)) ∪N({h},K1SO(2))

)

⊂
⋂

h∈(SO(2)\{I3×3,exp(πJ )})

(

N({h}, SO(2)) ∪N({h},K1SO(2))

)

. (8.104)

It is an easy exercise to show, by (5.5),(8.56) and (8.65) and the SO(2)-Lemma, that if
h ∈ (SO(2) \ {I3×3, exp(πJ )}) then N({h},K1SO(2)) = ∅ whence, by (8.104),

N(SO(2), SO(2) ⊲⊳ Z2) ⊂
⋂

h∈(SO(2)\{I3×3,exp(πJ )})

N({h}, SO(2)) . (8.105)

It is also a simple exercise to show, by (5.5),(8.56) and the SO(2)-Lemma, that if h ∈
(SO(2) \ {I3×3, exp(πJ )}) then N({h}, SO(2)) ⊂ (SO(2) ⊲⊳ Z2) whence, by (8.105),

N(SO(2), SO(2) ⊲⊳ Z2) ⊂ (SO(2) ⊲⊳ Z2) . (8.106)

We conclude from (8.103) and (8.106) that N(SO(2), SO(2) ⊲⊳ Z2) = SO(2) ⊲⊳ Z2 whence,
by (8.102),

N(Iso(R3, lv;Sλ), Iso(Et, lt;M)) = SO(2) ⊲⊳ Z2 , (8.107)

so that, by Lemma 8.8a,

B(R3, lv, Et, lt;Sλ,M) = {β̂[R3, lv, Et, lt;Sλ,M, r0] : r0 ∈ SO(2) ⊲⊳ Z2)} . (8.108)

We will now see that B(R3, lv, Et, lt;Sλ,M) is a singleton. In fact if r0 ∈ (SO(2) ⊲⊳ Z2) and
r ∈ SO(3) then, by (8.55),

β̂[R3, lv, Et, lt;Sλ,M, r0](lv(r;Sλ)) = lt(rr
t
0;M) = lt(r; lt(r

t
0;M))

= lt(r;M) = β̂[R3, lv, Et, lt;Sλ,M, I3×3](lv(r;Sλ)) , (8.109)
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whence, by (8.108),

B(R3, lv, Et, lt;Sλ,M) = {β̂[R3, lv, Et, lt;Sλ,M, I3×3]} , (8.110)

where in the third equality of (8.109) we used the second case from (8.87) where SO(2) ⊲⊳
Z2 = Iso(Et, lt;M).

We now apply the DT to the current case.

Theorem 8.11 Let (j, A) ∈ SOS(d, j). Let λ ∈ (0,∞) and let M ∈ Rt have #(M) = 2,
i.e., M = diag(y, y,−2y) where 0 6= y ∈ R. Then B(R3, lv, Et, lt;Sλ,M) is given by (8.110)
and for every S in its domain its only element, β̂[R3, lv, Et, lt;Sλ,M, I3×3], satisfies

β̂[R3, lv, Et, lt;Sλ,M, I3×3](S) = yI3×3 −
3y

λ2
SSt . (8.111)

Let f ∈ C(Td,R3) take values only in the (R3, lv)-orbit of Sλ. Let the function g ∈ C(Td, Et)
be defined by g(z) := β̂[R3, lv, Et, lt;Sλ,M, I3×3](f(z)). Then

g(z) = yI3×3 −
3y

λ2
f(z)f t(z) . (8.112)

Let us apply the 1-turn field map, i.e., let the function f ′ ∈ C(Td,R3) be defined by f ′ :=
P̃[j, A](f) and the function g′ ∈ C(Td, Et) be defined by g′ := P̃ [Et, lt, j, A](g). Then

g′(z) = yI3×3 −
3y

λ2
f ′(z)f ′t(z) , (8.113)

and g′(z) = β̂[R3, lv, Et, lt;Sλ,M, I3×3](f
′(z)).

Remark: If f = f ′ then g = g′. In other words if f is an invariant polarization field of (j, A)
then g is an invariant (Et, lt)-field of (j, A). In particular, if λ = 1 and f is an ISF of (j, A)
then g is an invariant (Et, lt)-field of (j, A).

Proof of Theorem 8.11: Using (8.55) and (8.110) and Remark 21 we get (8.111). Moreover
(8.112) follows from (8.111). The remaining claims follow from Theorem 8.9a. ✷

In the special case λ = 1, y = 1/
√
6, (8.112) is the expression for the invariant tensor

field in [BV2]. So we have independently reconstructed the invariant tensor field of [BV2]
by using the DT!

8.5.2 The 2-snake model

In this section we consider a model describing the spin-orbit system of a flat storage ring
which has two thin-lens Siberian Snakes with mutually perpendicular axes of spin rotation
placed at θ = 0 and θ = π. With this layout, the spin tune, ν0, on the design orbit, of
the ring is 1/2. Here we are interested in the situation where, in the absence of snakes, the
spin motion is dominated by the effect of a single harmonic in the Fourier expansion of the
radial component of the Ω(θ, J, φ(θ)), mentioned in the Introduction, and due to vertical
betatron motion. This case is often called the “single resonance model”. The combination
of the single resonance model and two snakes considered in this section has been studied
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extensively. See for example [BV1, Vo] and the references therein. The interest in this model
stems from the effect on the polarization of the so-called “snake resonances”. These occur
at vertical betatron tunes of 1/2, 1/6, 5/6, 1/10, 3/10 . . . Note that the term snake resonance
is a misnomer since it does not refer to the proper definition of spin-orbit resonance given in
(6.17). Our main interest here is in the fact that at snake resonance, there is no ISF of the
kind that we define in this paper. We have already mentioned this situation in Section 6.2.
For further background material see [BV1].

Here we focus on the simplest case, namely that with vertical betatron tune, ω = 1/2,
and we denote the resulting spin-orbit system by (P1/2, A2S). Of course a real bunch is
not stable at ω = 1/2 but this does not play a role in the present section. We prove two
claims. We first show that (P1/2, A2S) has a 2-turn ISF, defined below, and a normalized,
piecewise continuous solution of the (R3, lv)-stationarity equation but no ISF. Secondly we
apply the DT via Theorem 8.11 to construct, out of the two 2-turn ISF’s, an invariant
nonzero (Et, lt)-field of (P1/2, A2S).

We first define (P1/2, A2S). For this we define the function A2S ∈ C(T1, SO(3)), for
ǫ ∈ (R \ Z) with [BV1, Vo] by

A2S(φ+ Z̃) :=





1− 2c2(φ) 2b(φ)c(φ) 2a(φ)c(φ)
2b(φ)c(φ) 1− 2b2(φ) −2a(φ)b(φ)
−2a(φ)c(φ) 2a(φ)b(φ) 2a2(φ)− 1



 , (8.114)

where the functions a, b, c ∈ C(R,R) are defined by

a(φ) := −2 sin2(πǫ/2) sin(φ) cos(φ) , b(φ) := −2 sin(πǫ/2) cos(πǫ/2) cos(φ) ,

c(φ) := 2 sin2(πǫ/2) cos2(φ)− 1 . (8.115)

Note that

a2 + b2 + c2 = 1 , (8.116)

and that we exclude ǫ from being an integer because in that case (P1/2, A2S) would have an
ISF [He1]. Note also that, by the Torus Lemma, Lemma 2.1, A2S is continuous since the
continuous functions a, b, c are 2π-periodic.

Since P2
1/2 = idTd we will prove both of our claims by computing the so-called 2-turn

ISF’s of (P1/2, A2S). We call an invariant 2-turn (R3, lv)-field of (P1/2, A2S) a “2-turn ISF of
(P1/2, A2S)” if it is normalized. Thus, noting that with ω = 1/2, a particle returns to the
same z over two turns, an h ∈ C(T1,R3) is a 2-turn ISF of (P1/2, A2S) iff

P̃[P1/2, A2S]
2(h) = h , (8.117)

|h| = 1 . (8.118)

In fact we will see that (P1/2, A2S) has just two 2-turn ISF’s namely h = k and h = −k
where k will be defined below. It is clear that every ISF is a 2-turn ISF and we will show
that in fact neither k nor −k is an ISF of (P1/2, A2S) which implies that no ISF exists. We
will then apply Theorem 8.11 to h = k and will thereby obtain an invariant (Et, lt)-field of
(P1/2, A2S). The case h = −k will result in the same invariant (Et, lt)-field.
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To begin our computations we first rewrite (8.117), by using (3.7) and (3.8), into

h(z) = Ψ[P1/2, A2S](2; z)h(z) . (8.119)

Thus a h ∈ C(T1,R3) is a 2-turn ISF of (P1/2, A2S) iff (8.118),(8.119) are fullfilled. Note
that, very conveniently, (8.119) is an eigenvalue problem for h(z) and it is here that we used
that ω = 1/2. To obtain the 2–turn spin transfer matrix function in (8.119) we first conclude
from (8.114) and (8.115) that

A2S((φ+ π) + Z̃) =





1− 2c2(φ) −2b(φ)c(φ) 2a(φ)c(φ)
−2b(φ)c(φ) 1− 2b2(φ) 2a(φ)b(φ)
−2a(φ)c(φ) −2a(φ)b(φ) 2a2(φ)− 1



 . (8.120)

We also conclude from (2.36), (8.114) and (8.120) that the 2–turn spin transfer matrix
function reads as

Ψ[P1/2, A2S](2;φ+ Z̃) = A2S((φ+ π) + Z̃)A2S(φ+ Z̃)

=





1− 8c2(φ) + 8c4(φ) 4b(φ)c(φ)(1− 2c2(φ)) 4a(φ)c(φ)(1− 2c2(φ))
−4b(φ)c(φ)(1− 2c2(φ)) 1− 8b2(φ)c2(φ) −8a(φ)b(φ)c2(φ)
−4a(φ)c(φ)(1− 2c2(φ)) −8a(φ)b(φ)c2(φ) 1− 8a2(φ)c2(φ)



 . (8.121)

Since ǫ is not an integer, | sin(πǫ/2)| equals neither 0 or 1, and so we define the 2π-periodic
function K ∈ C(R,R3) by

K(φ) :=
cos(πǫ/2)

| cos(πǫ/2)|
√

1− sin2(πǫ/2) cos2(φ)

(

0, sin(πǫ/2) sin(φ),− cos(πǫ/2)

)

. (8.122)

By the Torus Lemma, Lemma 2.1, a unique function k ∈ C(T1,R3) exists such that

k = K ◦ π1 . (8.123)

It is easy to show that (8.118) and (8.119) are fullfilled for h = k, i.e.,

k(z) = Ψ[P1/2, A2S](2; z)k(z) , (8.124)

|k(z)| = 1 . (8.125)

Thus indeed k and −k are 2-turn ISF’s of (P1/2, A2S). Let h ∈ C(T1,R3) be an arbitrary
2-turn ISF of (P1/2, A2S), i.e., let h satisfy (8.118) and (8.119).

To show that either h = k or h = −k let R 6= I3×3 be a matrix in SO(3). Then R
has a real eigenvector v ∈ R

3 with eigenvalue 1 and such that |v| = 1 whence r ∈ SO(3)
exists such that v = r(0, 0, 1)t. Thus rtRr(0, 0, 1)t = (0, 0, 1)t whence, by the SO(2)-Lemma,
rtRr ∈ SO(2) so that a ν ∈ [0, 1) exists such that R = r exp(2πνJ )rt. This implies, since
R 6= I3×3, that ν 6= 0. Thus if w,w′ ∈ R3 are real eigenvectors of rtRr with the eigenvalue 1
and |w| = |w′| = 1 then |w · w′| = 1 whence if v, v′ ∈ R3 are real eigenvectors of R with the
eigenvalue 1 and |v| = |v′| = 1 then |v · v′| = 1.

Defining the set

M := {z ∈ T
1 : Ψ[P1/2, A2S](2; z) = I3×3} , (8.126)
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we observe that, if z ∈ (T1 \ M), then Ψ[P1/2, A2S](2; z) 6= I3×3. Thus, and since by
(8.118), (8.119), (8.124) and (8.125), h(z), k(z) are real eigenvectors of Ψ[P1/2, A2S](2; z)
with eigenvalue 1 and |h(z)| = |k(z)| = 1 we conclude that, if z ∈ (T1 \M), then λ(z) = 1
where the function λ : T1 → R is defined by λ(z) := |h(z) · k(z)|. To show that λ(z) = 1 for
all z ∈ T1 we only have to show that λ is a constant function. We thus compute, by (8.115)
and (8.121),

M = {φ+ Z̃ : φ ∈ R, c(φ)(c2(φ)− 1) = 0} = {φ+ Z̃ : φ ∈ R, cos2(φ) =
1

2 sin2(πǫ/2)
} ,

(8.127)

whence M consists of only finitely many points. Since λ(z) = 1 on T1 \M and since M has
only finitely many points we conclude that λ is a continuous function with only finitely many
values. Since T1 is path-connected and λ is continuous we use the same argument as in the
proof of Theorem 7.1b and conclude that the range of λ is an interval whence λ is constant
so that λ(z) = |h(z) · k(z)| = 1 holds for every z ∈ T1. Thus, and since |h(z)| = |k(z)| = 1,
either h = k or h = −k. So we have shown that the only 2-turn ISF’s are h = k and h = −k.

To show that neither k nor −k is an ISF we compute, by (8.114) and (8.122),

A2S(φ+ Z̃)K(φ) = −K(φ+ π) , (8.128)

whence, by (2.17) and (8.123), A2S(z)k(z) = −k(P1/2(z)) so that, by (3.3),

P̃ [P1/2, A2S](k) = −k , (8.129)

which implies, by Definition 3.1, that k is not an ISF of (P1/2, A2S). Thus −k is not an ISF
of (P1/2, A2S) either which completes the proof that the two only 2-turn ISF’s of (P1/2, A2S)
are not ISF’s of (P1/2, A2S). We conclude, by our earlier remarks, that (P1/2, A2S) has no
ISF. This proves the first claim.

Remark:

(26) While (P1/2, A2S) has no ISF, it is easy to construct a normalized, piecewise continuous

solution of the (R3, lv)-stationarity equation (see also [BV2]). In fact defining K̃ : R →
R3 by

K̃(φ) :=

{

K(φ) if φ ∈ ⋃n∈Z[2πn, 2πn+ π)
−K(φ) if φ ∈ ⋃n∈Z[2πn+ π, 2πn+ 2π) ,

(8.130)

we observe, by the Torus Lemma in Section 2.2, that a unique function k̃ : T1 → R
3

exists such that k̃ = K̃ ◦ π1. It is a simple exercise to show that k̃ is a normalized
piecewise continuous solution of the (R3, lv)-stationarity equation of (P1/2, A2S). Of

course, k̃ is not an ISF of (P1/2, A2S) since (P1/2, A2S) has no ISF. In fact it is an easy

exercise to show, by (8.122) and (8.130), that k̃ is discontinuous at z = π1(0) and
z = π1(π). This is an example of a consequence of a lack of topological transitivity of
j mentioned just after Theorem 3.2.
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As mentioned at the end of Section 8.2.2 since A, j, l are continuous we require that
invariant fields be continuous. However this requirement is a matter of choice. In fact
if one would impose the weaker condition of Borel measurability then k̃ would be an
ISF. In fact, as mentioned in Section 6.2, the requirement of continuity was relaxed in
[BV1]. ✷

We now apply Theorem 8.11 in the case λ = 1 for the function f := k. In fact, in the
notation of Theorem 8.11, it follows from (8.129) that

f ′ = P̃ [P1/2, A2S](f) = P̃[P1/2, A2S](k) = −k , (8.131)

Using the notation of Theorem 8.11, the functions g, g′ ∈ C(Td, Et) are given by

g(z) = β̂[R3, lv, Et, lt;S1,M, I3×3](f(z))

= β̂[R3, lv, Et, lt;S1,M, I3×3](k(z)) = yI3×3 − 3yk(z)kt(z) , (8.132)

g′(z) = β̂[R3, lv, Et, lt;S1,M, I3×3](f
′(z))

= β̂[R3, lv, Et, lt;S1,M, I3×3](−k(z)) = yI3×3 − 3yk(z)kt(z) , (8.133)

whence g = g′ so that g is an invariant (Et, lt)-field of (P1/2, A2S). The same holds for
f = −k since, by repeating the above construction of g and replacing f = k by f = −k we
get the same g. This completes the proof of the second claim.

So although (P1/2, A2S) has no ISF, there is a nontrivial invariant tensor field. This is
also expected from [BV1] by noting that the discontinuities at z = π1(0) and z = π1(π)
involve a simple change of sign. Then since the invariant tensor field is quadratic in k̃, those
discontinuities do not cause discontinuities in the invariant tensor field.

8.6 Applying the ToA to density matrix functions

8.6.1 Spin-1/2 particles. Applying the ToA to (E
1/2
dens, l

1/2
dens)

In this section we introduce the SO(3)-space (E
1/2
dens, l

1/2
dens) to enable the use of the ToA for

the study of the spin-1/2 density matrix function employed for describing polarized beams
of spin-1/2 particles [BV2]. As in Sections 8.3-8.5 the focus is on the field motion.

We define

E
1/2
dens := {R ∈ C

2×2 : R† = R, Tr[R] = 1} , (8.134)

where R† denotes the hermitian conjugate of the matrix R and we equip E
1/2
dens with the

subspace topology from C2×2. Thus, and since C2×2 with its natural topology is a Hausdorff
space, E

1/2
dens is a Hausdorff space, too. Following a standard parametrization we define the

function β
1/2
dens : R

3 → E
1/2
dens for S ∈ R3 by

β
1/2
dens(S) :=

1

2

(

I2×2 +

3
∑

i=1

Siσi

)

, (8.135)
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where the Pauli matrices σ1, σ2, σ3 are defined by

σ1 :=

(

0 −i
i 0

)

, σ2 :=

(

1 0
0 −1

)

, σ3 :=

(

0 1
1 0

)

, (8.136)

and where Si denotes the i-th component of S. Since every σk is hermitian, i.e., σ†
k = σk, by

(8.135), β
1/2
dens(S) is hermitian too. Moreover since, by (8.136) and for i, k = 1, 2, 3,

Tr[σi] = 0 , T r[σiσk] = 2δik , (8.137)

we find from (8.135) that Tr[β
1/2
dens(S)] = 1. So β

1/2
dens(S) is a hermitian matrix of trace 1, i.e.,

indeed β
1/2
dens is a function into E

1/2
dens. To show that β

1/2
dens is a homeomorphism we first note,

by (8.136), that if R ∈ C2×2 is hermitian then real numbers S ′
0, S

′
1, S

′
2, S

′
3 exist such that

R = S ′
0I2×2 +

∑3
i=1 S

′
iσi whence, by (8.134) and (8.137) and if R ∈ E

1/2
dens, we get S ′

0 = 1/2

so that R = β
1/2
dens(S) for some S ∈ R3. Thus the function β

1/2
dens is onto E

1/2
dens, i.e.,

E
1/2
dens = {β1/2

dens(S) : S ∈ R
3} . (8.138)

It also follows from (8.135) and (8.137) that, for S ∈ R3 and i = 1, 2, 3,

Si = Tr[σiβ
1/2
dens(S)] . (8.139)

Thus S is uniquely determined by β
1/2
dens(S) whence β

1/2
dens is one-one so that we conclude that

β
1/2
dens is a bijection. Since β

1/2
dens is a bijection it follows from (8.135) that its inverse, (β

1/2
dens)

−1,

is defined for R ∈ E
1/2
dens by

(β
1/2
dens)

−1(R) := S , Si := Tr[σiR] , (8.140)

where Si denotes the i-th component of S. Moreover, by (8.135) and (8.140), both β
1/2
dens and

(β
1/2
dens)

−1 are continuous functions whence β
1/2
dens ∈ Homeo(R3, E

1/2
dens), a fact which plays a

key role in this section.
We now define the function l

1/2
dens : SO(3)× E

1/2
dens → E

1/2
dens by

l
1/2
dens(r;R) := β

1/2
dens

(

lv(r; (β
1/2
dens)

−1(R))

)

, (8.141)

i.e.,

l
1/2
dens(r; β

1/2
dens(S)) := β

1/2
dens(lv(r;S)) = β

1/2
dens(rS) , (8.142)

with r ∈ SO(3), R ∈ E
1/2
dens and S ∈ R3. Since (R3, lv) is an SO(3)-space and

β
1/2
dens ∈ Homeo(R3, E

1/2
dens) it follows from (8.141) that (E

1/2
dens, l

1/2
dens) is an SO(3)-space and

that β
1/2
dens is an isomorphism from the SO(3)-space (R3, lv) to the SO(3)-space (E

1/2
dens, l

1/2
dens).

Due to (8.1), the 1-turn particle-spin map P[E
1/2
dens, l

1/2
dens, j, A] is given by

P[E
1/2
dens, l

1/2
dens, j, A](z, R) =

(

j(z)

l
1/2
dens(A(z);R)

)

, (8.143)
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where z ∈ Td, R ∈ E
1/2
dens. Because the SO(3)-spaces (R

3, lv) and (E
1/2
dens, l

1/2
dens) are isomorphic,

we get easy insight into P[E
1/2
dens, l

1/2
dens, j, A] by using the Second ToA Transformation Rule.

In fact recalling Section 8.2.6 we find via (8.47) that P[E
1/2
dens, l

1/2
dens, j, A] ◦β

1/2
dens,tot = β

1/2
dens,tot ◦

P[R3, lv, j, A] whence and since, by Remark 1, P[R3, lv, j, A] = P[j, A] we get

P[E
1/2
dens, l

1/2
dens, j, A] ◦ β

1/2
dens,tot = β

1/2
dens,tot ◦ P[j, A] , (8.144)

i.e.,

P[E
1/2
dens, l

1/2
dens, j, A](z, β

1/2
dens(S)) = P[E

1/2
dens, l

1/2
dens, j, A](β

1/2
dens,tot(z, S))

=

(

j(z)

β
1/2
dens(A(z)S)

)

, (8.145)

where z ∈ Td, S ∈ R3 and where the function β
1/2
dens,tot ∈ Homeo(Td × R3,Td × E

1/2
dens) is

defined by β
1/2
dens,tot(z, S) := (z, β

1/2
dens(S)).

We now come to our main focus, the fields, which in the case (E, l) = (E
1/2
dens, l

1/2
dens) are

also called spin-1/2 density matrix functions and which are functions ρ : Td → E
1/2
dens whence,

by (8.138), ρ = β
1/2
dens◦f where the function f : Td → R3 is defined by f(z) := (β

1/2
dens)

−1(ρ(z)).
Thus, using (8.135) and (8.140), we get

fi(z) = Tr[ρ(z)σi] , (8.146)

ρ(z) = β
1/2
dens(f(z)) =

1

2

(

I2×2 +

3
∑

i=1

fi(z)σi

)

, (8.147)

where fi(z) denotes the i-th component of f(z). Of course since β
1/2
dens ∈ Homeo(R3, E

1/2
dens),

ρ is continuous iff f is continuous. We call an invariant (E
1/2
dens, l

1/2
dens)-field an “equilibrium

spin-1/2 density matrix function”. Due to (8.2), the 1-turn field map P̃[E
1/2
dens, l

1/2
dens, j, A] is

given by

P̃ [E
1/2
dens, l

1/2
dens, j, A](ρ) = l

1/2
dens

(

A ◦ j−1; ρ ◦ j−1

)

. (8.148)

Because the SO(3)-spaces (R3, lv) and (E
1/2
dens, l

1/2
dens) are isomorphic, we get easy insight into

P̃[E
1/2
dens, l

1/2
dens, j, A] by using once again the Second ToA Transformation Rule. In fact recall-

ing Section 8.2.6 we find via (8.52) that P̃[E
1/2
dens, l

1/2
dens, j, A] ◦ β̃

1/2
dens = β̃

1/2
dens ◦ P̃ [R3, lv, j, A]

whence and since, by Remark 1, P̃ [R3, lv, j, A] = P̃ [j, A] we get

P̃[E
1/2
dens, l

1/2
dens, j, A] ◦ β̃

1/2
dens = β̃

1/2
dens,tot ◦ P̃ [j, A] , (8.149)

where the function β̃
1/2
dens : C(Td,R3) → C(Td, E

1/2
dens) is defined, for f ∈ C(Td,R3), by

β̃
1/2
dens(f) := β

1/2
dens ◦ f . It thus follows by Remark 16 that an f ∈ C(Td,R3) is an invari-

ant polarization field of (j, A) iff β
1/2
dens ◦ f is an invariant (E

1/2
dens, l

1/2
dens)-field of (j, A).

We thus have proved:
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Theorem 8.12 The function β
1/2
dens belongs to Homeo(R3, E

1/2
dens). Let ρ : Td → E

1/2
dens. Then

a unique function f : Td → R3 exists such that ρ = β
1/2
dens ◦ f , i.e., (8.147) holds where fi(z)

denotes the i-th component of f(z). Moreover ρ is continuous iff f is continuous. Moreover,
let (j, A) ∈ SOS(d, j). Then ρ is an equilibrium spin-1/2 density matrix function of (j, A),

i.e., is an invariant (E
1/2
dens, l

1/2
dens)-field of (j, A) iff f is an invariant polarization field of (j, A).

✷

Because of Theorem 8.12 the study of equilibrium spin-1/2 density matrix functions ef-
fectively amounts to the study of invariant polarization fields. See [BV2] too. Since invariant
polarization fields are studied in other parts of this work the remainder of this section can
be brief and so we leave the application of the NFT, DT etc. as an exercise to the reader
and conclude this section with Remarks 27 and 28.

Recalling that E
1/2
dens is Hausdorff we can address topological transitivity by applying

Lemma 8.4 to (E, l) = (E
1/2
dens, l

1/2
dens) in the following remark:

Remark:

(27) Recalling that β
1/2
dens is an isomorphism from (R3, lv) to (E

1/2
dens, l

1/2
dens) we note, by Defini-

tion 4.3, that β
1/2
dens maps each (R3, lv)-orbit, i.e., each sphere S2

λ onto an (E
1/2
dens, l

1/2
dens)-

orbit and that (β
1/2
dens)

−1 maps each (E
1/2
dens, l

1/2
dens)-orbit onto an (R3, lv)-orbit. Let

(j, A) ∈ SOS(d, j) with j topologically transitive and let ρ be an equilibrium den-

sity matrix function of (j, A). Since E
1/2
dens is Hausdorff we can apply Lemma 8.4 and

we conclude that ρ takes values in only one (E
1/2
dens, l

1/2
dens)-orbit whence by the above

f := (β
1/2
dens)

−1 ◦ ρ takes values in only one (R3, lv)-orbit. However this is no surprise
since from Theorem 8.12 we know that f is an invariant polarization field of (j, A)
whence, by applying Lemma 8.4 to (E, l) = (R3, lv), we see once again that f takes
values in only one (R3, lv)-orbit. ✷

The following remark sketches how one uses spin-1/2 density matrices for the statistical
description of a bunch of spin-1/2 particles:

Remark:

(28) One can describe a bunch of spin-1/2 particles statistically by a function ρtot : Z ×
Td×Λ → C2×2 of the form ρtot(n, z, J) := (1/2π)dρeq(J)ρspin(n, z, J) where (1/2π)

dρeq
describes the equilibrium particle distribution in the bunch and where ρspin : Z×Td ×
Λ → E

1/2
dens has the property that each of the functions ρspin(n, ·, J) moves as a spin-

1/2 density matrix function, i.e., moves into P̃[E
1/2
dens, l

1/2
dens, j, A](ρspin(n, ·, J)) after one

turn. Clearly we deal here with the Schroedinger picture. Of course ρspin = β
1/2
dens ◦ f ,

i.e., ρspin(n, z, J) =
1
2
(I2×2 +

∑3
i=1 fi(n, z, J)σi) where fi is the i-th component of f .

Note that the domain, Λ, of the action variable J was introduced in Section 7.1.

Let O : Td × Λ → C2×2 be a “physical observable”, i.e., let every value O(z, J)
be a hermitian 2 × 2-matrix whence O(z, J) = g0(z, J) +

∑3
i=1 mi(z, J)σi where

m0, m1, m2, m3 : T
d × Λ → R. Then the “expectation value” < O > (n) of O at time
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n is defined by

< O > (n) := (1/2π)d
∫

[0,2π]d×Λ

Tr

[

ρtot(n, πd(φ), J)O(πd(φ), J)

]

dφdJ

=

∫

[0,2π]d×Λ

ρeq(J)

(

m0(πd(φ), J) +

3
∑

i=1

mi(πd(φ), J)fi(n, πd(φ), J)

)

dφdJ ,

(8.150)

where in the second equality we used (8.137). For example, in case of the spin observ-
able, i.e., Oi(z, J) := σi, we get from (8.150)

< Oi > (n) = (1/2π)d
∫

[0,2π]d×Λ

ρeq(J)fi(n, πd(φ), J)dφdJ , (8.151)

which is the i-th component of the polarization vector of the bunch, i.e., the bunch

polarization is P (n) =
√

∑3
i=1 (< Oi > (n))2 which we used in Section 7.1 for the defi-

nition of P (n) in eq. (7.8). At equilibrium, ρspin(n, ·, J) = ρspin(0, ·, J) and ρspin(0, ·, J)
is an equilibrium spin-1/2 density matrix function of (j, A).

The choice (E
1/2
dens, l

1/2
dens) and the above theory of ρtot follows from the semiclassical

treatment of Dirac’s equation in terms of Wigner functions where the particle-variables
z and J are purely classical (see [BHHV] and the references therein). ✷

8.6.2 Spin-1 particles. Applying the ToA to (E1
dens, l

1
dens)

In this section we introduce the SO(3)-space (E1
dens, l

1
dens) to enable the use of the ToA for the

study of the density matrix function to be employed for polarized beams of spin-1 particles
[BV2]. As in Sections 8.3-8.5 the focus is on the field motion.

To accomplish this we first introduce the particle-spin motion and field motion of spin-1
particles which can be described by the ToA in terms of the SO(3)-space (Ev×t, lv×t) where

Ev×t := R
3 ×Et , (8.152)

and where the function lv×t : SO(3)× Ev×t → Ev×t is defined by

lv×t(r;S,M) := (lv(r;S), lt(r;M)) = (rS, rMrt) , (8.153)

with r ∈ SO(3), S ∈ R3,M ∈ Et. We equip Ev×t with the subspace topology from R3×R3×3.
Thus, and since R3×R3×3 with its natural topology is a Hausdorff space, Ev×t is a Hausdorff
space, too. Since (R3, lv) and (Et, lt) are SO(3)-spaces it follows from (8.152) and (8.153)
that (Ev×t, lv×t) is an SO(3)-space. Using (8.1) and (8.153) it is a simple exercise to show
that the 1-turn particle-spin map satisfies

P[Ev×t, lv×t, j, A](r; z, S,M) =

(

j(z), lv(A(z);S), lt(A(z);M)

)

. (8.154)

83



Clearly if F : Td → Ev×t is a function, then unique functions fF : Td → R3 and TF : Td → Et

exist such that

F (z) = (fF (z), TF (z)) , (8.155)

and it is an easy exercise to show that F is continuous iff fF and TF are continuous. Using
(8.2), (8.153) and (8.155) it is simple to show that the 1-turn field map satisfies

P̃ [Ev×t, lv×t, j, A](F ) = lv×t

(

A ◦ j−1;F ◦ j−1

)

=

(

lv(A ◦ j−1; fF ◦ j−1), lt(A ◦ j−1;TF ◦ j−1)

)

=

(

P̃[j, A](fF ), P̃[Et, lt, j, A](tF )

)

,

(8.156)

where F ∈ C(Td,R3 × Et). If fF is an invariant polarization field of (j, A) and TF is an
invariant (Et, lt)-field of (j, A) then, by (8.156), P̃ [Ev×t, lv×t, j, A](F ) =
(P̃[j, A](fF ), P̃[Et, lt, j, A](tF )) = (fF , tF ) = F whence F is an invariant (Ev×t, lv×t)-field of
(j, A). Conversely if F is an invariant (Ev×t, lv×t)-field of (j, A) then, by (8.156), (fF , tF ) =
F = P̃[Ev×t, lv×t, j, A](F ) = (P̃[j, A](fF ), P̃[Et, lt, j, A](tF )) whence fF is an invariant polar-
ization field of (j, A) and TF is an invariant (Et, lt)-field of (j, A). We thus have proven that
F is an invariant (Ev×t, lv×t)-field of (j, A) iff fF is an invariant polarization field of (j, A)
and TF is an invariant (Et, lt)-field of (j, A). This completes our outline of the particle-spin
and field motion of spin-1 particles and we can now study spin-1 density matrices.

We define

E1
dens := {R ∈ C

3×3 : R† = R, Tr[R] = 1} , (8.157)

where R† denotes the hermitian conjugate of the matrix R and we equip E1
dens with the

subspace topology from C3×3. Thus, and since C3×3 with its natural topology is a Hausdorff
space, E1

dens is a Hausdorff space, too. Following a standard parametrization [BV2] we define
the function β1

dens : Ev×t → E1
dens for S ∈ R3,M ∈ Et by

β1
dens(S,M) :=

1

3

(

I3×3 +

3
∑

i=1

SiJi +

√

3

2

3
∑

i,k=1

Mik(JiJk + JkJi)

)

, (8.158)

where the matrices J1, J2, J3 are defined by

J1 :=

√

1

2





0 −i 0
i 0 −i
0 i 0



 , J2 :=





1 0 0
0 0 0
0 0 −1



 , J3 :=

√

1

2





0 1 0
1 0 1
0 1 0



 .(8.159)

Clearly every Jk is hermitian, i.e., J†
k = Jk whence, by (8.158), β1

dens(S,M) is hermitian too.
For i, k = 1, 2, 3,

Tr[Ji] = 0 , T r[JiJk] = 2δik , (8.160)

whence, by (8.158) and since Tr[M ] = 0, we have Tr[β1
dens(S,M)] = 1. So β1

dens(S,M) is
a hermitian matrix of trace 1, i.e., it is indeed a function into E1

dens. To show that β1
dens
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is a homeomorphism we first note [BV2] that by (8.159), and if R ∈ C3×3 is hermitian,
then real numbers S ′

0, S
′
1, S

′
2, S

′
3 and an M ′ ∈ Et exist such that R = S ′

0I3×3 +
∑3

i=1 S
′
iJi +

∑3
i,k=1 M

′
ik(JiJk + JkJi) whence, by (8.157) and (8.160) and if R ∈ E1

dens, we get S ′
0 = 1/3

so that R = β1
dens(S,M) for some S ∈ R3 andM ∈ Et. Thus the function β

1
dens is onto E

1
dens,

i.e.,

E1
dens = {β1

dens(S,M) : S ∈ R
3,M ∈ Et} . (8.161)

It also follows [BV2] from (8.158) and (8.159) that, for S ∈ R3,M ∈ Et and i, k = 1, 2, 3,

Si = Tr[Jiβ
1
dens(S,M)] , Mik = −

√

2

3
δik +

√

3

8
Tr[(JiJk + JkJi)β

1
dens(S,M)] , (8.162)

where Si denotes the i-th component of S and where Mik denotes the (ik)-th matrix element
of M . Thus S and M are uniquely determined by β1

dens(S,M) whence β1
dens is one-one so

that we conclude that β1
dens is a bijection. Since β1

dens is a bijection it follows from (8.158)
and (8.162) that its inverse, (β1

dens)
−1, is defined for R ∈ E1

dens by

(β1
dens)

−1(R) := (S,M) , Si := Tr[JiR] , Mik = −
√

2

3
δik +

√

3

8
Tr[(JiJk + JkJi)R] ,

(8.163)

where Si denotes the i-th component of S and where Mik denotes the (ik)-th matrix element
of M . Moreover, by (8.158) and (8.163), both β1

dens and (β1
dens)

−1 are continuous functions
whence β1

dens ∈ Homeo(Ev×t, E
1
dens), a fact which plays a key role in this section.

We now define the function l1dens : SO(3)× E1
dens → E1

dens by

l1dens(r;R) := β1
dens

(

lv×t(r; (β
1
dens)

−1(R))

)

, (8.164)

i.e., by (8.153),

l1dens(r; β
1
dens(S,M)) = β1

dens(lv×t(r;S,M)) = β1
dens(rS, rMrt) , (8.165)

with r ∈ SO(3), S ∈ R3,M ∈ Et. Recalling that (Ev×t, lv×t) is an SO(3)-space and that
β1
dens ∈ Homeo(Ev×t, E

1
dens) it follows from (8.164) that (E1

dens, l
1
dens) is an SO(3)-space

and that β1
dens is an isomorphism from the SO(3)-space (Ev×t, lv×t) to the SO(3)-space

(E1
dens, l

1
dens).

Due to (8.1), the 1-turn particle-spin map P[E1
dens, l

1
dens, j, A] is given by

P[E1
dens, l

1
dens, j, A](z, R) =

(

j(z)
l1dens(A(z);R)

)

, (8.166)

where z ∈ T
d, R ∈ E1

dens. Because the SO(3)-spaces (Ev×t, lv×t) and (E1
dens, l

1
dens) are isomor-

phic, we get easy insight into P[E1
dens, l

1
dens, j, A] by using the Second ToA Transformation

Rule. In fact recalling Section 8.2.6 we obtain via (8.47) that

P[E1
dens, l

1
dens, j, A] ◦ β1

dens,tot = β1
dens,tot ◦ P[Ev×t, lv×t, j, A] , (8.167)
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i.e.,

P[E1
dens, l

1
dens, j, A](z, β

1
dens(S,M)) = P[E1

dens, l
1
dens, j, A](β

1
dens,tot(z, S,M))

=

(

j(z)
β1
dens(A(z)S,A(z)MAt(z))

)

, (8.168)

where z ∈ T
d, S ∈ R

3,M ∈ Et and where the function
β1
dens,tot ∈ Homeo(Td × Ev×t,T

d × E1
dens) is defined, for z ∈ Td, S ∈ R3,M ∈ Et, by

β1
dens,tot(z, S,M) := (z, β1

dens(S,M)).
We now come to our main focus, the fields, which in the case (E, l) = (E1

dens, l
1
dens) are

also called spin-1 density matrix functions and which are functions ρ : Td → E1
dens so that

ρ = β1
dens ◦ F where the function F : Td → Ev×t is defined by F (z) := (β1

dens)
−1(ρ(z)).

Clearly F = (fF , TF ) where fF : Td → R3 and TF : Td → Et are uniquely determined by
(8.155). Thus, by (8.158), (8.161) and (8.163), we get

(fF )i(z) = Tr[ρ(z)Ji] , (TF )ik(z) = −
√

2

3
δik +

√

3

8
Tr[(JiJk + JkJi)ρ(z)] ,(8.169)

ρ(z) = β1
dens(fF (z), TF (z))

=
1

3

(

I3×3 +

3
∑

i=1

(fF )i(z)Ji +

√

3

2

3
∑

i,k=1

(TF )ik(z)(JiJk + JkJi)

)

, (8.170)

where (fF )i denotes the i-th component of fF and where (TF )ik denotes the (ik)-th matrix el-
ement of TF . Of course, since β1

dens ∈ Homeo(Ev×t, E
1
dens), ρ is continuous iff F is continuous,

i.e., iff fF and TF are continuous. We call an invariant (E1
dens, l

1
dens)-field an “equilibrium

spin-1 density matrix function”. Due to (8.2), the 1-turn field map P̃ [E1
dens, l

1
dens, j, A] is

given by

P̃ [E1
dens, l

1
dens, j, A](ρ) = l1dens

(

A ◦ j−1; ρ ◦ j−1

)

. (8.171)

Because the SO(3)-spaces (Ev×t, lv×t) and (E1
dens, l

1
dens) are isomorphic, we get easy insight

into P̃[E1
dens, l

1
dens, j, A] by using once again the Second ToA Transformation Rule. In fact

recalling Section 8.2.6 we obtain via (8.52) that

P̃[E1
dens, l

1
dens, j, A] ◦ β̃1

dens = β̃1
dens ◦ P̃[Ev×t, lv×t] , (8.172)

where the function β̃1
dens : C(Td, Ev×t) → C(Td, E1

dens) is defined, for F ∈ C(Td, Ev×t), by
β̃1
dens(F ) := β1

dens ◦ F . It thus follows by Remark 16 that an F ∈ C(Td, Ev×t) is an invariant
(Ev×t, lv×t)-field of (j, A) iff β1

dens ◦ F is an invariant (E1
dens, l

1
dens)-field of (j, A), that is, an

equilibrium spin-1 density matrix function of (j, A). Thus, by the remarks after (8.156), a
ρ ∈ C(Td, E1

dens) is an equilibrium spin-1 density matrix function of (j, A) iff fF is an invariant
polarization field of (j, A) and TF is an invariant (Et, lt)-field of (j, A) where F ∈ C(Td, Ev×t)
is defined by F := (β1

dens)
−1 ◦ ρ.

We thus have proven:
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Theorem 8.13 The function β1
dens belongs to Homeo(Ev×t, E

1
dens). Let ρ : Td → E1

dens.
Then a unique function F : Td → Ev×t exists such that ρ = β1

dens◦F . Moreover F = (fF , TF )
where fF : Td → R

3 and TF : Td → Et are uniquely determined by F via (8.155). Also F
is continuous iff fF and TF are continuous. Furthermore ρ = β1

dens ◦ (fF , TF ), i.e., (8.170)
holds where (fF )i denotes the i-th component of fF and (TF )ik denotes the (ik)-th matrix
element of TF . Moreover ρ is continuous iff fF and TF are continuous. In addition let
(j, A) ∈ SOS(d, j). Then ρ is an equilibrium spin-1 density matrix function of (j, A), i.e.,
is an invariant (E1

dens, l
1
dens)-field of (j, A) iff fF is an invariant polarization field of (j, A)

and TF is an invariant (Et, lt)-field of (j, A). ✷

Because of Theorem 8.13 the study of equilibrium spin-1 density matrix functions effec-
tively amounts to to the study of invariant polarization fields and invariant (Et, lt)-fields.
Since those invariant fields have been studied in other parts of this work this section has
been rather brief and we leave the application of the NFT, DT etc. as an exercise for the
reader.

Moreover we leave a remark on how to address topological transitivity by applying Lemma
8.4 to (E, l) = (E1

dens, l
1
dens) to the reader since it would be analogous to Remark 27. In

particular in the case of topological transitivity the values of the invariant (Et, lt)-field TF
are matrices with the same number of distinct eigenvalues and the case of three eigenvalues
is of interest only on spin-orbit resonance.

Furthermore we leave a remark on how to use spin-1 density matrices for the statistical
description of a bunch of spin-1 particles to the reader since it would be analogous to Remark
28.

8.7 The topological spaces Êd[E, l, x, f ]
We now come to an intriguing feature of the ToA, namely the topological spaces Êd[E, l, x, f ]
to be defined below. They allow us to study invariant (E, l)-fields f , and in particular each
ISF, in terms of Êd[E, l, x, f ]. This leads to a significant avenue for studying the question of
the existence of f and for studying IFF’s and the generalized IFF’s.

8.7.1 Encapsulating invariant (E, l)-fields in the topological spaces Êd[E, l, x, f ].
The Invariant Reduction Theorem (IRT)

We first need a definition:

Definition 8.14 Let (E, l) be an SO(3)-space and x, y ∈ E and let f ∈ C(Td, E) take values
only in l(SO(3); x). We define R[E, l, x, y] := {r ∈ SO(3) : l(r; x) = y}. We also define
Ed := Td × SO(3) and pd ∈ C(Ed,Td) by pd(z, r) := z as well as

Êd[E, l, x, f ] ≡ Êd[f ] := {(z, r) ∈ Ed : l(r; x) = f(z)} = {(z, r) ∈ Ed : r ∈ R[E, l, x, f(z)]}

=
⋃

z∈Td

(

{z} × R[E, l, x, f(z)]

)

⊂ Ed , (8.173)

and equip Êd[f ] with the subspace topology from Ed. Note that Ed is the compact topological
space equipped with the product topology from Td and SO(3). We will use the abbreviation
Êd[f ] when E, l and x are clear from the context.
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We also define the function P̂[j, A] : Ed → Ed by

P̂ [j, A](z, r) :=

(

j(z)
A(z)r

)

, (8.174)

where z ∈ T
d and r ∈ SO(3). Note that, by (8.174) and Remark 9,

P̂[j, A] = P[SO(3), lSOR; j, A] whence, recalling Section 8.2.1, P̂[j, A] ∈ Homeo(Ed). ✷

Note that if r ∈ R[E, l, x, y] then R[E, l, x, y] = rIso(E, l, x), i.e., every R[E, l, x, y] is a
“copy” of Iso(E, l, x). More precisely, R[E, l, x, y] is a so-called left coset of the subgroup
Iso(E, l, x) of SO(3) with respect to r. It is also a simple exercise to show, by (8.173), that
if Êd[f ] = Êd[g] then f = g.

In the following remark we derive another important property of Êd[f ].
Remark:

(29) Let (E, l) be an SO(3)-space where E is Hausdorff and let Êd[f ] be given as in Definition
8.14. Then the topological space Êd[f ] is compact as follows. In fact we note, by (8.173),
that

Êd[f ] = {(z, r) ∈ Ed : l(r; x) = f(z)} = {(z, r) ∈ Ed : x = l(rt; f(z))}
= {(z, r) ∈ Ed : l(rt; f(z)) ∈ {x}} ⊂ Ed , (8.175)

whence Êd[f ] is the inverse image of {x} under a continuous function. Since E is
Hausdorff, {x} is a closed subset of E whence we conclude that Êd[f ] is a closed subset
of the compact topological space Ed. This implies that Êd[f ] is compact [Mu]. ✷

With Definition 8.14 we arrive at:

Theorem 8.15 (IRT) Let (E, l) be an SO(3)-space and x ∈ E and let f ∈ C(Td, E) take
values only in l(SO(3); x). Then f is an invariant (E, l)-field of (j, A) iff
P̂[j, A](Êd[f ]) = Êd[f ].

Proof of Theorem 8.15: We conclude from (8.173),(8.174) that

P̂[j, A](Êd[f ]) = P̂[j, A]({(z, r) ∈ Ed : l(r; x) = f(z)})

=

{

(j(z), A(z)r) : (z, r) ∈ Ed, l(r; x) = f(z)

}

=

{

(z′, r′) ∈ Ed : l
(

At(j−1(z′))r′; x

)

= f(j−1(z′))

}

=

{

(z′, r′) ∈ Ed : l(r′; x) = l

(

A(j−1(z′)); f(j−1(z′))

)}

= {(z′, r′) ∈ Ed : l(r′; x) = f ′(z′)} = Êd[f ′] , (8.176)

where f ′ ∈ C(Td, E) is defined by f ′ := P̃[E, l, j, A](f), i.e. (recall (8.2)),
f ′(z) = l(A(j−1(z)); f(j−1(z))).
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If f is an invariant (E, l)-field of (j, A) then, by Section 8.2.1, f = f ′ whence, by (8.176),
P̂[j, A](Êd[f ]) = Êd[f ].

Conversely, let P̂ [j, A](Êd[f ]) = Êd[f ]. Then, by (8.176), Êd[f ′] = Êd[f ] where f ′ :=
P̃[E, l, j, A](f). It follows from the remark after Definition 8.14 that f = f ′ whence f is an
invariant (E, l)-field of (j, A). ✷

We will see below how the topological spaces Êd[f ] in Theorem 8.15 can be used for the
question of the existence of invariant (E, l)-fields in particular ISF’s (recall that an ISF takes
values only in lv(SO(3); (0, 0, 1)

t)).
The terminology “reduction” refers to Ed being “reduced” to the subspace Êd[f ] and the

terminology “invariant” refers to the invariance condition: P̂ [j, A](Êd[f ]) = Êd[f ], i.e., Êd[f ]
is an invariant subset of Ed under the function P̂[j, A]. For more details and the definition
of invariant reductions, see [Fe, Zi2] and Chapter 9 in [HK1] as well as our comments on
bundle theory in Section 8.8. By the bundle aspect of the IRT the concept of ISF is rather
deep.

With Definition 8.14 we have encapsulated f into the topological space Êd[E, l, x, f ] ≡
Êd[f ]. Below we will see how one gets insight into Êd[f ] in terms of the f -independent
topological spaces Ěd[z, y] which we now define:

Definition 8.16 Let (E, l) be an SO(3)-space and x, y ∈ E. Let also (j, A) ∈ SOS(d, j)
and z ∈ Td. Then we define

Ěd[E, l, j, A, z, x, y] ≡ Ěd[z, y] :=
⋃

n∈Z

P̂[j, A]n({z} × {r ∈ SO(3) : l(r; x) = y})

=
⋃

n∈Z

(

{jn(z)} × {r ∈ SO(3) : l(r; x) = l(Ψ[j, A](n; z); y)}
)

=
⋃

n∈Z

(

{jn(z)} ×R[E, l, x, l(Ψ[j, A](n; z); y)]

)

⊂ Ed , (8.177)

where in the third equality we used (8.9). Clearly Ěd[z, y] is nonempty iff x, y belong to the

same (E, l)-orbit. We equip Ěd[z, y] and Ěd[z, y] with the subspace topology from Ed. We will
use the abbreviation Ěd[z, y] when E, l, j, A and x are clear from the context. ✷

The following corollary to the IRT gives us a first glimpse into how one gets insight into
Êd[f ] by the topological spaces Ěd[z, y]:

Theorem 8.17 Let (E, l) be an SO(3)-space and (j, A) ∈ SOS(d, j). Also let

Êd[f ] = Ěd[z, y] . (8.178)

Then f is an invariant (E, l)-field of (j, A) and j is topologically transitive. Moreover if

(z′, r′) ∈ Ěd[z, y] then f(z′) = l(r′; x).
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Proof of Theorem 8.17: Since the image of a union is a union of images we conclude from
(8.177) that

P̂ [j, A](Ěd[z, y]) =
⋃

n∈Z

P̂ [j, A]n+1({z} × {r ∈ SO(3) : l(r; x) = y})

=
⋃

n∈Z

P̂[j, A]n({z} × {r ∈ SO(3) : l(r; x) = y}) = Ěd[z, y] , (8.179)

i.e., Ěd[z, y] is invariant under P̂ [j, A]. Since P̂[j, A] is a homeomorphism we get from (8.179)

Ěd[z, y] = P̂[j, A](Ěd[z, y]) = P̂[j, A](Ěd[z, y]) , (8.180)

where in the second equality we used [Du, Section III.12]. By (8.180), Ěd[z, y] is invariant
under P̂[j, A] whence, by our assumption (8.178), Êd[f ] is invariant under P̂ [j, A] and this
implies, by the IRT, that f is an invariant (E, l)-field of (j, A). Using (8.178) and Definition
8.14 we get

T
d = pd(Êd[f ]) = pd(Ěd[z, y]) ⊂ pd(Ěd[z, y]) =

⋃

n∈Z

{jn(z)} = {jn(z) : n ∈ Z} ⊂ T
d ,

where in the inclusion we used [Du, Section III.8]. Thus Td = {jn(z) : n ∈ Z} whence j is

topologically transitive (recall Section 2.3). Furthermore if (z′, r′) ∈ Ěd[z, y] then, by (8.178),
(z′, r′) ∈ Êd[f ] whence, by Definition 8.14, f(z′) = l(r′; x). ✷

Since Ěd[z, y] is a closed subset of the compact topological space Ed and since it is equipped
with the subspace topology from Ed, it is a compact topological space [Mu]. A key motivation
of using Ěd[z, y] for the existence problem of invariant (E, l)-fields is our belief that, unless

(8.178) holds, the topological spaces Ěd[z, y] are in general different from the Êd[f ] and this
may display itself in different homology and homotopy groups and other features of these
topological spaces. Thus in this approach to the existence problem one “scans” through all

Ěd[z, y] by varying y over l(SO(3); x). However this issue is beyond the scope of this work.
In the following section we will get more insight into the relation between Êd[f ] and

Ěd[z, y].

8.7.2 Further properties of the topological spaces Êd[E, l, x, f ]. The Cross Section
Theorem (CST)

In the situation of the NFT one has an SO(3)-space (E, l) and an x ∈ E as well as functions
T ∈ C(Td, SO(3)) and f ∈ C(Td, E) which are related by f(z) = l(T (z); x), i.e., T is an
(E, l)-lift of f . Note that a necessary condition to satisfy this relation is that f takes values
only in l(SO(3); x). Perhaps surprisingly, it is not a sufficient condition, i.e., there are
situations where f ∈ C(Td, E) takes only values in l(SO(3); x) and where nevertheless no
T ∈ C(Td, SO(3)) exists such that f(z) = l(T (z); x). This is quite remarkable since, if f
takes values only in l(SO(3); x), then there exists for each z a T (z) ∈ SO(3) such that
f(z) = l(T (z); x), i.e., there always exists a function T : Td → SO(3) such that f(·) =
l(T (·); x). Interesting examples arise in the case of Chapters 2-7 where (E, l) = (R3, lv). In
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fact one can show by using simple arguments from Homotopy Theory [He2] that, if d ≥ 2,
then f ∈ C(Td,R3) exist such that f takes values only in lv(SO(3); (0, 0, 1)

t), i.e., such that
|f(z)| = 1 and no continuous T : Td → SO(3) exists such that f(z) = lv(T (z); (0, 0, 1)

t) (of
course T exists if we relax the continuity condition on T ). One can also show by using simple
arguments from Homotopy Theory [He2] that for every f ∈ C(T1,R3) such that |f(z)| = 1
an T ∈ C(T1, SO(3)) exists such that f(z) = lv(T (z); (0, 0, 1)

t).
The central theme of this section is to show how the set Êd[f ] gives a simple sufficient

and necessary condition on f to be of the form f(z) = l(T (z); x) with T ∈ C(Td, SO(3)). In
fact this condition, stated in Theorem 8.19 below, is the existence of a “cross section” of the
function pd[E, l, x, f ] (to be defined below). Thus in the situation of the NFT a cross section
exists.

We first define pd[f ] and the function Υd[T ] and its restriction.

Definition 8.18 Let (E, l) be an SO(3)-space and x ∈ E and let f ∈ C(Td, E) take values
only in l(SO(3); x). Thus Êd[f ] is well-defined and we define the function pd[E, l, x, f ] ∈
C(Êd[f ],Td) by

pd[E, l, x, f ](z, r) ≡ pd[f ](z, r) := z , (8.181)

where z ∈ Td, r ∈ SO(3). We will use the abbreviation pd[f ] when E, l and x are clear from
the context. Clearly pd[f ] is surjective since, by Definition 8.14 and for every z ∈ Td, there
is an r ∈ SO(3) such that (z, r) ∈ Ed[f ].

Given T : Td → SO(3), we define the function Υd[T ] : Ed → Ed by

Υd[T ](z, r) := (z, T (z)r) . (8.182)

We also define the surjection Υ̂d[E, l, x, T ] : T
d×Iso(E, l; x) → Υ̂d[E, l, x, T ](T

d×Iso(E, l; x))
as the restriction of Υd[T ], i.e.,

Υ̂d[E, l, x, T ](z, r) ≡ Υ̂d[T ](z, r) := Υd[T ](z, r) = (z, T (z)r) . (8.183)

We will use the abbreviation Υ̂d[T ] when E, l and x are clear from the context. ✷

It is an easy exercise to show that Υd[T ] is a bijection and that Υd[T
t] is its inverse. Moreover

if T is continuous then, by (8.174) and (8.182), Υd[T ] = P̂ [idTd , T ] whence in this case, by
Definition 8.14, Υd[T ] ∈ Homeo(Ed). Note also, by (8.183) and Definition 8.14, that the
range of Υ̂d[T ] reads as

Υ̂d[E, l, x, T ](T
d × Iso(E, l; x)) =

⋃

z∈Td

(

{z} × T (z)Iso(E, l; x)

)

=
⋃

z∈Td

(

{z} × R[E, l, x, l(T (z); x)]

)

. (8.184)

Moreover since Υd[T ] is a bijection, so is Υ̂d[T ] and the latter’s inverse Υ̂d[T ]
−1 is defined by

Υ̂d[T ]
−1(z, r) := Υd[T

t](z, r).
Since pd[f ] is a surjection it has a right-inverse, i.e., a function σ : Td → Êd[f ] such

that pd[f ] ◦ σ = idTd . Note that, by Definition 8.14, pd[f ] has more than one right-inverse
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except for the case when Iso(E, l; x) = G0. Furthermore even though pd[f ] is continuous,
it does not always have a continuous right-inverse. A cross section of pd[f ] is, by definition,
a continuous right-inverse (see also Appendix A.4) and the following theorem sheds light at
the cross sections of pd[f ].

Theorem 8.19 (CST)
Let (E, l) be an SO(3)-space and let x ∈ E. Abbreviating H := Iso(E, l; x) the following hold.

a) Let f ∈ C(Td, E) take values only in l(SO(3); x). Then pd[f ] has a cross section iff a
T ∈ C(Td, SO(3)) exists such that f(z) = l(T (z); x). In other words, pd[f ] has a cross section
iff f has an (E, l)-lift (see the remarks after the NFT).

b) Let f ∈ C(Td, E) take values only in l(SO(3); x) and let us pick a function T : Td → SO(3)
such that f(z) = l(T (z); x). Then the bijection Υ̂d[T ] is onto Êd[f ]. Also T is continuous iff
Υ̂d[T ] is a homeomorphism, i.e., Υ̂[T ] ∈ Homeo(Td ×H, Êd[f ]).

c) Let x ∈ E and (j, A) ∈ SOS(d, j). Let f be an invariant (E, l)-field of (j, A) which takes
values only in l(SO(3); x). Then pd[f ] has a cross section iff a T in T FH(j, A) exists such
that f(z) = l(T (z); x). Moreover if pd[f ] has a cross section then (j, A) ∈ CBH(d, j).

Proof of Theorem 8.19a: “⇒”: Let σ be a cross section of pd[f ]. Since σ ∈ C(Td, Êd[f ]) and
Êd[f ] ⊂ Ed we have σ(z) = (τ(z), T (z)) where τ ∈ C(Td,Td) and T ∈ C(Td, SO(3)). We com-
pute z = idTd(z) = pd[f ](σ(z)) = pd[f ](τ(z), T (z)) = τ(z) whence σ(z) = (z, T (z)) ∈ Êd[f ]
so that, by Definition 8.14, f(z) = l(T (z); x).

“⇐”: Let T ∈ C(Td, SO(3)) such that f(z) = l(T (z); x). Thus, by (8.173), (z, T (z)) ∈
Êd[f ] whence with the function σ ∈ C(Td, Êd[f ]) defined by σ(z) := (z, T (z)), we see that
pd[f ](σ(z)) = z. Therefore pd[f ] ◦ σ = idTd so that σ is a cross section of pd[f ]. ✷

Proof of Theorem 8.19b: It follows from (8.184) and Definition 8.14 that

Υ̂d[E, l, x, T ](T
d ×H) =

⋃

z∈Td

(

{z} ×R[E, l, x, l(T (z); x)]

)

=
⋃

z∈Td

(

{z} × R[E, l, x, f(z)]

)

= Êd[E, l, x, f ] ,

whence Υ̂d[T ] is onto Êd[f ]. To prove the second claim, first of all, let T be continuous. Thus,
by the remarks after Definition 8.18, Υd[T ] ∈ Homeo(Ed). Then, recalling from the remarks
after Definition 8.18, that Υ̂d[T ] is a bijection and a restriction of Υd[T ] we conclude that
Υ̂d[T ] ∈ Homeo(Td ×H, Êd[f ]). Secondly let Υ̂d[T ] ∈ Homeo(Td ×H, Êd[f ]). It follows from
(8.183) that (z, T (z)) = Υ̂d[T ](z, I3×3) whence, since Υ̂d[T ] is continuous, so is T . ✷

Proof of Theorem 8.19c: Let first of all pd[f ] have a cross section. Thus, by Theorem 8.19a,
a T ∈ C(Td, SO(3)) exists such that f(z) = l(T (z); x). Since f is an invariant (E, l)-field
of (j, A) we thus conclude from the NFT, Theorem 8.1, that T ∈ T FH(j, A). Let secondly
T ∈ T FH(j, A) such that f(z) = l(T (z); x). Thus T is continuous whence, by Theorem
8.19a, pd[f ] has a cross section. This completes the proof of the first claim. It follows from
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the first claim that if pd[f ] has a cross section then T FH(j, A) is nonempty whence, by
Definition 5.1, (j, A) ∈ CBH(d, j). ✷

The following remark reconsiders IFF’s in terms of the CST:

Remark:

(30) Let (j, A) ∈ SOS(d, j) have an invariant polarization field f which takes values
only in lv(SO(3);Sλ) = S2

λ where λ > 0, i.e., |f | = λ > 0. Then, by Theo-
rem 8.19c, pd[R

3, lv, Sλ, f ] has a cross section iff a T in T FH(j, A) exists such that
f(z) = lv(T (z);Sλ), i.e., iff f(z) = λT (z)(0, 0, 1)t where H := Iso(R3, lv, Sλ) = SO(2).
Thus, by Definition 5.3, pd[R

3, lv, Sλ, f ] has a cross section iff (j, A) has an IFF whose
third column is f/λ. ✷

A similar remark could be made about SOR by using (E, l) = (SO(3), lSOR). For the bundle
aspect of the CST see Section 8.8. By the bundle aspect of the CST the above remarks
indicate that the concepts of IFF and SOR are rather deep.

As mentioned after Theorem 8.17, a key motivation of using Ěd[z, y] for the existence

problem of invariant (E, l)-fields is our belief that the topological spaces Ěd[z, y] are in general
different from the Êd[f ] unless (8.178) holds. The CST sheds further light on this issue since,
by Theorem 8.19a-b, Êd[f ] is homeomorphic to Td × Iso(E, l; x) if pd[f ] has a cross section

whence the key idea is to compare the topological spaces Ěd[z, y] with Td×Iso(E, l; x). Note
that in the important case of the existence problem of the ISF we have Iso(R3, lv; (0, 0, 1)

t) =
SO(2) whence Êd[f ] in this case is homeomorphic to Td+1 (note that SO(2) is homeomorphic
to T1).

The following corollary to the CST is a partial converse of Theorem 8.17 giving us further
insight into the relation between Êd[f ] and Ěd[z, y].

Theorem 8.20 Let (E, l) be an SO(3)-space where E is Hausdorff. Let also (j, A) ∈
SOS(d, j) have an invariant (E, l)-field f and let j be topologically transitive, i.e., let a
z0 ∈ Td exist such that {jn(z0) : n ∈ Z} = Td. By Lemma 8.4 an x ∈ E exists such that f
takes values only in l(SO(3); x). If pd[f ] has a cross section then

Êd[f ] = Ěd[z0, f(z0)] . (8.185)

Proof of Theorem 8.20: Our strategy is to prove that Υ̂d[T ]
−1(Êd[f ]) = Υ̂d[T ]

−1(Ěd[z0, f(z0)]).
Since f is an invariant (E, l)-field of (j, A) it follows from (8.12) that, for every n ∈ Z,
f(jn(z0)) = l(Ψ[j, A](n; z0); f(z0)) whence

Ěd[z0, f(z0)] =
⋃

n∈Z

(

{jn(z0)} × {r ∈ SO(3) : l(r; x) = l(Ψ[j, A](n; z0); f(z0))}
)

=
⋃

n∈Z

(

{jn(z0)} × {r ∈ SO(3) : l(r; x) = f(jn(z0))}
)

⊂ Êd[f ] , (8.186)

where the first equality in (8.186) follows from (8.177). Of course the inclusion in (8.186)
follows from the definition of Êd[f ]. By Theorem 8.19a, a T ∈ C(Td, SO(3)) exists such that
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f(z) = l(T (z); x) whence, by Theorem 8.19b, Υ̂d[T ] ∈ Homeo(Td × H, Êd[f ]) where H :=
Iso(E, l; x). Because of (8.186), Υ̂d[T ]

−1(Ěd[z0, f(z0)]) is well-defined and so we compute

Ěd[z0, f(z0)] = Υ̂d[T ](Υ̂d[T ]−1(Ěd[z0, f(z0)]))
= Υ̂d[T ](Υ̂d[T ]−1(Ěd[z0, f(z0)])) , (8.187)

where in the second equality we used [Du, Section XII.2] and the fact that Υ̂d[T ] is a
homeomorphism. Using (8.182),(8.186) and the remarks after Definition 8.18, we compute

Υ̂d[T ]
−1(Ěd[z0, f(z0)]) = Υd[T

t](Ěd[z0, f(z0)])

= Υd[T
t](
⋃

n∈Z

(

{jn(z0)} × {r ∈ SO(3) : l(r; x) = f(jn(z0))}
)

)

= Υd[T
t](
⋃

n∈Z

(

{jn(z0)} × {r ∈ SO(3) : l(r; x) = l(T (jn(z0)); x)}
)

)

=
⋃

n∈Z

(

{jn(z0)} × {T t(jn(z0))r : r ∈ SO(3), l(r; x) = l(T (jn(z0)); x)}
)

)

=
⋃

n∈Z

(

{jn(z0)} × {r′ ∈ SO(3) : l(T (jn(z0))r
′; x) = l(T (jn(z0)); x)}

)

)

=
⋃

n∈Z

(

{jn(z0)} × {r′ ∈ SO(3) : l(r′; x) = x}
)

)

=

(

⋃

n∈Z

{jn(z0)}
)

×H

= B ×H ,

where B := {jn(z0) : n ∈ Z} which implies

Υ̂d[T ]
−1(Ěd[z0, f(z0)]) = B ×H . (8.188)

To prove (8.185), we conclude from (8.188) that

Υ̂d[T ]−1(Ěd[z0, f(z0)]) = B ×H = B̄ × H̄ = T
d × H̄ = T

d ×H , (8.189)

where in the second equality we used [Du, Section IV.1] and in the fourth equality we used
that H is closed (the latter follows from Remark 17 and the fact that E is Hausdorff).

Inserting (8.189) into (8.187) results in Ěd[z0, f(z0)] = Υ̂d[T ](T
d × H) = Êd[f ] where in the

second equality we used from Theorem 8.19b that Υ̂d[T ] is onto Êd[f ]. ✷

The following remark discusses Theorem 8.20 in the special case of the ISF.

Remark:

(31) Let (j, A) ∈ SOS(d, j) where j is topologically transitive and so we have a z0 ∈ Td

such that the set {jn(z0) : n ∈ Z} is dense in Td. Also let (E, l) = (R3, lv) and f be an
invariant polarization field of (j, A) such that f is not the zero field. By Lemma 8.4
and Remark 13 we can pick a λ ∈ (0,∞) such that f takes values only in the sphere
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l(SO(3);Sλ) = S2
λ. Let also pd[R

3, lv, Sλ, f ] have a cross section, i.e., let by Remark 30
(j, A) have an IFF whose third column is f/λ. Then, by Theorem 8.20,

Êd[R3, lv, Sλ, f ] = Ěd[R3, lv, j, A, z0, Sλ, f(z0)] . (8.190)

Note that in the special case d = 1 the condition, that pd[R
3, lv, Sλ, f ] has a cross

section, is redundant (see the remarks at the beginning of this section). Thus for
addressing the ISF conjecture, one should perhaps start with d = 1. ✷

8.8 Underlying bundle theory

While bundle aspects were not needed in the present work it is worthwhile to mention
them since they are the origin of the ToA (see [Fe, He2, Zi2] and Chapter 9 in [HK1])
and therefore supply a steady flow of ideas, many of which not even mentioned here (e.g.,
algebraic hull, characteristic class, rigidity). The “unreduced” principal bundle underlying
our formalism is a product principal SO(3)-bundle with base space Td, i.e., it can be written
as the 4-tuple (Ed, pd,Td, Ld) where Ed = Td × SO(3) is the bundle space, pd ∈ C(Ed,Td)
the bundle projection, i.e., pd(z, r) := z, and (Ed, Ld) the underlying SO(3)-space where
Ld : SO(3) × Ed → Ed defined by Ld(r; z, r

′) := (z, r′rt). For every (j, A), bundle theory
gives us, via the so-called automorphism group of the unreduced principal bundle, a natural
particle-spin map on Ed which turns out to be P̂[j, A] in (8.174). Note that here the cocycle
property of the spin transfer matrix function is crucial. The reductions are those principal
H-bundles which are subbundles of the unreduced bundle such that their bundle space is
a closed subset of Ed and such that H is a closed subgroup of SO(3). By the well-known
Reduction Theorem [Fe, Chapter 6], [Hus, Chapter 6], every (Êd[f ], pd[E, l, x, f ],Td, L), for
which E is Hausdorff, is a reduction where L is the restriction of Ld to H × Êd[f ] and
conversely, every reduction is of this form. By bundle theory, the natural particle-spin map
on Êd[f ] for a given (j, A) is that bijection on Ed[f ] which is a restriction of P̂ [j, A]. Clearly
this function is a bijection iff Êd[f ] is P̂[j, A]-invariant and then the reduction is called
“invariant under (j, A)”. Thus indeed the IRT deals with invariant reductions and it states
that a reduction is invariant under (j, A) iff f is an invariant field.

The bundle-theoretic aspect of the CST follows from the simple fact that the cross sections
of pd[E, l, x, f ] are the bundle-theoretic cross sections of the reduction. Thus, by bundle
theory, pd[E, l, x, f ] has a cross section iff the principal bundle (Êd[f ], pd[f ],Td, L) is trivial,
i.e., is isomorphic to a product principal bundle by the isomorphism Υ̂d[T ] from Section
8.7.2.

The First ToA Transformation Rule has its bundle counterpart in a transformation rule
under the SO(3) gauge transformation group [Hus, Chapter 9] of the unreduced principal
bundle.

Every (E, l) in the formalism uniquely determines an “associated bundle” (relative to
the unreduced bundle) which, up to bundle isomorphism, is of the form (Td × E, p,Td)
where p(z, x) := z. Thereby the fields are just the nontrivial data of the cross sections of
p. Moreover the automorphism group of the unreduced principal bundle acts naturally on
the cross sections of p and it is this action which induces the field map P̃ [E, l, j, A] of (8.2).
Thus invariant (E, l)-fields are the nontrivial data of invariant cross sections of associated
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bundles. This is similar to the situation in gauge field theories where the matter fields carry
the data of cross sections of associated bundles. Note also that the reduced principal bundles
correspond to a certain subclass of the associated bundles hence the cross sections in the
CST correspond to a subclass of the cross sections of the associated bundles.

As a side aspect, the above mentioned reductions reveal a relation to Yang-Mills Theory
via the principal connections. For example, via Remark 30, in the presence of an IFF
we have an invariant SO(2) reduction which has a cross section and describes planar spin
motion. Since this reduction is a smooth principal bundle, it has a well-defined class of
principal connections leading via path lifting to parallel transport motions which, remarkably,
reproduce the form of the well-known T–BMT equation, and thus in discrete time give us
P[j, A]. These aspects will be extended to nonplanar spin motion in future work.

9 Summary and Outlook

In this work we have studied the discrete-time spin motion in storage rings in terms of the
ToA. We thus generalized the notions of invariant polarization field and invariant frame field
and reconsidered the notions of spin tune and spin-orbit resonance within this framework. We
demonstrated its convenience in many ways, among them the ability to unify the description
of spin-1/2 and spin-1 particles by exhibiting common properties of the spin vector motion
resp. spin-tensor motion.

For future work there are several natural avenues. One obvious avenue is the study of the
existence and uniqueness problems of invariant polarization fields and invariant polarization-
tensor fields in terms of the IRT and the closely related notions of “algebraic hull” and
“rigidity” [Fe, Section 6],[HK1, Section 9]. The algebraic hull of (j, A) is, roughly speaking,
the “smallest” subgroup H of SO(3) for which (j, A) has an H-normal form. The study
of invariant fields in terms of the IRT will be focused on the comparison of the topological

spaces Êd[f ] and Ěd[z, y] introduced in Section 8.7.1.
Rigidity of (j, A) occurs if, roughly speaking, the behaviour of (j, A) does not change

under the extension of the time group Z to a larger time group. Also the underlying principal
bundle invites the study of the path lifting of its principal connections [Na] and the study
the so-called characteristic classes of its reduced principal bundles. Characteristic classes
occur if one studies a principal bundle in terms of so-called universal bundles [Hus]. Note
that characteristic classes, the so-called Chern classes, play a key role in Yang-Mills theory.
Another avenue is the study, in the case j = Pω, of the spin trajectories x(·) in terms of
a Fourier Analysis since then the equations of motion are characterized by quasiperiodic
functions in time. In particular a perturbation analysis via averaging techniques seems
feasible. One could also weaken the condition that A, j, l etc. are continuous functions to
the condition of Borel measurability. Moreover the ToA can be easily modified from our
SO(3) formalism to the quaternion formalism and the spinor formalism where the group
SU(2) will take over the role of SO(3).

We now give a summary of Chapter 8 including the relevant material from Chapters
2-7. A spin-orbit system is a pair (j, A) where j ∈ Homeo(Td) is the particle 1-turn map
and A ∈ C(Td, SO(3)) with the torus Td introduced in Section 2.2. In the special case
j = Pω, ω is the orbital tune and Pω is the corresponding translation on the torus af-
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ter one turn. The ToA is defined in Section 8.2 and it considers arbitrary SO(3)-spaces
(E, l), defined in Section 2.4. Various other group-theoretical notions are defined in Section
2.4. For every SO(3)-space (E, l) and every spin-orbit system (j, A) in SOS(d, j) a 1-turn
particle-spin map P[E, l, j, A] ∈ Homeo(Td×E) is defined by (8.1), i.e., P[E, l, j, A](z, x) :=
(j(z), l(A(z); x)). Also a 1-turn field map P̃[E, l, j, A] is a bijection on C(Td, E) defined by

(8.2), i.e., P̃[E, l, j, A](f) := l

(

A ◦ j−1; f ◦ j−1

)

. The special case (E, l) = (R3, lv) where x

is the spin vector S is studied in Chapters 2-7 and here P[R3, lv, j, A] = P[j, A] is given by
(2.23) and P̃ [R3, lv, j, A] = P̃[j, A] is given by (3.3), i.e.,

P̃[j, A](f) := (Af) ◦ j−1 .

We note also that the particle-spin maps are just characteristic maps of the field maps. If f ∈
C(Td, E) satisfies P̃ [E, l, j, A](f) = f then f is called an invariant (E, l)-field of (j, A). In the
special case (E, l) = (R3, lv) an invariant (R3, lv)-field is also called an invariant polarization
field and in the subcase |f | = 1 it is called an invariant spin field. A j ∈ Homeo(Td) is called
topologically transitive if a z0 ∈ Td exists such that the topological closure {jn(z0) : n ∈ Z}
of {jn(z0) : n ∈ Z} equals Td. The ISF-conjecture states that a spin-orbit system (j, A) has
an ISF if j is topologically transitive.

Note that a special case of this conjecture is: If a spin-orbit system (Pω, A) is off orbital
resonance, then it has an ISF.

If (j, A) ∈ SOS(d, j) and T ∈ C(Td, SO(3)) then (j, A′) ∈ SOS(d, j) is called the
transform of (j, A) under T where A′ is defined by (4.1), i.e., A′(z) := T t(j(z))A(z)T (z).
The First ToA Transformation Rule in Section 8.2.3 transforms P̃[E, l, j, A] into P̃[E, l, j, A′]
and one has P̃[E, l, j, A′] = P̃ [E, l, idTd, T ]−1◦P̃[E, l, j, A]◦P̃[E, l, idTd, T ]. IfH is a subgroup
of SO(3) and (j, A) ∈ SOS(d, j) then (j, A′) in SOS(d, j) is an H-normal form of (j, A) if
A′ is H-valued and (j, A′) is a transform of (j, A). If H and H ′ are subgroups of SO(3) then
we write H ✂ H ′ if an r ∈ SO(3) exists such that rHrt ⊂ H ′. If H ✂ H ′ and (j, A) has
an H-normal form then it also has an H ′-normal form whence spin-orbit tori are ordered
in terms of their normal forms. The NFT in Section 8.2.4 states that if T ∈ C(Td, SO(3))
and f ∈ C(Td, E) are related by f(z) = l(T (z); x) then f is an invariant (E, l)-field of (j, A)
iff T t(j(z))A(z)T (z) ∈ H(x) = Iso(E, l; x) = {r ∈ SO(3) : l(r; x) = x}. Thus invariant
fields can be studied in terms of isotropy groups via the notion of normal form. In particular
the “smaller” a subgroup H of SO(3) the less likely it is for (j, A) to have an H-normal
form. Following Chapter 6, a spin-orbit system (j, A) has a spin tune ν ∈ [0, 1) if (j, A′)
with A′(z) = exp(2πνJ ) is a transform of (j, A). We say that (Pω, A) is on spin-orbit
resonance if it has spin tunes and if for every spin tune ν we can find m ∈ Zd, n ∈ Z such
that ν = m · ω + n. The Uniqueness Theorem, Theorem 7.1b, states that, if (Pω, A) has
spin tunes and is off orbital resonance and off spin-orbit resonance, then it has only two
ISF’s and they differ only by a sign. The polarization of a bunch is defined in terms of
the density matrix function in Section 8.6.1 and its size is estimated in Section 7.1. The
decomposition method in Section 8.2.5 decomposes each SO(3)-space (E, l) into transitive
SO(3)-spaces and it predicts that for topologically transitive j an invariant (E, l)-field takes
only values in one (E, l)-orbit. This allows us to classify, via the DT, invariant fields in terms
of isotropy groups. In Sections 8.4-8.6 we apply the ToA to the SO(3)-spaces (R3, lv) and
(Et, lt) to study spin-1/2 and spin-1 particles. In Section 8.7 we study the existence problem
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of invariant (E, l)-fields in terms of the topological spaces Êd[E, l, x, f ] and in Section 8.8
we discuss the bundle-theoretic aspects of the present work. We revisit some old theorems
and prove several theorems which we believe to be new. Among the former we mention
Theorems 3.2, 5.4, 6.4 and 7.1 and among the latter Lemmas 8.4 and 8.8 and Theorems
6.2, 8.1, 8.9, 8.10, 8.11, 8.12, 8.13, 8.15, 8.17, 8.19 and 8.20.
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10 Table of Notation

A, ACT [ω,A], A, Ad,ν (2.2), (2.18), (2.21), (6.3)
ACB(d, j) Definition 6.1
B(E, l, E ′, l′; x, x′), B(E, l; x, x′) Section 8.3.1

β̂[E, l, E ′, l′; x, x′, r], β̂[E, l; x, x′, r] Section 8.3.1
C(X, Y ) set of continuous functions from X to Y Appendix A.4
CBH Definition 5.1
(E,L)− lift Section 8.2.4
(E,L) (G− set) Definition 2.3
(E,L) (G− space) Definition 2.6
(E,L)− orbit, E/L Definition 2.4,Definition 2.6
(Et, lt), Rt Section 8.4.1

(Ev×t, lv×t), (E
1/2
dens, l

1/2
dens) and (E1

dens, l
1
dens) Section 8.6

Ed, Êd[E, l, x, f ], Ěd[E, l, j, A, z, x, y] Section 8.7.1

Equivalent spin− orbit systems, (j, A) Definition 4.2
Group, conjugate subgroups, topological group Definition 2.2, Definition 2.5
H− normal Form Definition 5.1
Homeo(X, Y ) (set of homeomorphisms from X to Y ) Appendix A.4
Invariant frame field (IFF) Definition 5.3
Uniform invariant frame field Remark 5 in Chapter 6
Invariant spin field (ISF), invariant polarization field Definition 3.1
Invariant (E, l)− field, invariant n− turn (E, l)− field Section 8.2.1
Iso(E,L; x) (Isotropy group of G− space (E,L) at x) Definition 2.6
j,J Section 2.3, (5.6)

L[j], L[j, A], L̃[j, A] (2.32), (2.37), (3.7)

L[E, l, j, A], L̃[E, l, j, A] (8.9), (8.13)
ldec[x] (8.37)
Λj Section 8.4.1
N(H,H ′),✂ (8.54), Section 5.1
Ξ(j, A) (6.5)
Pω (2.17)
PCT [ω,A] (2.19)

P[j, A], P̃ [j, A] (2.23), (3.3)

P[E, l, j, A], P̃ [E, l, j, A], P̂ [j, A] (8.1), (8.2), (8.174)
pd, pd[f ] Section 8.7
πd (2.13)
Resonant, nonresonant, orbital resonance Section 2.3
SO(3) Section 2.1
SO(2) (5.5)
SO(2) ⊲⊳ Z2, SOdiag(3) (8.66), (8.88)
Sλ, S

2
λ Sections 8.2.4, 8.2.5
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BMT (d),SOSCT (d, ω), Section 2.1, (2.20),
SOS(d, j) (set of spin− orbit systems) (2.21)
Spin tune, spin− orbit resonance Definition 6.3
Σx[E, l, f ] (8.39)
Topologically transitive Section 2.3
T
d (d− torus) (2.11)

T F(A,A′; d, j), T FH(j, A) Definition 4.1,Definition 5.1
Transitive G− space Definition 2.6
ToA Technique of Association

Υd[T ], Υ̂d[E, l, x, T ] Section 8.7.2
ΦCT [ω,A] (2.7)
Ψ[j, A] (spin transfer matrix function) (2.36)
ω (orbital tune) Section 2.1
Z Set of integers

Z̃
d,Z2 Section 2.2, (8.66)

Appendix

A Conventions and terminology

A.1 Function, image, inverse image

A “function” f : X → Y is determined by its graph and its codomain. The “graph” of f is
the set {(x, f(x)) : x ∈ X} and the “codomain” of f is Y . The “domain” of f is X and the
“range” of f is the set f(X) := {f(x) : x ∈ X}. More generally, if M is a subset of X then
the “image” of M under f is the set f(M) := {f(x) : x ∈ M}. If M is a subset of Y then
the “inverse image” of M under f is the set f−1(M) := {x ∈ X : f(x) ∈M}.

One calls f a “surjection” or “onto” if its range and codomain are equal. One calls f
“one-one” or an “injection” if f(x) = f(x′) implies that x = x′. One calls f a “bijection” if
it is one-one and a surjection.

If f : X → Y and g : Y → Z are functions then g ◦ f is the function g ◦ f : X → Z
defined by (g ◦ f)(x) := g(f(x)). One calls the operation ◦ the “composition” of functions.
If X is a set then the function idX : X → X is defined by idX(x) := x and is called the
“identity function” on X . If f : X → Y is a bijection then a unique function f−1 : Y → X
exists such that f−1 ◦ f = idX , f ◦ f−1 = idY and it is called the “inverse” of f . Clearly f is
a bijection iff it has an inverse.

Note that if f : X → Y is a bijection then f−1 can either mean the inverse function
or the inverse image operation. However it will always be clear from the context what the
meaning is.

If f : X ′ → Y is a function and X ⊂ X ′ then we define the function f |X : X → Y
as a restriction of f to X , i.e., by (f |X)(x) := f(x). If f : X × Y → Z is a function and
x ∈ X, y ∈ Y then the restriction f |({x} × Y ) is denoted also by f(x, ·) and the restriction
f |(X × {y}) is denoted also by f(·, y).
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If f : X → X is a function then x ∈ X is called a “fixed point” of f if f(x) = x.
Note finally that according to our, very common, definition of a function two functions

with the same graph are different iff they have different codomains. Thus the alternative,
and equally common, way to define a function in terms of its graph (i.e., without invoking
the codomain) is different from our definition.

A.2 Partition, representing set, equivalence relation

If X is a set and if P is a set whose elements are disjoint nonempty subsets of X whose
union is X then one calls P a “partition of X”. If P is a partition of X then a subset X ′ of
X is called a “representing set of P” if every element of P contains exactly one element of
X ′. Note that partitions and their representing sets are used throughout this work. When
needed, we will always find a representing set. From a more general view point, one knows
that a representing set always exists if one assumes the Axiom of Choice [Dud].

If X is a set and B a subset of X ×X then B is called a “relation” on X . The relation
B is called “symmetric” if (x, y) ∈ B implies that (y, x) ∈ B. The relation B is called
“reflexive” if (x, x) ∈ B for all x ∈ X . The relation B is called “transitive” if (x, y) ∈ B and
(y, z) ∈ B implies that (x, z) ∈ B.

A relation on X is called an “equivalence relation on X” if it is symmetric,reflexive, and
transitive. If B is an equivalence relation on X and x ∈ X then the set {y ∈ Y : (x, y) ∈ B}
is called the “equivalence class of x under the equivalence relation B”. We also write x ∼ y
if (x, y) ∈ B.

The equivalence classes of B form a partition of X as follows. Clearly the equivalence
classes of B are nonempty sets and overlap X . Moreover by, transitivity, if two equivalence
classes of B have a common element then they are equal.

A.3 Topology, topological space, open set, closed set, closure

A collection, τ , of subsets of a set X is called a “topology on X” if τ is closed under arbitrary
unions and finite intersections and if X, ∅ ∈ τ . Any pair (X, τ) is called a “topological space
(over X)”. The elements of τ are called the “open” sets of (X, τ).

The “closed” sets of (X, τ) are the complements of the open sets (X, τ). If M is a subset
of X then its “closure” M̄ is defined as the intersection of all closed supsets of M .

If (X, τ) is a topological space and if X ′ is a subset of X then the “subspace topology” τ ′

of X ′ from X is the collection {X ′ ∩M :M ∈ τ} and the topological space (X ′, τ ′) is called
a “topological subspace” of (X, τ).

Since the topology τ is always clear from the context we write X instead of (X, τ). For
example the topology of Rd is obtained from the Euclidean norm and the topology of Zd is
discrete, i.e., every subset of Zd is open.

A.4 Continuous function, homeomorphism, cross section

Let (X, τ) and (X ′, τ ′) be topological spaces. Then a function f : X → X ′ is called “contin-
uous w.r.t. (X, τ) and (X ′, τ ′)” if for every M ∈ τ ′ the inverse image of M under f belongs
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to τ , i.e., f−1(M) ∈ τ . We denote the collection of continuous functions by C(X,X ′). A
function f ∈ C(X,X ′) is called a “homeomorphism” and X,X ′ are called a “homeomor-
phic” if f is a bijection and if its inverse is continuous. We denote the collection of those
homeomorphisms by Homeo(X,X ′) and we also define Homeo(X) := Homeo(X,X). The
topological spaces X and X ′ are called “homeomorphic” if Homeo(X,X ′) is nonempty.

If f ∈ C(Z,Z ′) with Z ′ being a subspace of X×Y then we denote the two components of
f by f1, f2, i.e., f1 ∈ C(Z,X) and f2 ∈ C(Z, Y ) where f(z) = (f1(z), f2(z)). If f ∈ C(X, Y )
then the inverse image f−1({y}) is called the “fibre of f over y”. If f ∈ C(X, Y ) then a
function σ ∈ C(Y,X) is called a “cross section of f” if f ◦σ = idY . Note that a cross section
is often called a “section”.

A.5 Product topology, Hausdorff space, compact space,

path-connected space

If X and Y are topological spaces then the product topology on X × Y is defined such that
sets M ×N are open if M and N are open and such that every open set of X ×Y is a union
of those M × N . For example the topology of Ed = Td × SO(3) is the product topology
where the topology of SO(3) is the subspace topology from R

3×3.
A topological space X is called “Hausdorff” if for every pair of distinct elements x, x′ of

X open sets M,M ′ exists such that x ∈ M,x′ ∈ M ′ and M ∩M ′ = ∅. A topological space
X is called “compact” if for any union of X by open sets of X already the union of finitely
many of those open sets equals X .

If X is a topological space and then a subset A of X is called “compact” if A is, as a
topological subspace of X , compact.

A topological space X is called “path-connected” if for elements x, x′ ∈ X a continuous
function f : [0, 1] → X exists such that f(0) = x and f(1) = x′. A subset A of X is
called “path-connected” if A is, as a topological subspace of X , path-connected. One has
the following intermediate-value theorem: If X, Y are topological spaces such that X is path-
connected and if g : X → Y is a continuous function then the range of g is a path-connected
subset of Y .

A.6 Co-induced topology, identifying function

Let X be a topological space and let p : X → Y be a surjection where Y is a set. A natural
topology on Y is defined such that a subset B ⊂ Y is open iff the inverse image p−1(B) ⊂ X
is open. One calls the topology on Y “co-induced by p” [wiki]. Using older terminology,
one also says that the topology on Y is the “identification topology” w.r.t. p and that p is
“identifying” [Du, Hu]. Of course an identifying function is continuous (but not vice versa).
Time and again we will use co-induced topologies and we will often use the following lemma
to prove the continuity of a function:

(Continuity Lemma)
Let X be a topological space and let p : X → Y be a surjection where Y is a set. Let
the topology on Y be co-induced by p. If Z is a topological space and f ∈ C(X,Z) and
F : Y → Z are functions such that F ◦ p = f then F is continuous. If in addition f is an
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identification map then F is an identification map, too.

Proof of the Continuity Lemma: To see that F is continuous we need to show that the
inverse image F−1(V ) is open for all open subsets V of Z. In fact since the topology on
Y is co-induced by p we get p−1(F−1(V )) = (F ◦ p)−1(V ) = f−1(V ), thus if V is open,
f−1(V ) = p−1(F−1(V )) is open. Thus indeed F is continuous. The second claim is shown in
the same vein (see also Section VI.3 in [Du]). ✷

B Various Proofs

This appendix contains those proofs which are too long for the main text.

B.1 Proof of Lemma 8.8

Proof of Lemma 8.8a: By Definitions 5.2 and 8.7 of ✂ and N(Iso(E, l; x), Iso(E ′, l′; x′)) it
is clear that the first claim follows from (8.57). To show (8.57) we first prove the inclusion
(B.3) so let β ∈ B(E, l, E ′, l′; x, x′), i.e., by Definition 8.7, β is a topological SO(3)-map from
(l(SO(3); x), ldec[x]) to (l′(SO(3), x′), l′dec[x

′]). Clearly we can pick an r0 ∈ SO(3) such that

β(x) = l′(rt0; x
′) . (B.1)

By (8.37) and (B.1) we have, for all r ∈ SO(3),

β(l(r; x)) = β(ldec[x](r; x)) = l′dec[x
′](r; β(x)) = l′(r; β(x)) = l′(rrt0; x

′) , (B.2)

where in the second equality we used that β is a topological SO(3)-map from (l(SO(3); x), ldec[x])
to (l′(SO(3), x′), l′dec[x

′]). On the other hand if r1 ∈ Iso(E, l; x) then, for all r ∈ SO(3),

β(l(r; x)) = β(l(r; l(r1; x))) = β(l(rr1; x)) = l′(rr1r
t
0; x

′) ,

where in the third equality we used (B.2) whence, by using again (B.2), l′(rrt0; x
′) = l′(rr1r

t
0; x

′)
so that r0r1r

t
0 ∈ Iso(E ′, l′; x′) which implies that r0Iso(E, l; x)r

t
0 ⊂ Iso(E ′, l′; x′), i.e.,

r0 ∈ N(Iso(E, l; x), Iso(E ′, l′; x′)). Thus β̂[E, l, E ′, l′; x, x′, r0] is well defined and, by (8.55)
and (B.2), β = β̂[E, l, E ′, l′; x, x′, r0] whence β belongs to the set on the rhs of (8.57) so that
we have shown that

B(E, l, E ′, l′; x, x′) ⊂ {β̂[E, l, E ′, l′; x, x′, r0] : r0 ∈ N(Iso(E, l; x), Iso(E ′, l′; x′))} . (B.3)

To show the reverse inclusion let r0 ∈ N(Iso(E, l; x), Iso(E ′, l′; x′)) so we have to show that
β̂[E, l, E ′, l′; x, x′, r0] belongs to B(E, l, E ′, l′; x, x′). We first show that β̂[E, l, E ′, l′; x, x′, r0]
is an SO(3)-map. In fact it follows from (8.37) and (8.55) that

β̂[E, l, E ′, l′; x, x′, r0](ldec[x](r0; l(r1; x))) = β̂[E, l, E ′, l′; x, x′, r0](l(r0; l(r1; x)))

= β̂[E, l, E ′, l′; x, x′, r0](l(r0r1; x)) = l′(r0r1r
t
0; x

′) ,

l′dec[x
′](r0; β̂[E, l, E

′, l′; x, x′, r0](l(r1; x))) = l′(r0; β̂[E, l, E
′, l′; x, x′, r0](l(r1; x)))

= l′(r0; l
′(r1r

t
0; x

′)) = l′(r0r1r
t
0; x

′) ,
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whence, for every y ∈ l(SO(3); x), we have β̂[E, l, E ′, l′; x, x′, r0](ldec[x](r0; y)) =
l′dec[x

′](r0; β̂[E, l, E
′, l′; x, x′, r0](y)) so that indeed β̂[E, l, E ′, l′; x, x′, r0] is an SO(3)-map. To

show that β̂[E, l, E ′, l′; x, x′, r0] is continuous we first note that the function ldec[x](·; x) :
SO(3) → l(SO(3); x), defined by (ldec[x](·; x))(r) := ldec[x](r; x) = l(r; x), is continuous since
l is continuous. Moreover since E is Hausdorff, its subspace l(SO(3); x) is Hausdorff, too.
Thus ldec[x](·; x) is a continuous function from the compact space SO(3) onto the Hausdorff
space l(SO(3); x) whence, by the Closed Map Lemma [Du, Section XI.2], ldec[x](·; x) is a
closed map so that it is an identification map, i.e., the topology on l(SO(3); x) is co-induced
by ldec[x](·; x) (for the notions of co-induced and identification map see Appendix A.6). On
the other hand, by (8.37) and (8.55),

β̂[E, l, E ′, l′; x, x′, r0](ldec[x](r; x)) = β̂[E, l, E ′, l′; x, x′, r0](l(r; x))

= l′(rrt0; x
′) = l′(r; l′(rt0; x

′)) = l′(r; x′′) = l′dec[x
′](r; x′′) ,

i.e.,

β̂[E, l, E ′, l′; x, x′, r0] ◦ ldec[x](·; x) = l′dec[x
′](·; x′′) , (B.4)

where x′′ := l′(rt0; x
′). Since by the above argument, ldec[x](·; x) and l′dec[x

′](·; x′′) are iden-
tification maps, it follows from (B.4) and the Continuity Lemma in Appendix A.6 that the
surjection β̂[E, l, E ′, l′; x, x′, r0] is an identification map (whence it is continuous). We con-
clude that β̂[E, l, E ′, l′; x, x′, r0] is a continuous SO(3)-map whence it is a topological SO(3)-
map from (l(SO(3); x), ldec[x]) to (l′(SO(3), x′), l′dec[x

′]), i.e., β̂[E, l, E ′, l′; x, x′, r0] belongs to
B(E, l, E ′, l′; x, x′) so that indeed

B(E, l, E ′, l′; x, x′) ⊃ {β̂[E, l, E ′, l′; x, x′, r0] : r0 ∈ N(Iso(E, l; x), Iso(E ′, l′; x′))} ,

whence (8.57) follows from (B.3). ✷

Proof of Lemma 8.8b: Let Iso(E, l; x)✂Iso(E ′, l′; x′) and let r0 ∈ N(Iso(E, l; x), Iso(E ′, l′; x′)).
Let also r1, r2 ∈ SO(3). Then, by (8.32),

Iso(E, l; l(r1; x)) = r1Iso(E, l; x)r
t
1 , Iso(E ′, l′; l′(r2; x

′)) = r2Iso(E
′, l′; x′)rt2 , (B.5)

whence, since r0 ∈ N(Iso(E, l; x), Iso(E ′, l′; x′)),

r2r0Iso(E, l; x)r
t
0r

t
2 ⊂ r2Iso(E

′, l′; x′)rt2 = Iso(E ′, l′; l′(r2; x
′)) , (B.6)

so that, by (B.5),

r2r0r
t
1Iso(E, l; l(r1; x))r1r

t
0r

t
2 = r2r0Iso(E, l; x)r

t
0r

t
2 ⊂ Iso(E ′, l′; l′(r2; x

′)) , (B.7)

which implies that (r2r0r
t
1) ∈ N(Iso(E, l; l(r1; x)), Iso(E

′, l′; l′(r2; x
′))), i.e., Iso(E, l; l(r1; x))✂

Iso(E ′, l′; l′(r2; x
′)). Thus β̂[E, l, E ′, l′; y, y′, r2r0r

t
1] is well defined where y := l(r1; x) and

y′ := l′(r2; x
′) and we compute, by (8.55),

β̂[E, l, E ′, l′; y, y′, r2r0r
t
1](l(rr1; x)) = β̂[E, l, E ′, l′; y, y′, r2r0r

t
1](l(r; l(r1; x)))

= β̂[E, l, E ′, l′; y, y′, r2r0r
t
1](l(r; y)) = l′(r(r2r0r

t
1)

t; y′)
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= l′(rr1r
t
0r

t
2; l

′(r2; x
′)) = l′(rr1r

t
0; x

′) = β̂[E, l, E ′, l′; x, x′, r0](l(rr1; x)) ,

i.e., β̂[E, l, E ′, l′; y, y′, r2r0r
t
1] = β̂[E, l, E ′, l′; x, x′, r0].

Choosing r1, r2 ∈ SO(3) such that r2r0r
t
1 = I3×3 (e.g., r1 := r0, r2 := I3×3) and since

(r2r0r
t
1) ∈ N(Iso(E, l; l(r1; x)), Iso(E

′, l′; l′(r2; x
′))) one gets

I3×3 ∈ N(Iso(E, l; y), Iso(E ′, l′; y′)) whence Iso(E, l; y) ⊂ Iso(E ′, l′; y′). ✷

Proof of Lemma 8.8c: We first prove the first claim.
“⇒”: Let Iso(E, l; x), Iso(E ′, l′; x′) be conjugate, i.e., let r0 ∈ SO(3) exist such that
r0Iso(E, l; x)r

t
0 = Iso(E ′, l′; x′). Thus r0 ∈ N(Iso(E, l; x), Iso(E ′, l′; x′)) whence, by Lemma

8.8a, β̂[E, l, E ′, l′; x, x′, r0] ∈ B(E, l, E ′, l′; x, x′, r0). To show that β̂[E, l, E ′, l′; x, x′, r0] is an
isomorphism from (l(SO(3); x), ldec[x]) to (l′(SO(3), x′), l′dec[x

′]) we only have to show that

β̂[E, l, E ′, l′; x, x′, r0] is a homeomorphism. From the proof of Lemma 8.8a we know that
β̂[E, l, E ′, l′; x, x′, r0] is an identification map whence, β̂[E, l, E ′, l′; x, x′, r0] is a homeomor-
phism iff it is one-one. To show that β̂[E, l, E ′, l′; x, x′, r0] is one-one let r1, r2 ∈ SO(3) such
that β̂[E, l, E ′, l′; x, x′, r0](l(r1; x)) = β̂[E, l, E ′, l′; x, x′, r0](l(r2; x)) whence, by (8.55),

l′(r1r
t
0; x

′) = β̂[E, l, E ′, l′; x, x′, r0](l(r1; x))) = β̂[E, l, E ′, l′; x, x′, r0](l(r2; x))) = l′(r2r
t
0; x

′) ,

so that l′(r0r
t
1r2r

t
0; x

′) = x′ which implies, by (2.45), that r0r
t
1r2r

t
0 ∈ Iso(E ′, l′; x′). Since

r0Iso(E, l; x)r
t
0 = Iso(E ′, l′; x′) this implies that r0r

t
1r2r

t
0 ∈ r0Iso(E, l; x)r

t
0 whence rt1r2 ∈

Iso(E, l; x) so that l(rt1r2; x) = x, i.e., l(r1; x) = l(r2; x). Thus β̂[E, l, E ′, l′; x, x′, r0] is one-
one as was to be shown.

“⇐”: We first prove the useful formula (B.8). In fact if in addition (E ′′, l′′) is an SO(3)-

space, E ′′ is Hausdorff, x′′ ∈ E ′′ and if r0 ∈ N

(

Iso(E, l; x), Iso(E ′, l′; x′)

)

and r1 ∈

N

(

Iso(E ′, l′; x′), Iso(E ′′, l′′; x′′)

)

then, by (8.54), (r1r0) ∈ N

(

Iso(E, l; x), Iso(E ′′, l′′; x′′)

)

whence, by (8.55),

β̂[E, l, E ′′, l′′; x, x′′, r1r0] = β̂[E ′, l′, E ′′, l′′; x′′, x′, r1] ◦ β̂[E, l, E ′, l′; x, x′, r0] . (B.8)

Let (l(SO(3); x), ldec[x]), (l
′(SO(3), x′), l′dec[x

′]) be isomorphic. Thus an isomorphism, say β,
exists from (l(SO(3); x), ldec[x]) to (l′(SO(3), x′), l′dec[x

′]) whence, by Lemma 8.8a, we can

pick an r0 in N(Iso(E, l; x), Iso(E ′, l′; x′)) such that β = β̂[E, l, E ′, l′; x, x′, r0] and we have,
by (8.54),

r0Iso(E, l; x)r
t
0 ⊂ Iso(E ′, l′; x′) . (B.9)

On the other hand, by (B.8), β̂[E, l, E ′, l′; x, x′, rt0] is the inverse, say β−1, of β. Since β−1

is an isomorphism from (l′(SO(3), x′), l′dec[x
′]) to (l(SO(3); x), ldec[x]), the above argument,

which used β to give us (B.9), can now be repeated for β−1 = β̂[E, l, E ′, l′; x, x′, rt0] giving us
in analogy to (B.9)

rt0Iso(E
′, l′; x′)r0 ⊂ Iso(E, l; x) , (B.10)

whence Iso(E ′, l′; x′) ⊂ r0Iso(E
′, l′; x′)rt0 so that, by (B.9),

r0Iso(E, l; x)r
t
0 ⊂ Iso(E ′, l′; x′) ⊂ r0Iso(E, l; x)r

t
0 which implies that r0Iso(E, l; x)r

t
0 =
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Iso(E ′, l′; x′), i.e., Iso(E, l; x) and
Iso(E ′, l′; x′) are conjugate. This completes the proof of the first claim. At the same time
we have proven the second claim, i.e., that, for every r0 ∈ SO(3) such that r0Iso(E, l; x)r

t
0 =

Iso(E ′, l′; x′), β̂[E, l, E ′, l′; x, x′, r0] is an isomorphism. To prove the third claim, let
Iso(E, l; x) and Iso(E ′, l′; x′) be conjugate, i.e., let r ∈ SO(3) exist such that rIso(E, l; x)rt =
Iso(E ′, l′; x′). Defining y := x, y′ := l′(rt; x′) we conclude from Remark 7 that Iso(E ′, l′; y′) =
Iso(E ′, l′; l′(rt; x′)) = rtIso(E ′, l′; x′)r = rtrIso(E, l; x)rtr = Iso(E, l; x) = Iso(E, l; y) as
was to be shown. ✷

B.2 Proof of Theorem 8.9

Proof of Theorem 8.9a: Using the notation of Section 8.2.5 we define fx ∈ C(Td, l(SO(3); x))
by fx(z) := f(z) and gx′ ∈ C(Td, l′(SO(3); x′)) by gx′(z) := g(z). It follows from Theorem 8.5
that (gx′)′ = β̂[E, l, E ′, l′; x, x′, r0] ◦ (fx)

′ whence, by (8.40), (g′)x′ = β̂[E, l, E ′, l′; x, x′, r0] ◦
(f ′)x so that g′(z) = β̂[E, l, E ′, l′; x, x′, r0](f

′(z)). ✷

Proof of Theorem 8.9b: Let f be an invariant (E, l)-field of (j, A). Then, by Theorem 8.9a,
g is an invariant (E ′, l′)-field of (j, A). Let g be an invariant (E ′, l′)-field of (j, A). Also by,
Lemma 8.8c, β̂[E, l, E ′, l′; x, x′, r0]

−1 is a topological SO(3)-map from (l′(SO(3), x′), l′dec[x
′])

to (l(SO(3); x), ldec[x]). Thus, by Theorem 8.9a, we conclude that f is an invariant (E, l)-field
of (j, A). ✷
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