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Abstract

We reexamine the branching ratios, CP -asymmetries, and other observables in a large number

of Bq → V V (q = u, d, s) decays in the perturbative QCD (PQCD) approach, where V denotes a

light vector meson (ρ,K∗, ω, φ). The essential difference between this work and the earlier similar

works is of parametric origin and in the estimates of the power corrections related to the ratio

r2i = m2
Vi
/m2

B(i = 2, 3) (mV andmB denote the masses of the vector and B meson, respectively). In

particular, we use up-to-date distribution amplitudes for the final state mesons and keep the terms

proportional to the ratio r2i in our calculations. Our updated calculations are in agreement with

the experimental data, except for a limited number of decays which we discuss. We emphasize that

the penguin annihilation and the hard-scattering emission contributions are essential to understand

the polarization anomaly, such as in the B → φK∗ and Bs → φφ decay modes. We also compare

our results with those obtained in the QCD factorization (QCDF) approach and comment on the

similarities and differences, which can be used to discriminate between these approaches in future

experiments.
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I. INTRODUCTION

Exclusive Bq (q = u, d, s) meson decays, especially Bq → V V modes, where V stands for a

light vector meson (ρ,K∗, ω, φ), have aroused a great deal of interest for both theorists [1–9]

and in experiments [10]. In contrast to the scalar and pseudoscalar mesons, vector mesons

can be produced in several polarization states. Thus, the fraction of a given polarization state

is an interesting observable, apart from the decay widths. Phenomenology of the Bq → V V

decays offers rich opportunities for our understanding of the mechanism for hadronic weak

decays and CP asymmetry and searching for the effect of new physics beyond the standard

model. In general, the underlying dynamics for such decays is extremely complicated, but

in the heavy quark limit (mb → ∞), it is greatly simplified due to the factorization of the

hadronic matrix elements in terms of the decay constants and form factors. Based on this, a

number of two-body hadronic B decays had been calculated in this so-called naive factoriza-

tion approach [11]. However these calculations encounter three major difficulties: (i) for the

so-called penguin-dominated, and also for the color-suppressed tree-dominated decays, the

predicted branching ratios are systematically below the measurements, (ii) this approach can

not account for the direct CP asymmetries measured in experiments, and (iii) the predic-

tions of transverse polarization fraction in penguin-dominated charmless Bq → V V decays

are too small to explain the data, in which large such fractions are measured. All these in-

dicate that this factorization approach needs improvements, for example by including some

more perturbative QCD contributions [12]. In the current market, there are essentially three

approaches to implement perturbative improvements: QCD factorization (QCDF) [13, 14],

perturbative QCD approach(PQCD) [15], and the soft-collinear effective theory (SCET) [16].

All these frameworks have been employed in the literature to quantitatively study the dy-

namics of the Bq → PP, V P, V V decays, having light pseudoscalar (P )and/or Vector (V )

mesons in the final states.

In the Bq → V V decays, as the Bq meson is heavy, the vector mesons are energetic

with EV ≃ mB/2. As the spectator quark (u, d or s) in the Bq meson is soft, a hard gluon

exchange is needed to kick it into an energetic one to form a fast moving light vector meson.

The theoretical picture here is that a hard gluon from the spectator quark connects with the

other quarks of the four-quark operators of the weak interaction [15]. The underlying theory

is thus a six-quark effective theory, and can be perturbatively calculated [17]. In contrast
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to the other two approaches (QCDF and SCET), the PQCD approach is based on the kT

factorization formalism [18–20]. The basic idea here is to take into account the transverse

momentum kT of the valence quarks in the hadrons, as a result of which the end-point

singularity in the collinear factorization (employed in the QCDF approach) can be avoided.

On the other hand, the transverse momentum dependence introduces an additional energy

scale leading to double logarithms in QCD corrections. These terms could be resummed

through the renormalization group approach, which results in the appearance of the Su-

dakov form factor. This form factor effectively suppresses the end-point contribution of the

distribution amplitude of the mesons in the small transverse momentum region, making the

calculation in the PQCD approach reliable. It is worth mentioning that in this framework,

the so-called annihilation diagrams are also perturbatively calculable without introducing

additional parameters [21, 22]. The PQCD approach has been successfully used to study a

number of pure annihilation type decays, and these predictions were confirmed subsequently

in experiments [8, 22–25]. Thus, in our view, this method is reliable in dealing with the pure

annihilation-type and annihilation-dominated decays as well.

Several years ago, H. Y. Cheng and C. K. Chua updated [4, 5] the previous predictions [1–

3] for Bq → V V decays in the QCDF factorization approach by taking the transverse

polarization contributions into account, and using the updated values of the parameters in

the input wave functions and the form factors. In the PQCD framework, although many

studies of the two-body Bq-decays are available [7–9], a reappraisal is needed for the following

reasons: (i) In the previous studies, the terms proportional to “r2i = m2
Vi
/m2

B (i = 2, 3)” have

been omitted in the amplitudes, especially in the denominator of the propagators of virtual

quarks and gluons. As we point out later, these terms do bring the earlier PQCD predictions

in better accord in terms of the measured observables in some problematic cases, such as

the B → φK∗ and Bs → φφ decays, (ii) recent progress in the study of the distribution

amplitudes of the vector meson, especially for the φ meson, undertaken in the context of

the QCD sum rules, may significantly impact on some of the calculations done earlier, and

(iii) Experimental data for some of the Bq → V V decays, such as the branching ratio

and the polarization fractions of Bs → φφ, are now available. In addition, we work out

a number of observables, such as φ‖, φ⊥, A
0
CP , A

⊥
CP , ∆φ‖ and ∆φ⊥ for the first time in

PQCD. Among others, we revisit the B → ρ (ω)φ decay modes, the direct CP asymmetry

of which could help us distinguish the PQCD and competing approaches. A related issue
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is the large fraction of the transverse polarization observed in some of these decays. In

the PQCD framework, penguin-annihilation contribution is the key to understanding this

phenomenon. Especially, the chirally enhanced (S-P)(S+P) penguin-annihilation gives rise

to large transverse polarizations. Together with the hard spectator-scattering contributions,

this could help solve the transverse polarization puzzle in the penguin-dominated Bq → V V

decays.

This work is organized as follows. In Sec. II, we outline the framework of the PQCD

approach and specify the various input parameters, such as the wave functions and decay

constants. Details of the perturbative calculations for the Bq → V V decays are presented

in in Sec. III, and the various input functions are given in the Appendix. Numerical re-

sults of our calculations are presented in Sec. IV and compared in detail with the available

experiments and earlier theoretical works. Finally, a short summary is given in Sec. V.

II. FORMALISM AND WAVE FUNCTION

Our goal is to calculate the transition matrix elements:

M ∝ 〈V V |Heff |Bq〉 , (1)

with the weak effective Hamiltonian Heff written as [26]

Heff =
GF√
2

{

V ∗
ubVuX [C1(µ)O

q
1(µ) + C2(µ)O

q
2(µ)]− V ∗

tbVtX

[

10
∑

i=3

Ci(µ)Oi(µ)

]}

. (2)

Here, Vub(X) and Vtb(X) (X = d, s) are the CKM matrix elements, Ci(µ) are the effective

Wilson coefficient calculated at the scale µ, and the local four-quark operators Oj (j =

1, ..., 10) are defined and classified as follows:

• Current-current (tree) operators,

Ou
1 = (b̄αuβ)V−A(ūβXα)V−A, Ou

2 = (b̄αuα)V−A(ūβXβ)V−A, (3)

• QCD penguin operators,

O3 = (b̄αXα)V−A

∑

q′

(q̄′βq
′
β)V−A, O4 = (b̄αXβ)V−A

∑

q′

(q̄′βq
′
α)V−A, (4)

O5 = (b̄αXα)V−A

∑

q′

(q̄′βq
′
β)V+A, O6 = (b̄αXβ)V−A

∑

q′

(q̄′βq
′
α)V+A, (5)
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• Electroweak penguin operators,

O7 =
3

2
(b̄αXα)V−A

∑

q′

eq′(q̄
′
βq

′
β)V+A, O8 =

3

2
(b̄αXβ)V−A

∑

q′

eq′(q̄
′
βq

′
α)V+A, (6)

O9 =
3

2
(b̄αXα)V−A

∑

q′

eq′(q̄
′
βq

′
β)V−A, O10 =

3

2
(b̄αXβ)V−A

∑

q′

eq′(q̄
′
βq

′
α)V−A, (7)

with the SU(3) color indices α and β and the active quarks q′ = (u, d, s, c). The left-handed

(right-handed) current V ± A are defined as γµ(1 ± γ5). Following [27], we introduce the

following combinations ai of the Wilson coefficients:

a1 = C2 + C1/3, a2 = C1 + C2/3,

ai = Ci + Ci±1/3, i = 3, 5, 7, 9 / 4, 6, 8, 10. (8)

In the perturbative approach to hadronic Bq decays, several typical scales are encountered

with large logarithms involving the ratios of these scales. They are resummed using the

renormalization group (RG) techniques. Standard model specifies the Wilson coefficients at

the electroweak scale mW , the W boson mass, and the RG equations enable us to evaluate

the dynamical effects in scaling the Wilson coefficients in Eq. (2) from mW to mb, the

b-quark mass. The physics between the scale mb and the factorization scale Λh, taken

typically as Λh ≃
√

mbΛQCD, can be calculated perturbatively and included in the so-called

hard kernel in the PQCD approach. The soft dynamics below the factorization scale Λh

is nonperturbative and is described by the hadronic wave functions of the mesons involved

in the decays Bq → V V . Finally, based on the factorization ansatz, the decay amplitudes

are described by the convolution of the Wilson coefficients C(t), the hard scattering kernel

H(xi, bi, t) and the light-cone wave functions ΦMi,B(xj , bj) of the mesons [28]:

A ∼
∫

dx1dx2dx3b1db1b2db2b3db3

×Tr
[

C(t)ΦB(x1, b1)ΦM2
(x2, b2)ΦM3

(x3, b3)H(xi, bi, t)St(xi)e
−S(t)

]

, (9)

where Tr denotes the trace over Dirac and color indices, bi are the conjugate variables of

the quark transverse momenta kiT , xi are the longitudinal momentum fractions carried by

the quarks, and t is the largest scale in the hard kernel H(xi, bi, t). The jet function St(xi)

coming from the threshold resummation of the double logarithms ln2 xi smears the end-point

singularities in xi [29]. The Sudakov form factor e−S(t) from the resummation of the double
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logarithms suppresses the soft dynamics effectively i.e. the long distance contributions in

the large-b region [30, 31].

In the PQCD approach, both the initial and the final state meson wave functions are

important non-perturbative inputs. ForBq (q = u, d, s) meson, the light-cone matrix element

could be decomposed as [32, 33]

∫

d4zeik·z〈0|qβ(z)b̄α(0)|Bq(PBq)〉 =
i√
6

{

(/PBq +MBq)γ5

[

φBq(k)−
/n− /v√
2φ̄Bq

(k)

]}

βα

, (10)

where n = (1, 0,~0T ) and v = (0, 1,~0T ) are the unit vectors of the light-cone coordinate

system. Corresponding to the two Lorentz structures in the Bq meson distribution ampli-

tudes, there are two wave functions φBq(k) and φ̄Bq(k), obeying the following normalization

conditions:

∫

d4k

(2π)4
φBq(k) =

fBq

2
√
6
,

∫

d4k

(2π)4
φ̄Bq(k) = 0, (11)

where fBq is the decay constant of the Bq meson. Due to the numerical suppression, the

contribution of φ̄B is often neglected. Finally, for convenience, the wave function of B meson

can be expressed as:

ΦBq (x, b) =
i√
6
(/PBq +MBq)γ5φBq(x, b), (12)

with the light-cone distribution amplitude

φBq(x, b) = NBqx
2(1− x2) exp

[

−
M2

Bq
x2

2ωq
− 1

2
w2

qb
2

]

, (13)

where NBq is a normalization factor and ωq is a shape parameter. For B0(B±) meson, we

use ωq = 0.4 ± 0.04 GeV, which is determined by the calculation of form factor and other

well known decay modes [18, 19, 34]. Taking into account the small SU(3) breaking and

the fact that the s quark is heavier than the u or d quark, we use the shape parameter

ωs = 0.5 ± 0.05 GeV for the Bs meson, indicating that the s quark momentum fraction is

larger than that of the u or d quark in the B± or B0 meson [8].

The light vector meson is treated as a light-light quark-antiquark system with the mo-

mentum P 2 = M2
V , and its polarization vectors ǫ include one longitudinal polarization vector

ǫL and two transverse polarization vectors ǫT , which are defined in [7, 35]. Up to twist-3,
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the vector meson wave functions are given by [36]:

ΦL
V =

1√
6

[

MV /ǫLφV (x) + /ǫL/Pφt
V (x) +MV φ

s
V (x)

]

Φ⊥
V =

1√
6

[

MV /ǫTφ
v
V (x) + /ǫT/PφT

V (x) + MV iǫµνρσγ5γ
µǫνTn

ρvσφa
V (x)

]

, (14)

for the longitudinal polarization and the transverse polarization, respectively. Here ǫµνρσ is

Levi-Civita tensor with the convention ǫ0123 = 1.

The twist-2 distribution amplitudes are given by

φV (x) =
3fV√
6
x(1 − x)

[

1 + a
‖
1V C

3/2
1 (t) + a

‖
2VC

3/2
2 (t)

]

, (15)

φT
V (x) =

3fT
V√
6
x(1− x)

[

1 + a⊥1VC
3/2
1 (t) + a⊥2VC

3/2
2 (t)

]

, (16)

with t = 2x − 1, and f
(T )
V are the decay constants of the vector meson, which for V =

ρ, ω,K∗, φ are shown numerically in Table I. For the Gegenbauer moments, we use the

following values[36, 37]:

a
‖(⊥)
1ρ = a

‖(⊥)
1ω = a

‖(⊥)
1φ = 0, a

‖(⊥)
1K∗ = 0.03± 0.02 (0.04± 0.03) ,

a
‖(⊥)
2ρ = a

‖(⊥)
2ω = 0.15± 0.07 (0.14± 0.06) a

‖(⊥)
2φ = 0 (0.20± 0.07) ,

a
‖(⊥)
2K∗ = 0.11± 0.09 (0.10± 0.08) . (17)

For the twist-3 distribution amplitudes, for simplicity, we adopt the asymptotic forms

φt
V (x) =

3fT
V

2
√
6
t2, φs

V (x) =
3fT

V

2
√
6
(−t),

φv
V (x) =

3fV

8
√
6
(1 + t2), φa

V (x) =
3fV

4
√
6
(−t). (18)

TABLE I: Input values of the decay constants of the light vector mesons, taken from [37]

.

vector fV (MeV) fT
V (MeV)

ρ 216 ± 3 165 ± 9

ω 187 ± 5 151 ± 9

K∗ 220 ± 5 185 ± 10

φ 215 ± 5 186 ± 9
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b̄q
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FIG. 1: Leading order Feynman diagrams contributing to the B(s) → V V decays in PQCD

III. PERTURBATIVE CALCULATION

At leading order, there are eight types of Feynman diagrams contributing to the Bq → V V

decays, which are presented in Fig.1. The first row shows the emission-type diagrams, with

the first two contributing to the usual form factor; the last two are the so-called hard-

scattering emission diagrams. In fact, the first two diagrams are the only contributions

calculated in the naive factorization approach. The second row shows the annihilation-type

diagrams, with the first two factorizable and the last two nonfactorizable.

In the following, we shall give the general factorization amplitudes for these Bq → V V

decays. We use the symbol LL to describe the amplitude of the (V −A)(V −A) operators, LR

denotes the amplitude of the (V −A)(V +A) operators and SP denotes that of (S−P )(S+P )

operators resulting from the Fierz transformation of the (V − A)(V + A) operators. For

the Bq → V V decays, both the longitudinal polarization and the transverse polarization

contribute. The amplitudes can be decomposed as follows:

A(ǫ2, ǫ3) = iAL + i(ǫT∗
2 · ǫT∗

3 )AN + (ǫµναβn
µvνǫT∗α

2 ǫT∗β
3 )AT , (19)

where AL is the longitudinally polarized decay amplitude, AT and AN are the transversely

polarized contributions, and ǫT is the transverse polarization vector of the vector meson.

The longitudinal polarization amplitudes for the factorizable emission diagrams in Fig.(a)
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and (b) are as follows:

ALL(LR),L
ef = −8πCFM

4
BfV2

∫ 1

0

dx1dx3

∫ 1/Λ

0

b1db1b3db3φB(x1, b1) {[(−1 + x3)φ3(x3)

+r3(2x3 − 1)(φs
3(x3) + φt

3(x3))
]

Eef (ta)hef(x1, x3(1− r22), b1, b3)

+2r3φ
s
3(x3)Eef(tb)hef(x3, x1(1− r22), b3, b1)

}

, (20)

where ri =
MVi

MB
and CF = 4/3 is a color factor. The functions hef , ta,b, and Eef can be found

in Appendix A. There is no (S − P )(S + P ) type amplitude, as a vector meson can not be

produced through this type of operators. In the PQCD approach, the traditional emission

contribution is also the dominant one. Unknown higher order perturbative QCD corrections

will influence the emission contributions as well as those from other topologies. At present,

although the next-to-leading order (NLO) contributions have not been completed, the vertex

correction has been done and is used to improve the predictions for the decays B → πρ(ω)

and the B → π form factors [38], which allows us to estimate the stability of the emission

diagram in NLO. The results quoted below are based on the leading order calculations, but

we also estimate the uncertainties from the partial NLO contributions based on the available

results, as explained in Sec. IV.

The last two diagrams in the first row in Fig.1 are the hard-scattering emission diagrams,

whose contributions are given below:

MLL,L
enf = −16

√

2

3
πCFM

4
B

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)φ2(x2)

×
{[

(x2 − 1)φ3(x3) + r3x3(φ
s
3(x3)− φt

3(x3))
]

Eenf (tc)henf(α, β1, b1, b2)

+
[

(x2 + x3)φ3(x3)− r3x3(φ
s
3(x3) + φt

3(x3))
]

Eenf(td)henf(α, β2, b1, b2)
}

, (21)

MLR,L
enf = 16

√

2

3
πCF r2M

4
B

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)

×
{[

r3((x2 − x3 − 1)(φs
2(x2)φ

s
3(x3)− φt

2(x2)φ
t
3(x3))

+(x2 + x3 − 1)(φt
2(x2)φ

s
3(x3)− φs

2(x2)φ
t
3(x3)))

+(x2 − 1)φ3(x3)(φ
s
2(x2) + φt

2(x2))
]

Eenf(tc)henf(α, β1, b1, b2)

+
[

r3((x3 − x2)(φ
t
2(x2)φ

s
3(x3) + φs

2(x2)φ
t
3(x3))

+(x2 + x3)(φ
s
2(x2)φ

s
3(x3) + φt

2(x2)φ
t
3(x3)))

+x2φ3(x3)(φ
s
2(x2)− φt

2(x2))
]

Eenf(td)henf(α, β2, b1, b2)
}

, (22)
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MSP,L
enf = −16

√

2

3
πCFM

4
B

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)φ2(x2)

×
{[

φ3(x3)(x2 − x3 − 1) + r3x3(φ
s
3(x3) + φt

3(x3))
]

Eenf (tc)henf(α, β1, b1, b2)

+
[

φ3(x3)x2 + r3x3(φ
t
3(x3)− φs

3(x3))
]

Eenf(td)henf(α, β2, b1, b2)
}

. (23)

The functions tc(d), Eenf , henf , α, βi for the nonfactorizable emission diagrams are also listed

in Appendix A. As is well known, the hard-scattering emission diagrams with a light meson

(pseudoscalar or vector) are suppressed. This can be seen from the figures (c) and (d), which

are symmetrical. But, compared with the figure (d), the anti-quark propagator in figure (c)

has an additional negative sign. As a result, the two contributions cancel each other.

Figures (e) and (f) are the factorizable annihilation diagrams, whose factorizable contri-

butions are listed below:

ALL(LR),L
af = 8CFπfBM

4
B

∫ 1

0

dx2dx3

∫ 1/Λ

0

b2db2b3db3

×
{[

φ2(x2)φ3(x3)(x3 − 1) + 2r2r3φ
s
2(x2)(x3φ

t
3(x3)− (x3 − 2)φs

3(x3))
]

·Eaf (te)haf (α1, β, b2, b3)

−
[

−x2φ2(x2)φ3(x3) + 2r2r3φ
s
3(x3)((x2 − 1)φt

2(x2) + (x2 + 1)φs
2(x2))

]

·Eaf (tf)haf (α2, β, b3, b2)} , (24)

ASP,L
af = −16CFfBπM

4
B

∫ 1

0

dx2dx3

∫ 1/Λ

0

b2db2b3db3

×
{[

2r2φ3(x3)φ
s
2(x2) + r3(x3 − 1)φ2(x2)(φ

s
3(x3) + φt

3(x3))
]

·Eaf(te)haf (α1, β, b2, b3)

+
[

2r3φ2(x2)φ
s
3(x3) + r2x2φ3(x3)(φ

t
2(x2)− φs

2(x2))
]

·Eaf(tf )haf (α2, β, b3, b2)} , (25)

and the related scales and the hard functions listed in Appendix A

The last two diagrams in Fig.1 are the nonfactorizable annihilation diagrams. The ex-
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pressions for the corresponding amplitudes are as follows:

MLL,L
anf = 16

√

2

3
CFπM

4
B

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)

×
{[

r2r3(φ
t
2(x2)(φ

t
3(x3)(1− x2 + x3) + φs

3(x3)(x2 + x3 − 1))

+φs
2(x2)(φ

t
3(x3)(1− x2 − x3) + φs

3(x3)(x2 − x3 + 3)))

−x2φ2(x2)φ3(x3)]Eanf (tg)hanf (α, β1, b1, b2)

−
[

r2r3(φ
s
2(x2)(φ

s
3(x3)(1 + x2 − x3) + φt

3(x3)(x2 + x3 − 1))

+φt
2(x2)(φ

s
3(x3)(1− x2 − x3) + φt

3(x3)(x3 − x2 − 1)))

+(x3 − 1)φ2(x2)φ3(x3)]Eanf (th)hanf (α, β2, b1, b2)} , (26)

MLR,L
anf = 16

√

2

3
CFπM

4
B

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)

×
{[

φ3(x3)(φ
t
2(x2) + φs

2(x2))r2(x2 − 2)

−φ2(x2)(φ
s
3(x3)− φt

3(x3))r3(x3 + 1)
]

Eanf (tg)hanf (α, β1, b1, b2)

+
[

φ2(x2)(φ
s
3(x3)− φt

3(x3))r3(x3 − 1)

−φ3(x3)(φ
s
2(x2) + φt

2(x2))r2x3

]

Eanf (th)hanf(α, β2, b1, b2)
}

, (27)

MSP,L
anf = 16

√

2

3
CFπM

4
B

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)

×
{[

r2r3(φ
t
2(x2)(φ

t
3(x3)(1− x2 + x3)− φs

3(x3)(x2 + x3 − 1))

+φs
2(x2)(φ

t
3(x3)(x2 + x3 − 1) + φs

3(x3)(x2 − x3 + 3)))

+(x3 − 1)φ2(x2)φ3(x3)]Eanf (tg)hanf (α, β1, b1, b2)

−
[

r2r3(φ
s
2(x2)(φ

s
3(x3)(1 + x2 − x3) + φt

3(x3)(1− x2 − x3))

+φt
2(x2)(φ

s
3(x3)(x2 + x3 − 1) + φt

3(x3)(x3 − x2 − 1)))

−x2φ2(x2)φ3(x3)]Eanf (th)hanf (α, β2, b1, b2)} . (28)

For the B(s) → V V decays, the transverse polarization amplitudes of the two factorizable

emission diagrams yield:

ALL(LR),N
ef = 8πCFM

4
BfV2

r2

∫ 1

0

dx1dx3

∫ 1/Λ

0

b1db1b3db3φB(x1, b1)
{[

φT
3 (x3)

+r3((x3 + 2)φv
3(x3)− x3φ

a
3(x3))]Eef(ta)hef(x1, x3(1− r22), b1, b3)

+r3(φ
a
3(x3) + φv

3(x3))Eef(tb)hef(x3, x1(1− r22), b3, b1)
}

, (29)
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ALL(LR),T
ef = −8πCFM

4
BfV2

r2

∫ 1

0

dx1dx3

∫ 1/Λ

0

b1db1b3db3φB(x1, b1)
{[

φT
3 (x3)

+r3((x3 + 2)φa
3(x3)− x3φ

v
3(x3))]Eef(ta)hef(x1, x3(1− r22), b1, b3)

+r3(φ
a
3(x3) + φv

3(x3))Eef(tb)hef(x3, x1(1− r22), b3, b1)
}

. (30)

The transverse polarization amplitudes of the two hard-scattering emission diagrams

fig.(c) and (d) are given below:

MLL,N
enf = 16

√

2

3
πCFM

4
Br2

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)

×
{[

(1− x2)φ
T
3 (x3)(φ

a
2(x2) + φv

2(x2))
]

Eenf (tc)henf (α, β1, b1, b2)

− [2r3(x2 + x3)(φ
a
2(x2)φ

a
3(x3) + φv

2(x2)φ
v
3(x3))

−x2φ
T
3 (x3)(φ

a
2(x2) + φv

2(x2))
]

Eenf(td)henf(α, β2, b1, b2)
}

, (31)

MLL,T
enf = 16

√

2

3
πCFM

4
Br2

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)

×
{[

(x2 − 1)φT
3 (x3)(φ

a
2(x2) + φv

2(x2))
]

Eenf (tc)henf(α, β1, b1, b2)

+ [2r3(x2 + x3)(φ
a
2(x2)φ

v
3(x3) + φv

2(x2)φ
a
3(x3))

−x2φ
T
3 (x3)(φ

a
2(x2) + φv

2(x2))
]

Eenf(td)henf(α, β2, b1, b2)
}

, (32)

MLR,N
enf = 16

√

2

3
πCFM

4
B

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)φ
T
2 (x2)

×
{[

r3x3(φ
a
3(x3)− φv

3(x3))− φT
3 (x3)(r

2
2(x2 − 1)− x3r

2
3)
]

·Eenf(tc)henf(α, β1, b1, b2)

+
[

r3x3(φ
a
3(x3)− φv

3(x3)) + φT
3 (x3)(r

2
2x2 + r23x3))

]

Eenf(td)henf(α, β2, b1, b2)} , (33)

MLR,T
enf = 16

√

2

3
πCFM

4
B

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)φ
T
2 (x2)

×
{[

r3x3(φ
v
3(x3)− φa

3(x3))− φT
3 (x3)(r

2
2(x2 − 1) + x3r

2
3)
]

·Eenf(tc)henf(α, β1, b1, b2)

+
[

r3x3(φ
v
3(x3)− φa

3(x3)) + φT
3 (x3)(r

2
2x2 − r23x3))

]

Eenf(td)henf(α, β2, b1, b2)} , (34)
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MSP,N
enf = 16

√

2

3
πCFM

4
Br2

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)

×{[2r3(x3 + 1− x2)(φ
v
2(x2)φ

v
3(x3)− φa

2(x2)φ
a
3(x3))

+(x2 − 1)φT
3 (x3)(φ

v
2(x2)− φa

2(x2))
]

Eenf(tc)henf(α, β1, b1, b2)

+
[

x2φ
T
3 (x3)(φ

a
2(x2)− φv

2(x2))
]

Eenf(td)henf (α, β2, b1, b2)
}

, (35)

MSP,T
enf = 16

√

2

3
πCFM

4
Br2

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)

×{[2r3(x2 − x3 − 1)(φv
2(x2)φ

a
3(x3)− φa

2(x2)φ
v
3(x3))

+(x2 − 1)φT
3 (x3)(φ

a
2(x2)− φv

2(x2))
]

Eenf(tc)henf(α, β1, b1, b2)

+
[

x2φ
T
3 (x3)(φ

v
2(x2)− φa

2(x2))
]

Eenf(td)henf(α, β2, b1, b2)
}

. (36)

The transverse polarization amplitudes for the factorizable annihilation diagrams are:

ALL(LR),N
af = 8CFπfBr2r3M

4
B

∫ 1

0

dx2dx3

∫ 1/Λ

0

b2db2b3db3

×{[(φv
2(x2)φ

v
3(x3) + φa

2(x2)φ
a
3(x3))(x3 − 2)−

x3(φ
v
2(x2)φ

a
3(x3) + φa

2(x2)φ
v
3(x3))]Eaf (te)haf (α1, β, b2, b3)

+ [(x2 − 1)(φa
2(x2)φ

v
3(x3) + φv

2(x2)φ
a
3(x3))+

(x2 + 1)(φa
2(x2)φ

a
3(x3) + φv

2(x2)φ
v
3(x2))]Eaf (tf)haf (α2, β, b3, b2)} , (37)

ALR,T
af = −ALL,T

af = 8CFπfBr2r3M
4
B

∫ 1

0

dx2dx3

∫ 1/Λ

0

b2db2b3db3

×{[(φa
2(x2)φ

v
3(x3) + φv

2(x2)φ
a
3(x3))(x3 − 2)−

x3(φ
v
2(x2)φ

v
3(x3) + φa

2(x2)φ
a
3(x3))]Eaf (te)haf (α1, β, b2, b3)

+ [(x2 − 1)(φv
2(x2)φ

v
3(x3) + φa

2(x2)φ
a
3(x3)) + (x2 + 1)

·(φv
2(x2)φ

a
3(x3) + φa

2(x2)φ
v
3(x2))]Eaf (tf )haf (α2, β, b3, b2)} , (38)

ASP,N
af = −ASP,T

af = 16CFπfBM
4
B

∫ 1

0

dx2dx3

∫ 1/Λ

0

b2db2b3db3

×
{[

r2φ
T
3 (x3)(φ

a
2(x2) + φv

2(x2))
]

Eaf (te)haf (α1, β, b2, b3)

−
[

r3φ
T
2 (x2)(φ

a
3(x3)− φv

3(x3))
]

Eaf (tf)haf (α2, β, b3, b2)
}

. (39)

From Eqs. (24) and (37), we find that large cancellations between the two annihilation type

diagrams ( (e) and (f)) take place, as a result of which they are highly power suppressed.
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These two symmetric diagrams will cancel each other due to the relative negative sign

introduced by the anti-quark propagator in diagram (e). This agrees with the naive argument

that the annihilation contributions are negligible, especially for two identical final state

mesons. For Eq. (38), although the cancellations are not as severe as in Eq. (24) and Eq. (37),

the contribution is also highly suppressed being proportional to r2r3. From Eqs. (25) and

(39), it is interesting to see that no cancellations or power suppression are involved. The

chiral enhancement here is important to explain the large direct CP asymmetry, generated

by the strong phase and the transverse polarization fraction in the penguin-dominated B

decays [39]. The chirally enhanced penguin annihilation contribution will be discussed in

Sec.IV.

For the nonfactorizable annihilation diagrams ((g) and (h)), we get:

MLL,N
anf = MSP,N

anf = 16

√

2

3
CFπM

4
B

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)

×{[−2r2r3(φ
a
2(x2)φ

a
3(x3) + φv

2(x2)φ
v
3(x3))

−φT
2 (x2)φ

T
3 (x3)(r

2
2(x2 − 1)− r23x3)

]

Eanf (tg)hanf (α, β1, b1, b2)

+
[

φT
2 (x2)φ

T
3 (x3)(r

2
2x2 − r23(x3 − 1))

]

Eanf(th)hanf (α, β2, b1, b2)
}

, (40)

MLL,T
anf = −MSP,T

anf = 16

√

2

3
CFπM

4
B

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)

×{[2r2r3(φa
2(x2)φ

v
3(x3) + φv

2(x2)φ
a
3(x3))

−φT
2 (x2)φ

T
3 (x3)(r

2
2(x2 − 1) + r23x3)

]

Eanf (tg)hanf (α, β1, b1, b2)

+
[

φT
2 (x2)φ

T
3 (x3)(r

2
2x2 + r23(x3 − 1))

]

Eanf (th)hanf (α, β2, b1, b2)
}

, (41)

MLR,N
anf = −MLR,T

anf = 16

√

2

3
CFπM

4
B

∫ 1

0

d[x]

∫ 1/Λ

0

b1db1b2db2φB(x1, b1)

×
{[

r2(2− x2)φ
T
3 (x3)(φ

a
2(x2) + φv

2(x2))

r3(x3 + 1)φT
2 (x2)(φ

a
3(x2)− φv

3(x3))
]

Eanf(tg)hanf (α, β1, b1, b2)

+
[

r3(x3 − 1)φT
2 (x2)(φ

v
3(x3)− φa

3(x3))+

r2x2φ
T
3 (x3)(φ

a
2(x2) + φv

2(x2))
]

Eanf (th)hanf (α, β2, b1, b2)
}

, (42)

This completes the derivation of the various contributions in the B(s) → V V decays. We

now turn to the presentation of our numerical results in the next section.
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IV. NUMERICAL RESULTS AND DISCUSSIONS

We start this section by listing the input parameters used in our numerical calculations.

The vector meson decay constants have been summarized in Table I. Other parameters, such

as the CKM matrix elements, QCD scale (GeV), the masses (GeV) and the decay constant

of the B(s) mesons (GeV) and the corresponding lifetimes (in ps) are taken from the PDG

review [40] and are given below:

Λf=4

MS
= 0.25± 0.05, MB = 5.279, MBs = 5.366, fB = 0.21± 0.02, fBs = 0.24± 0.03,

τB±/0 = 1.641/1.519, τBs = 1.497, mb(pole) = 4.8,

Vud = 0.97427± 0.00015, Vus = 0.22534± 0.00065, Vub = 0.00351+0.00015
−0.00014,

Vtd = 0.00867+0.00029
−0.00031, Vts = 0.0404+0.0011

−0.0005, Vtb = 0.999146+0.000021
−0.000046,

α = (89+4.4
−4.2)

◦, γ = (68+10
−11)

◦. (43)

With three polarization amplitudes, AL, AN , and AT , the decay width is expressed as

Γ(B(s) → V V ) =
|−→P |

8πM2
B

[

| AL |2 +2(| AN |2 + | AT |2)
]

, (44)

where the analytic formulas for the amplitudes AL, AN and AT can be found in [7–9]. In

our convention, given in Eq. (19), the helicity amplitudes are defined as follows:

A0 = AL = −AL, A‖ =
√
2AN , A⊥ =

√
2AT , (45)

where the definitions of A0,‖,⊥ are the same as those in [8]. In this work, we also predict

their relative phases φ‖ = arg(A‖/A0) and φ⊥ = arg(A⊥/A0). The polarization fractions

fL,‖,⊥ are defined as

fL,‖,⊥ =
| AL,‖,⊥ |2

| A0 |2 + | A‖ |2 + | A⊥ |2 . (46)

In addition to the direct CP asymmetry parameters, we also evaluate the following observ-

ables:

A0
CP = (f̄L − fL)/(f̄L + fL), A⊥

CP = (f̄⊥ − f⊥)/(f̄⊥ + f⊥), ∆φ‖ = (φ̄‖ − φ‖)/2 . (47)

Of these, ∆φ⊥ = (φ̄⊥ − φ⊥)/2 is being worked out for the Bq → V V decays for the first

time.
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TABLE II: Updated branching ratios, percentage of the longitudinal polarization fL and the trans-

verse polarizations f⊥, relative phases, and the CP asymmetry parameters A0
CP and A⊥

CP in the

B → K∗0φ, Bs → K̄∗0φ, Bs → φφ and Bs → K̄∗0K∗0 decays calculated in the PQCD approach.

Modes Br(10−6) fL(%) f⊥ (%) φ‖(rad) φ⊥(rad)

B0 → K∗0φ 9.8+4.9
−3.8 56.5+5.8

−5.9 21.3+2.8
−2.9 2.15+0.22

−0.19 2.14+0.23
−0.19

Exp 9.8 ± 0.6 48± 3 24± 5 2.40± 0.13 2.39 ± 0.13
B+ → K∗+φ 10.3+4.9

−3.8 57.0+6.3
−5.9 21.0+3.0

−3.0 2.18+0.23
−0.19 2.19+0.22

−0.20
Exp 10.0 ± 2.0 50± 5 20± 5 2.34± 0.18 2.58 ± 0.17

Bs → φφ 16.7+8.9
−7.1 34.7+8.9

−7.1 31.6+3.5
−4.4 2.01+0.23

−0.23 2.00+0.24
−0.21

Exp 19± 5 34.8± 4.6 36.5 ± 4.4± 2.7 2.71+0.31
−0.36 ± 0.22

Bs → K̄∗0φ 0.39+0.20
−0.17 50.0+8.1

−7.2 24.2+3.6
−3.9 1.95−0.21

−0.22 1.95+0.21
−0.22

Expa 1.10 ± 0.29 51± 15± 7 28± 11± 2 1.75 ± 0.58 ± 0.30

Bs → K∗0K̄∗0 5.4+3.0
−2.4 38.3+12.1

−10.5 30.0+5.3
−6.1 2.12+0.21

−0.25 2.15+0.22
−0.23

Exp 28.1 ± 4.6± 5.6 31± 12± 4 38± 11± 4

Adir
CP (%) A0

CP (%) A⊥
CP (%) ∆φ‖(rad) ∆φ⊥(rad)

B0 → K∗0φ 0.0 0.0 0.0 0.0 0.0

Exp 4± 6 −11± 12 0.11± 0.22 0.08 ± 0.22

B+ → K∗+φ −1.0+0.18
−0.26 −0.60+0.12

−0.14 0.75+0.23
−0.11 −0.05+0.12

−0.33 −0.01

Exp −1± 8 17± 11± 2 22± 24± 8 0.07 ± 0.2± 0.05 0.19± 0.20 ± 0.07

Bs → φφ 0.0 0.0 0.0 0.0 0.0

Bs → K̄∗0φ 0.0 0.0 0.0 0.0 0.0

Bs → K∗0K̄∗0 0.0 0.0 0.0 0.0 0.0

aThe experimental results are taken from [41].

For the charmless Bq → V V decays, it is naively expected that the helicity amplitudes

Hi (with helicity i = 0,−,+) satisfy the hierarchy pattern

H0 : H− : H+ = 1 :
ΛQCD

mb

: (
ΛQCD

mb

)2. (48)

In the naive factorization approach, longitudinal polarizations dominate the branching ratios

of B decays. In sharp contrast to these expectations, large transverse polarization of order

50% is observed in B → K∗φ, B → K∗ρ and Bs → φφ decays, which poses an interesting

challenge for the theory. This shows that the scaling behavior shown in Eq. (48) is violated.

In order to interpret this large transverse polarization many mechanisms have been proposed,

such as the penguin-induced annihilation contributions [42], final-state interactions [43],

form-factor tuning [44], and even onset of new physics [45].
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TABLE III: Updated branching ratios (in units of 10−6) of B → V V decays calculated in the PQCD

approach. For comparison, we also give the updated theoretical predictions in the QCD factoriza-

tion (QCDF) approach [4] and the previous predictions in the PQCD approach[7]. Experimental

data are from the Particle Data Group [40]

Decay Modes Class This work QCDF PQCD(former) Exp

B0 → ρ0ρ0 C 0.27+0.10+0.06+0.00
−0.09−0.04−0.01 0.9+1.5+1.1

−0.4−0.2 0.9± 0.1± 0.1 0.73 ± 0.28

B0 → ρ+ρ− T 26.0+10.1+1.4+1.5
−8.1−1.4−1.2 25.5+1.5+1.1

−2.6−1.5 35± 5± 4 24.2 ± 3.1

B0 → ρ0ω E,P 0.40+0.15+0.09+0.01
−0.12−0.08−0.01 0.08+0.02+0.36

−0.02−0.00 1.9± 0.2± 0.2 < 1.6

B0 → ωω C,P 0.50+0.21+0.09+0.05
−0.18−0.07−0.05 0.7+0.9+0.7

−0.3−0.2 1.2± 0.2± 0.2 < 4.0

B0 → K∗0ρ0 P 3.3+1.3+1.1+0.0
−1.1−0.9−0.1 4.6+0.6+3.5

−0.5−3.5 5.9 3.4+1.7
−1.3

B0 → K∗+ρ− P 8.4+3.1+2.2+0.6
−2.8−1.9−0.9 8.9+1.1+4.8

−1.0−5.5 13 < 12.0

B0 → K∗0ω P 4.7+2.1+1.6+0.2
−1.5−1.3−0.3 2.5+0.4+2.5

−0.4−1.5 9.6 2.0 ± 0.5

B0 → K∗0K̄∗0 P 0.34+0.13+0.10+0.02
−0.11−0.09−0.03 0.6+0.1+0.2

−0.1−0.3 0.35 0.8 ± 0.5

B0 → K∗+K∗− E 0.21+0.09+0.03+0.01
−0.09−0.05−0.02 0.1+0.0+0.1

−0.0−0.1 0.11 < 2.0

B0 → ρ0φ P 0.013+0.007+0.001+0.001
−0.006−0.002−0.001 < 0.33

B0 → ωφ P 0.010+0.005+0.001+0.001
−0.004−0.002−0.001 < 1.2

B0 → φφ P 0.012+0.003+0.005+0.001
−0.002−0.004−0.001 0.0189+0.0061

−0.0021 < 0.2

B+ → ρ+ρ0 T 13.5+5.0+0.4+1.1
−3.9−0.7−1.0 20.0+4.0+2.0

−1.9−0.9 17± 2± 1 24.0 ± 1.9

B+ → ρ+ω T 12.1+4.5+0.1+0.1
−3.7−0.4−0.1 16.9+3.2+1.7

−1.6−0.9 17± 2± 1 15.9 ± 2.1

B+ → ρ+K∗0 P 9.9+3.8+2.7+0.3
−3.3−2.4−0.5 9.2+1.2+3.6

−1.1−5.4 17 9.2 ± 1.5

B+ → ρ0K∗+ P 6.1+2.5+1.3+0.3
−1.9−1.3−0.5 5.5+0.6+1.3

−0.5−2.5 9.0 4.6 ± 1.1

B+ → ωK∗+ P 4.0+1.7+1.3+0.3
−1.3−0.9−0.3 3.0+0.4+2.5

−0.3−1.5 7.9 < 7.4

B+ → K∗+K̄∗0 P 0.56+0.23+0.13+0.02
−0.19−0.12−0.02 0.6+0.1+0.3

−0.1−0.3 0.40 1.2 ± 0.5

B+ → ρ+φ P 0.028+0.015+0.003+0.002
−0.012−0.004−0.002 < 3.0

As pointed out in the context of QCDF [3], after taking into account the NLO effects,

e.g., vertex-, penguin- and hard spectator-scattering contributions, the effective Wilson co-

efficients ahi become helicity dependent. Including these effects, for some penguin-dominant

modes, the constructive (destructive) interference in the transverse (longitudinal) amplitudes

of B → V V decays makes the total transverse contribution comparable to the longitudinal

one, and the transverse polarization fraction may reach as high as 50%.
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TABLE IV: Updated percentage of the longitudinal polarizations fL of B → V V decays calculated

in the PQCD approach compared with the updated theoretical predictions in the QCD factorization

(QCDF) approach [4] and the previous predictions in the PQCD approach [7]. Experimental data

are from the Particle Data Group[40].

Decay Modes This work QCDF PQCD(former) Exp.

B0 → ρ0ρ0 0.12+0.04+0.15+0.00
−0.02−0.01−0.00 0.92+0.03+0.06

−0.04−0.37 0.60 0.75 ± 0.14a

B0 → ρ+ρ− 0.95+0.01+0.01+0.00
−0.01−0.01−0.00 0.92+0.01+0.01

−0.02−0.02 0.94 0.977 ± 0.026

B0 → ρ0ω 0.67+0.04+0.03+0.06
−0.06−0.04−0.06 0.52−0.11+0.50

−0.25−0.36 0.87

B0 → ωω 0.66+0.07+0.04+0.06
−0.10−0.02−0.04 0.94+0.01+0.04

−0.01−0.20 0.82

B0 → K∗0ρ0 0.65+0.03+0.03+0.00
−0.03−0.04−0.00 0.39+0.00+0.60

−0.00−0.31 0.74 0.57 ± 0.10

B0 → K∗+ρ− 0.68+0.04+0.03+0.02
−0.03−0.03−0.02 0.53+0.02+0.45

−0.03−0.32 0.78

B0 → K∗0ω 0.65+0.05+0.02+0.00
−0.05−0.02−0.00 0.58+0.07+0.43

−0.10−0.14 0.82 0.69 ± 0.13

B0 → K∗0K̄∗0 0.58+0.07+0.02+0.02
−0.08−0.02−0.01 0.52+0.04+0.48

−0.07−0.48 0.78 0.80 ± 0.13

B0 → K∗+K∗− ∼ 1.0 ∼ 1.0 0.99

B0 → ρ0φ 0.95+0.01+0.01+0.00
−0.01−0.01−0.00

B0 → ωφ 0.94+0.02+0.01+0.00
−0.02−0.02−0.00

B0 → φφ 0.97+0.01+0.01+0.00
−0.01−0.01−0.00 0.65

B+ → ρ+ρ0 0.98+0.01+0.01+0.00
−0.01−0.01−0.00 0.96+0.01+0.02

−0.01−0.02 0.94 0.95 ± 0.016

B+ → ρ+ω 0.97+0.01+0.00+0.00
−0.01−0.00−0.00 0.96+0.01+0.02

−0.01−0.03 0.97 0.90 ± 0.06

B+ → K∗+ρ0 0.75+0.03+0.02+0.02
−0.03−0.03−0.02 0.67+0.02+0.31

−0.03−0.48 0.85 0.78 ± 0.12

B+ → K∗0ρ+ 0.70+0.03+0.04+0.00
−0.03−0.04−0.01 0.48+0.03+0.52

−0.04−0.40
b 0.82 0.48 ± 0.08

B+ → K∗+ω 0.64+0.06+0.02+0.04
−0.06−0.02−0.03 0.67+0.03+0.32

−0.04−0.39 0.81 0.41 ± 0.19

B+ → K∗+K̄∗0 0.74+0.03+0.02+0.01
−0.04−0.03−0.02 0.45+0.02+0.55

−0.04−0.38 0.75 0.75 ± 0.25

B+ → ρ+φ 0.95+0.01+0.01+0.00
−0.01−0.02−0.00

aThis is from BABAR data [46]. The Belle’s new measurement yields 0.21+0.18

−0.22 ± 0.13 [48].
bThis mode is employed as an input for extracting the parameters for B → K∗ρ decays in ref.[4].

In order to interpret the observed large transverse polarization fraction in the penguin-

dominated B → V V decays, e.g., B → K∗φ, B → K∗ρ, both the PQCD and the QCDF

frameworks rely on penguin annihilation. However, in QCDF, the penguin-annihilation

amplitude involves a troublesome endpoint divergence, which is fudged by introducing non-

perturbative parameters. Hence, in QCDF, one can fit the existing experimental data on

the branching ratios, fL and the CP asymmetries by adjusting the annihilation parameters
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TABLE V: Direct CP asymmetries (%) in the B → V V decays and comparison with the predictions

from QCDF[4]. Experimental data are from the Particle Data Group[40]. For B0 → K∗0(+)ρ0(−),

the data is from the ref.[50]

Decay Modes This work QCDF Exp.

B0 → ρ0ρ0 70.7+2.9+0.8+3.8
−5.2−5.4−6.0 30+17+14

−16−26

B0 → ρ+ρ− 0.83+0.50+0.66+0.00
−0.59−0.31−0.00 −4+0+3

−0−3

B0 → ρ0ω 59.4+11.9+6.3+5.0
−8.3−5.5−6.3 3+2+51

−6−76

B0 → ωω −73.7+6.7+2.6+3.3
−6.2−6.0−0.9 −30+15+16

−14−18

B0 → K∗0ρ0 −8.9+0.6+2.8+1.1
−0.6−2.8−1.0 −15+4+16

−8−14 −6± 9± 2

B0 → K∗+ρ− 24.5+1.2+2.9+0.0
−1.5−3.4−0.6 32+1+2

−3−14 21± 15± 2

B0 → K∗0ω 5.6+0.3+1.2+0.8
−0.3−1.3−0.9 23+9+5

−5−18 45± 25

B0 → K∗0K̄∗0 0.0 −14+1+6
−1−2

B0 → K∗+K∗− 29.8+2.0+6.4+4.6
−5.7−9.5−4.7 0

B0 → ρ0φ 0.0

B0 → ωφ 0.0

B0 → φφ 0.0

B0 → K∗0φ 0.0 0.8+0+0.4
−0−0.5

B+ → ρ+ρ0 0.05−0.03+0.05+0.00
−0.01−0.03−0.00 0.06 −5± 5

B+ → ρ+ω −11.2+1.8+2.4+0.9
−2.0−2.5−0.6 −8+1+3

−1−4 −20± 9

B+ → K∗+ρ0 22.7+1.1+2.6+0.4
−1.5−2.5−1.2 43+6+12

−2−28 31± 13

B+ → K∗0ρ+ −1.0+0.2+0.2+0.1
−0.3−0.0−0.2 −0.3+0+2

−0−0 −1± 16

B+ → K∗+ω 9.1+3.3+1.3+0.0
−3.2−3.5−0.3 56+3+4

−4−43 29± 35

B+ → K∗+K̄∗0 23.0+4.6+0.2+0.7
−4.2−2.2−1.4 16+1+17

−3−34

B+ → K∗+φ −1.0 0.05 −1± 8

B+ → ρ+φ 0.0

ρA and φA, which reduces the predictive power of the theory. In contrast, in the PQCD

approach, the annihilation type diagrams can be perturbatively calculated without intro-

ducing any fudge factor (or parameter), which allows us to predict the direct CP asymmetry

and transverse polarization. The large transverse polarization fraction can be interpreted

on the basis of the chirally enhanced annihilation diagrams, especially the (S − P )(S + P )

penguin annihilation, introduced by the QCD penguin operator O6 [49]. A nice feature of

the (S−P )(S +P ) penguin annihilation operator is that the light quarks in the final states

are not produced through chiral currents. So, there is no suppression caused by the helicity
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TABLE VI: Updated percentage of the transverse polarizations f⊥(%), relative phases φ‖(rad),

φ⊥(rad), ∆φ‖(10
−2rad), ∆φ⊥(10

−2rad) and the CP asymmetry parameters A0
CP (%) and A⊥

CP (%)

in B → V V decays calculated in the PQCD approach.

Decay Modes f⊥ φ‖ φ⊥ A0
CP A⊥

CP ∆φ‖ ∆φ⊥

B0 → ρ0ρ0 45.9+1.1
−8.2 2.68+1.90

−1.09 2.81+0.95
−1.95 88.9+9.0

−120.7 −11.6+16.2
−2.9 −98.9+251.9

−69.6 −105+266
−41

B0 → ρ+ρ− 2.42+0.21
−0.19 3.12+0.06

−0.06 3.16+0.06
−0.05 −2.05+0.53

−0.55 39.0+7.6
−8.4 10.2+3.0

−3.1 9.58+2.93
−3.19

B0 → ρ0ω 16.7+5.0
−3.6 3.13+0.17

−0.19 3.13+0.17
−0.19 26.6+19.8

−12.2 −60.0+11.8
−12.1 −87.8+13.7

−15.3 −98.4+12.9
−15.1

B0 → ωω 18.2+6.1
−5.3 3.20+0.25

−0.20 3.21+0.24
−0.22 −5.70+11.8

−16.2 17.0+19.1
−22.1 105+13.2

−10.4 108+13.8
−11.1

B0 → K∗0ρ0 16.9+2.7
−1.8 4.67+0.02

−3.06 4.66+0.01
−3.06 3.64+1.20

−1.07 −7.71+1.97
−1.86 −0.12+1.72

−1.79 0.22+1.85
−1.65

B0 → K∗+ρ− 15.6+2.5
−2.5 3.31+0.23

−0.21 3.30+0.22
−0.21 23.8+4.7

−5.1 −50.9+4.9
−3.9 128+4.1

−4.4 127+43
−4.3

B0 → K∗0ω 18.3+2.6
−2.3 2.18+0.21

−0.20 2.14+0.21
−0.19 1.46+1.44

−1.62 −8.92+5.01
−4.01 −2.28+1.79

−1.89 −12.0+3.5
−4.9

B0 → K∗0K̄∗0 19.7+4.0
−3.6 2.26+0.20

−0.16 2.31+0.19
−0.15 ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0

B0 → K∗+K∗− ∼ 0.0 3.34+0.08
−0.06 3.37+2.60

−0.09 0.02+0.02
−0.01 −75.3+21.1

−10.5 56.4+10.9
−9.7 −129+258

−2.0

B0 → ρ0φ 2.36+1.08
−0.76 3.76+0.22

−0.31 3.77+0.24
−0.27 ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0

B0 → ωφ 2.78+1.08
−0.86 3.77+0.20

−0.28 3.78+0.20
−0.25 ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0

B0 → φφ 0.05+0.02
−0.02 3.26+0.20

−0.14 3.50+0.17
−0.17 ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0

B+ → ρ+ρ0 0.46+0.08
−0.06 3.20+0.07

−0.09 3.18+0.07
−0.10 0.002+0.003

−0.003 −0.32+0.25
−0.64 −0.11+0.10

−0.32 −0.79+0.11
−0.45

B+ → ρ+ω 1.18+0.38
−0.29 2.64+0.14

−0.15 2.57+0.16
−0.15 −2.02+0.69

−0.74 76.2+11.0
−14.7 70.7+16.8

−16.1 83.9+17.3
−19.7

B+ → K∗+ρ0 11.9+2.3
−2.0 1.94+1.44

−0.14 1.94+1.43
−0.15 11.3+2.3

−2.4 −34.0+3.7
−2.8 −26.4+157

−4.0 −27.3+158
−4.0

B+ → K∗0ρ+ 13.7+2.1
−1.9 1.81+0.20

−0.18 1.81+0.19
−0.18 −0.36+0.12

−0.11 0.98+0.20
−0.25 −1.19+0.38

−0.36 −1.54+0.41
−0.49

B+ → K∗+ω 17.2+3.4
−3.5 2.18+0.23

−0.20 2.18+0.22
−0.20 11.2+3.9

−4.3 −19.9+5.5
−3.6 −37.9+7.0

−6.1 −38.7+7.2
−6.1

B+ → K∗+K̄∗0 12.9+1.7
−2.4 1.98+0.20

−0.17 1.99+0.18
−0.19 7.21+2.54

−2.50 −19.1+4.2
−2.6 20.2+4.8

−5.8 28.4−7.7
−6.2

B+ → ρ+φ 2.36+1.08
−0.76 3.76+0.22

−0.31 3.77+0.23
−0.27 ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0

flip. As a result, the polarization fractions satisfy

fL ≈ f‖ ≈ f⊥. (49)

Thus, in the PQCD approach, the penguin-annihilation together with the hard-scattering

emission diagrams can explain the large transverse polarization fraction measured in exper-

iments.

We present our numerical results for the branching ratios, direct CP asymmetries, and

some other observables introduced earlier in the text, in Tables II-X. The dominant topolo-

gies contributing to these decays are also indicated in the tables through the symbols T (the

color-allowed tree contributions), C (the color-suppressed tree contributions), P (penguin
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TABLE VII: Updated branching ratios (in units of 10−6) of Bs → V V decays calculated in the

PQCD approach. For comparison, we also cite the updated theoretical predictions in the QCDF

approach [5] and the previous predictions in the PQCD approach [8]. Experimental data are from

the Particle Data Group [40]

Decay Modes Class This work QCDF PQCD(former) Exp

Bs → K∗−ρ+ T 24.0+10.9+1.2+0.0
−8.7−1.4−2.4 21.6+1.3+0.9

−2.8−1.5 20.9+8.2+1.4+1.2
−6.2−1.4−1.1

Bs → K̄∗0ρ0 C 0.40+0.19+0.11+0.00
−0.15−0.07−0.03 1.3+2.0+1.7

−0.6−0.3 0.33+0.09+0.14+0.00
−0.07−0.09−0.01 < 767

Bs → K̄∗0ω C 0.35+0.16+0.09+0.04
−0.14−0.08−0.08 1.1+1.5+1.3

−0.5−0.3 0.31+0.10+0.12+0.04
−0.07−0.06−0.02

Bs → K∗+K∗− P 5.4+2.7+1.8+0.3
−1.7−1.4−0.5 7.6+1.0+2.3

−1.0−1.8 6.7+1.5+3.4+0.5
−1.2−1.4−0.2

Bs → ρ0φ P 0.23+0.15+0.03+0.01
−0.05−0.01−0.02 0.18+0.01+0.09

−0.01−0.04 0.23+0.09+0.03+0.00
−0.07−0.01−0.01 < 617

Bs → ωφ P 0.17+0.10+0.05+0.00
−0.07−0.04−0.01 0.18+0.44+0.47

−0.12−0.04 0.16+0.09+0.10+0.01
−0.05−0.04−0.00

Bs → ρ+ρ− P 1.5+0.7+0.2+0.0
−0.6−0.2−0.1 0.68+0.04+0.73

−0.04−0.53 1.0+0.2+0.3+0.0
−0.2−0.2−0.0

Bs → ρ0ρ0 P 0.74+0.39+0.22+0.00
−0.24−0.14−0.00 0.34+0.02+0.36

−0.02−0.26 0.51+0.12+0.17+0.01
−0.11−0.10−0.01 < 320

Bs → ρ0ω E 0.009+0.003+0.001+0.000
−0.003−0.002−0.001 0.004+0.0+0.005

−0.0−0.003 0.007+0.002+0.001+0.000
−0.001−0.001−0.000

Bs → ωω P 0.40+0.16+0.10+0.00
−0.18−0.10−0.01 0.19+0.02+0.21

−0.02−0.15 0.39+0.09+0.13+0.01
−0.08−0.07−0.00

TABLE VIII: Percentage of the longitudinal polarizations fL in Bs → V V decays and comparison

with the QCDF approach [5] and the previous predictions in the PQCD approach [8].

Decay Modes This work QCDF PQCD(former)

Bs → K∗−ρ+ 0.95+0.01+0.01+0.00
−0.01−0.01−0.00 0.92+0.01+0.01

−0.02−0.03 0.937+0.001+0.002+0.000
−0.002−0.003−0.002

Bs → K̄∗0ρ0 0.57+0.06+0.06+0.01
−0.10−0.08−0.00 0.90+0.04+0.03

−0.05−0.23 0.455+0.004+0.069+0.006
−0.003−0.043−0.009

Bs → K̄∗0ω 0.50+0.07+0.11+0.01
−0.08−0.15−0.01 0.90+0.03+0.03

−0.04−0.23 0.532+0.003+0.035+0.023
−0.002−0.029−0.013

Bs → K∗+K∗− 0.42+0.13+0.03+0.05
−0.09−0.03−0.06 0.52+0.03+0.20

−0.05−0.21 0.438+0.051+0.021+0.037
−0.040−0.023−0.015

Bs → ρ0φ 0.86+0.01+0.01+0.00
−0.01−0.01−0.00 0.88+0.01+0.02

−0.00−0.18 0.870+0.002+0.009+0.009
−0.002−0.003−0.004

Bs → ωφ 0.69+0.08+0.08+0.02
−0.09−0.09−0.02 0.95+0.01+0.00

−0.02−0.42 0.443+0.000+0.054+0.009
−0.075−0.061−0.004

Bs → ρ+ρ− ∼ 1.0 ∼ 1.0 ∼ 1.0

Bs → ρ0ρ0 ∼ 1.0 ∼ 1.0 ∼ 1.0

Bs → ρ0ω ∼ 1.0 ∼ 1.0 ∼ 1.0

Bs → ωω ∼ 1.0 ∼ 1.0 ∼ 1.0

contributions), and E (W -exchange annihilation contributions). Theoretical uncertainties
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TABLE IX: Direct CP asymmetries (%) in the Bs → V V decays and comparison with the QCDF

approach [5] and the previous predictions in the PQCD approach [8].

Decay Modes This work QCDF PQCD(former)

Bs → K∗−ρ+ −9.1+1.4+1.0+0.2
−1.5−1.2−0.3 −11+1+4

−1−1 −8.2+1.0+1.2+0.4
−1.2−1.7−1.1

Bs → K̄∗0ρ0 62.7+6.4+10.5+7.5
−5.9−16.0−7.9 46+15+10

−17−25 61.8+3.2+17.1+4.4
−4.7−22.8−2.3

Bs → K̄∗0ω −78.1+2.9+13.1+8.1
−2.2−7.4−8.3 −50+20+21

−15−6 −62.1+4.8+19.7+5.5
−3.9−12.6−1.9

Bs → K∗+K∗− 8.8+2.5+0.5+0.0
−8.9−2.9−0.2 21+1+2

−2−4 9.3+0.4+3.3+0.3
−0.7−3.6−0.2

Bs → ρ0φ −4.3+0.6+0.6+1.2
−0.5−0.5−1.0 83+1.0+10

−0.0−36 10.1+0.9+1.6+1.3
−0.9−1.8−0.5

Bs → ωφ 28.0+1.3+0.5+3.4
−3.2−2.3−5.1 −8+3+20

−1−15 3.6+0.6+2.4+0.6
−0.6−2.4−0.2

Bs → φφ 0.0 0.2+0.4+0.5
−0.3−0.2 0.0

Bs → ρ+ρ− −2.9+0.7+1.5+0.2
−1.1−1.3−0.2 0 −2.1+0.2+1.7+0.1

−0.1−1.3−0.1

Bs → ρ0ρ0 −2.9+0.7+1.5+0.2
−1.1−1.3−0.2 0 −2.1+0.2+1.7+0.1

−0.1−1.3−0.1

Bs → ρ0ω 11.1+1.0+1.9+1.2
−1.5−4.4−1.4 0 6.0+0.7+2.7+1.0

−0.5−3.9−0.4

Bs → ωω −3.3+0.8+1.5+0.5
−1.0−1.4−0.2 0 −2.0+0.1+1.7+0.1

−0.1−1.3−0.1

TABLE X: Updated percentage of the transverse polarizations f⊥(%), relative phases φ‖(rad),

φ⊥(rad), ∆φ‖(10
−2rad), ∆φ⊥(10

−2rad) and the CP asymmetry parameters A0
CP and A⊥

CP in

Bs → V V decays calculated in the PQCD approach.

Decay Modes f⊥ φ‖ φ⊥ A0
CP A⊥

CP ∆φ‖ ∆φ⊥

Bs → K∗−ρ+ 2.31+0.22
−0.21 3.07+0.07

−0.09 3.07+0.08
−0.08 −2.71+0.68

−0.72 55.0+10.3
−10.5 12.4+4.8

−4.7 12.5+4.5
−4.8

Bs → K̄∗0ρ0 22.5+7.3
−4.7 1.94+2.52

−0.10 1.99+2.53
−0.10 −17.5+21.2

−13.0 22.0+29.9
−31.4 −31.5+274

−16.2 −36.5+222
−15.8

Bs → K̄∗0ω 26.1+9.8
−7.0 2.18+0.33

−0.28 2.23+0.32
−0.27 −5.99+23.52

−50.21 6.95+27.91
−32.14 30.7+30.9

−24.3 36.5+31.3
−24.2

Bs → K∗+K∗− 27.7+5.2
−7.0 3.53+0.33

−0.25 3.54+0.36
−0.24 45.4+19.0

−23.4 −32.9+5.6
−4.0 93.7+11.1

−14.1 93.4+11.1
−13.8

Bs → ρ0φ 8.89+0.80
−1.06 3.11+0.10

−0.09 3.29+0.09
−0.09 3.27+1.07

−1.19 −32.8+7.4
−5.8 −43.7+9.9

−9.5 −63.9+10.8
−9.6

Bs → ωφ 16.1+7.3
−5.8 3.38+0.20

−0.17 3.35+0.30
−0.23 −2.24+6.67

−5.45 4.38+17.52
−15.93 −36.7+12.5

−11.9 −32.7+16.5
−18.6

Bs → ρ+ρ− ∼ 0.0 3.40+0.04
−0.04 3.27+0.16

−0.15 0.0 30.5+15.0
−16.3 2.87+0.44

−0.59 −27.4+6.9
−6.0

Bs → ρ0ρ0 ∼ 0.0 3.40+0.04
−0.04 3.27+0.16

−0.15 0.0 30.5+15.0
−16.3 2.87+0.44

−0.59 −27.4+6.9
−6.0

Bs → ρ0ω ∼ 0.0 3.48+0.04
−0.05 2.63+0.18

−0.22 0.0 27.9+9.3
−9.9 −9.30+1.50

−5.23 −30.4+19.1
−23.4

Bs → ωω ∼ 0.0 3.40+0.04
−0.04 3.27+0.16

−0.11 0.0 30.8+14.0
−15.3 2.71+0.42

−0.52 −26.7+6.3
−5.7
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quoted in the tables are estimated from three sources: the first error quoted is from the input

hadronic parameters, such as the decay constants of the initial Bq and the final vector-mesons

and the parameters in the distribution amplitudes of the initial and final states, which can

be found in sec. II and Eq. (43). The second error arises from the scale uncertainties, char-

acterized by ΛQCD = (0.25±0.05) GeV and the variations of the factorization scales t (from

0.8t to 1.2t) detailed in Appendix A. The scale-dependent uncertainty can be reduced only

if the next-to-leading order contributions are known. The last error is the combined uncer-

tainty in the CKM matrix elements and the angles of the unitary triangle. In Tables II,VI

and X, we have combined these uncertainties by adding them in quadrature and show the

resulting uncertainty, due to to the space limitations in the Tables.

We now discuss these results. For the branching ratios, the most important theoretical

uncertainty is the first error caused by the nonperturbative input parameters. In the PQCD

approach, the wave functions are the primary important input parameters and they heavily

influence the predictions of the branching ratios, as also discussed in [51]. We have adopted

the new updated wave functions. While, for the direct CP asymmetry parameters, the

dominant uncertainty arises from the second error, which is caused by the unknown higher

order QCD corrections. From the definition:

Adir
CP ≡ BR(B̄ → f)−BR(B → f̄)

BR(B̄ → f) +BR(B → f̄)

=
| A(B̄ → f) |2 − | A(B → f̄) |2
| A(B̄ → f) |2 + | A(B → f̄) |2 , (50)

it is apparent that the wave functions of the initial Bq meson and the final vector mesons are

overall factors, hence they drop out in the ratio and do not provide significant contributions

in the estimates of the direct CP asymmetries. Direct CP asymmetries are proportional

to the strong phases originated from the hard part, and the NLO QCD corrections will

influence the strong phases significantly. Not having these corrections at our disposal, we

can only estimate them by varying the scales. The resulting theoretical uncertainty is larger

than the one from the wave functions, and we assume that the variation of the scales is an

adequate account of the NLO corrections at this stage.

For comparison, the updated results of the QCDF approach[4, 5] and the earlier PQCD

predictions[7–9] are also presented. We have updated the PQCD computations in this work

and the main improvements are: (i) Use of the updated vector mesons distribution ampli-

tudes with new estimates of the Gegenbauer moments and decay constants, and (ii) the treat-
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ment of the terms in the decay amplitude proportional to the ratio r2i = m2
Vi
/m2

B(i = 2, 3).

Since wave functions are the most important inputs in PQCD, their improved knowledge

is expected to yield improved estimates of the branching ratios, polarization fractions, and

other observables. We recall that in the earlier PQCD computations, r2i -dependent terms

in the denominator of the propagators of the virtual quarks and gluons were omitted. From

Appendix A, we find that, although their contribution is formally power suppressed, it can

numerically change the real and imaginary parts of amplitudes and enhance the transverse

polarization component, especially for the penguin-dominant decays. To quantify this, we

have listed the amplitudes, branching ratios and transverse polarization fractions of the

penguin-dominant decays B0 → K∗0φ, Bs → φφ and the tree-dominant decay B+ → ρ+ρ0

with and without the r2i -terms in TableXI. We note that for the two penguin-dominant de-

cays, the impact of the r2i -dependent terms in the amplitudes of the annihilation part, as

well as in the imaginary part of the emission diagrams, is numerically significant. Taking

the factorizable annihilation diagrams as an example, in the range near x3 → 1 or x2 → 0,

the nonzero r2i contributes a non-negligible imaginary part. So by keeping the r2i -terms,

the branching ratios are reduced, while the transverse polarization fractions rise. The two

main improvements go in the right direction in explaining the observed branching ratios and

the large transverse polarization fractions in B → K∗φ and Bs → φφ decays in the PQCD

approach. For the tree-dominant decay B+ → ρ+ρ0, however, the effect on the traditional

emission diagrams produced by the r2i -terms is tiny, as expected. This is further discussed in

Appendix A. Thus, the improved PQCD treatment presented here yields better consistency

with the data.

In Table II, we list the current experimental measurements in B0(B+) → K∗(K∗+)φ and

Bs → K
∗0
φ, Bs → K

∗0
K∗0 and Bs → φφ decays and compare them with our theoretical

results worked out in this paper. These decays are all penguin-dominated and are measured

with large fraction of transverse polarization. For these decays, the naive factorization

approach predicts too small branching ratios by a factor of 2 ∼ 3 [4], due to the small

contribution from the penguin operators. In [7–9, 44], the authors have studied these Bq →
V V decays, but those predictions are not in good agreement with the currently available

experimental data. The primary task is to bring up the branching ratios and explain the

polarization anomaly in these decays. In our update, we explain the bulk of the data.

However, we note that for Bs → K∗0K
∗0

and Bs → K
∗0
φ modes, our calculated branching
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TABLE XI: Amplitudes (10−3), branching ratios (10−6) and the polarization fractions (%) with

(and without) the r2i -dependent terms in the B0 → K∗0φ, Bs → φφ and B0 → ρ+ρ0 decays.

Modes AL AN AT Br fL
B0 → K∗0φ(r2i ) emission -3.3+0.67i -0.66+0.06i 0.64-0.05i 9.8 56

annihilation 0.32-1.6i -0.43+0.84i 0.42-0.83i
B0 → K∗0φ emission -3.0-0.09i -0.71-0.012i 0.69+0.03i 15 70

annihilation -0.42-1.95i 0.05+1.28i -0.11-1.38i
Bs → φφ(r2i ) emission -2.8+0.37i -0.60+0.10i 0.60-0.08i 16.7 34.7

annihilation 0.68-1.2i -0.53+1.0i 0.53-1.0i
Bs → φφ emission -2.6-0.02i -0.64+0.03i 0.63-0.005i 26.6 45

annihilation -0.04-1.8i 0.18+1.8i -0.15-1.7i
B+ → ρ+ρ0(r2i ) emission 3.0+5.9i 0.28+0.33i 0.27-0.29i 13.5 98

annihilation ∼ 0 ∼ 0 ∼ 0
B+ → ρ+ρ0 emission 2.8+5.8i 0.12+0.33i -0.11-0.29i 13.3 99

annihilation ∼ 0 ∼ 0 ∼ 0

ratios are (5.4+3.0
−2.4)× 10−6 and (0.39+0.20

−0.19)× 10−6 respectively, which are much smaller than

the data, though they are compatible with the QCDF predictions (6.6+1.1+1.9
−1.4−1.7) × 10−6 and

(0.37+0.06+0.24
−0.05−0.20)× 10−6 respectively.

In Table III, we have given our estimates of the B → V V branching ratios for different

topologies. For the penguin dominant decay modes (indicated by P in the tables), our

updated predictions basically agree with the QCDF predictions, except for B0 → K∗0ω.

Due to the constructive interference between the penguin emission contributions and the

penguin annihilation contributions, our prediction for this decays is almost twice as large

as that of QCDF, and it also comes out larger than the current experimental data. As the

experimental error is still large, we wait for consolidated date from Belle-II experiment. For

the color-suppressed decay B0 → ρ0ρ0, the calculated branching fraction in this work is

(0.27+0.10+0.06+0.00
−0.09−0.04−0.01)× 10−6, while BaBar and Belle obtained (0.9 ± 0.32 ± 0.14)× 10−6 [53]

and (0.4 ± 0.4+0.2
−0.3) × 10−6 [54], respectively, with the current world average being (0.73 ±

0.28)× 10−6. Our result, within errors, agrees with the Belle data. Judged from the isospin

triangle, since the decay rate of B0 → ρ0ρ0 is so small, the rate for the decay B0 → ρ+ρ−

ought to be double that of B+ → ρ+ρ0. In experiment, however, within errors, these

two rates are equal to each other, which is puzzling. Thus, the experimental situation is

still in a state of flux. In Table IV, discussed in more detail later, we show that for the

B0 → ρ0ρ0 decay the longitudinal polarization fraction is as small as 12%. As is well

known, for the color-suppressed decays, the longitudinal polarization contributions from
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two hard-scattering emission diagrams largely cancel against each other. What’s worse,

the remaining longitudinal polarization contributions are nearly canceled by those from

the annihilation diagrams. On the other hand, the chiral enhanced annihilation diagrams

and hard-scattering emission diagrams provide a large transverse polarizable contribution.

In the end, the B0 → ρ0ρ0 is almost totally dominated by the transverse polarization

component. In Table IV, we adopt the BaBar data [46], but note that Belle has provided a

new measurement 0.21+0.18
−0.22±0.13 [48], which supports our theoretical calculations. Thus, it

is important to have a refined measurement of the branching fractions and the longitudinal

polarization fractions for B → ρρ to draw definitive conclusion. It should be noted that if

the next leading order corrections are included, the branching fraction of B → ρ0ρ0 might be

enlarged while its transverse polarization fraction f⊥ will become smaller [55]. The previous

PQCD estimates for the B0 → ρ0ω decay rate exceeded the current experimental upper

bound. In this work, this branching ratio is now lower than the upper experimental bound

but is about a factor five larger than the QCDF prediction due to a near cancelation of the

color-suppressed tree amplitudes. In the framework of PQCD, although the color-suppressed

tree amplitudes also almost mutually cancel, the decay can get significant contributions from

the annihilation type diagrams so that the decay rate comes back up and is not as small as in

the QCDF prediction. This, together with some other predictions, provides an experimental

check on these two competing frameworks.

In Table. IV, we have given the fraction of the longitudinal polarization component, fL

for B → V V decays, where we have compared them with the available data, and also with

the previous PQCD [7] and QCDF [4] approaches. Of these, the predictions for the decays

B → φρ(ω) are worked out for the first time. For the B0 → ρ0ω decay, we predict the

longitudinal polarization fraction as small as 67%, which is due to a significant transverse

polarization component, f⊥, from the penguin annihilation diagrams. The fL for this decay

is in agreement with the QCDF prediction [4] but is significantly less than the previous

PQCD prediction (87%). From Table. IV, one also sees that for B0 → K∗0ω, our estimate

for the longitudinal polarization fraction is in excellent agreement with the experimental

data. We note that, for B0 → ωω, our predicted longitudinal fraction is 66%, while the

QCDF approach yields 94% [4], where the longitudinal contributions highly dominate the

amplitude. In QCDF, as in B0 → ρ0ω, the penguin annihilation contributions are also tiny

in B0 → ωω. In PQCD, together with the hard scattering contributions, the considerable
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penguin annihilation contributions yield a different result. For the B0 → φφ, the previous

PQCD prediction of the longitudinal polarization fraction is 65% [7], while our updated

longitudinal polarization fraction is given by fL ∼ 1, which is confirmed also in [56]. For the

B+ → K∗0ρ+ mode, our result is larger than the data, while in the QCDF framework, the

central value is the same as the data, as this mode is used to extract the input parameters [4].

In this paragraph we shall discuss direct CP -asymmetries in the decays B → V V shown

in Table V and their current measurements. Though none of the current experimental

measurements for the CP asymmetries shown in Table V is conclusive, they are in accord

with our theoretical calculations. This, in turn, implies that the dominant strong phases

in these channel estimated in our approach are in the right ball-park. From Table. V, one

also notes that the CP asymmetries are large for the penguin dominant decays, but they

are small for the color allowed tree-dominant decays and almost pure penguin-dominant

processes, such as K∗0ρ+ and K∗φ. For B0 → ρ0ω decays, our prediction is about 60%,

while that of QCDF is only 3%. In PQCD, since the emission diagrams nearly cancel

each other, the annihilation diagrams provide the dominant contributions. As direct CP

asymmetry is proportional to the interference between the tree and penguin contributions,

the sizable interference makes the CP asymmetry parameter large, reaching 60%. For

the B0 → ρ0ρ0/ωω modes, the large penguin contributions from the chirally enhanced

annihilation diagrams, which are at the same level as the tree contributions from the emission

diagrams, make the the CP asymmetry parameter as large as 70%. On the other hand, for

pure annihilation type decay B0 → K∗0K̄∗0, since there are no contributions from tree

operators, it is natural to expect that the direct CP asymmetry is practically zero. In

summary, the entries in Tables III, IV and V show that for these B → V V decays our

updated predictions are in good agreement with experiment, and, broadly speaking, are also

in agreement with the QCDF predictions [4].

In Table VI, we give the predictions for the perpendicular polarization fraction, f⊥, the

relative phases, φ‖(rad), φ⊥(rad), ∆φ‖(10
−2 rad), ∆φ⊥(10

−2 rad), and the CP asymmetry

parameters A0
CP and A⊥

CP for the B → V V decays for the first time in the PQCD framework.

These remain to be confronted with the data. In fact, these variables are already experi-

mentally measured in five channels: B0(B+) → K∗(K∗+)φ and Bs → K
∗0
φ, Bs → K

∗0
K∗0

and Bs → φφ, which are shown in Table II. Our results are in good agreement with the

data.
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We now discuss the results for the Bs → V V decays. Since the initial and the final

state distribution amplitudes (DAs) are the most important input parameters in the PQCD

approach, our predictions forBs → V V decays in Tables VII, VIII, IX, X are almost the same

as the predictions in [8], as the DAs we adopted here are similar to those used in [8], except

for the DAs of the φ meson. For the Bs → φφ decay, the central values of the branching

ratio and the longitudinal polarization fraction estimated in [8] are 35.3× 10−6 and 61.9%,

respectively. It is apparent that neither the branching ratio nor the polarization fraction

are in conformity with the experimental data, posted as (19± 5)× 10−6 and (34.8± 4.6)%,

respectively. With the updated DAs of φmeson, the current predictions of all the observables

listed in Table II agree better with the data. This can be confirmed by the similar updates

in Bs → π+π− and B0 → K+K− decays[51]. Also, due to the terms proportional to the

ratio r2i = m2
φ/M

2
Bs

in the denominators, which we keep, their influence is expected to be

more pronounced, as mφ is larger than the other light vector-meson masses. For the rest of

the decay modes, the numerical values of the polarization fraction are basically consistent

with the former PQCD predictions [8].

From Tables VII and VIII, we note that for the color-suppressed decays Bs → K
∗0
ρ(ω),

the branching ratios in PQCD are smaller than in QCDF by a factor of 3 due to the near

cancellation of the hard scattering contributions. On the other hand, chirally enhanced

annihilation and the hard scattering diagrams enhance the transverse polarization contri-

bution, making it comparable to the longitudinal polarization one. For Bs → ωφ, the pure

emission mode, the (S−P )(S+P ) densities in the hard scattering diagrams also contribute

a sizable transverse polarization component. For Bs → K∗+K∗−, due to the large transverse

polarization contribution from chirally enhanced annihilation diagrams, the longitudinal po-

larization fraction is as small as 40%, which is similar to Bs → K∗0K
∗0
. We also emphasize

the measurements of the modes Bs → K
∗0
ρ(ω) and Bs → ωφ to distinguish among the

competing dynamical models in the interpretation of the polarization anomaly.

Direct CP asymmetries of Bs → V V decays are listed in Table IX. We note that they are

small for the penguin-dominant processes, since the interference between tree and penguin

contributions due to the former are too small, which is opposite to the tree-dominant process

Bs → K∗−ρ+, which also has a small direct CP asymmetry. For Bs → ρ0φ, QCDF predicts

about 83% for direct CP asymmetry with large charming penguin contributions. But in

the framework of PQCD, it is only −4.3% because this mode belongs to the pure emission-
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type processes. Hence, measurement of direct CP asymmetry in this mode will help us to

distinguish the PQCD and the QCDF approaches.

As is well known, SU(3) symmetry relates a number of Bs → V V and Bu,d → V V

processes, such as Bs → K∗−ρ+ and B0 → ρ+ρ−. In the PQCD approach, presented here,

this relation is well satisfied:

B(Bs → K∗−ρ+) = (24.0+10.9+1.2+0.0
−8.7−1.4−2.4 ) ∼ B(B0 → ρ+ρ−) = (26.0+10.1+1.4+1.5

−8.1−1.4−1.2 ), (51)

in units of 10−6. On the other hand, SU(3)-breaking in the decay rates for B → K∗φ and

Bs → φφ is significant, as can be seen in Table II. In the PQCD approach, the SU(3)-breaking

effects are caused by the differences between the initial and final state wave functions, such

as the shape parameter ωB and ωBs, as well as the decay constants of the B and Bs mesons,

along with the Gegenbauer moments and the decay constants of the final vector mesons.

They conspire to yield a cumulative 60% SU(3)-breaking effect. Other SU(3)-breaking effects

lie in between these two cases, as can be numerically calculated from the entries in various

tables presented here.

U -spin symmetry, relating a number of B(s) → h1h2 (hi are light mesons) has been advo-

cated in the literature [57]. For B(s) → V V decays, it has been studied in [5] and checked

against the explicit QCDF estimates, and seems to hold well. Since we have calculated the

B and Bs decays to V V in this work in the PQCD approach, we also check the U -spin

symmetry in some representative decays studied in [5]:

ACP (Bs → K∗−ρ+) = −ACP (B
0 → K∗+ρ−)

B(B0 → K∗+ρ−)

B(Bs → K∗−ρ+)

τ(Bs)

τ(B)
,

ACP (Bs → K̄∗0ρ0) = −ACP (B
0 → K∗0ρ0)

B(B0 → K∗0ρ0)

B(Bs → K̄∗0ρ0)

τ(Bs)

τ(B)
,

ACP (Bs → ρ+ρ−) = −ACP (B
0 → K∗+K∗−)

B(B0 → K∗+K∗−)

B(Bs → ρ+ρ−)

τ(Bs)

τ(B)
,

ACP (Bs → K∗+K∗−) = −ACP (B
0 → ρ+ρ−)

B(B0 → ρ+ρ−)

B(Bs → K∗+K∗−)

τ(Bs)

τ(B)
. (52)

Using these U -spin relations as well as the branching ratios, the lifetimes of B and Bs

mesons and the direct CP asymmetries in B decays, we can get the relevant direct CP

asymmetries in Bs decays. This can be then compared with the explicit calculations in the

PQCD approach to check whether the U -spin symmetry works well or not. We show this

comparison in Table XII, where the entries in the last two columns have to be compared
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with each other. We find that, within the calculational errors, the U -spin symmetry works

well in the direct CP asymmetries in the PQCD approach as well.

TABLE XII: The direct CP asymmetries (%) in Bs → V V decays via U -spin relation together

with the direct PQCD prediction. The branching ratios of B and Bs decays are in units of 10−6.

modes Br ACP (%) modes Br ACP (%)(U) ACP (PQCD)

B0 → K∗+ρ− 8.4 24.5+1.2+2.9+0.0
−1.5−3.4−0.6 Bs → K∗−ρ+ 24.0 -8.4 -9.1+1.4+1.0+0.2

−1.5−1.2−0.3

B0 → K∗0ρ0 3.3 −8.9+0.6+2.8+1.
−0.6−2.8−1.0 Bs → K̄∗0ρ0 0.40 72.3 62.7+6.4+10.5+7.5

−5.9−16.0−7.9

B0 → K∗+K∗− 0.21 29.8+2.0+6.4+4.6
−5.7−9.5−4.7 Bs → ρ+ρ− 1.5 -4.1 -2.9+0.7+1.5+0.2

−1.1−1.3−0.2

B0 → ρ+ρ− 26.0 0.83+0.50+0.66+0.00
−0.59−0.31−0.00 Bs → K∗+K∗− 5.4 -3.9 8.8+2.5+0.5+0.0

−8.9−2.9−0.2

V. SUMMARY

In this paper, we have reexamined the branching ratios, polarization fractions, relative

phases, and direct CP asymmetries in Bq → V V (q = u, d, s) decays in the PQCD approach.

Compared to the previous PQCD calculations, the updated longitudinal and transverse

decay constants as well as the Gegenbauer moments in the vector mesons wave functions

have been adopted, which allows us to reduce the parametric uncertainties in the branching

ratios and other observables. What concerns the predictions of the polarization fractions

and their relative phases, we have kept track of the terms proportional to the ratio r2i =

m2
Vi
/m2

B(i = 2, 3), which have been ignored in some earlier estimations. In addition, we have

studied the decay modes B → ρ(ω)φ that have not been explored before. For the observables

f⊥, φ‖, φ⊥, ∆φ‖, ∆φ⊥, A
0
CP , and A⊥

CP , we have provided the first PQCD predictions. So,

this work updates and goes beyond what is already known in this approach.

Our numerical results are listed in the Tables in the preceding section. For the well-

measured decay modes, such as B → K∗φ and Bs → φφ, the updated PQCD predictions for

all the experimental observables fare better than the previous predictions in this approach,

improving comparison with experiments. In addition, in many B(Bs) → V V decays, our re-

sults agree with the updated QCDF predictions [4, 5], as well as with the experimental data.

Yet, in some other cases, our predictions and those in QCDF differ and we have discussed

some of these decays, such as B0 → ρ0(K∗0)ω involving the annihilation contributions.
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For the tree dominated B → ρρ processes, our results respect the isospin triangle re-

lations, while the experimental data, taken on the face value, shows significant isospin-

violation. Our estimated decay rate and the polarization fraction in B0 → ρ0ρ0 are in good

agreement with the Belle measurement, but not so compared to the BABAR data. This

calls for a refined measurement of B → ρρ decays in the future.

From the entries in Tables IV and VIII, we note that our updated longitudinal polarization

fractions are in good agreement with the data and the predictions in the QCDF approach [4,

5] in some topologies. But for the color-suppressed decay modes, B0 → ρ0ρ0, B0 → ρ0ω,

Bs → K
∗0
ρ0 and Bs → K

∗0
ω, the longitudinal contributions dominate the decay amplitudes

in the QCDF approach, while in this work, the transverse polarization contributions are

comparable to the longitudinal polarization contributions, and are even dominant in the

amplitude for B0 → ρ0ρ0. This provides the possibility of distinguishing between these two

approaches.

Table V and IX list predictions of the CP asymmetry parameters,which agree with the

experimental data, wherever available, and, generally, also with the QCDF predictions [4, 5]

in some topologies. For the color-suppressed decays, B0 → ρ0ρ0, B0 → ωω, Bs → K
∗0
ρ0

and Bs → K
∗0
ω, both PQCD and QCDF predict large direct CP asymmetries. But for

B0 → ρ0ω, the central value of the QCDF prediction is only 3%, while the prediction

of this work is about 60% due to the large annihilation contributions. For B+ → K∗+ω

and Bs → ρφ decays, which are almost purely dominated by penguin contributions, we

predict very small CP asymmetries, but QCDF predicts them to be of orders 0.56 and 0.83

respectively due to the charming penguins, which needs to be confirmed by experiments.

Our predictions for many B0
s → V V decays basically agree with the previous PQCD

predictions [8]. But for a few penguin dominant decay modes, for example, Bs → φφ, Bs →
K

∗0
φ and Bs → K∗0K

∗0
, the improvements are significant, especially in the polarization

fractions.
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Appendix A: Related Hard Functions

In this appendix, we summarize the functions that appear in the analytic formulas in the

Section III. The first two diagrams in Fig.1 are factorizable emission diagrams, whose hard

scales ta(b) can be determined by

ta = max{
√

x3(1− r22)MB, 1/b1, 1/b3}, (A1)

tb = max{
√

x1(1− r22)MB, 1/b1, 1/b3}. (A2)

The function hef consists of two parts: the jet function St(x) and the propagator of virtual

quarks and gluons.

hef (x1, x3, b1, b3) = K0(βb1) [θ(b1 − b3)I0(αb3)K0(αb1)

+θ(b3 − b1)I0(αb1)K0(αb3)]St(x3), (A3)

with α =
√
x3MB and β =

√
x1x3MB. The jet function in the factorization formulas can be

given as[58]:

St(x) =
21+2cΓ(3/2 + c)√

πΓ(1 + c)
[x(1− x)]c , (A4)

with c = 0.4. In the nonfactorizable contributions, due to the small numerical effect, we drop

the jet function in the nonfactorizable emission diagrams and nonfactorizable annihilation

diagrams[59].

The evolution factors Eef (ta) and Eef(tb) in the matrix elements are given by

Eef(t) = αs(t) exp[−SB(t)− S3(t)]. (A5)

The Sudakov exponents are defined as

SB(t) = s

(

x1
MB√
2
, b1

)

+
5

3

∫ t

1/b1

dµ̄

µ̄
γq(αs(µ̄)), (A6)

Si(t) = s

(

xi
MB√
2
, bi

)

+ s

(

(1− xi)
MB√
2
, bi

)

+ 2

∫ t

1/bi

dµ̄

µ̄
γq(αs(µ̄)), (A7)
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where the s(Q, b) can be found in the Appendix A in the Ref.[18]. xi is the momentum

fraction of “quark” in vector meson, with i = 2, 3.

For the rest of diagrams, the related functions are summarized as follows:

tc = max{
√

(1− r22)x3x1 MB,
√

| [(x2 − 1)(1− r23) + x1)][r22 + x3(1− r22)] |MB,

1/b1, 1/b2}, (A8)

td = max{
√

(1− r22)x3x1 MB,
√

| [x2(r23 − 1) + x1)]x3(1− r22) |MB ,

1/b1, 1/b2}. (A9)

Eenf(t) = αs(t) exp[−SB(t)− S2(t)− S3(t)]| b1=b3 . (A10)

henf(α, βi, b1, b2) = [θ(b2 − b1)I0(αb1)K0(αb2) + θ(b1 − b2)I0(αb2)K0(αb1)]

×
{

iπ
2
H

(1)
0

(

√

|β2
i |MBb2

)

, β2
i < 0;

K0 (βiMBb2) , β2
i > 0,

(A11)

with i = 1, 2 and

α =
√

(1− r22)x3x1MB, (A12)

β2
1 = [(x2 − 1)(1− r23) + x1)][r

2
2 + x3(1− r22)], (A13)

β2
2 = [x2(r

2
3 − 1) + x1)]x3(1− r22), (A14)

The hard functions and the scales for factorizable annihilation diagrams Fig.(e) and (f) are

te = max{α1MB, βMB, 1/b2, 1/b3},

tf = max{α2MB, βMB, 1/b2, 1/b3}, (A15)

Eaf (t) = αs(t) · exp[−S2(t)− S3(t)], (A16)

haf (αi, β, b2, b3) = (
iπ

2
)2H

(1)
0 (βMBb2)

[

θ(b2 − b3)H
(1)
0 (αiMBb2)J0 (αiMBb3)

+θ(b3 − b2)H
(1)
0 (αiMBb3) J0 (αiMBb2)

]

· St(x3), (A17)

with

α1 =
√

1− x3(1− r22) (A18)

α2 =
√

(1− r22)[r
2
3 + x2(1− r23)], (A19)

β =
√

[(1− r22)(1− x3)][r23 + x2(1− r23)]. (A20)
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For the nonfactorizable annihilation diagrams, the scales and the hard functions are

tg = max{αMB,
√

|β1|MB, 1/b1, 1/b2}, (A21)

th = max{αMB,
√

|β2|MB, 1/b1, 1/b2}, (A22)

Eanf (t) = αs(t) · exp[−SB(t)− S2(t)− S3(t)] | b2=b3 , (A23)

hanf(α, βi, b1, b2) =
iπ

2

[

θ(b1 − b2)H
(1)
0 (αMBb1) J0 (αMBb2)

+θ(b2 − b1)H
(1)
0 (αMBb2)J0 (αMBb1)

]

×
{

iπ
2
H

(1)
0

(

√

|βi|MBb1

)

, βi < 0,

K0

(√
βiMBb1

)

, βi > 0,
(A24)

with i = 1, 2.

α =
√

(1− x3)(1− r22)[r
2
3 + x2(1− r23)], (A25)

β1 = 1− [(1− r23)(1− x2)− x1][r
2
2 + x3(1− r22)], (A26)

β2 = (1− r22)(1− x3)[x1 − x2(1− r23)− r23]. (A27)
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[8] A. Ali, G. Kramer, Y. Li, C. D. Lü, Y. L. Shen, W. Wang, and Y. M. Wang, Phys. Rev. D

76, 074018 (2007).

34

http://arxiv.org/abs/0810.0249


[9] J. Zhu, Y. L. Shen and C. D. Lü, J. Phys. G 32, 101-110 (2006).
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