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Abstract

The inner surface of superconducting cavities plays a crucial role to achieve highest
accelerating fields. The industrial fabrication of cavities for the European X-Ray Free
Electron Laser (EXFEL) and the International Linear Collider (ILC) HiGrade Research
Project allowed for an investigation of this interplay with a large sample on different
cavities undergoing a standardized procedure. For the serial inspection of the inner
surface, the optical inspection robot OBACHT was constructed and to analyze the large
amount of data, represented in the images of the inner surface, an image processing and
analysis code was developed. New variables to describe the cavity surface were obtained.
Two approaches using these variables and images to automatically detect defects has
been implemented and tested. In addition, a decision-tree based approach of classifying
defect free surfaces regarding their accelerating performance was tested and found to be
physically valid.

1 Introduction

Superconducting niobium radio-frequency cavities, with the TESLA shape, are
fundamental for accelerators like the European X-Ray Free Electron Laser (EXFEL),
the International Linear Collider (ILC), the European Spallation Source (ESS) or the
Linac Coherent Light Source II (LCLS-II) [1–4]. To utilize the operational advantages
of superconducting cavities, the inner surface has to fulfill quite demanding
requirements. Electromagnetic RF fields, used for the particle acceleration, penetrate
the inner surface of the superconducting resonator. The penetration depth is about 40
nm (London penetration depth for niobium) and the near-surface composition and
surface topography play a crucial role for the final performance. For an investigation of
the behavior of cavities under such RF fields, an optical surface inspection tool was
developed at KEK and Kyoto University, the ”Kyoto camera system” [5,6]. The
intention is, that an optical inspection of the inner surface, which is exposed to the RF
field, leads to a better understanding of limitations observed during RF tests. While a
general correlation was found between low field quenches (transition from
superconducting to normal-conducting phase) and localized defects seen in optical
inspections [7–12], an automated detection of these defects and a possible classification
has not been achieved yet. First attempts in an automated classification of defects but
also defect free surfaces are presented in this work. In addition, a correlation of surface
structures of defect free cavities and their RF performance was done.
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2 Optical Inspection and Image Processing

During the construction of the European XFEL [13], more than 100 TESLA cavities
underwent subsequent surface treatments, acceptance tests at 2 K, and optical
inspections within the ILC-HiGrade research program [14–18]. The optical inspection of
the inner surface of SRF cavities is a well-established tool at many laboratories [7]. Its
purpose is to characterize and understand performance limitations which lead to a
breakdown of the accelerating field and to allow optical quality assurance during cavity
production. Theoretical calculations have shown that accelerating fields of 50 MV/m
are achievable if surface structures and localized defects are below 10µm [19,20]. With
a designed accelerating field of 23.6 MV/m for the European XFEL and an aimed
average accelerating field on the order of 35 MV/m, the resolution of the optical
inspection system should be on the level of 10µm to resolve the inner surface.

This resolution and the rather large surface of a cavity results in a large amount of
images which needs to be inspected and classified. Hence, an algorithm was developed
which enables an automated surface characterization. This algorithm delivers a set of
optical surface properties, which describe the inner cavity surface and allow for a
framework for quality assurance of the fabrication procedures. Furthermore, this
framework shows promising results for a better understanding of the observed
limitations in defect free cavities.

2.1 OBACHT

A fully automated robot for optical inspection, the ”Optical Bench for Automated
Cavity inspection with High resolution on short Timescales” (OBACHT), has been
developed at DESY and is continuously in use since 2009. It is equipped with a
high-resolution camera (Kyoto Camera System), which resolves structures down to
12µm for properly illuminated surfaces [5, 6, 21]. The details of OBACHT and the
optical system are described in [22–24]. The optical system is fitted inside a tube which
has a diameter of 50 mm to fit into the cavity without colliding with the so called irides,
where the cavity has an inner diameter of 60 mm and are the most narrow parts of a
cavity (see Fig. 1). In this tube, the camera is installed altogether with a low-distortion
lens. The camera system images the surface via a 45o-tilted one way mirror which can
be continuously adjusted to other angles in order to inspect other cavity regions apart
from equator or iris. To match the focal distance of the camera to the camera -cavity
surface distance, the camera is moved along the rotational axis of the rod, controlled by
a motor driven lead-screw. For illumination, acrylic stripes (two Light Emitting Diodes -
LED - per strip) attached to the camera tube around the camera opening are installed,
together with three additional LEDs behind the one way mirror inside the camera tube.
The equatorial images are of main interest for this analysis. This is because the highest
magnetic field in a cavity, and hence the possible highest ohmic losses destroying the
superconducting state, are at the equatorial welding seam region including the so-called
”heat affected zone” (HAZ), a region next to the remelted weld where the crystals grew
due to the deposited heat during welding. Figure 2 shows an image of the inner cavity
surface taken with OBACHT. With given cavity geometry and optical set up, an
individual image covers 5o of an equator. To have a small overlap at the edges of an
image, an image is taken each 4.8o. This results in 75 images per equator and 675
equator images per cavity where the image covers an area of 9× 12 mm2 and consists of
3488× 2616 pixel per color layer. The objects of interest within an image of the inner
cavity surface are grain boundaries and defects. In order to identify and quantify those
objects, an image processing and analysis algorithm has been developed.
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Figure 1. Schematic of the Kyoto Camera System used at DESY. The camera is
viewing the inner surface via a 45o-tilted one way mirror. Behind this one way mirror,
three LEDs are mounted for the central illumination. 2× 10 acrylic stripes with LEDs
are mounted left and right from the opening in the tube for a more detailed illumination.
On the lower right, a cut of the set up and the regions called equator and iris are shown.

Figure 2. Image of the inner cavity surface with the equatorial welding seam in the
image center taken with OBACHT. The image size is 9 × 12 mm2. The red contours
are examples of grain boundaries identified with the image processing algorithm in the
welding seam region (WS) and the heat affected zone (HAZ).
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2.2 Image Processing and Analysis

The main goal of the image processing algorithm is to identify grain boundaries and
defects, regardless of their position within the image which shows a non-uniform
illumination, as can be seen in Figure 2. The approach of this algorithm is, to apply a
sequence of high-pass filter and local contrast enhancements, to project pixels which
belong to grain boundaries onto a gray scale interval, which is distinct from the
background. After this projection, a histogram based segmentation of the processed
image is performed. The Otsu-segmentation assumes, that the image contains two
classes of pixels (grain boundary and background), where the intensity values follow a
bi-modal distribution, and calculates the optimum threshold separating the two
classes [25]. The output is a binary image with the same size as the input image and
contains grain boundary pixels - white/logical one - and background pixels
-black/logical zero. As a last step of the image processing, groups of connected white
pixels which form a grain boundary are classified as a single object with a connected
component labeling algorithm called run-length encoding [26] and a labeled binary
image called L1 is obtained. An example of such a binary image is given in Figure 3.

Figure 3. Left: a detail of an OBACHT image is shown. Right: the same detail after
the image processing algorithm. Grain boundaries (white) are visible.

The image processing algorithm was benchmarked and tested regarding resolution
accuracy. To investigate the resolution limit of the image processing algorithm, the
USAF 1951 test chart was used. The smallest objects, which are still detected as
individual stripes, are part of group five, element one. This results in a algorithm
resolution of 15.63µm with good contrast. The algorithm resolution is slightly below
the resolution of the optical system (12.4µm). This is because of the filtering and
smoothing procedure, which tends to connect objects with a distance smaller than four
pixels, and due to the area cut to remove shot noise objects. Additionally, a contrast
dependent resolution check was performed - for details see [33]. As a result, it was
observed that lines, spaced with a distance of 10 pixels (35µm) or more - or roughly
twice the algorithm resolution - have been resolved independently of the contrast. Lines
with a spacing below that distance had to have an intensity difference to their
background of at least 16 Bit to be resolved. This rather robust identification regardless
of the contrast of objects is based on the local contrast enhancement which is part of
the algorithm.
The image processing algorithm can be interpreted as a classifier, since the binary image
classifies each pixel either as a background (no boundary) or a foreground (boundary)
pixel. In order to have the ability to decide whether a pixel is rightly or wrongly
classified, a test image with known properties is used. Here, the Jähne test image
g1 [27] was used and the accuracy and the positive predictive value (PPV) of the
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algorithm can be calculated to be 85 % and 84 % respectively.
The aim of the image analysis is to identify features in the binary image. Those are
grain boundaries with varying width which are not symmetric. Hence, it is nontrivial to
define important properties like diameter, center of mass, eccentricity ε or orientation φ
of an object. The method to overcome this problem, is to find an ellipse which has the
same second central moment as the pixel distribution of the grain boundary [28]. Within
this ellipses approach, the grain boundary area is the total of pixels a boundary consists
of. This number is retrieved from the binary image and then multiplied by the pixel size,
which is a property of the very optical system. At OBACHT, this value is 12.25µm2.
With the given resolution at OBACHT, the experimentally obtained upper relative error
for the grain boundary area obtained that way is 3 %, similar to [29]. Since the error
converges with 1

n2 , an area of 122 pixels at OBACHT only has a relative uncertainty of
only 1 %. The uncertainty of the center of mass of the object is nearly constant. With
the given resolution at OBACHT the uncertainty is less than ten pixels or 35µm.

The orientation of an object is defined as the angle of the major axis of the ellipses
with respect to an axis perpendicular to the welding seam., see figure 4 An upper limit
of the uncertainty of 5o is derived with [30,31].

Figure 4. On the left side, a four pixel object and the ellipse with the same second
central moment is shown. On the right side, the ellipse with its major axis a and minor
axis b and the horizontal z-axis for the angle assignment Φ is shown.

In order to define a figure of merit for the roughness of an object with OBACHT,
two assumptions are made. The first assumption is that the intensity of the reflected
light is dependent on the roughness and structures of the cavity surface. This means
that a change in the intensity is either caused by a geometric gradient or a change in
reflectivity. A geometric gradient exists either at a grain boundary or a defect, while a
change in reflectivity can be caused by an impurity. The second assumption is that the
curvature of the elliptical cavity is negligible within the studied area and surface seen by
the image can be considered to be flat within the depth of field of the camera. In order
to describe the surface roughness variations in the images obtained by the camera, we
define the quantity Rdq to be the average gradient of the image intensity of an object.
It is based upon measurements of the surface texture of cavity ISO 25178 [32], for which
a steeper increase in the surface roughness near to an edge or weld contributes to a
larger average roughness value Rdq.

A statistical noise arises from the Signal-to-Noise-Ratio (SNR) of the image sensor in
the camera, which yields a δRdq of 0.011√

N
Bit
µm . A systematic uncertainty due to image

focus was found to be
δRdq

Rdq
= 3 %. For more details on the image processing algorithm

and explicit definitions and discussion of the obtained variables see [24, 33] and for first
results of surface classification and quality assurance and control during the mass
fabrication see [16,18].

3 Defect Recognition

The biggest challenge of a defect recognition algorithm for superconducting cavities is
the highly irregular surface of the grain structure and the large variety of possible
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defects. The fractions of known classes of defects make up roughly 40% of the total
number of observed defects but a much smaller fraction of performance relevant defects.
Performance relevant defects are typical unique shaped geometric or chemical
irregularities with a small sample size per class. Hence, training classifiers like the
efficient Viola-Jones algorithm can not cover all relevant defects [34,35]. Untreated
cavities present a simpler surface for several kinds of image classifier, but most defects
are only visible after chemical surface treatments which again pronounces the surface
grain structure. This surface is difficult to illuminate homogeneously and create grains
with varying sizes and topologies. To tackle these issues, two approaches were tested to
identify defects. The first algorithm has no fixed assumptions about a standard surface
or surface feature but compares each object with its surrounding neighbors with varying
metrics based on the Mahalanobis distance [36]. The other algorithm tries to
reconstruct the image which is decomposed into small areas as a summation of
eigenvectors [37] and marks deviations above a defined threshold between the
reproduced surface and the actual surface as a defect.

3.1 Object Oriented Approach

On average, each image taken of the equator region and processed to obtain the labeled
binary image L1 contains 1700 to 2200 grain boundaries and other objects such as
defects, stains or other remnants from the surface treatment or simple pollutions like
fibres [24]. Using the now defined variables, a 6-dimensional phase space is constructed
where each object is represented by the six variables: area A, the ratio between the area
and the perimeter f, eccentricity ε, orientation φ, the position of the object defined in
the image coordinates ~R = (m,n) and the roughness Rdq. The set of objects µ which
are used to classify an object under investigation is defined as followed

µ = {~x ∈ L1|
∥∥∥~Robject − ~R~x

∥∥∥ ≤ 2 · aobject} (1)

with a as major axis length of the object under investigation, ~R the position of the
object in L1 and ‖•‖ the euclidean distance. This radius definition allows to adjust the
set size to be studied to the object size. A fixed value would either unnecessarily
increase the computational resources and mix different areas in the image (too large
radius) or the set of objects is not representative (too small radius). Since the
dimensions in the phase space have different units and the range of the values differ by
several magnitudes, the euclidean distance cannot be used to quantify a distance in the
phase space. Instead, the so-called Mahalanobis-Distance will be used, which is defined
for two objects described by the vectors ~x, ~y ∈ µ

dM (~x, ~y) =

√
(~y − ~y)

T
Σ−1 (~y − ~y) (2)

where Σ is the covariance matrix. In case that the covariance matrix equals the unit
matrix, the equation simplifies to the euclidean distance. Otherwise, the correlations
between different properties are taken into account, which is necessary for this case. An
intuitive explanation for this definition is that the distance is a measure of how many
standard deviations away is an object from the center of mass of the set of other objects
used for comparison. The further away it is, the more likely that the object is not part
of the set. The threshold distance used to classify an object as defect has been set to 5σ.
Figure 5 shows a defect found in an image.

The number of objects in the set surrounding the defect was 335. Figure 6 shows the
distance table between these objects based on the Mahanalobis metric and Figure 7 the
histogram of the distance table.
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Figure 5. The dark spot - encircled by the boundary detected by the algorithm - is an
aluminum contamination on an untreated surface introduced in the sheet after quality
control and during rolling. This defect - after surface chemistry - reduced the quench
field.

Using this approach, several other defects in other cavity inspections where
automatically identified, see Figure 8 and 9 as examples.

A disadvantage of this classifier is the computing time. The algorithm ran on a
server with two 3 GHz Intel Core 2 DUO E8400 CPUs, 8 GB memory and a GeForce
8400 with UBUNTU 14.04 as operating system. The image processing algorithm takes
up to 40 s CPU time per image to process it and to generate the phase space and
additional 4-8 min CPU time to scan the phase space for each object in the image while
taking an image and move it in the computing infrastructure is on the order of 20 s real
time. Although each image can be processed parallel, a delay is unavoidable with given
computational infrastructure, but this is acceptable since the overall delay is not
time-critical.

3.2 Eigenface Approach

Another algorithm is based on the method of eigenfaces, which is the application of a
principal component analysis to a collection of images to find a minimal set of
eigenvectors - the so-called eigenfaces - which then can be used to describe and
reconstruct the images. A variation has been implemented and used at OBACHT to
recognize similarities between surface features [38]. Consider I (x, y) as the grey-scale
intensity of a pixel at position (x, y) of a square image Γi consisting of N ×N pixels.
The same array can be interpreted as a vector with N2 components, i.e. a point in a
N2-dimensional space. For a cavity surface area this space is not uniformly populated.
In fact, the challenge of finding similarities between image areas is to determine the
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Figure 6. Color coded distance table of the objects in the set. A clear singular object
is identified - object no. 29 - with a deviation on the order of 19σ.

subspace in which the intensity only fluctuates statistically expected around the average
gray scale value. This average value and the expected fluctuation should then only rely
on the manufacturing variations of each vendor. Any deviation from this distribution
should then be considered as a defect. The method applied is based on a training
sample of M cavity images Γ1,Γ2, . . . ,ΓM .

The mean image Γ̄ and its variance C can be readily calculated

Γ̄ =
1

M

M∑
i=1

Γi (3)

C =
1

M

M∑
i=1

(Γi − Γ̄)(Γi − Γ̄)T (4)

which again represent arrays of size N ×N . The eigenvectors of the matrix C can be
used to decompose the image space in terms of its most relevant properties, i.e. the
eigenfaces. Typically only a small number of eigenvectors are needed to describe the
relevant features of the image. The decomposition of a whole image into eigenfaces is
not reasonable due to a simple problem: A whole image consists of welding seam region
and heat affected zone region with distinct features and mixing these two would create a
bi-model distribution complicating the defect identification. Hence, the training images
were cut into multiple squares with an area of 101× 101 pixel. The size of the squares is
an important variable to reduce the false negative rate. A too large square could include
a defect which does not attribute enough to the variance of this very square. A too
small square would cut a defect into several squares where each might be classified as
normal surface due to a too small variation in the square. Given the average diameter of
a defect under consideration to be 35µm (101 pixel) or bigger, this value was chosen,
resulting in 34*26 squares to be analyzed per image.

The selection of a minimal set of eigenvectors which accounts for the most variance
in the image reduces the dimensionality of the search. Figure 10 shows the variance
accounted for as a function of eigenvectors used. On average, 10 eigenvectors are needed
to account more than 99.5% of the variance in the image for treated surfaces, while 5
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Figure 7. The histogram of the distance table. Object no. 29 - the defect - is a strong
outlier of this set with an average deviation of 19σ.

eigenvectors are enough for untreated surfaces. Any irregularity of the surface, such as a
geometrical defect or inclusion on the surface, deviates from the typical surface of the
training sample and hence can be identified by distinctly different coordinates in
eigenspace. Irregularities in the image are detected by introducing the Mahalanobis
distance in the N2-dimensional space. The threshold for detection was set to 5σ and 10
eigenvectors are considered.

The algorithm has been tested on images of the optical inspection of a cavity. The rf
defect could be localized and the optical inspection identified a spot which resembled a
burst of debris. Figure 11 shows the defect and detected squares.

Figure 12 on the left shows the defect and its direct neighborhood in the original
image in gray scale while the right part shows the same region after subtracting the ten
leading eigenvectors weighted with the appropriate eigenvalues. The signal to noise ratio
(SNR) increases from 13.8 dB to 16.2 dB for the squares including the defect. At the
same time, the SNR for the whole image increases by 0.7 dB indicating that most of the
image was described by the background generated with the eigenfaces. The false
positive classification of the five squares could be traced to the chosen training set. All
falsely classified squares contain the same light reflection pattern which was not well
represented in the original training set. Figure 13 shows another example of an image
containing a defect identified with the Eigenface approach without any false positive
squares.

A strong disadvantage of the eigenface method is that the algorithm identifies parts
of the transient region of the seam in Figure 11 as defective areas because it contains
irregular reflective patterns. Increasing the amount of eigenvectors used or the training
set does not decrease the false positive rate to a sufficient level since such reflective
patterns are highly irregular.

4 Surface Classification

Detecting defects and -as a next step - classifying automatically whether they can cause
a limitation and at which accelerating field automatically is a difficult task. One issue
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Figure 8. Oxidized niobium on a treated cavity surface after a failure in the high-
pressure water rinsing leading to a reduction of the quench field. A short surface
chemistry could remove the defect.

is, that due to performance tests, only the ’worst’ defect can be identified, while other
limiting defects in the same cavity can remain undetected or not be classified from an
RF point of view which reduces the available data set to maximum of one defect per
cavity. With the optical inspection system OBACHT, a manual analysis was done
during the European XFEL production [39] and a classification of types of defects was
done. But even cavities without a localized defect can quench at lower fields and first
attempts in correlating global surface properties and not localized defects with
performance parameters were done [18]. Here, an automated approach of a defect-free
surface classification will be presented and is based on a classification tree [40]. A total
of 33 cavities are used to train the tree. The limiting cell of each cavity was identified
by RF tests and the surface properties of the respective cell and the quench field of the
cavity are used. The quench fields are sorted into one of four classes, see Table 1. Cells
with a quench field below 30 MV/m would be rejected or need additional analysis
and/or treatment in future accelerator projects (Class 1). Class 2 cells would be
considered for light surface re-treatment. Class 3 cells are good cavities, while class 4
cells would be considered as excellent.

Table 1. Classification Table for 33 training cells.

Class Eacc [MV/m] #Cells

1 < 30 4
2 ≤35 11
3 ≤40 6
4 > 40 12
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Figure 9. Scratches of unknown origin on the surface. The surface chemistry removed
these defects and no further problems were observed.

The different loss models discussed in the literature predict different correlations
between the RF performance and the surface properties, but all of them assume the
grain boundaries as a major potential for limitations or losses [41–47]. Using the above
mentioned variables obtained by the image processing algorithm, a set of 24 parameters
for each cell were obtained. For example, the integrated grain boundary area

∑
A in an

image, but also for two regions - welding seam and heat affected zone - separately. Also,
the average surface roughness Rdq for a whole cell and for the regions and the spread of
the surface roughness distribution - parametrized by the inter-quartile range - is used.
These 24 parameters were used as predictors and the cell classes as response to be
predicted. The full trained tree, shown in Figure 14, has five splits and two mixed
classes in the terminal nodes. This decision tree is in agreement with the physical
model, that smoother surfaces achieve higher fields [48] and that the welding seam is
the most crucial part of the fabrication of a cavity. It is still surprising that the only
variable used as predictor is the surface roughness in the different regions. A possible
reason for this is the way the surface was represented in the variables. More
sophisticated representations may improve the predictions and the surface roughness as
the only important feature might be not correct anymore.

5 Benchmark

To quantify the classifiers, using common quantities as accuracy might skew the
interpretation, since the two different object classes ”defect” and ”no defect” are
populated highly asymmetrically - a situation called accuracy paradox. The
object-oriented approach has on average one to three defects in an defect image and
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Figure 10. Variance accounted for in the image as a function of used eigenvectors for
treated (red - 36 images) and untreated (blue - 23 images) surfaces.

none in a defect free image, while it has on average 2000 grain boundaries. Using the
eigenface approach, the image consists of 884 squares, where - depending on the defect
size - one to twenty of those are part of a defect. To classify such asymmetric
populations of classes, other metrics have been defined elsewhere and the g-mean and
the F-measure will be used, where the range of these quantities are 1 (all correct
classified) and 0 (nothing correct classified) [49–52]. The classifiers were tested on a set
of 23 images of a treated cavity surface and 36 images of an untreated cavity surface,
each containing at least one defect. The results of the training are given in table 2. In

Table 2. Effectiveness of the two defect detection algorithms for treated and untreated
surface images

Eigenface Object-Oriented
Treated Untreated Treated Untreated

g −mean1 0.53 0.63 0.37 0.86
g −mean2 0.88 0.89 0.70 0.99
F-measure 0.50 0.61 0.36 0.85

addition, the eigenface algorithm didn’t detect any defect in 13 of 23 treated and 10 of
36 untreated surface images and the object-oriented algorithm didn’t detect any defect
in 7 of 23 treated and 6 of 36 untreated surface images and hence the values are zero for
those images.

Figure 15 shows the cost of the tree using a resubstitution method and a
cross-validation method. The cost of a node is the sum of the misclassification costs of
the observations in that node. The resubstitution cost is based on the same sample that
was used to create the original tree, so it under estimates the likely cost of applying the
tree to new data. The cross-validation method uses a 10-fold cross-validation to
compute the cost vector. The function partitions the sample into 10 subsamples, chosen
randomly but with roughly equal size and class proportions. A misclassification of (35
± 7) % is expected. The decision tree was then applied to a another set of 17 cells
produced within the European XFEL fabrication and which were found to be the
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Figure 11. Gray scale image of the welding seam in the cavity. The output of the
eigenfaces algorithm is indicated by the yellow squares. Two defects squares (two yellow
squares on the left) have been identified, five other squares are false positives (shown as
the 5 yellow squares on the right side of the welding seam).

limiting cells in cavities and are defect free [18]. The results is shown in a confusion
table in Table 3. 35% of the cells were misclassified, which is in excellent agreement

Table 3. Confusion Table for 17 cells.

Class 1 2 3 4

1 4 0 0 0
2 0 4 1 1
3 0 3 2 0
4 0 0 1 1

with the expected value. More important, no class 1 cavities were misclassified or
cavities were falsely classified as class 1.

6 Conclusion

For the implementation of the optical inspection robot OBACHT as a quality assurance
and control tool in a large scale production, as well as an R&D tool, an automated
image processing and analysis algorithm was needed. In the scope of the ILC HiGrade
Research Project and the European XFEL cavity fabrication, a new framework has
been developed which enables this automated analysis of a large amount of images of
the inner surface of cavities [33]. First applications of the newly developed framework
were investigation of optical surface properties of the two cavity vendors for the
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Figure 12. The original cross section of the defect area in the cavity (left) and
after subtraction of the ten most relevant eigenvector weighted with the eigenvalues
(right). Brighter regions are equivalent to a larger difference between actual image and
reconstructed image.

European XFEL and significant differences in the quantitative characterization have
been identified and a standard for a cavity surface has been established [18]. The next
steps, and first results as shown in this work, are to detect defects on an irregular
surface automatically and classify their potential limitations as well as to classify the
”goodness” of a defect free cavity surface. Two algorithms have been applied with
moderate results. The object oriented approach is more promising and will be combined
with other classifiers to further study its accuracy. The Eigenface approach shows high
false positive and false negative rates on treated cavity surfaces. For untreated cavities
it should be further tested - which is not possible anymore at the current state of the
fabrication process. The classification of defect free surfaces achieved an already
sufficient level of accuracy with a simple decision tree algorithm and could be used as a
first level quality control tool during early fabrication steps. In conclusion, a
quantitative analysis and characterization of a cavity surface by means of optical
methods has been achieved, which can be adapted and used for the quality assurance of
a future large scale cavity production.
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Figure 13. A welding splatter next to a welding seam of an untreated cavity surface -
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