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We analyze the hidden charm P -wave tetraquarks in the diquark model, using an effective Hamil-
tonian incorporating the dominant spin-spin, spin-orbit and tensor interactions, comparing with
the P -wave charmonia and with the recent analysis of the newly discovered Ωc baryons. Given the
uncertain experimental situation on the Y states, we allow for two different spectra and discuss the
related parameters in the diquark model, including the constrains from Ωc baryons. The diquark
model allows to select a preferable Y -states pattern. The existence of higher resonances, as the one
predicted with L = 3, would be another footprint of the underlying diquark dynamics.

PACS numbers:

I. INTRODUCTION

The experimental discovery of the four-quark (more
precisely two quarks and two antiquarks) and five-quark
(four quarks and an antiquark) states has opened a new
field in hadron spectroscopy. The exotic four- and five-
quark states, called X,Y, Z and Pc, respectively, have
been analyzed in a number of theoretical models, re-
viewed recently in [1–4]. We will concentrate on the
diquark-antidiquark interpretation that, for heavy-light
diquarks, was introduced in [5] for hidden charm and
in [6] for hidden beauty, following the light pentaquark
picture discussed in [7].

The objects of our interest in this note are the JPC =
1−− states, the so called Y -resonances. In [8], the
four basic L = 1 resonances with, JPC = 1−− in
the diquark-antidiquark spectrum were identified with
Y (4008), Y (4260), Y (4290) (a broad structure in the hc
channel), or Y (4220) (a narrow structure) and Y (4630).

Since that paper appeared, the experimental situation
has evolved. The assessment of the Y (4008) is under
review and the Y (4260), which apparently was the best
established resonance, is now claimed by BESIII as a
double humped structure [9]. The Y (4360) and Y (4660)
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were considered to be n = 2 radial excitations of Y (4008)
and Y (4260), respectively, motivated by their decays into
ψ(2S)π+π−, and the mass differences, which are similar
to the ones in the radial excitations of the quarkonium
states, χ(c,b),J(2P ) − χ(c,b),J(1P ). On the other hand,
it was also observed that Y (4630) and Y (4660) could
be fitted as a unique resonance, mainly decaying into
ΛΛ̄ [10].

Given the experimental uncertainties that still affect
this sector, we shall work out our analysis on two distinct
spectra, based essentially on the Belle and BaBar data,
and on the more recent BESIII data, respectively, which
we define as scenario I and II, (namely SI and SII). The
main distinction between SI and SII is that the first one
contains the Y (4008) and the other does not. In both SI
and SII we shall keep Y (4660) and Y (4630) to correspond
to the same state. In SI we include

SI : Y(4008),Y(4260),Y(4360),Y(4660),

whereas in SII we have

SII : Y (4220), Y (4330), Y (4390), Y (4660).

Thus, in SI, we include the Y (4360), which was previ-
ously considered a radial excitation, whereas in SII, the
spectrum starts with Y (4220), i.e., the narrow structure
mentioned above with reference to [8]. In SII, Y (4330)
and Y (4390) correspond to the two lines resolving the
Y (4260), according to BESIII [9]. The Y (4008) has been
seen so far by Belle only [11], about 250 MeV below the
well-established Y (4260). Current analysis of this reso-
nance from BESIII is inconclusive [9].

In calculating the mass spectrum, tensor coupling in-
teractions were not included in [8]. Here we take a sec-
ond look at the four Y -states, in both SI and SII, treat-
ing them as n = 1 P -states, with the mass differences
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accounted for by the spin-orbit, spin-spin and tensor in-
teractions.

The Y -states have also been interpreted as hadron
molecules in [12], though Y (4008) is not foreseen in that
case. The state Y (4260) has also been advocated as an
example of a (cc̄)8g hybrid [13]. However, due to the re-
cent evidence that Y (4260) decays into hcπ

+π− [14] —
a heavy quark spin- flip transition — this interpretation
is now disfavored. Another analysis of Y states in the
diquark approach can be found in [15].

Closely related to the analysis of tetraquark Y -states,
presented here, are the five narrow excited charmed-
baryon states Ωc(= css), whose mass spectrum has re-
cently been measured by the LHCb collaboration [16].

Following [17], we treat them as diquark-quark sys-
tems, [ss]c (for the Ωc-baryons) with the [ss]-diquark
having the spin S[ss] = 1.

The five Ωc states are assumed to have orbital angular
momentum L = 1. Their measured masses (in MeV) [16],
and the assumed JP -quantum numbers are as follows:

M(Ωc(3000)) = 3000.4± 0.2± 0.1; JP = 1/2−,

M(Ωc(3050)) = 3050.2± 0.1± 0.1; JP = 1/2−,

M(Ωc(3066)) = 3065.6± 0.1± 0.3; JP = 3/2−, (1)

M(Ωc(3090)) = 3090.2± 0.3± 0.5; JP = 3/2−,

M(Ωc(3119)) = 3119.1± 0.3± 0.9; JP = 5/2−.

With the spin of the c-quark being Sc = 1/2, we have
total spin S = 1/2 or 3/2. Combined with the orbital
angular momentum L = 1 yields the five observed Ωc

states, having J = 1/2 (two states), J = 3/2 (two states),
and J = 5/2 (one state). They have been discussed in a
number of papers [17–20]. We follow here the analysis by
Karliner and Rosner [17], where the effects of the tensor
contribution have been implemented, in addition to the
spin-spin and spin-orbit terms in calculating the mass
spectrum.

The principal aim of this paper is to investigate
whether the diquark picture provides a satisfactory de-
scription of the four Y -states in the cc̄ sector, effectively
distinguishing between SI and SII. In doing so, we first
repeat the analysis of the five L = 1 charmed-baryons Ωc.

II. EFFECTIVE HAMILTONIAN FOR THE
Ωc BARYONS

In the diquark-quark description, the Hamiltonian for
the Ωc states can be written as

Heff = mc +m[ss] + κssSs · Ss +
BQ
2

L2 + VSD, (2)

VSD = a1L · S[ss] + a2L · Sc + b
〈S12〉

4
+ cS[ss] · Sc.

In Eq. (2), mc and m[ss] are the masses of the c quark
and the [ss] diquark, respectively, κss is the spin-spin
coupling of the quarks in the diquark, and L is the or-
bital angular momentum of the diquark-quark system.

The spin-dependent part of the Hamiltonian VSD is taken
from [17]. The coefficients a1 and a2 are the strengths
of the spin-orbit terms involving the spin of the diquark
S[ss] and the charm-quark spin Sc, respectively. The
term b〈S12〉/4 represents the matrix element of the ten-
sor interaction, defined by

S12

4
= Q(S1,S2) = 3(S1 · n)(S2 · n)− (S1 · S2), (3)

where S1 and S2 are the spins of the diquark and the
charm quark, respectively, and n = r/r is the unit vector
along the radius vector of a particle. This notation is used
in the analysis of the L = 1 Y -states as well, in which
case S2 represents the spin of the antidiquark.

The scalar operator of Eq. (3) can be expressed as the

convolution 3Si
1S

j
2Nij , where the tensor operator

Nij = ninj −
1

3
δij . (4)

For further applications, we need the matrix elements
of this operator between the states with the same fixed
value L of the angular momentum operator L, using an
identity from Landau and Lifshitz [22]:

〈Nij〉 = a(L)(LiLj + LjLi −
2

3
δijL(L+ 1)), (5)

where a(L) = −1
(2L−1)(2L+3) .

Saturating the operator inside the brackets of Eq. (5)

with the product of the spin operators Si
XS

j
X , with

SX = Sc,Sd and S, which are the spins of the c quark,
d = [ss] diquark and the total spin of the system, re-
spectively, using the appropriate commutation relations
of the components of SX , and setting L = 1, one finds
easily (see e.g. the Appendix of [17]):

〈Q(SX ,SX)〉 = −3

5
〈[2(L·SX)2+(L·SX)− 4

3
(SX ·SX)]〉.

(6)
For spin 1/2 values of S1,2, the second and third terms
in (6) do vanish and one recovers the usual formula for
the tensor coupling used for the P -wave charmonia (see,
e.g., [23]). In terms of the Q(SX ,SX), Eq. (3) for the
present case can be expressed as

〈S12〉
2

= 〈2Q(Sd,Sc)〉 = 〈Q(S,S)−Q(Sc,Sc)−Q(Sd,Sd)〉.
(7)

In particular, if SX = S[ss],Sc, we are interested in
the matrix elements

〈L, S′; J |L · SX |L, S; J〉, (8)

where L = 1, the total angular momentum can be J =
1/2, 3/2 and the total spin is S, S′ = 1/2, 3/2. For J =
5/2, S is necessarily 3/2.

The matrix elements can be computed directly by ap-
plying the operators L·SX to the products of states corre-
sponding to the individual angular momenta, Sss,Sc,L.
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TABLE I: Values of the parameters a1, a2, b, c and M0 (in
MeV), determined from the masses of the Ωc baryons given
in Eq. (1).

a1 a2 b c M0

26.95 25.75 13.52 4.07 3079.94

More effectively, one can use Wigner’s 6j symbols (now
easily implemented in a computer code), as is customary
for analogous cases in atomic and nuclear physics, and
explained in the Appendix A.

In either way, one obtains:

J = 1/2 :
1

4
〈S12〉 =

(
0 1√

2
1√
2
−1

)
,

J = 3/2 :
1

4
〈S12〉 =

(
0 − 1

2
√

5

− 1
2
√

5
4
5

)
, (9)

J = 5/2 :
1

4
〈S12〉 = −1

5
.

After diagonalizing the combined matrices of 〈S12〉, given
in Eq. (9), and that of L · S[ss],c for the different JP

states, given in Appendix of [17] (c. f. Eq. (A12)–(A14)),
we get the mass corrections arising due to these spin-orbit
interactions. We remind that in all the five states, there
is the common mass term M0 ≡ mc +m[ss] + 2κss +BQ.

In order to determine the parameters a1, a2, b and c,
Karliner and Rosner [17] have used the spin averaged
mass and have worked with the mass differences of the
five Ωc states. We reproduce their values, summarized in
Table I, where we have also given the value of M0.

III. EFFECTIVE HAMILTONIAN FOR
Y TETRAQUARKS

Y -states have the quark content [cq]3̄[c̄q̄]3, where the
subscripts denote the color representations. Tetraquarks
with JPC = 1−− are obtained for L = 1, 3. Spin wave
functions are given in Table II, in the basis SQ, SQ̄, L
with S = SQ + SQ̄ and J = S + L.

We extend the Hamiltonian of P -wave tetraquarks
given in [8] by including the tensor coupling contribu-
tion

Heff = 2mQ +
BQ
2

L2 − 3κcq + 2aY L · S + bY
〈S12〉

4

+ κcq
[
2(Sq · Sc + Sq̄ · Sc̄) + 3

]
, (10)

where S12 is defined as in (3) with S1,2 representing the
spins of the two diquarks. Comparing to (2), we see that
in this case the coefficients a1 and a2 are a1 = a2 ≡ 2aY
due to the charge conjugation invariance. The spin-
spin interaction between diquark and antidiquark is ne-
glected here since in P -wave the overlap probability is
suppressed [8]. In the Ωc case, the spin-spin interaction,

TABLE II: JPC = 1−− tetraquarks involving a diquark-
antidiquark QQ̄ pair in the diquark model.

Label |SQ, SQ̄;S,L〉J
Y1 |0, 0; 0, 1〉1
Y2

(
|1, 0; 1, 1〉1 + |0, 1; 1, 1〉1

)
/
√

2
Y3 |1, 1; 0, 1〉1
Y4 |1, 1; 2, 1〉1
Y5 |1, 1; 2, 3〉1

represented by c, Table I, is similarly suppressed and the
same happens in P -wave charmonia.

The calculation of the matrix elements of the L · SX

operator, with SX = S[cq],S[c̄q̄′] is described in the Ap-
pendix, Eq. (A24) and (A26). We note here that:

• tensor couplings are non vanishing only for the
states with SQ = SQ̄ = 1;

• the operator L·SQ is not invariant under the charge
conjugation and it does mix the states Y3 and Y4,
with a JPC = 1−+ state of the spin composition:

Y (+) = |1, 1; 1, 1〉1. (11)

• Y (+) appears as an intermediate state in the prod-
uct (L·SQ)(L·SQ̄), giving contribution to both the
diagonal and the non diagonal terms to the matrix
elements of the product between Y3 and Y4.

After Eqs. (A24), (A26), (7) and (10), tensor cou-
plings over the Y3 − Y4 states are represented by the
non-diagonal matrix:

1

4
〈S12〉 =

(
0 2/

√
5

2/
√

5 −7/5

)
. (12)

The eigenvalues of the mass matrix of Y -states derived
from Eqs. (10) and (12), are written as:

M1 = M(Y1) = M00 − 3κcq ≡ M̃00,

M2 = M(Y2) = M̃00 − 2aY + 2κcq, (13)

M3 = M̃00 + 4κcq + E+,

M4 = M̃00 + 4κcq + E−.

We have made explicit that the states Y1,2 in Table II
are eigenstates of the mass matrix, while M3,4 are the
eigenvalues of the matrix

2aY 〈L · S〉+ bY 〈S12〉/4, (14)



4

with

E± =
1

10
×

×
(
−30aY − 7bY ∓

√
3
√

300a2
Y + 140aY bY + 43b2Y

)
,

M3 +M4 = 2(M̃00 + 4κcq) +
1

5
(−30aY − 7bY )

= 2(M̃00 + 4κcq) + E+ + E−,

M4 −M3 =

√
3

5

√
300a2

Y + 140aY bY + 43b2Y

= E− − E+ ≥ 0. (15)

We have also used: M00 = 2mQ +BQ.
In the hypothesis SI, we take the four JPC = 1−−

Y -states to be Y (4008), Y (4260), Y (4360) and Y (4660),
with masses (all in MeV)

M1 = 4008± 40+114
−28 , M2 = 4230± 8,

M3 = 4341± 8, M4 = 4643± 9. (16)

Masses are taken from PDG [26], except for the Y (4008),
which is from Belle [11]. In their analysis, they find that
their data are better fit with two resonances, Y (4260)
and Y (4008), and the width of the Y (4008) is found to
be a factor 2 larger than that of the Y (4260).

In the hypothesis SII, Y (4008) is absent and the
Y (4260) is resolved in two peaks [27]. The masses of
the states Y (4220), Y (4320), Y (4390) and Y (4660) are
(all in MeV):

M1 = 4219.6± 3.3± 5.1, M2 = 4333.2± 19.9,

M3 = 4391.5± 6.3, M4 = 4643± 9, (17)

i.e. the state with the mass M4 is the same as in SI.
Before proceeding to the estimate of the values of the

parameters M00, aY , κcq and bY , we first note their
possible interdependence on each other. From Eq. (15)
for M4 − M3 follows that this mass difference is in-
variant under the simultaneous sign change (aY , bY ) →
(−aY ,−bY ). Hence, from this mass difference alone, we
have two solutions: aY < 0 and aY > 0. We shall call
them case 1 and case 2, respectively. In line with the
analysis for the Ωc states, given in Table I, only aY > 0
should be kept. This is also the choice suggested by the
mass ordering, in which the L = 3 state (called Y5 in
Table II) should have a higher mass than the L = 1
states. So, the only physically acceptable solution is the
one which has positive value of aY irrespective of the sign
of the value of bY .

However, as the experimental situation is currently not
univocal, and the errors on some of the masses are large,
we shall see below that, including the errors, solutions
whose central values have aY < 0, are also allowed. In
addition to Eq. (15), the mass difference M2 −M1 pro-
vides a constraint on the parameters aY and κcq:

M2 −M1 = 2(κcq − aY ). (18)

TABLE III: Values of the parameters in the Scenario I (SI)
and II (SII) and ±1σ errors (all in MeV). Here, c1 and c2
abbreviate the cases 1 and 2, respectively.

aY bY κcq M00

SI (c1) −22± 32 −89± 77 89± 11 4275± 54
SI (c2) 48± 23 11± 91 159± 20 4484± 26
SII (c1) −3± 18 −105± 32 54± 8 4380± 25
SII (c2) 48± 8 −32± 47 105± 4 4535± 10

Thus, in both the scenarios for the Yi masses, κcq > aY ,
with the two approaching each other as this mass differ-
ence decreases. The central values of the parameters aY ,
bY , κcq, and M00 are determined from the masses given
in Eq. (16) for SI and in Eq. (17) for SII and presented
in Table III.

To work out errors and the correlations among the pa-
rameters, we have used the method of least squares to de-
termine the best-fit values and the covariance matrices.
For this, the χ2-function is calculated. In general [26],

χ2(~θ) =

N∑
i=1

(
yi − µi(~θ)

)2

∆y2
i

, (19)

where ~y = (y1, . . . , yN ) is the set of the experimentally
measured values which are assumed to be independent

and ∆yi are their variances. The quantities µi(~θ) are
dependent on the unknown parameters which are col-

lected as the vector ~θ = (θ1, . . . , θm) where m ≤ N . For
the problem at hand, we take the parameter-dependent

functions from Eq. (13), µi(~θ) = Mi, where i = 1, · · · , 4,
and

~θ = (θ1, θ2, θ3, θ4) ≡ (M00, κcq, aY , bY ) . (20)

The best-fit estimations of the parameters θk, obtained
after minimizing the χ2-function, are presented in Ta-
ble III, as central values. Note that each scenario results
into two solutions which differ by the sign of the best-fit
value of aY , in line with the discussion above. The vari-
ances of the parameters are also shown in Table III, while
the correlation matrices are collected in Appendix B. The
parameters (20) are strongly correlated as all the corre-
lation moments in the corresponding matrices (B1)–(B4)
are close in magnitude to unity. To show this, we plot
two-dimensional confidence level (C.L.) contours involv-
ing some of the coefficients.

The correlations among the parameters aY and bY and
in terms of the 68.3% (χ2 = χ2

min + 2.3 for two degrees
of freedom) and 95.4% (χ2 = χ2

min + 6.18) C.L. contours
are presented in Fig. 1. Similar contours demonstrating
correlations among aY and κcq are shown in Fig. 2. The
first and the second rows in these figures correspond to
the Scenario I and II, respectively, and in each row, the
left panels are plotted for the negative best-fit value of aY
(case 1), while the right panels are for the positive best-
fit value (case 2). Our analysis shows that Scenario I
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FIG. 1: 1σ- and 2σ-contours in the aY − bY parameter plane corresponding to 68.3% and 95.4% C.L. for the scenario I (SI)
in the top two frames and scenario II (SII) in the bottom two frames. The dot in each frame shows the position of the best-fit
value which is the minimum of the χ2-function. The best-fit value of aY is negative (case 1) in the left panels and positive
(case 2) in the right panels.

(case 1) is not tenable, as, within 95.4% C.L. and even
higher, aY remains negative. Thus, the requirement of
positive aY disfavors case 1 in Scenario I. In Scenario II
(case 1), small positive values of aY are allowed with
a relatively large probability. In case 2, large positive
values of aY are predicted for both Scenario I and II,

IV. DISCUSSION

With the current uncertainty of the experimental sce-
narios and many parameters one cannot draw quantita-
tive conclusions, except observing that the values of the
parameters are qualitatively similar to those derived in
the P -wave Ωc-states in three of the four solutions. One
can, however, underline two criteria that could lead to
some preference for the Scenario II.

The first is the value of the chromomagnetic cou-
pling κcq. We expect the fitted parameter to be close

to the analogous parameter derived for the S-wave
tetraquarks, which is [κcq]S ' 67 MeV as discussed in [8].
Indeed, there are no reasons to believe that the chromo-
magnetic coupling κcq in the diquark should change with
the addition of one unit of orbital angular momentum.
At 95% C.L., the allowed value of κcq from the Y states
in Scenario II (case 1) comes out somewhat smaller than
anticipated, while it is somewhat larger in Scenario II
(case 2). (See, the lower two frames in Fig. 2). Thus,
this criterion would favor the Scenario SII.

A second expectation is for the Hamiltonian in Eq. (10)
to describe both S and P -wave states, with the same
value of the diquark mass. As commented in [8], Y2,
which in SII corresponds to Y (4330), is in the same spin
state as the X(3872) except that there is a gap in mass
between the two, which here is fully accounted by BQ
and by the spin-orbit interaction. If this is the case, one
can derive the excitation energy of one unit of orbital
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momentum from the equation

M2 −M [X(3872)] = BQ − 2aY − [κcq]P + [κcq]S . (21)

Using the input from Table III and [κcq]S = 67 MeV, we
obtain:

BQ =


336 MeV SI(c1)
545 MeV SI(c2)
442 MeV SII(c1)
596 MeV SII(c2)

(22)

However, if the diquark spin-spin coupling is fixed, say,
κcq = [κcq]S = 67 MeV, then the χ2 analysis should be
redone. In this case, there are four experimental input
values and three unknown variables θk = (M00, aY , bY ).
Thus, we have one degree of freedom and can discrimi-
nate minima according to χ2

min. The best-fit values and
variances of the parameters M00, aY , and bY (all in MeV)
corresponding to the minima with the lowest χ2

min in each

TABLE IV: Values of the parameters M00, aY , bY (all in
MeV), and χ2

min/n.d.f. resulting from the χ2 analysis with
fixing κcq = 67 MeV.

Scenario M00 aY bY χ2
min/n.d.f.

SI 4321± 79 2± 41 −141± 63 12.8/1
SII 4421± 6 22± 3 −136± 6 1.3/1

scenario are reported in Table IV. There are other min-
ima in both the scenarios, but their χ2

min are larger, and
hence we don’t discuss the resulting parameters. From
this, one sees that with a fixed value κcq = 67 MeV,
Scenario II is favored, having a good value of χ2

min.

The values obtained for BQ can be compared with the
orbital angular momentum excitation energy in charmo-
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TABLE V: First two columns: components of the eigenvector
v4 belonging to the highest eigenvalue, M4, in the basis Y3, Y4.
Third column, Probability of Scc̄ = 1 in v4.

Y3, S = 0 Y4, S = 2 Prob.(Scc̄=1) in v4

SI (c1) −0.27 0.96 0.94
SI (c2) 0.99 −0.03 0.25
SII(c1) −0.58 0.82 0.75
SII (c2) −0.95 0.30 0.32

nium, given by the analogous formula

BQ = M(hc)−
1

4
[3M(J/ψ) +M(ηc)] = 457 MeV. (23)

The combination of J/ψ- and ηc-meson masses eliminates
the contribution of the S-wave spin-spin interaction in
the J/ψ-meson, absent in the hc, which has Scc̄ = 0.

It is reasonable to believe that an L = 1 diquark-
antidiquark system, with compact diquarks, is quite anal-
ogous to a L = 1 charmonium and, in that case, SlI(c1)
is again favored.

The states with the masses M3 and M4 are linear com-
binations of the Y3- and Y4-states with the spins S = 0
and S = 2. We note that in both SI and SII, the eigen-
vectors corresponding to M3 and M4 in c1 are close to
S = 0 and S = 2, respectively, while in c2, it is the
opposite, i.e., they are close to S = 2 and S = 0, respec-
tively. Table V (column 1 and 2) gives the components
of the eigenvector associated with M4, which is called
v4, for different scenarios and solutions. The orthogonal
vector v3 is not shown. The eigenvectors carry interest-
ing information; the projection of the eigenvector on the
state with cc̄ spin =1 is related to the probability of this
state to decay into a J/ψ (Scc̄ = 1) rather than in hc
(Scc̄ = 0). The fourth column gives the probability of
finding Scc̄ = 1 in v4. The table indicates that Y (4660)
in solutions c2 should have a good probability to decay
into hc while in c1 the J/ψ should dominate. This is
quantified in the entries in Table V (third column).

Before concluding, we give the mass formula for the
L = 3 state Y5 in Table II. Including the tensor contri-
bution, we get the following expression

M5 −M2 = 5BQ − 14aY + 2κcq −
8

5
bY ,

M5 =


6539 MeV SI(c1)
6589 MeV SI(c2)
6862 MeV SII(c1)
6899 MeV SII(c2)

(24)

The values of BQ are taken from (22) and the other
parameters are from Table III. Without the bY term,
Eq. (24) had been derived in [8] (with the opposite sign
convention of aY ).

V. CONCLUSIONS

We have derived the tensor contribution to the masses
of the five JPC = 1−− tetraquarks Y1−5 using an effective
Hamiltonian and correlating the parameters with those
determined from the analysis of the five Ωc states, which
follows a similar approach. We find that the parameters
are in the right ball-park, with the experimental Scenario
II preferred. The current uncertainties on the masses of
the Y -states hinder us to reach a completely quantitative
conclusion. Hopefully, a clarification on the composition
of Y states will be done at BESIII, Belle II, and LHCb.
With precise measurements, parameters of the effective
Hamiltonian can be determined more accurately, provid-
ing a quantitative test of the underlying diquark model.
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Appendix A: Spin-Orbit, Tensor Coupling and
Wigner’s 6j-Symbols

Combining three angular momenta, j1, j2, j3 to a
given J , one may follow two paths, characterized by the
values of the intermediate angular momentum to which
the first two are combined, e.g. j1 and j2 to j12 or j2
and j3 to j23, each path corresponding to different base
vectors. In the formulae given below, these two bases are
characterized as follows

|(j1, j2)j12 , j3; J〉, |j1, (j2, j3)j23 ; J〉, (A1)

or, with a shorter notation

|j12, j3; J〉, |j1, j23; J〉, (A2)

where it is understood that j1, j2, j3 and J are held fixed.
Vectors in the two bases are, of course, related by a

unitary transformation:

|j1, j23; J〉 =
∑
j12

Cj23, j12 |j12, j3; J〉. (A3)

Besides j12 and j23, the Clebsch-Gordon coefficients C
depend upon the angular momenta that are being held
fixed, j1, j2, j3 and J , that is the Cs depend on six an-
gular momenta. To maximize the symmetry properties,
one rewrites (A3) as [28]:

|j1, j23; J〉 =
∑
j12

(−1)j1+j2+j3+J
√

(2j12 + 1)(2j23 + 1)

×
{
j1 j2 j12

j3 J j23

}
|j12, j3; J〉. (A4)
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Wigner’s 6j-symbols are represented by the curly brack-
ets. They appear in the calculation of the matrix ele-
ments of the spin-orbit Hamiltonian or the tensor cou-
pling for two particles with spins S1 and S2 and different
masses in the orbital angular momentum L. Examples
are the P -wave Ωc baryons and the diquark-antidiquark
tetraquarks in P -wave, considered in the present paper.

In these cases, to classify states it is convenient to cou-
ple S1 and S2 to a total spin S and couple S to L to
obtain the total J , that is:

j1 = L, j2 = S1, j3 = S2, j23 = S1+S2 = S. (A5)

In this basis the matrix elements of the total spin-orbit
operator are easily computed according to the formula:

L · S =
1

2
[J(J + 1)− L(L+ 1)− S(S + 1)] . (A6)

In the spin-orbit interaction and in the tensor coupling,
however, one encounters the matrix elements of the op-
erator L ·S1 = j1 ·j2, which would require a complicated
calculation based on writing explicitly the states as prod-
ucts of three angular momentum states and applying the
operator L · S1 to them.

A more convenient way to proceed is to use Eq. (A4)
and set

j1 = L, j2 = S1, j12 = L+ S1, j3 = S2. (A7)

In this basis,

L ·S1 =
1

2
[j12(j12 + 1)− L(L+ 1)− S1(S1 + 1)] , (A8)

is diagonal on the basis vectors.
Using Eq. (A4), with Eq. (A5) on the lhs and Eq. (A7)

on the rhs, one gets

L · S1|L, S; J〉
=
∑
jLS1

(−1)L+S1+S2+J
√

(2jLS1
+ 1)(2S + 1)

×1

2
[jLS1

(jLS1
+ 1)− L(L+ 1)− S1(S1 + 1)]

×
{
L S1 jLS1

S2 J S

}
|jLS1

, S2; J〉. (A9)

Here, we have used the symbol j12 = jLS1
, whereas j23 =

S on the lhs, according to (A5). It follows that:

〈L, S′; J |L · S1|L, S; J〉 =
√

(2S + 1)(2S′ + 1)

×
∑
jLS1

1

2
[jLS1

(jLS1
+ 1)− L(L+ 1)− S1(S1 + 1)]

× (2jLS1
+ 1)

{
L S1 jLS1

S2 J S′

}{
L S1 jLS1

S2 J S

}
,(A10)

since by definition

〈j12, j3; J |j1, j23; J〉 = 〈j1, j23; J |j12, j3; J〉 = Cj23,j12 ,
(A11)

is the coefficient given explicitly in Eq. (A4).
Tables of 6j-symbols can be easily implemented in a

computer code and they are already available, making use
of the command SixJSymbol[{j1, j2, j3}, {j4, j5, j6}], in
the symbolic computer algebra system Mathematica [29].
Therefore the result in (A10) can obtained with a pro-
gram of a few lines [30]. In the following, we give the
explicit formulae for the cases considered in the paper.

Ωc baryons in P -wave. The constituents of the
states are the [ss]-diquark and the charmed quark c with

j1 = L = 1, j2 = S[ss] = 1, j3 = Sc = 1/2. (A12)

We will call j12 = jLS[ss]
and j23 = S = 1/2, 3/2. We

have to consider the matrix L · S[ss] in the two cases:
J = 1/2 and J = 3/2. In the J = 1/2 case, jLS[ss]

can

take the values 0, 1 and Eq. (A10) reads:

(L · S[ss])J=1/2 ≡ 〈1, S′; 1/2|L · S[ss]|1, S; 1/2〉

=
√

(2S + 1)(2S′ + 1)
1∑

jLS[ss]
=0

(
2jLS[ss]

+ 1
)

×1

2

[
jLS[ss]

(jLS[ss]
+ 1)− 4

]
×
{

1 1 jLS[ss]

1/2 1/2 S′

}{
1 1 jLS[ss]

1/2 1/2 S

}
, (A13)

where S, S′ = 1/2, 3/2. This sum can be calculated
easily when the required values of 6j-symbols are known:{

1 1 0
1/2 1/2 1/2

}
= −

{
1 1 0

1/2 1/2 3/2

}
=

1√
6
, (A14){

1 1 1
1/2 1/2 1/2

}
= −1

3
,

{
1 1 1

1/2 1/2 3/2

}
= −1

6
.

Therefore, in the basis of states (4P1/2,
2P1/2) we have

(the notation 2S+1PJ is the same as in [21]):

(L · S[ss])J=1/2 =

(
−5/3

√
2/3√

2/3 −4/3

)
. (A15)

In the same way

(L · S[ss])J=3/2 ≡ 〈1, S′; 3/2|L · S[ss]|1, S; 3/2〉

=
√

(2S + 1)(2S′ + 1)

2∑
jLS[ss]

=1

(
2jLS[ss]

+ 1
)

×1

2

[
jLS[ss]

(jLS[ss]
+ 1)− 4

]
×
{

1 1 jLS[ss]

1/2 3/2 S′

}{
1 1 jLS[ss]

1/2 3/2 S

}
, (A16)

with the 6j-symbol values:{
1 1 1

1/2 3/2 3/2

}
=

√
10

12
,

{
1 1 2

1/2 3/2 1/2

}
=

1

2
√

3
,{

1 1 2
1/2 3/2 3/2

}
=

1

2
√

30
, (A17)
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giving in the basis (4P3/2,
2P3/2)

(L · S[ss])J=3/2 =

(
−2/3

√
5/3√

5/3 2/3

)
. (A18)

Both results agree with [17].
Using the relation (L · Sc) = (L · S)− (L · S[ss]), it is

easy to get the matrices (L ·Sc)J=1/2 and (L ·Sc)J=3/2.
Diquarkonium in P -wave. The constituents are the

[cq] diquark and the [c̄q̄′] antidiquark.

j1 = L = 1, j2 = S[cq] = 1, j3 = S[c̄q̄′] = 1. (A19)

Here, J = 1 and j23 = S = 0, 1, 2.
Note that the state with S = 1 (and L = 1) here has

the charge conjugation C positive, opposite to the value
of C of the other two states and of the Y states.

The spin-orbit coupling must be even under C and,
therefore, it is represented by

L · (S[cq] + S[c̄q̄′]) = L · S, (A20)

which is diagonal on the states with S = 0, 2.
However, the C-even combination of the spin-orbit

couplings appearing in the tensor coupling is

(L · S[cq])
2 + (L · S[c̄q̄′])

2. (A21)

Since L · S[cq] is not C-invariant, it will mix the states
with S = 0, 2 with the other state with S = 1. Let
us indicate with |A〉, |B〉 the states with S = 2, 0 and
with |C〉 the state with S = 1. In the square of, e.g. L ·
S[cq], the state |C〉 appears as intermediate state, giving
a contribution to both diagonal and non diagonal terms
to the matrix elements of (A21) on |A〉 and |B〉

〈i|(L · S[cq])
2|j〉+ 〈i|(L · S[c̄q̄′])

2|j〉 = 2〈i|L · S[cq]|C〉
×〈C|L · S[cq]|j〉+ . . . , (A22)

where i, j = A, B.
In conclusion, we have to consider the full (3×3) matrix

L · S[cq]. Using (A10) with definitions in (A19) we find:

(L · S[cq])J=1 = 〈1, S′; 1|L · S[cq]|1, S; 1〉

=
√

(2S + 1)(2S′ + 1)

2∑
jLS[cq]

=0

(
2jLS[cq]

+ 1
)

×1

2

[
jLS[cq]

(jLS[cq]
+ 1)− 4

]
{

1 1 jLS[cq]

1 1 S′

}{
1 1 jLS[cq]

1 1 S

}
, (A23)

where S, S′ = 0, 1, 2, obtaining (for J = 1):

(L · S[cq]) =

 −3/2 0 1/2
√

5/3

0 0 2/
√

3

1/2
√

5/3 2/
√

3 −1/2

 , (A24)

in agreement with the result obtained with the direct
method of applying the operators L·S[cq] to the products

of angular momentum vectors. Here, the following values
of 6j-symbols are required:{

1 1 0
1 1 0

}
= −

{
1 1 0
1 1 1

}
=

{
1 1 0
1 1 2

}
=

1

3
, (A25){

1 1 1
1 1 1

}
=

{
1 1 1
1 1 2

}
=

1

6
,

{
1 1 2
1 1 2

}
=

1

30
,

and the rest can be obtained with the help of the 6j-
symbol symmetry under a permutation of columns and
interchange of the upper and lower arguments in each of
any two columns [28].

Using the relation (L · S[c̄q̄′])=(L · S)− (L · S[cq]), we
also get:

(L · S[c̄q̄′]) =

 −3/2 0 −1/2
√

5/3

0 0 −2/
√

3

−1/2
√

5/3 −2/
√

3 −1/2

 ,

(A26)
again in agreement with the result obtained with the di-
rect method.

Appendix B: Correlation Matrices

In this appendix the correlation matrices in the analy-
sis of the data on Y states are collected. We label them
in accordance with the notation used in Table III.

SI (c1):

R =

 1 −0.890 0.995 −0.990
1 −0.888 0.896

1 −0.997
1

 . (B1)

SI (c2):

R =

 1 −0.927 0.974 −0.960
1 −0.958 0.967

1 −0.996
1

 . (B2)

SII (c1):

R =

 1 0.971 0.986 −0.968
1 0.970 −0.952

1 −0.989
1

 . (B3)

SII (c2):

R =

 1 0.838 −0.528 0.686
1 −0.534 0.674

1 −0.972
1

 . (B4)



10

[1] A. Ali, J. S. Lange and S. Stone, arXiv:1706.00610 [hep-
ph].

[2] A. Esposito, A. Pilloni and A. D. Polosa, Phys. Rept.
668, 1 (2016).

[3] H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Phys. Rept.
639, 1 (2016).

[4] F. K. Guo, C. Hanhart, U. G. Meissner, Q. Wang,
Q. Zhao and B. S. Zou, arXiv:1705.00141 [hep-ph].

[5] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer,
Phys. Rev. D 71, no. 1, 014028 (2005).

[6] A. Ali, C. Hambrock and W. Wang, Phys. Rev. D 85,
no. 5, 054011 (2012).

[7] R. L. Jaffe and F. Wilczek, Phys. Rev. Lett. 91, no. 23,
232003 (2003).

[8] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer,
Phys. Rev. D 89, no. 11, 114010 (2014).

[9] M. Ablikim et al. [BESIII Collaboration], Phys. Rev.
Lett. 118, no. 9, 092001 (2017).

[10] G. Cotugno, R. Faccini, A. D. Polosa and C. Sabelli,
Phys. Rev. Lett. 104, no. 13, 132005 (2010).

[11] K. Abe et al. [Belle Collaboration], hep-ex/0612006.
[12] Q. Wang, C. Hanhart and Q. Zhao, Phys. Rev. Lett. 111,

no. 13, 132003 (2013).
[13] F. E. Close and P. R. Page, Phys. Lett. B 628, 215

(2005).
[14] M. Ablikim et al. [BESIII Collaboration], Phys. Rev.

Lett. 118, no. 9, 092002 (2017).
[15] R. F. Lebed and A. D. Polosa, Phys. Rev. D 93, no. 9,

094024 (2016).
[16] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.

118, no. 18, 182001 (2017).
[17] M. Karliner and J. L. Rosner, Phys. Rev. D 95, no. 11,

114012 (2017).
[18] W. Wang and R. L. Zhu, Phys. Rev. D 96, no. 1, 014024

(2017).
[19] M. Padmanath and N. Mathur, Phys. Rev. Lett. 119,

no. 4, 042001 (2017).
[20] T. M. Aliev, S. Bilmis and M. Savci, arXiv:1704.03439

[hep-ph].
[21] M. Karliner and J. L. Rosner, Phys. Rev. D 92, no. 7,

074026 (2015).
[22] L. D. Landau and E. M. Lifshitz, Quantum Mechanics

(Nonrelativistic Theory), 3rd edition. (Pergamon Press,
Oxford, 1977), p. 96.

[23] D. Ebert, R. N. Faustov, V. O. Galkin and A. P. Marty-
nenko, Phys. Rev. D 66, no. 1, 014008 (2002).

[24] A. Ali, I. Ahmed, M. J. Aslam and A. Rehman, Phys.
Rev. D 94, no. 5, 054001 (2016).

[25] N. V. Drenska, R. Faccini and A. D. Polosa, Phys. Lett.
B 669, 160 (2008).

[26] C. Patrignani et al. [Particle Data Group], Chin. Phys.
C 40, no. 10, 100001 (2016).

[27] X. Y. Gao, C. P. Shen and C. Z. Yuan, Phys. Rev. D 95,
no. 9, 092007 (2017).

[28] A. R. Edmonds, Angular Momentum in Quantum Me-
chanics. (Princeton University Press, Princeton, New
Jersey, 1957).

[29] Wolfram Research, Inc., Mathematica, Version 11.1,
Champaign, IL (2017).

[30] W. J. Thompson, Angular Momentum: An Illustrated
Guide to Rotational Symmetries for Physical Systems.
(Wiley-VCH, Weinheim, 2004).

http://arxiv.org/abs/1706.00610
http://arxiv.org/abs/1705.00141
http://arxiv.org/abs/hep-ex/0612006
http://arxiv.org/abs/1704.03439

	I Introduction
	II Effective Hamiltonian for the c baryons
	III Effective Hamiltonian for Y Tetraquarks
	IV Discussion
	V Conclusions
	A Spin-Orbit, Tensor Coupling and Wigner's 6j-Symbols
	B Correlation Matrices
	 References

