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Abstract: R-symmetry leads to a distinct realisation of SUSY with a significantly modi-
fied coloured sector featuring a Dirac gluino and a scalar colour octet (sgluon). We present
the impact of R-symmetry on squark production at the 13 TeV LHC. We study the total
cross sections and their NLO corrections from all strongly interacting states, their depen-
dence on the Dirac gluino mass and sgluon mass as well as their systematics for selected
benchmark points. We find that tree-level cross sections in the R-symmetric model are
reduced compared to the MSSM but the NLO K-factors are generally larger in the order of
ten to twenty per cent. In the course of this work we derive the required DREG → DRED
transition counterterms and necessary on-shell renormalisation constants. The real correc-
tions are treated using FKS subtraction, with results cross checked against an independent
calculation employing the two cut phase space slicing method.
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1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) is one of the most studied exten-
sions of the SM. Often, an unbroken R-parity is assumed which implies that supersymmetric
particles can only be produced in pairs. In this paper we consider a distinct realisation of
supersymmetry (SUSY) based on an unbroken, continuous R-symmetry. The basic fea-
ture of R-symmetry is that particles and superpartners have different R-charges where the
differences are unambiguously prescribed by the SUSY algebra.

For definiteness we focus on the Minimal R-symmetric Supersymmetric Standard Model
(MRSSM) [1] but our discussion will apply also to more general R-symmetric models.

From the phenomenological point of view, the MRSSM is an appealing model, with
immediate restrictions following from R-symmetry. The model contains Dirac instead of
Majorana gauginos and adjoint scalar superpartners for all gauge fields. This also leads to
significant changes in the Higgs sector due to the presence of additional singlet and triplet
scalars. The µ- and A-terms of the MSSM are forbidden; mixing between left and right
handed squarks or sleptons is forbidden, and large contributions to flavour and CP violating
observables are suppressed [1, 2].

In a recent series of papers, the electroweak sector has been investigated and it has
been shown that the MRSSM can accommodate the experimentally measuredW and Higgs
boson mass as well as the electroweak precision variables and is compatible with direct
detection searches for dark matter and LHC searches of electroweak particles [3, 4]. For
related studies, see [5–7].

In this paper we focus on the strongly interacting sector of R-symmetric SUSY. It is
characterised by Dirac gluinos, scalar gluons and left and right handed squarks which are
mass eigenstates and have opposite R-charges. The phenomenology of this SUSY QCD
sector of the MRSSM has already been studied at the tree level [8, 9], where it was shown
that conservation of R-charge is responsible for a rather drastic suppression of the inclusive
squark production cross section leading to lower bounds on squark masses. This suppression
is even more amplified when the gluino mass is increased.1 Corrections to this observable
at the next-to-leading order (NLO) have only been approximately estimated in ref. [11] by
using global MSSM instead of MRSSM K-factors. It is the purpose of this paper to describe
an exact NLO SUSY-QCD calculation in the MRSSM at the example of squark-squark (q̃q̃)
and squark-antisquark (q̃q̃†) production at the LHC. We will expose and explain differences
to the analogous calculation in the MSSM.

The paper is structured as follows. The next section describes the strongly interact-
ing sector of the MRSSM. In section 3 we evaluate the leading order cross sections for
the production of colour charged MRSSM particles. Section 4 describes the evaluation
and renormalisation of the virtual amplitudes. Our results have been obtained with two
independent codes which use different regularisation schemes [12]. We provide a list of
counterterms including the transition counterterm from dimensional regularisation to di-
mensional reduction. Section 5 is devoted to the description of real corrections. We present

1Interestingly, Dirac gauginos can be heavier than Majorana gauginos without being less natural in view
of the hierarchy problem [10].
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two alternative ways of dealing with infrared singularities used in this work: the two cut
phase space slicing method and the FKS subtraction. We also discuss the treatment of the
on-shell resonances. In section 6 we proceed with a phenomenological analysis. We give a
detailed comparison of K-factors in the MSSM and the MRSSM, explaining the physical
origins of their differences. Then we give an overview of the NLO corrected cross sections in
different regions of parameter space, including an uncertainty discussion. Section 7 contains
our conclusions, and the appendix collects a list of Feynman rules, implementation details,
and numerical results for verification purposes.

2 Details of the model

The field content of the MRSSM is enlarged in comparison to the one of the MSSM. The
necessity of this arises from R-symmetry. As can be seen from table 1 the gluino g̃L, as
superpartner of the gluon, has R-charge +1. In order to account for a non-vanishing Dirac
gluino mass it needs to be partnered with a new field g̃R with R-charge −1. The Dirac
nature of gluinos manifests itself in an N = 2 supersymmetric gauge sector including scalar
gluons O, called sgluons, which transform in the same representation as the gluon under
gauge transformations. The corresponding Lagrangian of the strongly interacting part of

superfield boson fermion

left-handed (s)quark Q̂L q̃L 1 qL 0

right-handed (s)quark Q̂R q̃†R 1 q̄R 0

gluon vector superfield V̂ g 0 g̃L +1

adjoint chiral superfield Ô O 0 g̃R −1

Table 1: The table shows the strongly interacting field content of the MRSSM, together
with the R-charges of the component fields. The superfield in the last line is absent in
the MSSM. It comprises of the right-handed component of the Dirac gluino and two real
sgluons.

the MRSSM, including one massless quark of arbitrary flavour reads

LRSQCD =

∫
d4θ

(
Q̂Le2gsV̂sQ̂L + Q̂Re−2gsV̂ Ts Q̂R + Ôe2gsV̂

adj.
s Ô

)
+

(∫
d2θ

1

16g2
s

Ŵ aα
s Ŵ a

sα + h.c.

)
+ Lsoft . (2.1)

Note that the vector superfield of the gluon V̂s in the first line of eq. (2.1) transforms for
each term in the appropriate representation of SU(3)C , i.e. the fundamental, the antifun-
damental and the adjoint one.
The soft breaking Lagrangian accounts for squark, gaugino and sgluon masses. These mass
terms arise from a hidden sector spurion. For gauginos the D-type spurion is given by Ŵ ′α =

θαD and mediates supersymmetry breaking at the mediation scaleM :
∫

dθ2 Ŵ
′
α

M Ŵα
s Ô. After
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integrating out the spurion one obtains [3, 13]

Lsoft = −
m2
q̃L

2
|q̃L|2 −

m2
q̃R

2
|q̃R|2

−m2
O |Oa|

2 −mg̃

(
g̃Rg̃L −

√
2DaOa + h.c.

)
, (2.2)

where Da is the usual auxiliary field in the SU(3) sector. The complex sgluon state has to
be decomposed into two real fields:

O =
Os + iOp√

2
. (2.3)

The mass of the CP-even scalar Os receives an additional contribution from the gluino
Dirac mass whereas the mass of the pseudoscalar Op is solely given by the soft breaking
parameter:

mOs =
√
m2
O + 4m2

g̃ , mOp = mO . (2.4)

The respective Feynman rules derived from this Lagrangian differ partly from the ordi-
nary MSSM ones. Those Feynman rules which have no MSSM counterpart are listed in
appendix A.

To study the relevant SUSY-QCD effects of the MRSSM quantitatively, we define three
benchmark points given in table 2.

mq̃ mg̃ mÕs
mÕp

BM1 1500 1000 5385 5000
BM2 1500 2000 6403 5000
BM3 500 2000 6403 5000

Table 2: Benchmark points. Assuming unified squark masses and the sgluon masses apply
only to the MSSM. All masses are given in GeV.

3 Squark and gluino production at the leading order

As a starting point for the NLO SUSY-QCD calculation, we recall the tree-level production
of squarks and gluinos in the MRSSM2 and point out differences to the familiar MSSM. A
detailed study including comparisons of Dirac, Majorana and hybrid gluinos can be found
in ref. [16]. As in the MSSM there are six partonic channels contributing to squark and
gluino production. Three of which for squark-antisquark and squark-squark production

qiqj → q̃kq̃
†
l , gg → q̃iq̃

†
i , qiqj → q̃iq̃j . (3.1)

2For a full tree-level analysis of the production of strongly interacting particles, sgluon production should
also be considered. For this we point the reader to refs. [14, 15].
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and three for gluino-antigluino and squark-(anti)gluino production

qiqi → g̃g̃, gg → g̃g̃, qig → q̃ig̃ / q̃ig̃ . (3.2)

The inclusion of charge conjugated processes is understood if they exist. The indices denote
quark flavours. The corresponding Feynman diagrams are shown in figure 1. In the following

u

u

ũL/ũR

ũ†L/ũ
†
R

g

g

ũL/ũR

ũ†L/ũ
†
R

u

u

ũL

ũR

u

u

g̃

g̃

g

g

g̃

g̃

u

g

ũR/ũL

g̃/g̃

Figure 1: Tree-level diagrams for squark and gluino production in the MRSSM. For sim-
plicity, only one quark flavour is shown. In the third and last line, also a charge conjugated
process exists.

we give analytic formulae for the partonic cross sections for several channels in the MRSSM
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and explain if/how they differ to their respective analogue in the MSSM. We sum over the
nf − 1 first (s)quark flavours (where nf ≡ 6).3 The gauge coupling gs from the qqg-vertex
is identical to its supersymmetric analogue ĝs from the qq̃g̃-vertex. Taking all squarks as
mass degenerate, we obtain the leading order partonic cross sections

σ̂B(qiqj → q̃q̃†) = δij
g4
s

16πŝ
(nf − 1)

[
4

27
−

16m2
q̃

27ŝ

]
βq̃

+ δij
g2
s ĝ

2
s

16πŝ

[(
4

27
+

8m2
−

27ŝ

)
βq̃ +

(
8m2

g̃

27ŝ
+

8m4
−

27ŝ2

)
L1

]

+
ĝ4
s

16πŝ

[
−8

9
βq̃ +

(
−4

9
−

8m2
−

9ŝ

)
L1

]
, (3.3)

σ̂B(gg → q̃q̃†) =
(nf − 1)g4

s

16πŝ

[(
5

24
+

31m2
q̃

12ŝ

)
βq̃ +

(
4m2

q̃

3ŝ
+
m4
q̃

3ŝ2

)
ln

1− βq̃
1 + βq̃

]
, (3.4)

σ̂B(qiqj → q̃q̃) =
ĝ4
s

16πŝ

[
−8

9
βq̃ +

(
−4

9
−

8m2
−

9ŝ

)
L1

]
, (3.5)

σ̂B(qq → g̃g̃) =
g4
s

16πŝ

[
16

9
+

32m2
g̃

9ŝ

]
βg̃

+
ĝ2
sg

2
s

16πŝ

[(
−4

3
−

8m2
−

3ŝ

)
βg̃ +

(
8m2

g̃

3ŝ
+

8m4
−

3ŝ2

)
L2

]

+
ĝ4
s

16πŝ

[(
32

27
+

32m4
−

m4
− +m2

q̃ ŝ

)
βg̃ −

64m2
−

27ŝ
L2

]
, (3.6)

σ̂B(gg → g̃g̃) =
g4
s

16πŝ

[(
−6−

51m2
g̃

2ŝ

)
βg̃ +

(
−9

2
−

18m2
g̃

ŝ
+

18m4
g̃

ŝ2

)
ln

1− βg̃
1 + βg̃

]
, (3.7)

σ̂B(qg → q̃g̃) =
g2
s ĝ

2
s

16πŝ

[
κ

ŝ

(
−7

9
−

32m2
−

9ŝ

)
+

(
−

8m2
−

9ŝ
+

2m2
q̃m

2
−

ŝ2
+

8m4
−

9ŝ2

)
L3

+

(
−1−

2m2
−
ŝ

+
2mq̃m

2
−

ŝ2

)
L4

]
, (3.8)

3We treat the top squarks separately as they can only be produced in squark-antisquark pairs and their
masses and decay patterns are distinct from other squarks.
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where ŝ is the squared partonic centre-of-mass energy and the following abbreviations of
ref. [17] are used

βq̃ =

√
1−

4m2
q̃

ŝ
, βg̃ =

√
1−

4m2
g̃

ŝ
,

m2
− = m2

g̃ −m2
q̃ , κ =

√
(ŝ−m2

g̃ −m2
q̃)

2 − 4m2
g̃m

2
q̃ ,

L1 = ln
ŝ+ 2m2

− − ŝβq̃
ŝ+ 2m2

− + ŝβq̃
, L2 = ln

ŝ− 2m2
− − ŝβg̃

ŝ− 2m2
− + ŝβg̃

,

L3 = ln
ŝ−m2

− − κ
ŝ−m2

− + κ
, L4 = ln

ŝ+m2
− − κ

ŝ+m2
− + κ

. (3.9)

In comparison to the MSSM there are two main differences. Firstly, an overall restric-
tion stemming from an unbroken R-symmetry is that the final state particles’ R-charges
must sum up to zero. Hence in the MRSSM, only diagrams for qq → q̃Lq̃

†
L, qq → q̃Rq̃

†
R and

qq → q̃Lq̃R can be drawn as shown in figure 1. Processes with a squark-antisquark (squark-
squark) pair of different (same) “chiralities” in the final state are forbidden by R-symmetry.

For the allowed channels in the MRSSM the chirality projectors lead to the replacement
/p+mg̃

p2 −m2
g̃

→ /p

p2 −m2
g̃

(3.10)

for the gluino propagator in the first and third line of figure 1. On the level of the cross
section, this manifests in the substitution

ĝ4
s

16π2ŝ

(
−4

9
−

4m4
−

9(m2
g̃ ŝ+m4

−)

)
βq̃ → −

ĝ4
s

16π2ŝ
· 8

9
βq̃ (3.11)

and the vanishing of the term proportional to δij for q̃q̃ production in ref. [17], compared
to the MSSM expressions. Expanding σ̂B(qiqj → q̃q̃) appropriately for large values of mg̃,
shows that the leading term in the MSSM is proportional to m−2

g̃ , whereas in the MRSSM
it is m−4

g̃ , as expected from eq. (3.10)4.
A second feature of the MRSSM is that gluino and antigluino are no longer indistin-

guishable particles, which manifests in twice as much degrees of freedom available for the
gluino in the final state. In contrast to the above mentioned feature, this characteristic
induces an increase of some cross sections. It strikes very clearly in the cross section of
gg → g̃g̃, which is doubled in comparison to the MSSM. For the process qq → g̃g̃, both fea-
tures appear: The first line of eq. (3.6) is twice as much as its MSSM analogue in ref. [17] but
the following two are not. This is because those originate from t- and u-channel diagrams
where only one instead of two squark “chiralities” occur. In addition, the MRSSM result
misses the t- and u-channel interference. In the last channel, i.e. qg → q̃g̃, both features
are present and cancel exactly. On the one hand, R-charge allows only the production of
“right-handed” squarks in association with the gluino. On the other hand, there is a distinct
antigluino which can be produced with a “left-handed” squark. As for q̃q̃ production, the
charge conjugated process exists.

4Note that the expansion of the left hand side of eq. (3.11) gives O(m0
g̃) terms which cancel against

terms from the expansion of the logarithm. Terms of O(m−2
g̃ ) are than left as the leading ones.
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Figure 2: The production cross sections for squarks and gluinos at the LHC with
√
S =

13 TeV in the MSSM (left) and the MRSSM (right). It is summed over five flavours, all
possible squark “chiralities” and for squark-squark and squark-gluino production also the
charge conjugated processes are taken into account. The top row contains results in function
of the gluino mass (with squark masses fixed to 1.5 TeV), the bottom one in function of
squark masses with the gluino mass fixed to 2 TeV. The PDF set used is MMHT2014LO [18].
As renormalisation and factorisation scale µR = µF = m1+m2

2 has been chosen, where mi

are the final state’s particle masses.

In conclusion, we obtain both suppressing as well as amplifying effects in the MRSSM.
In contrast to the Dirac gluino, the presence of sgluons has no effect on the discussed tree-
level processes. Figure 2 shows the convolution of the partonic cross sections with parton
distribution functions (PDFs) in the MSSM and the MRSSM for the 13 TeV LHC. For details
regarding the parameters used, see the caption of figure 2. We sum over all “chiralities” and
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five flavours as well as charge conjugated processes, when distinct. Due to the prohibition
of the above mentioned “chirality” states in the MRSSM, we obtain a suppression in the
q̃q̃† and q̃q̃ production (by a factor of 1.3 and 13.2 at BMP2, respectively), which increases
with the gluino mass. Furthermore, an amplification of gluino production, due to its Dirac
nature, is visible. In combination with experimental results, the absence of detected gluinos
translates into a larger exclusion limit of the gluino mass than in SUSY-QCD [8]. We will
thus focus on the region of parameter space with a rather large gluino mass when discussing
our NLO results.

4 Virtual corrections

The present and the subsequent sections describe the calculation of the NLO SUSY-QCD
corrections to squark production processes in the MRSSM.5 The inclusion of gluino final
states we postpone for future work, since they are not as important in the motivated
scenario where squarks are significantly lighter than gluinos. Thus, on hadron level we
consider squark-squark production pp → q̃q̃ and squark-antisquark production pp → q̃q̃†.
On the partonic level we have to consider NLO corrections to qq → q̃q̃ for the first process
and NLO corrections to qq → q̃q̃† and gg → q̃q̃† for the second process.

In the present section we focus on the virtual corrections. They involve ultraviolet and
soft and collinear infrared divergences. These divergences are removed after renormalisation
and combination with real corrections.

In intermediate steps, the divergences need to be regularised. However, computations
of SUSY-QCD corrections suffer from the fact that no regularisation is at the same time
directly compatible with SUSY and the standard definition of PDFs, see also ref. [12] and
ref. [19] for a recent review. Hence we have done the calculation in two complementary
ways.

• The first calculation uses dimensional regularisation (version HV in the notation of
ref. [12]) and Passarino-Veltman reduction of one-loop integrals. In the HV scheme
all four-dimensional quantities are treated in D = 4 − 2ε dimensions, except that
particles outside loops are kept unregularised. In this calculation SUSY is broken in
intermediate steps and SUSY-restoring counterterms must be added.

• The second calculation uses dimensional reduction/the four-dimensional helicity scheme
(version FDH in the notation of ref. [12]), helicity methods and integrand reduction
techniques. In the FDH scheme, only space-time and momenta are treated in D di-
mensions, while gluons are kept quasi-four-dimensional. Like in HV, only particles
inside loops are regularised. In this calculation a finite shift is needed in the strong
coupling renormalisation, and transition rules have to be applied to convert infrared
divergent amplitudes back to the HV scheme.

5By NLO SUSY-QCD corrections we always refer to next-to-leading order corrections involving the
entire coloured sector of the respective model. In the MRSSM this includes corrections involving Dirac
gluinos and sgluons.
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The two calculations are in full agreement. In the following we provide the details, first on
the general renormalisation scheme, then on the two calculational procedures.

4.1 One-loop diagrams and renormalisation

a)

g̃L g̃L

q̃R

q q̃L/q̃R

q̃L/q̃R u

ũ ũ g̃L

ũL

u
ũR

u

b)

g̃R g̃R

q̃R

q

g̃R

ũL

u
ũL

u

c)

g̃L g̃L

Os/Op Os/Op

Os/Op

Os

ũ

ũ ũ g̃L

ũL

u

Os

ũL

Figure 3: Examples of Feynman diagrams relevant for the calculation of the counterterms.
Category a) diagrams are as in the MSSM. For comparison category b) contains diagrams
which lead to contributions in the MSSM but not the MRSSM. Category c) are novel
diagrams originating from the sgluons.

We need to consider the one-loop amplitudes for the three partonic processes qq → q̃q̃†,
gg → q̃q̃†, and qq → q̃q̃. Sample Feynman diagrams for the calculation of renormalisation
constants are shown in figure 3. Diagrams contributing to the production of (anti)squarks
are shown in figure 4. Diagrams of type a) are exactly the same in the MRSSM and in
the conventional MSSM and give equal results. Diagrams of type b) can be drawn in the
MRSSM but unlike in the MSSM do not contribute. The result is proportional to the
Majorana mass and leads therefore to R-charge violation in the MRSSM. Diagrams of type
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a)

u

u

q̃R q

ũL

ũR

u

u

ũR u

ũL

ũR

u

u

ũL

ũ†L

uũR

ũL

ũ†L

ũL

ũL

b)

u

u

q̃R q

ũL

ũR

u

u

ũL u

ũL

ũR

u

u

ũL

ũ†L

uũL

c)

u

u

Os/Op

ũL

ũR

u

u

ũL

g̃ Os

ũL

ũR

u

u

ũL

ũ†L

ũL

ũL

Os

Os

Os

ũLOs

ũL

ũ†L

Figure 4: Examples of Feynman diagrams relevant for the NLO corrections to q̃q̃ and q̃q̃†

production. Categories as in figure 3.

c) exist in the MRSSM but are absent in the MSSM because of the appearance of sgluons,
additional strongly interacting particles.

The ultraviolet renormalisation requires the introduction of coupling, mass, and field
renormalisation. We define all SUSY masses in the on-shell renormalisation scheme to have
physical masses as input. The quark masses are set to zero, except for the top quark mass.
For simplicity we take all squarks as mass degenerate. We define the field renormalisation
in the on-shell scheme, which leads to a correctly normalised S-matrix but also to infrared
divergent renormalisation constants. The strong coupling is renormalised in a decoupling
scheme as described below.

With these definitions, standard methods lead to the following results for the quark/squark
field and squark mass renormalisation constants, computed with one-loop SUSY-QCD cor-
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rections:

δZq = 2CF
g2
s

16π2
<
[
B1(0,m2

g̃,m
2
q̃)
]
, (4.1)

δZq̃ =
g2
s

16π2
CF<

[
4B1(m2

q̃ , 0,m
2
g̃) + 2B1(m2

q̃ , 0,m
2
q̃) + 3B0(m2

q̃ , 0,m
2
q̃) + 4m2

q̃B
′
1(m2

q̃ , 0,m
2
g̃)

−4m2
g̃B
′
0(m2

q̃ ,m
2
Os ,m

2
q̃) + 2m2

q̃B
′
1(m2

q̃ , 0,m
2
q̃) + 4m2

q̃B
′
0(m2

q̃ , 0,m
2
q̃)
]
, (4.2)

δm2
q̃ =

g2
s

16π2
CF<

[
A0(m2

q̃)− (4A0(m2
g̃) + 4B1(m2

q̃ , 0,m
2
g̃)m

2
q̃) + 4m2

g̃B0(m2
q̃ ,m

2
Os ,m

2
q̃)

−(2B1(m2
q̃ , 0,m

2
q̃)m

2
q̃ + 4B0(m2

q̃ , 0,m
2
q̃)m

2
q̃)
]
. (4.3)

We use standard Passarino-Veltman integrals and their derivatives, see e.g. ref. [20] for the
definition. The renormalisation constants are computed in both the HV and FDH scheme;
we denote terms only appearing in HV by the subscript HV. We do not have to distinguish
left- and right-handed squarks since we do not take electroweak corrections into account.

Though not strictly necessary for our calculations, we also quote the result for the
gluino field renormalisation. Here the left- and right-handed parts renormalise differently,
since they are part of different superfields, i.e. the right-handed part of the gluino does
not couple to (s)quarks. This is reflected by a gluino self-energy which is not left-right
symmetric and has the following basic structure:

ΣMRSSM
g̃g̃

(p2) = A(p2)PL/p+ . . . , (4.4)

ΣMSSM
g̃g̃

(p2) = A(p2)(PL + PR)/p+ . . . , (4.5)

where the dots stand for contributions not stemming from (s)quarks. The results read

δZRg̃ =
g2
s

16π2
<
[
CA(B1(m2

g̃,m
2
g̃,m

2
Os) +B1(m2

g̃,m
2
g̃,m

2
Op))

+ CA(1|HV − 2(B0(m2
g̃, 0,m

2
g̃) +B1(m2

g̃, 0,m
2
g̃)))

+ 4TFm
2
g̃

(
(nf − 1)B′1(m2

g̃, 0,m
2
q̃) +B′1(m2

g̃,m
2
t ,m

2
q̃)
)

− 2CAm
2
g̃

(
B′0(m2

g̃,m
2
g̃,m

2
Os)−B

′
0(m2

g̃,m
2
g̃,m

2
Op)−B

′
1(m2

g̃,m
2
g̃,m

2
Os)−B

′
1(m2

g̃,m
2
g̃,m

2
Op)
)

+ 4CAm
2
g̃

(
B′0(m2

g̃, 0,m
2
g̃)−B′1(m2

g̃, 0,m
2
g̃)
)]
, (4.6)

δZLg̃ =
g2
s

16π2
<
[
4TF

(
(nf − 1)B1(m2

g̃, 0,m
2
q̃) +B1(m2

g̃,m
2
t ,m

2
q̃)
)]

+ δZRg̃ . (4.7)

The corresponding gluino mass renormalisation constant is

δmg̃ =
g2
s

16π2
mg̃ <

[
−2TF

(
(nf − 1)B1(m2

g̃, 0,m
2
q̃) +B1(m2

g̃,m
2
t ,m

2
q̃)
)

+ CA

(
B0(m2

g̃,m
2
g̃,m

2
Os)−B0(m2

g̃,m
2
g̃,m

2
Op)−B1(m2

g̃,m
2
g̃,m

2
Os)−B1(m2

g̃,m
2
g̃,m

2
Op)
)

+ CA
(

1|HV − 2B0(m2
g̃, 0,m

2
g̃) + 2B1(m2

g̃, 0,m
2
g̃)
)]
. (4.8)

Note that the contribution stemming from the quark-squark loop is halved when compared
to the MSSM result, due to the non-coupling right-handed gluino. As a consequence,
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the left-handed Dirac gluino allows only for a “left-handed” squark or a “right-handed”
antisquark in the loop. Finally, the field renormalisation constant of the gluon is given by

δZG =
g2
s

16π2
<
[
TF

(
−4

3
B0(0,m2

t ,m
2
t )−

8

3
m2
tB
′
0(0,m2

t ,m
2
t ) +

4

9

)
+ CA

(
−4

3
B0(0,m2

g̃,m
2
g̃)−

8

3
m2
g̃B
′
0(0,m2

g̃,m
2
g̃) +

4

9

)
+ 12TF

(
−1

3
B0(0,m2

q̃ ,m
2
q̃) +

4

3
m2
q̃B
′
0(0,m2

q̃ ,m
2
q̃)−

2

9

)
+ CA

(
−1

6
B0(0,m2

Os ,m
2
Os)−

1

6
B0(0,m2

Op ,m
2
Op) +

2

3
m2
OsB

′
0(0,m2

Os ,m
2
Os)

+
2

3
m2
OpB

′
0(0,m2

Op ,m
2
Op)−

2

9

)]
. (4.9)

The renormalisation of the strong coupling has to be treated in a special way in order
to make use of the experimental determination of αs in the SM 5-flavour scheme and for
compatibility with available PDF sets. The renormalisation has to be matched to the SM
MS 5-flavour scheme, and contributions from heavy particles to the renormalisation of gs
have to be subtracted at zero momentum. In practice, we have separated the loop-diagrams
used in the determination of δgs into contributions from light and heavy particles. From
loop-diagrams involving solely light particles we have kept only the part corresponding
to the MS-scheme, whereas for diagrams involving heavy particles we have adopted zero-
momentum-subtraction. This leads to

δgs
gs

=
g2
s

16π2

[(
2

3
TFnf −

11

6
CA +

1

3
TFnf +

5

6
CA

)
∆ε + (1− 1|HV)

CA
6

− 2

3
CA ln

m2
g̃

µ2
− 1

3
TFnf ln

m2
q̃

µ2
− 2

3
TF ln

m2
t

µ2
− 1

12
CA

(
ln
m2
Os

µ2
+ ln

m2
Op

µ2

)]
, (4.10)

with the typical UV-divergent constant ∆ε defined as in ref. [20]. As a result, the renor-
malisation constant δgs contains additional µ-dependent terms, where µ is the MS renor-
malisation scale. These have the effect of decoupling heavy particles from the running of
gs, which is then given by the SM 5-flavour β-function. As a side remark, we mention that
if δgs was defined in pure MS-scheme, the β-function would vanish at one-loop-level.

4.2 Method 1: HV and Passarino-Veltman reduction

In our first method we have performed the calculation in HV regularisation, i.e. usual
dimensional regularisation for internal particles, while particles outside of loops are kept
unregularised.

It is well known that dimensional regularisation breaks SUSY due to a mismatch be-
tween degrees of freedom of the gluon and the gluino in D = 4 − 2ε 6= 4 dimensions.
Since dimensional reduction [21, 22] is known to preserve SUSY at the one-loop level (for
reviews of checks see e.g. [23–25]), the required SUSY-restoring counterterms can simply
be obtained from comparing renormalisation constants in dimensional regularisation and
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dimensional reduction. Appropriate transition counterterms are known for physical param-
eters in generic SUSY models at one-loop level [26], for the full MSSM at one-loop level
[27], and for SUSY-QCD at two-loop level [28]. For our calculation, only one such tran-
sition counterterm is needed: the one for the squark-quark-gluino vertex. Denoting the
renormalisation constant for this vertex by δĝs, we find that it has to satisfy

δĝs = δgs + δgrestore
s , (4.11)

δgrestore
s =

g3
s

16π2

(
2CA

3
− CF

2

)
, (4.12)

where δgs is given by eq. (4.10). The result for δgrestore
s is the same as in the MSSM, since

SUSY-breaking is only associated with the gluon, which has the same couplings in the
MSSM and MRSSM.

The implementation of this calculation has been done with the help of several Math-
ematica packages. The generation and processing of amplitudes has been performed by
FeynArts [29] and FormCalc [30, 31]. The model file for the MRSSM containing the tree-
level vertices was generated by SARAH [32–35]; the one-loop counterterms Feynman rules
were included by hand into the model file. The output has been passed on to a C++ pro-
gram which performs the evaluation of loop integrals using LoopTools [36] and does the
integration using the CUBA library [37].

4.3 Method 2: FDH and integrand reduction approach

In our second calculation we employ the FDH regularisation scheme. We follow the notation
of ref. [12], so FDH is the same as standard dimensional reduction, but “regular” particles
outside of loops are kept unregularised. The FDH scheme is advantageous not only because
it preserves SUSY at one-loop level, but also because it allows the use of powerful and
efficient helicity methods for the evaluation of loop amplitudes.

In the past, dimensional reduction was often not applied to SUSY-QCD calculations
because of an issue with QCD factorisation discussed in refs. [38, 39]. In the meantime
it has been understood that factorisation behaves differently depending on whether FDH
as defined above, or whether DRED, where also particles outside loops are regularised, is
employed [12, 40].6 In case of FDH, factorisation holds as expected, however the infrared
anomalous dimensions are different from the HV scheme and the transition rules found in
[41, 42] apply. In case of DRED, factorisation is complicated by the appearance of external
ε-scalars with separate couplings and anomalous dimensions. The understanding of the
infrared behavior of all these schemes and their transition rules has been extended to the
multi-loop level in refs. [43–47].

The upshot of these results is that FDH can be used to regularise ultraviolet and infrared
divergences for SUSY-QCD processes. However in order to combine the results with real
corrections evaluated in HV and to convolute with usual PDFs, we need to convert the
amplitudes from FDH to HV. The appropriate transition rules for the squared amplitudes

6In the literature, what we call FDH here is sometimes denoted as DR.
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are, in the notation of ref. [12]

|MHV|21L = |MFDH|21L +
g2
s

8π
|MFDH|2tree ×

∑
i

γ̃FDH
i (4.13)

with γ̃FDH
q = γ̃FDH

q̄ = CF /2 and γ̃FDH
g = CA/6 and the sum running over all external

partons.
An alternative to Passarino-Veltman reduction for NLO calculations with Monte Carlo

methods is the usage of helicity methods and an integrand reduction approach, see e.g.
ref. [48] for a review. For these methods, several computer codes already exist. They contain
a general implementation of reduction methods and require the input of model dependent
information. We summarise these parts first and then describe the implementation used
for our calculation.

Needed for our calculation are the relevant Feynman rules of the MRSSM and the
counterterms. The necessary renormalisation constants of masses and wave functions are
given in eqs. (4.1) to (4.9). The renormalisation of the coupling constant gs given in
eq. (4.10) includes the finite term containing the expression 1− 1|HV which marks the well-
known transition between DR and MS scheme needed for FDH. Including this transition
rule allows us to combine matrix elements calculated in FDH with PDFs given in the
MS scheme. The remainder of the calculation is done automatically as described in the
following.

For our second calculational method, we use GoSam 2 [49, 50]7 to calculate the vir-
tual corrections using helicity methods and integrand reduction methods. The information
concerning the MRSSM is passed to GoSam using the UFO interface [60]. For this, the
additional strongly interacting particle content of the MRSSM was added to the SM im-
plementation in FeynRules [61]. Numerous checks were performed to verify that the SARAH
and FeynRules model files give the same tree-level results for the relevant processes.

The UV renormalisation of the MRSSM has been added by hand to GoSam.8 The coun-
terterms are implemented using OneLOop for the loop functions and added to the matrix.f90
template in the GoSam interface. The exact counterterm structure has to be fixed once after
generating the considered process with GoSam.

Comparing the computational speed between both Methods both implementations lead
to similar running times for the considered processes with the timings being within an order
of magnitude of each other. The difference are in general not relevant when combining with
the real corrections of section 5 which take up the majority of the computing time for the
full calculation.

7With GoSam we make use of the programs Qgraf [51], Form [52], Ninja [53–55] (which uses OneLOop [56])
and Golem95 [57–59].

8The automatised derivation using the NLOCT package [62] and subsequent use of MadLoop [63] was not
possible as the considered sector of the MRSSM is not directly on-shell renormalisable. This is due to the
mass relation (2.4) and the Dirac mass appearing in the sgluon-squark triple vertex. As the scalar octets
do not appear at tree level, excluding it from the renormalisation procedure would be enough to achieve
the renormalisation but no such option exists in NLOCT.
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5 Real corrections

The singularities remaining in the virtual matrix elements, which are of infrared (IR) origin,
cancel after combination with the real corrections. The singularities left in the real emission
processes are then removed by mass factorisation [64, 65].

A multitude of methods that implement the above cancellation on a numerical basis
have been developed. In the following two subsections, we will discuss the two approaches
used in this work: the two cut phase space slicing method (TCPSS) [66] and the Frixione-
Kunszt-Signer (FKS) subtraction [67, 68].

5.1 Method 1: Two cut phase space slicing (TCPSS)

A review of TCPSS can be found in ref. [66]. The method has been implement and tested
by one of us in the context of the (S)QCD particle production on the process of sgluon
pair production in refs. [69, 70]. In this method the three-body real emission phase space
is decomposed with respect to the additional parton radiation into: soft (S), hard collinear
(C) and the hard non-collinear (HC) regions by introducing two parameters δs and δc,
taken to be numerically small. This can be schematically written as

σR =

∫
dσR =

∫
S
dσR +

∫
H
dσR =

∫
S
dσR +

∫
HC

dσR +

∫
HC

dσR, (5.1)

where in the last step the hard part H is split into collinear (HC) and non-collinear (HC)
pieces. Within the soft and collinear approximations the divergences are then dimensionally
regularised and extracted analytically. We will now present technical details needed to carry
out this calculation.

5.1.1 Soft emissions

The soft phase space S is defined by the condition that the energy of an outgoing gluon
E5, in the rest frame of colliding partons, fulfils

E5 < δs

√
ŝ

2
, (5.2)

where δs � 1. We label incoming parton momenta as p1 and p2, such that ŝ = (p1 + p2)2.
In the soft limit and 4− 2εIR dimensions the 2→ 3 amplitude can be written as

M3 = gsµ
εεµ(p5)Jµ(p5) · M2 + finite terms, (5.3)

where p5 is the gluon momentum and

Jµ(p5) ≡
4∑

f=1

Tf

pµf
pf · p5

(5.4)

is the non-abelian eikonal current (whose sum extents over all partons except for the final-
state gluon), which is colour-connected to the 2 → 2 process amplitude M2 through the
colour operator T of the particle f . Only the first term in eq. (5.3) contributes to the
singular part of |M3|2, as the interference term is regular in the limit δs → 0.
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Similarly, in the soft limit the three-body phase space factorises, with a phase space
measure

dΦsoft
3 = dΦ2 ·

(
4π

ŝ

)ε Γ(1− ε)
Γ(1− 2ε)

1

2(2π)2
dS (5.5)

with
dS =

1

π

(
ŝ

4

)ε
E1−2ε

5 dE5 sin1−2ε θ1 dθ1 sin−2ε θ2 dθ2, (5.6)

where θ1/2 describe the direction of the gluon emission in the rest frame of colliding partons.
The gluon phase space is integrated over the solid angle, and E5 is as given in eq. (5.2). For
convenience, the necessary expressions for the D-dimensional angular integrals have been
gathered in appendix D.2 of ref. [69].

The expressions for the HV regularised real emission matrix elements have been gener-
ated using FeynArts and FormCalc with the model file described in section 4.2. Expanding
in terms of εIR we find the double and single poles, and a finite part. The double-pole terms
agree with the well-known minimal structure, being proportional to the four-dimensional
Born cross sections given in eqs. (3.3), (3.4) and (3.5), which can be found in ref. [12]:

σsoftqq̄,qq

∣∣∣
double pole

=σBqq̄,qq · 2
αs
2π
CF ·

1

ε2IR
, (5.7)

σsoftgg

∣∣∣
double pole

=σBgg · 2
αs
2π
CA ·

1

ε2IR
. (5.8)

For numerical verification we show the cancellation of these terms and the virtual matrix
elements for a single phase space point in appendix C.

The single-pole coefficient is not cancelled completely between virtual and soft contri-
bution. The remaining terms have the form

σsoftqq̄,qq

∣∣∣
soft-collinear remainder

=− 1

εIR
σBqq̄,qq · 2

αs
2π
CF (3/2 + 2 log δs), (5.9)

σsoftgg

∣∣∣
soft-collinear remainder

=− 1

εIR
σBgg · 2

αs
2π

[
2N log δs +

11N − 2(nf − 1)

6

]
, (5.10)

where N is the number of colours and nf−1 is the number of massless quark flavours. These
uncancelled terms come from the phase space region where the gluon is collinear with an
incoming parton, but its energy is non-zero. They do not cancel out with the virtual
contributions as they have different kinematics. As discussed in the next subsection, these
are the terms that can be absorbed by a redefinition of the PDF at NLO.

5.1.2 Collinear emissions

In the collinear limit, defined by the condition [71]

1− cos θi5 = −(pi − p5)2

√
ŝE5

< δc, (5.11)

where δc � 1 and i = 1, 2, the real-emission cross section factorises at the level of the
absolute squared matrix element. Contrary to the definition of the collinear region in
ref. [66], eq. (5.11) decouples soft and collinear regions.
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The double differential hadronic hard-collinear cross section is given by

dσHC

dx1dx2
=
∑
ij

σ̂Bij
αs
2π

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

R

ŝ

)ε(
−1

ε

)
δ−εc

·
∑
k

(∫ 1−δsδik

x1

dz

z
fk/p

(x1

z

)
fj/p (x2)Pik(z, ε)

[
(1− z)2

2z

]−ε
+

∫ 1−δsδjk

x2

dz

z
fk/p (x1) fj/p

(x2

z

)
Pik(z, ε)

[
(1− z)2

2z

]−ε)
. (5.12)

Note that there are two possible ways in which qq̄ in the initial state can be obtained from
the proton-proton system. The Pik(z, ε) are the D-dimensional unregulated Altarelli-Parisi
(AP) splitting kernels [72]

Pqq(z, ε) =CF

[
1 + z2

1− z
− ε(1− z)

]
, (5.13)

Pgg(z, ε) =2N

(
z

1− z
+

1− z
z

+ z(1− z)
)
, (5.14)

Pqg(z, ε) =
1

2

[
z2 + (1− z)2

]
− εz(1− z) . (5.15)

The δik in the integration boundaries of eq. (5.12) ensures that the integral is taken up to
z = 1− δs for kernels which are singular as z → 1 (Pqq and Pgg). The remaining Pgq kernel
is obtained by the replacement Pgq(z, ε) = Pqq(1− z, ε).

The Bjorken variable in fk/p is rescaled so that in the Born configuration σ̂B is taken
at ŝ = x1x2S.9 Collinear singularities will cancel out with the renormalised PDFs. The
first-order correction to i-th flavour PDF in the MS prescription is given by

fi/p(x, µF ) ≡ fi/p(x)− 1

ε

[
αs
2π

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

R

µ2
F

)ε]∑
j

∫ 1

x

dz

z
P+
ij (z)fj/p(x/z), (5.16)

where P+
ij (z) are the ’+’ regulated AP splitting kernels

P+
qq(z) =CF

(
1 + z2

(1− z)+
+

3

2
δ(1− z)

)
, (5.17)

P+
gg(z) =2N

(
z

(1− z)+
+

1− z
z

+ z(1− z)
)

+
11N − 2(nf − 1)

6
δ(1− z), (5.18)

where the associated ’+’ prescription is defined as∫ 1

x
dz f(z)g(z)+ ≡

∫ 1

x
dz (f(z)− f(1))g(z)− f(1)

∫ x

0
dz g(z). (5.19)

9For quark radiation, the integral will be taken up to 1 as there is no soft singularity.
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For partonic processes which have a soft singularity there is a mismatch in the z integration
boundary between eq. (5.12) and eq. (5.16). To account for that, we write eq. (5.19) as

∫ 1

x
dz f(z)g(z)+ ≡

∫ 1−δs

x
dz f(z)g(z)− f(1)

∫ 1−δs

0
dz g(z)

+

∫ 1

1−δs
(f(z)− f(1))g(z), (5.20)

where the term in the last line is of (at least) O(δs) and can be neglected. Eq. (5.16) then
reads

fi/p(x, µF ) ≈fi/p(x)

[
1− αs

2π

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

R

µ2
F

)ε
Asc,j→i

1

ε

]

− 1

ε

αs
2π

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

R

µ2
F

)ε ∫ 1−δsδij

x

dz

z
Pij(z)fj/p(x/z), (5.21)

where now the unregularised, four dimensional AP splitting kernels appear and the soft-
collinear factors Asc

1 for the splittings with a soft gluon (g) are given by

A
sc,q→q(g)
1 = CF (2 ln δs + 3/2), (5.22)

A
sc,g→g(g)
1 = 2N ln δs + (11N − 2(nf − 1))/6. (5.23)

As the integral for i 6= j extends up to 1, Asc
1 is by definition 0 in that case.

Solving eq. (5.16) for f(x) in the lowest order in αs and convolving with the Born cross
section gives

dσPDF

dx1dx2
=
∑
ij

σ̂Bij

{
fi/p(x1, µF )fj/p(x2, µF )

·

(
1 +

αs
2π

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

R

µ2
F

)ε∑
k

Asc,k→i +Asc,k→j

ε

)

+
∑
k

αs
2π

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

R

µ2
F

)ε
1

ε

[∫ 1−δsδik

x1

dz

z
fk/p

(x1

z
, µF

)
fj/p (x2, µF )Pik(z)

+(x1, i)↔ (x2, j)]} . (5.24)

The first term is just the Born partonic cross section convolved with the scale-dependent
PDFs. The terms Asc cancel out with eqs. (5.9) and (5.10). Combining now eqs. (5.12)
and (5.24) gives, together with the LO cross section, a final result for the hard-collinear
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part

dσHC+PDF

dx1dx2
=
∑
ij

σ̂Bij

{
fi/p(x1, µF )fj/p(x2, µF )

·

(
1 +

αs
2π

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

R

µ2
F

)ε∑
k

Asc,k→i
1 +Asc,k→j

1

ε

)

+
αs
2π

∑
k

[∫ 1−δsδik

x1

dz

z

(
Pik(z) ln

(
δc

(1− z)2

2z

ŝ

µ2
F

)
− P ′ik(z)

)
fk/p(x1/z, µF )fj/p(x2, µF )

+(x1, i)↔ (x2, j)

]}
. (5.25)

In appendix C we verify the cancellation of single poles for all partonic processes con-
sidered in this work at one phase space point.

5.2 Method 2: FKS subtraction

As an alternative approach for the calculation of the real corrections we make use of the
FKS subtraction scheme. Using this subtraction method, suitable subtraction terms for
individual soft and collinear singularities in the squared matrix elements are constructed
which allow for a convergent numerical integration over the phase space.

This scheme is implemented as automatised method MadFKS [73] in the Monte Carlo
program MadGraph5_aMC@NLO [74, 75] (MG5aMC@NLO). The application of the FKS scheme is
only dependent on QCD specifics and has been used for many different previous calculations.
The program is well tested by applications to the SM [76–78] and to a multitude of BSM
models including models with SUSY [79], extra dimensions [80], leptoquarks [81] and dark
matter candidates [82, 83] as well as the Two-Higgs-Doublet Model [84, 85] and the Georgi-
Machacek model [86].

An interface between MG5aMC@NLO and GoSAM for SM calculations is already imple-
mented [87] as specified with BLHA1 [88]. To allow for calculations in BSM models we
extend this to the BLHA2 [89] conventions. The appropriate changes are summarised
in appendix B.10 The correctness of the implementation has been tested thoroughly by
ensuring that all appearing divergences cancel between the virtual and real part for all
subprocesses in various regions of phase space.

5.3 Comparison of TCPSS and FKS subtraction

In TCPSS, the dependence on the (unphysical) regulators δs and δc should vanish after
adding the hard non-collinear emissions. We verified extensively that this is indeed the
case. Examples for the cancellation of the cut parameter dependence are shown in figure 5
using MMHT2014nlo68cl PDFs [18] interfaced via LHAPDF6 [91]. In figure 5a we plot the hard
non-collinear (blue) and (summed) virtual, soft and collinear parts (red) in function of the
phase space slicing parameter δs for the uu → ũLũR channel for BMP2 and δc = 10−6.
In the bottom subplot, the sum is then compared with the FKS result ( with a shaded

10 For another recent application of GoSam with MadFKS see ref. [90].

– 20 –



7−10 6−10 5−10 4−10 3−10

 [f
b]

 g
Ru~  Lu~  

→
 u

u 
 σ

30−

20−

10−

0

10

20

30

3-body hard non-collinear
virtual + 3-body soft and/or collinear
sum

-6=10cδBMP2, 

sδ
7−10 6−10 5−10 4−10 3−10

su
m

 [f
b]

1.0025

1.0030

1.0035

1.0040

1.0045

TCPSS FKS

(a)

7−10 6−10 5−10 4−10 3−10

 [f
b]

 g* Lu~  Lu~  
→ u

 u
 

 σ

2−

1−

0

1

2

3-body hard non-collinear
virtual + 3-body soft and/or collinear
sum

-5=10sδBMP1, 

cδ
7−10 6−10 5−10 4−10 3−10

su
m

 [f
b]

0.15620

0.15625

0.15630

0.15635

0.15640

TCPSS FKS

(b)

Figure 5: Proof of cut parameter cancellation for the two selected subprocesses
uu→ ũLũRg and uū→ ũLũ

†
Lg. Given errors correspond to 68% CL.

band stating the statistical uncertainty for the integration given by MG5aMC@NLO), showing
agreement within uncertainties.11 Figure 5b shows the same for the uū → ũLũ

†
L process

and BMP1 as a function of the δc. The comparison with the FKS subtraction reveals that
a relative accuracy of 10−4 requires the cut parameters δs = 10−5 and δc = 10−6, which is
what we use in our numerical analyses.

As the TCPSS method relies on a partial cancellation of two large contributions at the
level of an integrated cross sections, it is inherently slower than local subtraction schemes
like FKS. For the case at hand, this means an order of magnitude slow down for the same
final precision. This directly translates into an order of magnitude speed difference between
the standalone C++ code and the MG5aMC@NLO as for the standalone calculation most time
is spend evaluating the 2→ 3 hard non-collinear part.

5.4 Treatment of resonances in real emission diagrams using diagram removal

Certain real corrections to the considered processes may contain Feynman diagrams with
an intermediate massive state in an s-channel. As examples consider diagrams shown in
figure 6 where an intermediate s-channel gluino appears. From a practical point of view, the
region of phase space where the gluino goes on-shell should rather be classified as a Born-
level gluino-squark production followed by a subsequent decay of the gluino. This feature

11We add the virtual part to the soft and collinear result as, compared to the MG5aMC@NLO framework,
some terms are shifted from the virtual to the soft part due to the choice of O(ε) prefactors.
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Figure 6: Example of real emission Feynman diagrams with s-channel gluinos for both
final states: gu→ ũLũ

†
Lu and gu→ ũLũRū.

is not exclusive to BSM models as a similar issue appears in the case of the real corrections
to the SM tW production (see e.g. ref. [92]), which contain resonant contributions from the
top pair production.

A popular way of dealing with this problem is the diagram removal technique. In this
approach one either completely discards all resonant diagrams at the level of the amplitude
or their square at the level of the squared matrix element. In this work we employ the first
of those solutions.12 This version of the DR approach is also the default way of dealing
with resonant divergences when using MadFKS in MG5aMC@NLO.

The removal of a subset of Feynman diagrams in general violates gauge invariance
and care has to be taken to ensure that the effect is numerically small. For the case of
the MSSM this has been studied in depth in refs. [94, 95] (see also refs. [96, 97] for other
implementations). Also, it requires a careful choice of a gauge not to spoil the factorisation
of collinear singularities.

To understand this last point, consider the gluon splitting g(p1) → q̄∗(p1 − p5)q(p5)

connected to some bigger amplitude through q̄. We use the ∗-symbol to emphasise that q̄ is
in general not on-shell. The final state quark momentum p5 can be parametrised through
Sudakov decomposition as

pµ5 = (1− z)pµ1 −
p2

5,⊥
1− z

nµ

2p1 · n
− pµ5,⊥, (5.26)

where nµ is a reference null vector, 1 − z is the fraction of gluon energy carried by the
quark, and p5,⊥ · p1 = p5,⊥ · n = 0. In the limit of p5,⊥ → 0 the vectors p1 and p5 become
spatially parallel and diagrams with this splitting develop a (p1 − p5)−2 = (1 − z)/p2

5,⊥
singularity. Due to the helicity conservation, physical gluons cannot decay to a pair of
on-shell quarks. Therefore, in the physical gauge the matrix element will always have
additional power of p5,⊥ in the numerator. As the one particle phase space for radiation of
q is given by dΦ1 ∼ dp2

5,⊥, the collinear singularities of the interference terms are integrable
since those terms scale as dp2

5,⊥/p5,⊥. This is no longer true in an unphysical gauge, where
longitudinally polarised gluons might appear. For the full amplitude with a ug initial state,

12 An alternative approach would be to employ the diagram subtraction method (sometimes also referred
to as the Prospino scheme [93]). We have checked that switching to this choice changes the total cross
sections at a percent level. We therefore postpone the detailed studies of this method to the publication
documenting the RSymSQCD code.
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Figure 7: Gauge dependence of a diagram removed gq → ũLũ
†
Lq with q = u, ū (a) and

gu → ũLũRū (b) matrix elements. See eqs. (5.27) and (5.28) for the definition of η− and
η+ gauges.

which is gauge invariant, longitudinal states decouple through a Ward identity as no triple
gluon vertices appear. This is no longer true after the removal of resonant diagrams, though.

We therefore calculate the real emission matrix elements in the light cone gauge. A
convenient choice of the gauge-fixing vector η is the momentum of the other incoming
parton p2. This choice allows to avoid spurious divergences present in the polarisation sum
as p1 · p2 = ŝ/2.13 To study the numerical impact of this gauge choice we consider two
families of gauge vectors (assuming the momenta p1,2 oriented in the ±z-direction)

η− ≡(
√

1 + δ2, 0, δ,−1), (5.27)

η+ ≡(
√

1 + δ2, 0, δ,+1). (5.28)

For δ = 0 the η− choice is equivalent to the choice of η = p2, while the η+ choice is singular
as p1 · η+ = 0. In the limit of δ � 1 results of both gauge choice converge as η+ ' η−.
Both of these features are clearly seen in figure 7, where we plot the cross sections for
gq → ũLũ

†
Lq with q = u, ū (7a) and gu → ũLũRū (7b) in function of the δ parameter for

BMP2. For gu→ ũLũRū the gauge dependence is enhanced since resonant diagrams were
giving a substantial contribution to this amplitude.

We point out, that keeping the choice of the non-singular gauge η−, the DR subtracted
processes give per mille level contribution to the total cross section. Hence, for all intents
and purposes, the gauge dependence is not a problem and for studies in the following
sections we use the customary choice of η = p2.

13This choice is also useful if one wants to decouple interference terms between different collinear limits
which, however, doesn’t occur for this subprocess [98].
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6 Results

When the virtual corrections of section 4 are combined with the real contributions from
section 5 all IR divergences cancel as expected and we are able to calculate the NLO SUSY-
QCD cross section for q̃q̃ and q̃q̃† production in the MRSSM. In this section we first point out
and explain the consequences of R-symmetry on NLO cross sections in supersymmetric QCD
before exhibiting the results of our calculations for q̃q̃ and q̃q̃† production. We conclude
with remarks on the scale dependence and uncertainties of the computed observables.14

A useful quantity which helps to understand these different aspects is the K-factor. We
define a K-factor K as ratio of NLO over LO total cross section following ref. [17]:

K(NLO/LO) =
σNLO

σLO(NLO/LOPDF )
, (6.1)

where σNLO is calculate using NLO PDFs and σLO using NLO or LO PDFs, depending on
the argument. If no argument is given we use LO PDF sets as default case for σLO. The
K-factor depends on the process, masses of the fields in the model, and the centre-of-mass
energy, as well as the choice of renormalisation and factorisation scale. In the following, we
set
√
S = 13 TeV and µR = µF = m1+m2

2 , where mi are the final state’s particle masses.
For a consistent definition we identify the values of the Dirac gluino mass in the MRSSM
with the Majorana gluino mass in the MSSM, the values of the squark masses in both
models, as well as neglecting left-right squark mixing in the MSSM. In the MRSSM the
K-factor has an additional dependency on the sgluon mass parameter. To fix all remaining
SM parameters, we set the top quark mass to mt = 172 GeV and take the strong coupling
constant αMS

s (mZ) from the used PDF set.

6.1 Effects of R-symmetry

The results of R-symmetry at NLO may be pinned down to two features: the presence
of a Dirac instead of Majorana gluino and the existence of sgluons. The conservation
of R-charge, already discussed at LO in section 3, also needs to be commented on when
comparing K-factors to the MSSM. The effect of R-symmetry is however only present in
the virtual corrections, i.e. the real corrections do not differ in the MSSM and MRSSM.

The effects discussed in the following comprise the unique features of MRSSM neglected
in the study of ref. [11] by only taking MSSM NLO K-factors into account.

6.1.1 Dirac nature of the gluino

In the presentation of renormalisation constants in section 4.1, we already saw ramifications
of the Dirac gluino whose components couple differently. Now, we study the effect of
replacing the Majorana with a Dirac gluino in a physical process.

To this end, consider diagram 1a) and 1b) (referring to the first diagram of category
a) and b), respectively) of Figure 4. The former contributes in both models, whereas the

14If not noted differently, all MRSSM results in this section are produced using method 2 and FKS
subtraction including diagram removal for possible on-shell resonances. The MSSM cross sections were
calculated with MG5aMC@NLO using the UFO model provided with ref. [79]. PDF sets were accessed using
LHAPDF6.
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latter is only non-zero in the MSSM, since the gluino undergoes a chirality flip to its non-
coupling right-handed component. Taking only objects with spinor indices into account
these diagrams evaluate to

M1a) ∝ v̄(p2)PR(/t +mg̃)PL/qPR(/t +mg̃)PLu(p1) = v̄(p2)/t/q/tPLu(p1), (6.2)

M1b) ∝ v̄(p2)PR(/t +mg̃)PR/qPL(/t +mg̃)PLu(p1) = m2
g̃v̄(p2)/qPLu(p1). (6.3)

Here qµ is the quark’s loop momentum and mg̃ is the Majorana gluino mass of the MSSM,
which is zero in the MRSSM. Hence diagram 1a) is the same in both models, while diagram
1b) vanishes in the MRSSM. Alternatively, diagram 1b) can also be understood to be zero
in the MRSSM as R-charge is not conserved at all vertices of the diagram as the R-charge
of the gluino flows in the opposite direction than the one of the squark appearing in its self
energy insertion.

On similar grounds we are able to understand why diagram 2b) in figure 4 does not
contribute in the MRSSM. Its matrix element has the following proportionality

M2b) ∝ v̄PR(/t +mg̃)PR/qPL(/q + /p3
+mg̃)PLu = m2

g̃v̄/qPLu (6.4)

in the MSSM and is therefore zero in the MRSSM. Note that its analogue, depicted as
diagram 2a) in figure 4 is proportional to the u-quark mass and therefore zero in both
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models. Diagram 3b) of figure 4 appears only for q̃q̃† production and is proportional to the
Majorana mass of the MSSM squared for the same reasoning as discussed before.

The number of diagrams affected by the difference between Dirac and Majorana mass
is only a subset of all contributing virtual graphs. Therefore, the effect is most apparent
when we use the dependency on the gluino mass and make it large compared to all other
appearing scales. This can be seen when comparing the plots of figure 8. On the right
plot, where the mass scales are not too different from each other, the MRSSM and MSSM
line have a similar dependency on the gluino mass, where the magnitude of the K-factor is
affected by the sgluon mass as described below. If, however, the squark mass is reduced, the
behaviour changes drastically for large gluino masses. Then, the additional contributions in
the MSSM lead to a K-factor rising with gluino mass, instead of falling like in the MRSSM.

6.1.2 Sgluon non-decoupling effects

The sgluon necessarily appears in the MRSSM as the scalar superpartner of the additional
component of the Dirac gluino. The sgluon affects the MRSSM prediction in several ways.
Obviously, it enters the virtual corrections as new matter content, contributing to the β
function of the strong coupling such that it becomes zero at one-loop level. Furthermore, the
mass of the pseudo-scalar (scalar) component is determined (mostly) by the SUSY breaking
mass parameter m2

O, which is independent of the gluino mass as can be seen in eq. (2.4). It
is therefore possible that the sgluon can be much heavier than the gluino and not be directly
observable at the LHC. Still, effects of the sgluon could be experimentally accessible, even
if superheavy, as a mass splitting between superpartners in a SUSY multiplet leads to
non-decoupling, so called super-oblique, contributions [99].

Super-oblique effects lead to a physical difference between the gauge coupling gs and
the gaugino coupling ĝs at loop level. It can be understood in the context of an effective field
theory (EFT) where the sgluon is integrated out. In the EFT, the sgluon decouples from
the gauge boson and gaugino self-energies (first two diagrams in category c) of figure 3)
which changes the corresponding field renormalisation constants and therefore induces a
change in the corresponding couplings gs and ĝs. This produces a one-loop difference of

ĝs − gs =
αs
8π

(
log

m2
Os

m2
g̃

+ log
m2
Op

m2
g̃

)
(6.5)

in the theory without sgluon. The production of ũLũR at the LHC is mediated by the
gluino alone at tree level. Therefore, the super-oblique contribution from the sgluons can
be written as product of the total tree-level cross section and the difference given by eq. (6.5)
such that

σsuper-oblique part
pp→ũLũR =

αs
2π

(
log

m2
Os

m2
g̃

+ log
m2
Op

m2
g̃

)
σLO
pp→ũLũR . (6.6)

The result for q̃q̃† production is more complicated as the gluino only appears in a
subset of the diagrams at tree level. Hence, the non-decoupling correction to the cross
section affects only a part of the contributions, not allowing for a simple factorisation as
before.
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The sgluon can influence the prediction of the MRSSM in another way, namely via
the sgluon-squark-antisquark vertex induced by the gluino mass parameter, see 9 of the
Feynman rules in appendix A. This leads to additional terms in the renormalisation con-
stants, stemming from the third Feynman diagram in category c) of figure 3, as well as
additional virtual corrections to the processes, see the last three diagrams of category c) in
figure 4. We have checked that these contributions are small compared to the super-oblique
corrections.

In figure 8, the effect of super-oblique corrections is visible when comparing lines with
different sgluon masses. As expected, their spacing follows the logarithmic dependency
described by eq. (6.6) for small gluino masses. When comparing the lines for mO = 3 TeV

and mO = 10 TeV at large gluino masses it can be seen that the differences between the
K-factors is reduced, as the assumption that sgluons can be integrated out is not valid.
Then, also ratios of the sgluon masses to the Mandelstam variables become relevant.

Figure 9 shows the effect at very large sgluon masses for both q̃q̃ as well as q̃q̃† pro-
duction. For both processes we find the logarithmic enhancement for large sgluon masses,
more prominently for q̃q̃ production as discussed before. Super-oblique corrections lead to a
difference in the K-factors of roughly twenty (five) per cent when the sgluon masses changes
by two orders of magnitude for q̃q̃ (q̃q̃†) production.

6.1.3 R-charge forbidden processes

For q̃q̃ production we have seen that in the MRSSM only the production of left- and right-
handed squarks together is allowed, while the production of squarks with the same “chirality”
is forbidden by R-charge conservation. This is relevant when comparing the MRSSM K-
factor for e.g. pp → ũLũR to the MSSM: should we compare it to the MSSM K-factor for
pp→ ũLũR, or to the MSSMK-factor for total squark production, pp→ ũLũR, ũLũL, ũRũR?
The second K-factor is commonly available via tools like Prospino [93] or NNLLfast [100]15

and used by the experimental collaborations for MSSM analyses. The first, however, allows
a more direct comparison between the models.

This point is depicted in figure 10. The left-hand plot compares the ratios of K-factors
(MRSSM over MSSM) for the same process, i.e. pp → ũLũR which is equivalent to the
ratio of NLO cross sections. It therefore allows to view the effects of the sgluons and
Dirac-gluinos at NLO. On the other hand, the right-hand plot contrasts the K-factors for
full u-squark production, i.e. K(MSSM) is the usual K-factor including ũLũL and ũRũR
production. Thus, this plot does not solely illustrate NLO effects but also the conservation
of R-charge, already present at LO.

On the left of figure 10 it can be seen that the sgluon and Dirac mass effects can lead
to a difference of the K-factor of five to eight per cent between the MRSSM and the MSSM
when considering only the ũLũR production. The ratio is smaller than one for mq̃ � mg̃

and larger than one in the other parts of parameter space with the maximum at the ratio
of mg̃/mq̃ = 2. However, when the K-factor for the summed production in the MSSM is
used the ratio deviates significantly from one. Using the usual, summed K-factor of the

15See also ref. [101] and comparable public results given via ref. [1] therein.
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Figure 10: Shown is the ratio of MRSSM over MSSM K-factors for q̃q̃ production for
mO = 3 TeV. In the MSSM, only left-right q̃q̃ production (left) or all channels (right) are
included.

MSSM to estimate NLO MRSSM cross sections from LO ones would consequently lead to
a systematic underestimate between 10% and 23%.

6.2 Squark production at NLO
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Figure 11: Shown are the MRSSM K-factors for ũLũR production for two different octet
masses.

We have described the qualitative differences of the NLO corrections between the
MRSSM and MSSM in the previous section, especially highlighting the role of the Dirac
gluino mass and the appearance of the sgluon. In the following, we give an overview of
the quantitative features of the corrections in the MRSSM analysing the variation of the
K-factor. Figures 11 and 12 summarise the dependency of the K-factor on the different
masses of the strong sector for q̃q̃ and q̃q̃† production, respectively. The left (right) plot of
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Figure 12: As figure 11 for ũLũ
†
L production.

each figure is given for a sgluon mass of 3 TeV (300 TeV) and shows the K-factor depending
on the Dirac gluino and common squark masses.

As discussed before, the change of the sgluon mass from 3 to 300 TeV leads to a global
enhancement of the K-factor of around twenty per cent in the whole parameter plane for
q̃q̃ production which originates from the super-oblique corrections. The increase for the q̃q̃†

production is reduced to about five per cent as only part of the contributions receive the
relevant corrections.

For q̃q̃ production, the total NLO contributions can decrease the LO cross section by
10% and can increase them by more than 50% of the LO prediction assuming sgluons
are close in mass to gluino and squarks. The relative size of the corrections falls with
rising gluino mass while increasing squark masses lead to an enhancement. This feature
is already present in the MSSM [17] and not influenced by the Dirac nature of the gluino
or the presence of the sgluon. In the scenario of interest, with a heavy Dirac gluino and
rather light squarks, the size of NLO corrections is reduced compared to the remainder of
the parameter space.

The K-factors for q̃q̃† production are in general smaller than for q̃q̃ production. They
yield up to 30% corrections to the LO production cross section. The corrections are largest
for small squark and gluino masses. For small squark masses, the gluino mass does not
influence the K-factor significantly. In this region pure QCD corrections are dominant and
only with a large sgluon mass do the effects described in section 6.1.2 become important.
The K-factor is smallest for large squark masses and increases in this parameter region with
the gluino mass.

6.3 Full results including uncertainties

We illustrate in figure 13 the summarising results of our study of the NLO SUSY-QCD
corrections for the production of squarks in the MRSSM. The plots show LO and NLO cross
sections for q̃q̃ and q̃q̃† production and their dependence on the squark and gluino mass as
well as the corresponding K-factors. The uncertainty bands are calculated by summing the
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Figure 13: Total LO and NLO cross section as function of the gluino (left) and common
squark mass (right) with uncertainties. Shown are q̃q̃ and q̃q̃† production summed over all
possible flavour combinations as well as the corresponding K-factors. The bands give the
68% CL combined scale and pdf uncertainties as described in the text.

uncertainty of the scale dependence16 and the PDF uncertainty in quadrature. A detailed
study of both sources of uncertainty is described below.

As we have seen before and has been known from the MSSM, the plots highlight
that NLO QCD corrections are in general large and usually positive. Comparing the LO
and NLO predictions including their respective 68% CL uncertainty bands we see that the
bands overlap for most of the parameter space and the NLO corrections show no unexpected
behaviour.

Comparing the cross sections for the MRSSM calculated with NLO precision to the
ones of the MSSM, the distinctions between both models are similar to the ones already
discussed at tree level in section 3. These differences stem from the conservation of R-charge
in the MRSSM so that only different (same) “chiralities” of squarks can be produced in q̃q̃
(q̃q̃†) production as has been discussed in detail in section 6.1.3.

Effects from the existence of sgluons becomes relevant only for sgluon masses above

16To estimate the scale dependence, we varied both, µF and µR like described in section 6.3.1.
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σLO(LO PDF)[fb] σLO(NLO PDF)[fb] K(LO) K(NLO)

BM1 q̃q̃ 13.1 11.2 1.46 1.75

q̃q̃† 3.75 2.72 1.18 1.62

BM2 q̃q̃ 4.61 3.92 1.28 1.51

q̃q̃† 2.36 1.78 1.15 1.52

BM3 q̃q̃ 160 146 1.08 1.18

q̃q̃† 3990 3470 1.29 1.48

Table 3: LO cross section and corresponding K factors for the benchmark points of table 2
using PDF sets of LO and NLO.

hundreds of TeVs. The Dirac nature of the gluino in the virtual contributions is of influence
in the region of light squarks and large gluino mass but does not alter the behaviour of the
cross section significantly compared to the tree-level differences.

The relative uncertainties of the cross sections are reduced from 50% or more to below
20% when going to NLO. The dominating uncertainty component comes from the scale
variation. Therefore, a further reduction of the uncertainties would require going to next-to
NLO and/or including effects from the resummation of threshold corrections as has been
done for the MSSM predictions [102, 103].

We show in figure 13 the K-factor defined in equation (6.1) using the LO PDF sets for
the LO cross section. Alternatively, it is also possible to use the NLO PDF sets for both,
NLO and LO cross section. The difference is studied based on table 3, where the LO cross
sections and NLO K factors using either LO or NLO PDF sets are given for the benchmark
points of table 2 and both squark production processes of this paper.

In general, using the NLO PDF sets for the LO cross section leads to an enhancement
of the K factor (reduction of the LO cross section) arising from the difference in the strong
coupling constant between the two sets. (Here, with αMS

s (mZ) = 0.135 for MMHT2014LO,
αMS
s (mZ) = 0.120 for MMHT2014nlo68cl.) This can be seen when comparing the changes

in the K-factors between BM2 and BM3. They differ by the choice of squark mass which
is used as renormalisation and factorisation scale relevant for the extraction of the correct
αMS
s (µR). For BM2 with a larger squark mass the difference in K-factors is enhanced

compared to BM3.
Additional effects due to difference in the PDF fits for quark and gluon are also present.

This leads to an enhancement of q̃q̃† compared to the q̃q̃ production with rising squark mass.
For the results of this work we assume that all squark masses are at the same value. We

also investigated the scenario, where the constraint of equal squark masses was dropped. We
checked that the quantum corrections are well behaved in this case. The phenomenological
effects of such a scenario, especially for final state squarks of different masses, will be studied
in forthcoming work. In the following, we describe in detail the scale and PDF uncertainties
as well as differential distributions of the NLO SUSY-QCD corrections.
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Figure 14: Differential cross section of q̃q̃ and q̃q̃† production as function of the transversal
momentum pT or the pseudo-rapidity η for BM1. The integration error is given.

6.3.1 (Fixed) Renormalisation and factorisation scale dependency

A major motivation to calculate perturbative corrections to the prediction of a cross section
is the reduction of the theoretical uncertainty. One way of quantifying this is the variation
of renormalisation and factorisation scale.

Figure 15 shows the variation of scales for ũLũR and ũLũ
†
L production. To achieve a

qualitative understanding renormalisation and factorisation scale are set equal and varied
together. The prediction of the cross section at LO changes by more than 50% when the
scale is varied from the reference value at µR = µF = mq̃ by a factor of two. This variation
uncertainty is reduced to below 20% when taking NLO corrections into account. This
difference in the scale dependency also leads to a strong dependence of the K-factor, as
shown in the lower plot, which can become smaller than one for a certain choice.

The commonly accepted range for the variation of the scales is [µR,F /2, 2 ·µR,F ] where,
for the most conservative approach, both scales are varied independently and one takes the
envelope of those nine values as final estimate. This is the procedure we use to estimate

– 32 –



0 1000 2000 3000 4000 5000 6000
µR =µF  [GeV]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
σ

 [f
b]
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Figure 15: Scale dependency of the cross section for ũLũR (left) and ũLũ
†
L (right) produc-

tion in the MRSSM at LO and NLO.

MMHT2014nlo68cl MMHT2014nlo68clas118 CT14nlo NNPDF30_nlo_as_0118

BM1 9.94+3.5%
−3.4% 9.86+3.4%

−3.3% 10.1+3.3%
−3.4% 10.1+3.2%

−3.2%

BM2 3.01+3.5%
−3.4% 3.00+3.4%

−3.3% 3.08+3.4%
−3.6% 3.04+3.3%

−3.3%

BM3 64.0+3.0%
−3.0% 62.4+3.1%

−2.9% 65.0+2.6%
−2.4% 64.0+2.4%

−2.4%

Table 4: Cross section (in fb) of ũLũR production for the benchmark points of table 2
using different PDF sets. The first set is the standard NLO PDF of this paper. The
other columns compare different PDF sets at αs(mZ) = 0.118. The factorisation and
renormalisation scale are set to the common squark mass. All uncertainties are given at
68% CL. For this the uncertainties of the CT14 set have been rescaled by 1.642 as the default
is given at 90% CL. [104]

the scale uncertainty in figure 13.

6.3.2 PDF uncertainty

Another main source of uncertainty for the cross section prediction at a hadron collider
comes from the use of PDFs as they can not be calculated from first principles but need
to be extracted from data. Details on this and the application at LHC Run II can be
found in ref. [104]. Here, we only aim to achieve a basic understanding of the relevant PDF
uncertainties. For this we compare the cross section for our three BMPs defined in table 2
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MMHT2014nlo68cl MMHT2014nlo68clas118 CT14nlo NNPDF30_nlo_as_0118

BM1 0.512+7.6%
−5.4% 0.503+7.5%

−4.9% 0.503+12.9%
−11.6% 0.588+9.7%

−9.7%

BM2 0.301+8.1%
−5.7% 0.294+7.7%

−5.0% 0.300+14.8%
−11.1% 0.335+9.9%

−9.9%

BM3 502+3.8%
−3.7% 509+3.9%

−3.4% 512+6.7%
−5.4% 533+3.4%

−3.4%

Table 5: Cross section (in fb) of ũLũ
†
L production for the benchmark points of table 2

using different PDF sets. All details as for table 4.

and both processes calculated with our default set, MMHT2014nlo68cl, against one of the
same group with a different fit value for αs(mZ), MMHT2014nlo68clas118. Additionally, we
compare to cross sections calculated using the CT14 [105] and NNPDF3.0 [106] PDF set with
αs(mZ) = 0.118. They are summarised in the tables 4 and 5 .

The difference of the result for the MMHT2014nlo68cl and MMHT2014nlo68clas118 sets
stems only from the strong coupling constant, αs(mZ) = 0.120 and αs(mZ) = 0.118 respec-
tively, and gives an estimate for the uncertainty coming from this input parameter. For
the considered points the uncertainty is at most a few per cent. The different PDF sets for
αs(mZ) = 0.118 all agree within their uncertainty as expected from the comparison done
in ref. [104]. The uncertainty of the individual sets is below five per cent for q̃q̃ production.
This is understandable as for this mainly the up quark PDF is relevant which is rather well
determined, see figure 6 of ref. [104]. The PDF uncertainty for q̃q̃† production on the other
hand is increased and can reach 10% to 15% depending on the PDF set. This originates
from the appearance of initial gluons and antiquarks as in this case the PDFs are not as
well known, see figure 5 of ref. [104].

As the study of PDF uncertainties is not in the focus of this work, the PDF uncertainty
in figure 13 contains only the uncertainty of the MMHT2014nlo68cl set.

6.3.3 Dynamical scales and differential distributions

The main concern of this work was to perform the calculation of NLO corrections for the
MRSSM and highlight the physical differences to the MSSM. We addressed it by focusing
on global K-factors and using fixed renormalisation and factorisation scales. Here we give
a brief comment on going beyond that. The MG5aMC@NLO framework allows in principle to
use dynamical renormalisation and factorisation scales (as opposed to fixed ones studied in
section 6.3.1) and to study differential distributions at the NLO. We have verified that these
components work as expected. The global K-factors vary by less than five per cent when
choosing between a fixed (like the common squark mass) and a dynamical (like the total
transverse mass in an event) scale. As there is no physically preferred scheme we follow the
works on the MSSM [94–97] and use fixed renormalisation and factorisation scales.

In figure 14, we show sample differential distributions in the transversal momentum
pT and the pseudo-rapidity η for the benchmark point BM1. The top row shows it for q̃q̃
while in the bottom q̃q̃† production is given. The K-factor can actually vary substantially
over the different kinematic regions changing by 50 per cent or more. Still, for the regions

– 34 –



containing the bulk of the contributions (500 GeV < pT < 1000 GeV and −2 < η < 2) the
global K-factor is a good approximation.

7 Conclusions

The Minimal R-symmetric Supersymmetric Standard Model is a well-motivated, viable
model. It provides a realisation of SUSY distinct from the familiar MSSM with a sig-
nificantly modified coloured sector: The gluino carries R-charge and is of Dirac instead of
Majorana nature, and there are scalar and pseudoscalar colour octets, the sgluons. Left- and
right-handed squarks carry opposite R-charge. In a motivated region of parameter space,
the squark masses are around the TeV-scale while the gluino and sgluons are somewhat
heavier.

Here we have presented an analysis of squark production at the LHC in the MRSSM
taking into account NLO corrections of the entire strongly interacting sector. Both the
tree-level results and the NLO corrections show important features and differences to the
MSSM:

• In the MRSSM only opposite-chirality squarks can be pair-produced, i.e. q̃Lq̃R pro-
duction is allowed, while q̃Lq̃L and q̃Rq̃R are forbidden by R-charge conservation. For
squark-antisquark production, the converse statement is true. Owing to this, the
overall squark production rate in the MRSSM is lower than in the MSSM.

• When comparing K-factors between the two models one has to be careful to distinguish
in the MSSM between the K-factor for total squark production and the K-factor
specific for e.g. q̃Lq̃R production. The first is the one usually quoted; it differs from
the MRSSM counterpart by 10 to 20%. The second is usually not quoted in the
MSSM, but it is more directly comparable between the two models.

• Even the comparison between q̃Lq̃R production in the MRSSM and MSSM reveals
several differences between the two models. The MRSSM Dirac gluino enters the loop
corrections differently from the MSSM Majorana gluino, and large sgluon masses lead
to non-decoupling, logarithmic enhancements of the NLO corrections. To a lesser
degree, these effects also lead to differences in the q̃q̃† production.

Our study also has technical aspects. During the last decade several efforts lead to fast
and automatised ways to evaluate SM processes at NLO and beyond. In recent years, there
has been a push to expand this also to BSM models. Usually, this added capability is tested
in the context of well-known and understood models like the THDM or the MSSM. In this
paper we were able to achieve full agreement between a calculation based on a subset of
publicly available tools and an independent calculation for NLO QCD corrections of the
MRSSM. The latter calculation uses the techniques, described as method 1 in this paper and
results will be available via the soon to be published RSymSQCD code [107]. The MRSSM
provides a valuable test of the implemented mechanisms as it contains unique features
complementary to the previous test cases. It therefore shows how far the latest available
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machinery can be pushed. It also illustrates the possibility mentioned in ref. [12, 19], to
compute QCD corrections to SUSY processes in different renormalisation schemes.

The results obtained here are not specific for the MRSSM but can be applied more
generally also to other models with R-symmetry and a difference in R-charge assignment.
This only requires that the particle content under consideration is the same and all the
SUSY QCD vertices given in the appendix are present.

It will be now of high interest to identify the allowed squark mass range in the MRSSM
in the light of current LHC data. In line with simplified studies [9, 11] we expect that
significantly lighter squarks are allowed in the MRSSM, thanks to the fewer allowed pro-
duction channels. On the other hand, our NLO results show that the assumption that the
K-factors in the MSSM and MRSSM are equal is not correct. The MRSSM K-factors are
higher and dependent on the hierarchies between squark, gluino and sgluon masses and
should be taken into account to obtain valid limits.
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A Feynman rules

In SUSY models, it is often not possible to define a consistent, conserved fermion num-
ber.17 To compute Feynman diagrams in an unambiguous way, a fermion flow can be
introduced [108, 109], which does in general not agree with the flow of fermion number.

Even though there are no Majorana particles in the MRSSM, it is useful to adapt this
procedure. The reason for this is the existence of fermion number violating processes like
qq → q̃q̃, which results in a clash of arrows in the associated Feynman diagrams.

In the following we list Feynman rules for the MRSSM which are new or different to the
ones in the MSSM. We labelled the lines with the corresponding quantum field operators
of the respective Lagrangian term (thus this labeling does not coincide with the labels of
external particles in section 3 and 4). The fermion flow on vertices is always directed from
an unbarred to a barred spinor field and indicated by an extra arrow next to the diagrams.
For calculations involving fermions one needs to multiply the Feynman rules in the opposite
direction of the fermion flow.

The Feynman rules 4b and 5b are the complex conjugates of 4a and 5a , respec-
tively. Applying a flipping rule to a vertex one has to reverse the curved arrow, i.e. the
fermion flow and replace Ψ with Ψ

C . In addition one has to add a minus sign for Feynman
rule 1 .

17For Dirac particles like quarks, the direction of fermion number flow is given by the arrow on the Dirac
propagator.
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B The MRSSM in MadGraph and GoSam

To allow the use of MadGraph5_aMC@NLO (MG5aMC@NLO) together with GoSam for the MRSSM,
several changes are necessary in the programs. For MG5aMC@NLO:

• Replacing the path to the model in the template gosam.rc of MG5aMC@NLO,

• Modifying the write_lh_order method in the madgraph/iolibs/export_fks.py file
to produce a LH file conforming to BLHA2 instead of BLHA1.

• Adapting the SubProcesses/BinothLHA_OLP.f also from BLHA1 to BLHA2 by us-
ing the OLP_SetParameter function to pass αs from MG5aMC@NLO to GoSam and the
OLP_EvalSubProcess2 function to get the virtual matrix element from GoSam.

For GoSam:

• Adjusting the naming of the strong coupling in the olp_module.f90 template for the
aMC interface to the UFO model name so that it compiles.

• The default SM renormalisation of the virtual matrix element is switched off and
replaced with a model and subprocess specific renormalisation in matrix.f90.

C Validation

The selected parameter and phase space point is the same for all MRSSM processes:

mg̃ = 1 TeV mq̃ = 1.5 TeV µR = µF = mq̃

mOp = 5 TeV mt = 172 GeV√
ŝ = 6 TeV t = −22208172 GeV2 αs = 0.1184

The mass mOs is fixed by eq. (2.4). All matrix elements are compared in the t’Hooft–
Veltmann scheme (HV). The LO matrix elements |M(LO)|2 are given in units of GeV−2.
The NLO matrix elements 2Re [M(NLO)M∗(LO)] are given as

2π

αs

2Re [M(NLO)M∗(LO)]

|M(LO)|2
. (C.1)

Real parts contain soft-collinear mass factorisation counterterms. The agreement of the
finite parts are not as precise as the one of the poles. This is due to a limited precision of
our LoopTools installation. If however double precision is replaced with quadruple precision
the agreement is improved.

Squark squark production

uu→ ũLũR(+g)

Virtual part – Method 1 Virtual part – Method 2 Real part – TCPSS

tree level 1.118 718 413 120 5 1.118 718 413 120 5

double pole −2.666 666 666 666 6 −2.666 666 666 666 6 2.666 666 666 666 6

single pole 6.342 449 445 673 8 6.342 449 445 673 8 −6.342 449 445 673 8

finite 36.720 472 180 005 36.720 472 181 755
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Squark anti-squark production

gg → ũLũ
∗
L(+g)

Virtual part – Method 1 Virtual part – Method 2 Real part – TCPSS

tree level 0.111 147 469 577 53 0.111 147 469 577 53

double pole −5.999 999 999 999 9 −6.000 000 000 000 0 6.000 000 000 000 0

single pole 8.416 150 038 671 3 8.416 150 038 671 3 −8.416 150 038 671 3

finite −3.796 523 323 719 3 −3.796 510 514 715 8

uū→ ũLũ
∗
L(+g)

Virtual part – Method 1 Virtual part – Method 2 Real part – TCPSS

tree level 0.415 673 836 926 10 0.415 673 836 926 10

double pole −2.666 666 666 666 6 −2.666 666 666 666 6 2.666 666 666 666 6

single pole 4.856 076 758 044 4 4.856 076 758 044 4 −4.856 076 758 044 4

finite 18.078 757 030 780 18.078 757 100 653

dd̄→ ũLũ
∗
L(+g)

Virtual part – Method 1 Virtual part – Method 2 Real part – TCPSS

tree level 0.152 813 653 565 25 0.152 813 653 565 25

double pole −2.666 666 666 666 6 −2.666 666 666 666 6 2.666 666 666 666 6

single pole 4.836 956 173 341 6 4.836 956 173 341 7 −4.836 956 173 341 6

finite −4.713 602 224 435 6 −4.713 602 074 078 9
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