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The Cosmic Microwave Background (CMB) gives us a glimpse of the primordial perturbations.
Their simplicity, so well described by single-field inflation, raises the question whether there might be
an equally simple multi-field realization consistent with the observations. We explore the idea that an
approximate ’angular’ shift symmetry in field space (an isometry) protects the dynamics of coupled
inflationary perturbations. This idea relates to the recent observation that multi-field inflation
mimics the predictions of single-field inflation, if the inflaton is efficiently and constantly coupled to
a second massless degree of freedom (the isocurvature perturbation) [1, 2]. In multi-field inflation, the
inflationary trajectory is in general not aligned with the gradient of the potential. As a corollary the
potential does not reflect the symmetries of perturbations. We propose a new method to reconstruct
simultaneously a two-field action and an inflationary trajectory which proceeds along an ‘angular’
direction of field space, with a constant radius of curvature, and that has a controlled mass of ‘radial’
isocurvature perturbations (entropy mass). We dub this ‘Orbital Inflation’. In this set-up the Hubble
parameter determines the behavior of both the background and the perturbations. First, Orbital
Inflation provides a playground for quasi-single field inflation [3, 4] because the couplings between
perturbations are controlled and constant on the trajectory, up to slow roll corrections. Second, the
exquisite analytical control of these models allows us to exactly solve the phenomenology of Orbital
Inflation with a small entropy mass and a small radius of curvature, a regime not previously explored.
The predictions are single-field-like, although the consistency relations are violated. Moreover, the
value of the entropy mass dictates how the inflationary predictions fan out in the (ns, r) plane.
Depending on the size of the self interactions of the isocurvature perturbations, the non-Gaussianity
parameter fNL can range from slow-roll suppressed to O(a few).

I. INTRODUCTION

The latest Cosmic Microwave Background (CMB)
data [5] has confirmed that inflationary perturbations
are Gaussian, adiabatic and almost scale-invariant to a
high level of accuracy. An elegant explanation for this
observed simplicity is that inflation is driven by a single
scalar field with small self-interactions.

However, inflationary models derived from e.g. super-
gravity or string theory typically contain multiple scalar
fields besides the inflaton, often with non-standard ki-
netic terms [6]. Therefore, it is important to understand
which properties of multi-field models of inflation lead
to predictions compatible with the observational data.
At the same time, it would be very desirable to have
a simple framework for multi-field inflation in highly
curved field spaces and trajectories (see this list for
recent developments [7–20].)

The observational data provide us with a glimpse of
the Lagrangian of inflationary perturbations. This sug-
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gests we should classify inflationary models by the be-
havior of the couplings between perturbations [3, 21–27].
An important question is how to relate the simplicity of
the perturbations to properties of the full action. The
time-dependent background of inflation and the coupling
to gravity turn this question into a non-trivial task. For
example, to drive slow-roll single-field inflation a non-
zero gradient of the potential is needed to compensate for
the Hubble friction. The potential therefore necessarily
breaks the shift symmetry. Nevertheless, the action for
curvature perturbations is shift symmetric. For multi-
field scenarios the situation becomes even more compli-
cated.

In its simplest realization, so-called “canonical single-
field slow roll inflation”, the inflaton’s evolution follows
the gradient flow of the potential, φ̇ ∼ ∇φV and the
inflaton acts as a clock. The power and the beauty of
this approach is that knowledge of a single function
–the inflaton potential V (φ)– is enough to predict all
the inflationary observables. And viceversa: the inflaton
potential can be constrained by the cosmological data
and even reconstructed. We would like a framework that
extends at least some of the simplicity and predictability
of single-field models to multi-field models with strongly
curved manifolds and trajectories, provided these curva-
tures are reasonably constant.
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In this work we propose a new method to reconstruct
simultaneously, in the simplest possible way, a two-field
action and inflationary trajectory that match the obser-
vations. The idea is to align the inflationary trajectory
with a symmetry in the kinetic terms (an isometry in
field space) and use an extension of the Hamilton-Jacobi
method [28–31] to engineer a potential that sustains
slow roll multi-field inflation with the right observables.
This sheds new light on non-trivial multi-field structures
that are compatible with observational data .

The Hamilton-Jacobi formalism for multi-field in-
flation has been previously considered in [32–37] and
more recently, in [1, 38]. The idea is to consider
inflationary models that attract to the Hubble gradient
flow φ̇a ∼ −∇aH, which we align with a symmetry in
the kinetic terms, i.e. an isometry or ‘angular’ direction
θ in field space. We dub this ‘Orbital Inflation’, since
inflaton happens at constant ‘radius’ ρ = ρ0. The
non-zero, constant radius ensures the perturbations
tangential and orthogonal to the trajectory are coupled
and the effective masses and couplings of the pertur-
bations can be made constant, up to slow roll corrections.

In single field inflation a single function V (ϕ) de-
termines the behavior of both the background and
perturbations. Similarly, in this class of models, once we
know the geometry of field space, a single function H(φa)
determines the behavior of both the background and
perturbations. For instance, the mass of the isocurvature
perturbations is fully determined by the hessian of H [38]

In § II we employ a multi-field generalization of
the Hamilton-Jacobi formalism to engineer a class
of potentials that sustains slow roll inflation with
the right observables, through the simple relation
V = 3H2 − 2(∇aH)(∇aH). These potentials admit
exact inflationary solutions that follow the Hubble
gradient flow and can be studied analytically much
like in the single-field case. This tells us that the
Hubble parameter - and not the potential - takes a
particularly simple form to support Orbital Inflation,
namely ∂ρH = 0 and ε ∼ − (∂θ lnH)

2
, both evaluated

at ρ = ρ0. We can then choose H(θ, ρ) so that the
mass of the isocurvature perturbation (orthogonal to
the trajectory) becomes constant (in units of H) up to
a slow roll correction and can be dialled to any desired
value between 0 and 3H/2. This is, to our knowledge,
the first exact realization of quasi-single field inflation
[3, 4], and we exploit it to a strong turning regime not
previously explored. In [39], on the other hand, we test
the analytical predictions in the quasi-single field regime.

If we consider a product separable Hubble param-
eter H(θ, ρ) = W (θ)X(ρ), with ∂ρX(ρ0) = 0 and
∂ρρX(ρ0) = constant, the mass of the radial isocur-
vature perturbations is determined by the value of
∂ρρX(ρ0). This means that the Hubble parameter

carries properties that are normally assigned to the
potential. In particular, if the Hubble parameter has
a shift symmetry in the radial field, the isocurvature
perturbations become exactly massless. On the other
hand, the potential is not shift symmetric in that case.

The first order Hubble gradient flow equations allow
us to exactly solve for the background dynamics, and
therefore also for the superhorizon evolution of inflation-
ary perturbations, if we combine it with the δN formal-
ism [29, 40–44]. We work out the details in § VIII. In
§ III we use our reconstructed potential to study the phe-
nomenology of two-field inflation with a small entropy
mass and a small radius of curvature (a large turn rate),
a regime typically not considered in quasi-single-field in-
flation. We show how single-field like predictions are ob-
tained in the limit, although the single field consistency
relations [45, 46] are violated. Moreover, we find that
the entropy mass dictates how the inflationary predic-
tions fan out in the (ns, r) plane.

II. INFLATION ALONG AN ISOMETRY

We focus on two-field inflationary models of the form

S =
1

2

∫
d4x
√
−g
[
M2
pR−Gab∂µφa∂µφb − 2V (φa)

]
.

(1)
Here Gab(φ

c) is the field metric characterizing the kinetic
terms. Moreover, R is the Ricci scalar of spacetime and
V (φa) the potential energy density of the scalar fields.
In Appendix § VI we briefly recap the main elements of
the kinematical two-field analysis. From now on we will
set the (reduced) Planck mass to unity, M−2

p = 8πG = 1.

We are interested in field spaces with an isometry.
Without loss of generality we can choose an ’angular’
field space coordinate θ along the isometry, and a ’ra-
dial’ coordinate ρ orthogonal to it, the field space metric
takes the simple form diag(1, f(ρ)). The action becomes

S =
1

2

∫
d4x
√
−g
[
R− (∂µρ)2 − f(ρ)(∂µθ)

2 − 2V (ρ, θ)
]

(2)
where the potential V is determined by the Hubble pa-
rameter H(ρ, θ) as

V = 3H2 − (∂ρH)2 − (∂θH)2

f(ρ)
. (3)

The equations of motion for this system are first order,
and classical trajectories follow the Hubble gradient
flow. A constant radius of curvature can be achieved
by considering an inflationary trajectory that proceeds
along an isometry direction of the field metric that is
not a geodesic. This is the key characteristic of our
reconstruction. We name this class of models ‘Orbital
Inflation’.
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We would like to reconstruct the potential that admits
solutions of the form

ρ̇ = 0, θ̇ < 0. (4)

The sign of θ̇ is our choice of convention, also we take
θ > 0 on the inflationary trajectory. The relevant kine-
matical and geometrical inflationary quantities1 of Or-
bital Inflation simplify to

1

κ
=
fρ
2f
, θ̇ = −2

Hθ

f
,

ε =
2H2

θ

fH2
, R =

2

κ2
− fρρ

f
,

µ2 = 6HHρρ − 4H2
ρρ −

4HθHθρρ

f
.

(5a)

(5b)

(5c)

We use the shorthand notation f = f(ρ), H = H(θ, ρ)
and Hρ = ∂ρH etcetera. Here, κ is the turning radius of

the trajectory, ε ≡ − Ḣ
H2 is the first slow-roll parameter

and R denotes the Ricci curvature of field space. Finally,
µ2 is the entropy mass on the inflationary trajectory
ρ = ρ0: the effective mass of the radial isocurvature
perturbations.

In order to reconstruct a potential that admits an
inflationary solution along the angular direction, we
need Hρ(ρ0) = 0 for some ρ0, in accordance with
the Hubble flow (5a). Moreover, for it to be a stable
trajectory with respect to perturbations in ρ, we take
0 < MpHρρ(ρ0) . 3H/4, leading to entropy masses
0 < µ . 3H/2, as long as the last term in (5c) is
slow-roll suppressed (see [38] for a detailed discussion
of the mass bounds in the multi-field case). Other than
that we can choose the Hubble parameter as we like and
the corresponding potential is given by (3). Notably,
if H (and not V ) acquires a shift symmetry in ρ , the
entropy perturbations are exactly massless. We studied
this neutrally stable case elsewhere [1], and we showed
that the predictions for isocurvature and non-gaussianity
are strongly suppressed.

Note that we can straightforwardly generalize Orbital
Inflation by correcting the Hamilton-Jacobi potential

V (θ, ρ) = VHJ(ρ, θ) + ∆V (ρ, θ). (6)

In order to preserve the background trajectory, i.e. the
amount of Hubble friction and the driving force along the
trajectory the correction term is constrained by

∆V (ρ0, θ) = 0, ∂a∆V (ρ0, θ) = 0, (7)

for all θ, but other than that we are free to modify the
potential. In particular this means Orbital Inflation can

1 The precise definitions of these kinematical and geometrical vari-
ables can be found in Appendix VI.

accommodate any value of the entropy mass.

Let us now consider Orbital Inflation with a constant
entropy mass in units ofH. As can been seen from Eq. 5c,
a simple ansatz to make the entropy mass constant (up
to a slow-roll correction) is to take a Hubble parameter
of the product separable form

H(ρ, θ) = W (θ)X(ρ), (8)

with X(ρ0) = 1, Xρ(ρ0) = 0 and Xρρ(ρ0) = λM−2
p .

Using Eq. 5, the entropy mass is given by µ2/H2 = 6λ−
4λ2− 2ελ. A product separable Hubble parameter yields
the following subclass of potentials that admit Orbital
Inflation

V (ρ, θ)

M4
p

= 3X2(ρ)

[
W 2(θ)

M2
p

− 2W 2
θ (θ)

3f(ρ)

]
− 2X2

ρ(ρ)W 2(θ) .

(9)
In addition to the entropy mass, higher order couplings

such as Vρρρ (that is important for non-gaussianity)
are determined by the value of α ≡ Xρρρ(ρ0)M3

p .
We describe the phenomenology of this set-up in the
regime of small entropy mass in detail in the next section.

Another interesting application of Orbital Inflation
is that we can numerically study any realization of
quasi-single-field inflation by choosing the parameters in
H(ρ, θ) accordingly. For this we wish to refer the reader
to [39].

III. PHENOMENOLOGY OF ORBITAL
INFLATION

As an example we work out the phenomenology2 for a
particular model of Orbital Inflation in which the Hubble
parameter is product separable

H(θ, ρ) = A θ

(
1 +

λ

2
(ρ− ρ0)2 +

α

6
(ρ− ρ0)3 + . . .

)
(10)

and the field metric is hyperbolic. The results in this sec-
tion are therefore obtained using the following potential
and kinetic term

V (θ, ρ) = 3A2

(
θ2 − 2

3f(ρ)

)
×
(

1 +
λ

2
(ρ− ρ0)2 +

α

6
(ρ− ρ0)3

)2

− 2A2θ2
(
λ(ρ− ρ0) +

α

2
(ρ− ρ0)2

)2

,

2K = f(ρ)(∂θ)2 + (∂ρ)2 with f(ρ) = e2ρ/R0 .

(11a)

(11b)

2 All computational details of this analysis can be found in § VIII.
The slightly more general observable predictions are listed in
Eq. 44.
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The hyperbolic field metric has Ricci curvature
R = − 2

R2
0
. This model admits a slow-roll inflationary

trajectory with constant turning radius κ2 = R2
0, approx-

imately constant entropy mass µ2/H2 = 6λ− 4λ2 − 2ελ
and slow-roll parameter ε = 1/(2∆N + 1). Note that
setting R0 → ∞ and freezing ρ = ρ0 formally recovers
the single-field limit.

We explore the parameter space with a small but con-
stant entropy mass 0 < µ2/H2 � 9/4 and a small radius
of curvature (but κ2 � 8ε). This regime is typically not
considered in quasi-single field inflation [3, 4], but is inter-
esting as it shows single-field-like behavior. We perform
a numerical analysis using the Python code developed by
[47, 48] (see also [49, 50]) and plot the predictions for ns
and r at the end of inflation in Figure 1.

0.93 0.94 0.95 0.96 0.97 0.98 0.99

0.00

0.05

0.10

0.15

0.20

FIG. 1. This figure shows the predictions of (ns, r) at the end
of inflation for the model given in Eq. 11 using the numerical
code [47, 48]. The entropy mass takes five different values,
as indicated in the legend, with µ2/H2 ≈ 6λ. The solid lines
correspond to R2

0 ∈ {1, 4, 42, . . . , 48} from bottom to top, and
we let ∆N ∈ [50, 60]. We plot our analytical results on top
(coloured shaded regions) using Eq. 14, where we vary κ2 (i.e.
R2

0) between 1 and 105. Furthermore, we plotted the 1σ and
2σ confidence contours from Planck [5] on the background.

We compare our results with an analytical estimate of
ns and r by combining the Hubble gradient flow approxi-
mation with the δN formalism, please see § VIII for more
details. The power spectrum is given by

PR =
H2

8π2ε
(1 +D) , (12)

where D denotes the transfer of power from the isocur-
vature perturbations to the curvature perturbations and
is given by

D =
2ε

λ2κ2

(
1− e−2λ∆N

)2
. (13)

Here ∆N counts the number of efolds between horizon
crossing and the end of inflation. The analytical results

ns = 1− ∂ lnPR
∂∆N

, r =
16ε

1 +D
, ε =

1

2∆N + 1
(14)

correspond to the shaded coloured contours in Figure 1.
Notice the excellent agreement with the full numerical
computation. In Figure 1 we vary κ2 between 1 and 105.
In this regime perturbation theory is under control.

We find that the observable predictions are already
significantly modified with respect to the single-field
ones (κ→∞, µ

H →∞) for κ2 . 103 (for µ2/H2 = 0) or

κ2 . 102 (for µ2/H2 = 0.2). Interestingly, the entropy
mass µ2/H2 dictates how the inflationary predictions
fan out in the (ns, r) plane. In particular, the various
entropy masses predict a different change in ns. It would
be very interesting to see if this effect may allow us to
distinguish between the various entropy masses. This
requires a complementary analysis of the bispectrum, to
which we turn now.

We are particularly interested in the highly curved
regime in which the power spectrum is dominantly
sourced by the isocurvature perturbations, D � 1. In
this part of parameter space the power spectrum PS of
isocurvature perturbations is suppressed, i.e. PS/PR =

e−2λ∆N/(1+D)� 1, where S is defined here as S ≡ δρ√
2ε

(see § VIII). Second, because the superhorizon evolution
of R gives the dominant contribution to its final ampli-
tude, we expect that the bispectrum will be of the local
type. In § VIII we estimate its amplitude. For the hy-
perbolic field space our analytical prediction becomes

fNL ≈ −
5

12
(ακ+ 6λ) +

5

3κ

√
2ε

D
. (15)

This estimate only applies for finite κ for which D � 1.
Its amplitude can take O(1) values if α ∼ 1. If both
λ and α are of order O(ε), fNL becomes slow-roll sup-
pressed, like in single-field inflation. We can distinguish
Orbital Inflation from single-field inflation though,
because the single-field consistency relations [45, 46]
fNL = 5

12 (1− ns) and r = −8nt = 16ε are violated.

Finally, from Eq. 15 we can also compute the spectral
tilt of the bispectrum

nfNL
=
−20ε

3κ2fNL

e−2λ∆N

D
. (16)

Notice that the second slow-roll parameter η appears in
none of the observables. Incidentally, if the field met-
ric is known, we can in principle fix all five parameters
{λ, κ, ε, α,∆N} from observations.

IV. FINAL COMMENTS

In this work we have reconstructed exact models
of two-field inflation that exploit an isometry in field
space to get the simplest possible quadratic action of
perturbations (with constant coefficients). We find
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that the simplicity of the perturbations – especially
those orthogonal to the trajectory – is manifest in the
Hubble parameter H(φa), and not in the inflationary
potential V (φa). This is tied to the fact that the
inflationary trajectories we consider are generically
not aligned with the potential gradient flow. An
important question is to understand the (approximate)
symmetries of the perturbations as a consequence of
an (approximate) symmetry of the full UV theory. In
the case of the hyperbolic field space we can connect
the behavior of perturbations to a scaling symmetry [51].

We have identified a family of exactly solvable two-
field models that provide textbook case studies for
quasi-single-field inflation. Their dynamics is exact,
and the mass and interactions of perturbations can
be dialled to any desired values, within some ranges.
In [39] we exploit this fact to test the predictions of
quasi-single-field inflation.

In this work we focus on the regime of small entropy
mass, and analytically solve for the observables. Details
can be found in appendix VIII B, we reproduce here the
results for completeness. In the limit D � 1 we find
the following predictions for the tensor-to-scalar ratio,
the spectral index, the tensor tilt, the amplitude of the

reduced bispectrum, and its tilt, respectively:

r =
16ε

1 +D
, (17a)

ns = 1− 2ε− 1− 4κλNρ
Nρ

, (17b)

nt = −2ε, (17c)

fNL = − 5

12

(
ακ+ λ

10− Rκ2

2

)
+

5

Nρ

2− Rκ2

12κ
, (17d)

nfNL ≡
dfNL/d∆N

fNL
=

2− Rκ2

κ2

1− κλNρ
Nρρ

, (17e)

with D = 2εN2
ρ , and Nρ and Nρρ are given by

Nρ =
1

κλ

(
1− e−2λ∆N

)
, (18)

Nρρ = −N2
ρ

(
ακ

2
+ λ

10− Rκ2

4

)
+Nρ

2− Rκ2

2κ
. (19)

We showed non-trivial examples of phenomenologi-
cally successful models of two-field inflation in the regime
where the field manifold and the trajectory can be
strongly curved. These models provide an efficient trans-
fer of non-gaussianity from isocurvature self-interactions
to the curvature bispectrum. Depending on the size of
the isocurvature self-interaction (the parameter α) the
amplitude of the squeezed bispectrum fNL can range
from being slow-roll suppressed to O(1), while being con-
sistent with all current observations.
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VI. KINEMATICAL TWO-FIELD ANALYSIS

In this appendix we recap the main elements of the
kinematical analysis of two-field inflationary models of
the form

S =
1

2

∫
d4x
√
−g
[
M2
pR−Gab∂µφa∂µφb − 2V (φa)

]
.

(20)
Here Gab is the field metric characterizing the kinetic
terms. Moreover, R is the Ricci scalar of spacetime and
V (φa) the potential energy density of the scalar fields.
We then generalize the Hamilton-Jacobi formalism to
two-field inflation, which we employ to derive exact
models of Orbital Inflation, featuring a constant radius
of curvature.

The background dynamics of the scalar fields fol-
lows from assuming a homogeneous, isotropic and flat
Friedmann Lemaitre Robertson Walker spacetime ds2 =
−dt2 + a2(t)dx2. The field equations and Friedmann
equations are given by [52]

D2
tφ

a + 3HDtφ
a +∇aV = 0,

3H2M2
p =

1

2
Gabφ̇

aφ̇b + V (φa),

ḢM2
p =

1

2
Gabφ̇

aφ̇b,

(21a)

(21b)

(21c)

respectively, with H ≡ ȧ/a the Hubble parameter. We

write Dt ≡ φ̇a∇a, with ∇a the covariant field derivative
with respect to the field metric. Moreover, the latin field
indices are raised and lowered with the field metric. The
Hubble slow-roll parameter ε is a measure of the kinetic
energy of the scalar fields

ε ≡ − Ḣ

H2
=

1

2

ϕ̇2

H2M2
p

, (22)

with ϕ̇ ≡
(
Gabφ̇

aφ̇b
)1/2

the proper field velocity. We

wish to emphasize that ε is not a measure of the gradient
of the potential, because in general φ̇a is not aligned
with V a.

The inflationary background trajectory determines a
natural basis of unit vectors in field space [53–55], remi-
niscent of the Frenet-Serret equations

T a =
φ̇a

ϕ̇
, DtT

a = −ΩNa (23)

Here T a is the tangent vector pointing along the infla-

tionary curve, with ϕ̇ ≡
(
Gabφ̇

aφ̇b
)1/2

the proper field

velocity. Furthermore Na is the normal vector, normal-
ized to unity. This uniquely determines the value of the
turn rate Ω up to a sign. Equivalently, we can compute
the radius of curvature κ of any inflationary curve

κ ≡
(
NaT

b∇bT a
)−1

. (24)
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Notice that the radius of curvature is related to the turn
rate as Ω = −

√
2εMpHκ

−1.

In two-field inflation the dynamics of linear inflationary
perturbations depends, in addition to ε and κ, on the
mass of perturbations, the entropy mass µ

µ2 ≡ VNN + εH2M2
pR +

6εM2
pH

2

κ2
, (25)

where R is the Ricci scalar of field space and we used the
notation VNN ≡ NaN b∇a∇bV . The definition of the
entropy mass follows from a dispersion relation analysis
[9] of the coupled system of perturbations (described in
Eq. 45). The time-dependence of the inflationary back-
ground induces the geometrical and centrifugal contribu-
tions to the entropy mass.

VII. HAMILTON-JACOBI FORMALISM

A. Hamilton-Jacobi for two fields

To reconstruct the potential in the neighbourhood of
a given background trajectory we use a generalization
of the Hamilton-Jacobi formalism to two-field inflation
with non-canonical kinetic terms. In this formalism one
interprets the Hubble parameter as a function of the field
coordinates H = H(φa). This requires the trajectory
not to intersect itself. We assume that the field velocity
φ̇a is non-zero along the trajectory. This means we can
write Ḣ = φ̇a∂aH and the simplest solution to the second
Friedmann equation Eq. 21c is given by

∂aH = −Gabφ̇
b

2M2
p

. (26)

Inflationary trajectories of this kind follow the Hubble
gradient flow, given by φ̇a ∼ −∇aH. They allow us to
rewrite the first Friedmann equation Eq. 21b as the multi-
field Hamilton-Jacobi equation

V = 3H2M2
p − 2M4

pG
ab(∂aH)(∂bH). (27)

The Hamilton-Jacobi equation allows us to reconstruct
a potential that admits a given inflationary trajectory
as a solution3. We immediately see that, generically,
the reconstructed potential does not respect the same
symmetries as the Hubble parameter. For instance, if
the Hubble parameter has a shift symmetry in one of
the fields, this may be violated for the potential if the
field metric is non-trivial.

It is straightforward to check that the Hamilton-Jacobi
equation Eq. 27 together with the Hubble flow Eq. 26 is
consistent with both the tangent and the normal projec-
tion of the field equations Eq. 21a.

3 As long as there is solution for the Hubble function that is strictly
monotonic in all coordinates.

B. inflating along an isometry

The existence of an isometry implies that we are free to
choose field coordinates (θ, ρ), such that the field metric
Gab does not depend on θ. Moreover, we have also the
freedom to put Gθρ to zero4. Furthermore, we denote
f(ρ) = Gθθ. In other words, we choose coordinates such
that the scalar action is

Sφ = −1

2

∫
d4x
√
−g
[
f(ρ)∂θ2 + ∂ρ2 + 2V (φa)

]
. (28)

VIII. ANALYTICAL ESTIMATES OF THE
OBSERVABLES

In this appendix we provide two simple analytical
derivations of the observables of Orbital Inflation. The
first approach exploits the Hubble gradient flow to solve
for ρ(N) and θ(N). Consequently we use the δN for-
malism to approximate the power spectrum of curvature
perturbations that is generated on superhorizon scales.
Moreover, this allows us to estimate the amplitude of
primordial non-Gaussianities. The second approach
solves the system of coupled perturbations directly,
exploiting the fact that the entropy mass and radius of
curvature are constant. This has the advantage that we
can also estimate the power spectrum of isocurvature
perturbations.

As in the main text we work with the angular and
radial field coordinates suitable to describe Orbital
Inflation. The field metric Gab is then diagonal and
given by Gρρ = 1 and Gθθ = f(ρ). Furthermore, we
assume the product separable form for the Hubble
parameter H(θ, ρ) = X(ρ)W (θ).

For completeness, the following formulas from the main
text are useful below:

T a =
1√
f

(−1, 0), Na = (0, 1),
1

κ
=
fρ
2f
,

θ̇ = −2
Hθ

f
, ε =

2H2
θ

fH2
, R =

2

κ2
− fρρ

f
,

µ2 = 6M2
pHHρρ − 4M4

pH
2
ρρ −

4M2
pHθHθρρ

f
.

(29a)

(29b)

(29c)

A. Hubble gradient flow combined with the δN
formalism

We use the Hubble gradient flow Eq. 26 to solve ex-
actly for the background dynamics of Orbital Inflation.

4 If Gθρ 6= 0, define θ̃ = θ +
∫
dρ

Gθρ(ρ)

Gθθ(ρ)
such that G̃θ̃ρ = 0.
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Since the Hamilton-Jacobi function is product separable
H(θ, ρ) = W (θ)X(ρ), the formal solution to the Hubble
gradient flow Eq. 26 for this class of Orbital Inflation is
given by ∫ θend

θin

dθ

∂θ(lnW (θ))
= −

∫ ∆N

0

2

f(ρ)
dN , (30)∫ ρ(N)

ρin

dρ

∂ρ(lnX(ρ))
= −2N , (31)

where we put Nin = 0 and we denote ∆N ≡ Nend. We
first solve the equation for the radius Eq. 31 to second
order in δρ ≡ ρ−ρ0, using that X(δρ) = 1+ λ

2 δρ
2 + α

6 δρ
3.

This yields

δρ(N) = e−2λN
(
δρin −

α

2λ

(
1− e−2λN

)
δρ2

in

)
. (32)

Notice that the solution is well defined in the limit λ→ 0
by expanding the exponential. Alternatively, we arrive at
the same solution if we perturb the full background equa-
tion of motion of ρ around the Hamilton-Jacobi solution,
and discard the faster decaying mode:

δρ̈+ 3Hδρ̇+

(
−2

(
f ′

f2

)′
H2 + Vρρ

)
δρ

+
1

2

(
Vρρρ − 2

(
f ′

f2
H2

)′′)
δρ2 = 0 (33)

First of all, the bracket in front of δρ evaluates exactly
to µ2, the mass of isocurvature perturbations, which
equals µ2 = 2λ(3 − 2λ − ε)H2. The linearized equation
of motion in efolds therefore has Lyapunov exponents
ω± = 1

2 (−3 + ε± (3− ε−4λ)) (as long as 3− ε−4λ > 0).
The least decaying mode is therefore indeed ω+ = −2λ.
Furthermore, the bracket multiplying δρ2 evaluates to
α(3−6λ)+ε(−ακ+4λ), yielding exactly the same correc-
tion term as in equation (32). We can directly read off the

power spectrum of isocurvature perturbations S ≡ δρ√
2ε

from equation (32), which reads

PS =
H2

8π2ε
e−4λN . (34)

Finding the solution to Eq. 30 involves a few more steps.
We first expand

1

f(ρ)
≈ 1

f(ρ0)

(
1− 2δρ

κ
+

(
κ2R + 6

)
δρ2

2κ2

)
. (35)

This together with Eq. 32 allows us to integrate the right
hand side of Eq. 30 to second order in δρin, resulting
in a functional F(κ,R,m2, α, δρin,∆N). The left-hand
side of Eq. 30 depends on θin. Moreover, it also depends
on θend, which on its turn depends on δρin through the
relation ε(θend, δρend) = 1. This requires an explicit func-
tional form for W (θ), but we neglect this contribution. It

is typically suppressed because either δρend has vanished,
or otherwise λ is very small.

In the δN formalism one computes how the number
of efolds of an inflationary trajectory ∆N changes as a
function of δρin and θin. However, we are not required
to solve for ∆N(θin, ρin) explicitly, because to compute
the superhorizon evolution of R, we only need to know
its derivatives with respect to the initial perturbations

R ≈ δ∆N = Naδφ
a +

1

2
Nabδφ

aδφb + . . . . (36)

Here we denoted Na ≡ ∂∆N
∂φa and Nab ≡ ∂2∆N

∂φa∂φb
, and

δφa are the typical size of field fluctuations at horizon
crossing. Therefore, we proceed by taking derivatives of
Eq. 30 with respect to θin and δρin which we can invert
to find to linear order

Nθ√
f0

=

√
1

2ε
, (37)

Nρ =
1

κλ

(
1− e−2λ∆N

)
, (38)

where we have used that ∂θ(lnW (θ)) =
√

εf
2 . This yields

the power spectrum of curvature perturbations

PR =

(
H

2π

)2(
N2
θ

f
+N2

ρ

)
=

H2

8π2ε
(1 +D) , (39)

with D ≡ 2εN2
ρ . We confirm this result in the next sub-

section by solving the perturbation equations explicitly.
Similarly, we can compute the amplitude of the bispec-

trum generated on superhorizon scales. Assuming that
the curvature perturbations are dominantly sourced by
the radial isocurvature perturbations, we expect that the
δN formalism captures the bispectrum well. The Hessian
Nab is given by

Nθθ
f0

= − η

4ε
, (40)

Nθρ√
f0

=
(1− κλNρ)

κ

√
2

ε
, (41)

Nρρ = −N2
ρ

(
ακ

2
+ λ

10− Rκ2

4

)
+Nρ

2− Rκ2

2κ
. (42)

The amplitude of local non-Gaussianities generated
on superhorizon scales is given by [56, 57] fδNNL =

− 5
6

GabGcdNaNc(Nbd+ΓgbdNbNg)
(GefNeNf )2

. Therefore, in the limit

D � 1 we approximate the amplitude of the bispectrum

to be fNL ≈ 5Nρρ
6N2

ρ
, that is,

fNL ≈ −
5

12

(
ακ+ λ

10− Rκ2

2

)
+

5

Nρ

2− Rκ2

12κ
. (43)

In particular, taking λ = 0 and α = 0 we recover the
results from [1]. A non-zero λ or cubic coupling α will
substantially enhance the amount of non-Gaussianities,



10

though. Moreover, note that for small values of λ and

α ∼ 2−Rκ2

κ2Nρ
the first and second term in fNL approxi-

mately cancel each other, and the other corrections to
fNL should be taken into account.

Summarizing, in the limit D � 1 we find the follow-
ing predictions for the tensor-to-scalar ratio, the spectral
index, the tensor tilt, the amplitude of the reduced bis-
pectrum, and its tilt, respectively:

r =
16ε

1 +D
, (44a)

ns = 1− 2ε− 1− 4κλNρ
Nρ

, (44b)

nt = −2ε, (44c)

fNL = − 5

12

(
ακ+ λ

10− Rκ2

2

)
+

5

Nρ

2− Rκ2

12κ
, (44d)

nfNL ≡
dfNL/d∆N

fNL
=

2− Rκ2

κ2

1− κλNρ
Nρρ

, (44e)

with D = 2εN2
ρ , and Nρ and Nρρ are given in Eq. 38

and Eq. 42.
We check these expressions numerically using PyTrans-

port [47, 48] (see also [49, 50]). We take λ ∈ 1
6 [0, 0.2] in

six steps, α ∈ {0.01, 1, 100} and use polar coordinates
f(ρ) = ρ2 to inflate at a radius ρ0 = 2. Smaller values
of ρ0 . 1 lead to numerical instabilities. In the inflation-
ary direction we choose chaotic inflation with W (θ) ∼ θ.
First of all, we find that the analytical prediction for the
amplitude of the power spectrum in Eq. 39 is recovered
within 1.0% to 3.4% precision in the range ∆N ∈ [50, 60].
The analytical prediction for ns on the other hand are
accurate up to 0.03% − 0.31%. In fact, the prediction
for the amplitude is systematically a bit too small. This
could for instance be due to corrections to the horizon
crossing formalism. To check our predictions for fNL we
take a squeezing ratio of kS/kL = 9.5 and let the sum of
wavenumbers K ≡ 2kS + kL cross the horizon between
50 and 60 e-folds before the end of inflation. For small
values of λ and α = 0.01 we find that the tilt of fNL is
captured quite well with the analytical estimate for nfNL
above. The amplitude of fNL, however, crosses zero for
this value of α, and is therefore sensitive to the remaining
δN corrections. We indeed find that including these cor-
rections substantially improves agreement with the full
numerical result. For larger values of α the δN correc-
tions become less important for the bispectrum ampli-
tude, but more relevant for estimating its tilt. Finally,
since we choose ρ0 = 2 we break the condition D � 1
for moderately small values of λ already. Numerically
we confirm that, for increasing λ, the δN corrections be-
come important quickly. Nevertheless, the full δN result
captures both the amplitude and the spectral tilt of the
squeezed bispectrum well.

We conclude that the simple analytical predictions
work well provided that 1) D � 1 and 2) α . O(1),

but excluding a small regime around α ∼ 2−Rκ2

κ2Nρ
. Some-

what smaller values of D and larger values of α yield a

squeezed bispectrum that is better captured by the full
δN expression, as long as λ is sufficiently small for the
bispectrum to be dominantly sourced by superhorizon
evolution.

B. Solving the system of coupled perturbations

To confirm the δN prediction of the power spectrum
we solve the system of coupled perturbations directly.
Our starting point is the quadratic action for field per-
turbations [54, 57–60] [2]

S(2) =
1

2

∫
d4xa3

[
2ε

(
Ṙ − 2H

κ
σ

)2

− 2ε
(∂iR)2

a2

+σ̇2 − µ2σ2 − (∂iσ)2

a2

] (45)

Here R denotes the curvature perturbation, which is the
only degree of freedom in single field inflation. Moreover,
the isocurvature perturbations σ ≡ (N)aQ

a represent
perturbations normal to the inflationary trajectory [61].
Here Qa are the gauge invariant field fluctuations, equal
to δφa in the flat gauge. If we put the σ-terms to zero
the action reduces to the familiar quadratic action of
single field inflation.

We solve for the superhorizon evolution of the curva-
ture and isocurvature perturbations. Neglecting decaying
solutions, their equations of motion simplify to

R′ − 2

κ
σ = 0,

σ′′ + (3− ε)σ′ + µ2

H2
σ = 0.

(46a)

(46b)

Here a prime denotes a derivative with respect to efolds
dN = Hdt. For constant 0 < µ2/H2 = 2λ(3− 2λ− ε)�
9/4 and ε � 1, the equation for isocurvature perturba-
tions describes an overdamped oscillator with the same
Lyapunov exponents as given below (33), with ω = −2λ
as least decaying mode. The isocurvature perturbations
in turn source the curvature perturbations according to
Eq. 46a. Integrating this equation for constant κ gives
the superhorizon solution for R.

R(N) ≈ R0 +
σ0

λκ
(1− exp (2λN)) . (47)

Here we made use of the fact that κ is constant. In the
limit that µ2/H2 = 0, the second term in Eq. 47 be-
comes proportional to ∆N/κ. In the quantum analysis

[52] there are two uncorrelated contributions to R̂. The
first contribution is sourced by initial curvature perturba-
tions where σ0 = 0. This corresponds to a constant mode
R0 that freezes out on super-Hubble scales. The second
contribution is sourced by initial isocurvature perturba-
tions where R0 = 0 and grows on superhorizon scales.
Using the typical amplitude of quantum perturbations
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at horizon crossing σ0 ∼
√

2εR0 ∼ H
2π , we arrive at our

simple estimate of the power spectrum of curvature per-
turbations

PR ≈
H2

8π2ε

(
1 +

2ε

λ2κ2

(
1− e−2λ∆N

)2)
(48)

Here all variables are understood to be evaluated at
horizon crossing, and ∆N denotes the number of efolds
counted from when the observable modes cross the hori-
zon until the end of inflation. Similarly, for the isocurva-
ture spectrum we find

PS ≈
H2

8π2ε
e−4λ∆N , (49)

where we defined S ≡ 1√
2ε
σ. Both results are in agree-

ment with the δN estimates from the previous subsec-
tion.

C. Perturbative constraints

To ensure the validity of the perturbative approach
we implicitly assumed, we should take κ large enough.
In the same way, the numerical code [47] is performing
a tree level in-in computation, and higher order tree

level (and loop) corrections should be small compared
to the leading result. Our simple analytical result
captures the super-Hubble evolution of R, and therefore
provides an estimate of the leading order tree level
computation. Using Eq. 45 we can estimate that

ξ ∼
√

8ε
κ is the perturbation parameter that measures

the relative size of the higher order tree level corrections
compared to the leading tree level computation. In the
in-in computation the sourcing of R by σ is captured

by the interaction term S
(2)
int =

∫
dτd3xa34εHκ (∂τR)σ

(using conformal time dτ = dN/aH.) Rewriting this

in canonical variables u ≡
√

2εaR and v ≡ aσ we get

S
(2)
int ∼

∫
d ln τd3x ξ(∂τu)v, with ξ =

√
8ε
κ . Therefore, we

need to ensure that ξ � 1. This means we are save in
§ III, since we take κ ≥ 1.

Moreover, we need to ensure that quantum pertur-
bations remain much smaller than the radius of curva-
ture δρ � κ In particular, we should be careful in the
limit that the isocurvature perturbations are very light
µ2/H2 � 1. If we consider small values of κ, such that

the second term in Eq. 12 dominates, we get PR ∼ H2

κ2 .
Since the amplitude of the power spectrum is fixed by ob-
servations AR ∼ 10−9, this implies that the typical size
of quantum fluctuations gets suppressed if we decrease κ.
We find δρ2 ∼ H2 ∼ κ2AR � κ2, so we are always fine.
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