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Abstract

We study the power spectrum of dark matter density fluctuations in the framework of the Effective

Field Theory of Large Scale Structures (EFTofLSS) up to three loop orders. In principle, several

counter-terms may be needed to handle the short-distance sensitivity in perturbation theory.

However, we show that a small number of extra coefficients are sufficient to match numerical

simulations with percent accuracy when a generic renormalization prescription is implemented

(allowing for running of the individual counter-terms). We show that the level of accuracy

increases with respect to the two loop results, up to k ' 0.4h Mpc−1 at redshift z = 0, although

the overall improvement is somewhat marginal. At the same time, we argue there is evidence that

the behavior of the loop expansion in the EFTofLSS is typical of an asymptotic series, already

on the brink of its maximum predictive power (at z = 0). Hence, the inclusion of higher orders

will likely deteriorate the matching to data, even at moderate values of k. Part of the reason for

this behavior is due to large contributions to the (renormalized) power spectrum at three loop

order from mildly non-linear scales, even after the UV counter-terms are included. In conclusion,

the EFTofLSS to three loop orders provides the best approximation to the (deterministic part of

the) power spectrum in the weakly non-linear regime at z = 0, and higher loops are not expected

to improve our level of accuracy.
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1 Introduction

Ambitious observational programs are underway to make very precise measurements of the evo-

lution of large scale structures (LSS), e.g. [1–4]. One of the main goals is to constrain the nature

of dark energy, but at the same time future surveys will also probe the origin of the initial seed

for structure formation, which — very plausibly — emanated from an early phase of accelerated

expansion. After the outstanding results from the Planck collaboration [5, 6], current bounds on

primordial non-Gaussianity are still far from reaching a well-motivated physical threshold [7, 8],

which may be difficult to achieve if restricted to observations of the cosmic microwave background

(CMB) alone. The study of LSS will then provide, not only powerful constraints on the proper-

ties of dark energy, but also the next leading probe for early universe cosmology. Regardless of

one’s motivation, an accurate analytic understanding will indisputably maximize the discovery

potential for these remarkable experiments. As a consequence, the combination of a voluminous

amount of new data has reinvigorated the constant effort to make accurate theoretical predictions

in cosmology. This includes the fully non-linear region of structure formation, where simulations

have reached an exquisite level, as well as the weakly non-linear regime, where the Effective Field

Theory of LSS (EFT of LSS) — both in Euler [9–18] and Lagrangian space [19–22] (see [23] for

a review) — has pushed forward the frontiers of ‘precision cosmology’.

In the EFTofLSS, as in any other EFT [23], the imprint of the short-distance physics in

long-distance dynamics is encapsulated in a series of (symmetry-motivated) ‘Wilson coefficients’.

In practice, these extra parameters play two roles. On the one hand, they can be chosen to

remove the cutoff dependence introduced in an effective approach, simultaneously fixing the

errors incurred by pushing the perturbative description beyond its realm of validity. On the other

hand, the remaining finite part of the Wilson coefficients can incorporate the true knowledge from

the non-perturbative regime in the long-distance dynamics. This information can be obtained

either from observation or by comparison with a description which is assumed to be valid at

short(er) scales. Hence, given a sought-after level of precision, the EFT provides an accurate

analytic description of the dynamics up to a finite number of matching coefficients. The EFT

formalism has several advantages over numerical methods attempting to cover the entirety of the

parameter space over all scales. Not only the EFT approach provides an analytic description

of the problem in a ‘universal’ framework with systematic power-counting, but also because the

EFT formalism is naturally suited to scan over different cosmologies and initial conditions to

a high level of accuracy. Therefore, unlike standard perturbation theory (SPT) beyond leading

order [24] (where the perturbative (or loop) expansion is ill-defined), the EFT approach makes

cosmological perturbative expansions a controlled theoretical framework.

In a body of recent work, initiated in [11, 12], the EFTofLSS was studied up to two loops, and

shown to describe the evolution of dark matter density perturbations in the mildly non-linear

regime with great success [13, 14, 18, 25]. In this paper, we continue the quest for accuracy by

studying the power spectrum within the EFT approach to three loop orders. The SPT calculation

at three loops was carried out in [26], yet without cutting off the region of integration where the

perturbative expansion is not expected to be valid. We point the reader to [26] for details on

the diagrammatic and computational tools needed to achieve the third order in perturbation
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theory. In this paper we implement instead the EFTofLSS, introducing a series of counter-terms

to remove the unwanted contributions from modes outside the realm of validity of SPT, and at

the same time to properly incorporate the true non-linear information. As expected, precision

increases with respect to the two loop results. As we shall see, this occurs with high precision up

to k ' 0.4hMpc−1 at redshift z = 0.

While this is a remarkable achievement of the EFTofLSS, we argue here that — even corrected

by the EFT methodology — there is strong indication that the perturbative series is an asymp-

totic expansion reaching its maximum predictive power at weakly non-linear scales. (Similar

speculations have been made in [27, 28].) As a consequence, we do not expect higher loop orders

to have a positive impact, but rather to produce a departure from the true answer at moderate

values of k. As a circumstantial evidence for this behavior, we find that the results up to two loop

orders can match the numerical data with great precision up to high scales, k ' 0.7h Mpc−1,

while at three loop orders — and after including the necessary counter-terms — the χ2 of the

best fit presents a sharp increase for k & 0.55h Mpc−1. We argue the reason for the mismatch is

not due to short-distance contributions, which we may be overlooking, but rather to large effects

from mildly non-linear scales. Hence, our findings suggest that the EFTofLSS to three loop order

provides the most accurate analytic model for the (deterministic part of the) dark matter power

spectrum in the weakly non-linear regime at z = 0. The study of higher n-point function would

be required to analyze the behavior of the perturbative expansion more thoroughly.

This paper is organized as follows. In sec. 2 we discuss the general renormalization scheme and

matching procedure we will utilize to extract the value of the extra parameters of the effective

theory up to a given loop order. In sec. 3 we move on to the development of the EFTofLSS

to three loops, and in particular the counter-terms that will be needed to properly remove the

unwanted UV part of the SPT computation and incorporate the true information from non-linear

scales. In that respect, we perform an ‘ultraviolet (UV) test’ similar to what was proposed in

[14] to ensure we incorporate all of the necessary counter-terms that handled the UV-sensitivity

of the SPT results. We incorporate further details in appendix A. In sec. 4 we match the

EFTofLSS up to two and three loop orders to numerical simulations up to a given fitting scale

kfit. We include the IR-resummation of [29–31], which removes large oscillations in the power

spectrum. We find a high level of accuracy up to scales of order k ' 0.5h Mpc−1. We discuss the

input of non-linear information as well as the possibility of overfitting the data. A comparison

between the two and three loop results is performed and we show that there is improvement in

the addition of the three loop effects for scales up to k ∼ 0.4h Mpc−1, although the increase

in accuracy is somewhat marginal. At the same time we show there is circumstantial evidence

of the asymptotic nature of the perturbative expansion in the EFTofLSS. We elaborate on this

point in sec. 5, where we discuss in more detail the properties of the perturbative series up to

three loop orders. In contrast to the ‘on-shell’ prescription of [14], throughout this paper we use a

generalized renormalization scheme which incorporates the running (or scale dependence) of the

individual counter-terms, thus allowing us to extend the reach of the perturbative expansion. In

appendix B we analyze the power spectrum using the on-shell scheme. We reproduce their results

up to two loop orders and show that our results to three loop orders are essentially unmodified

using the on-shell prescription.
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2 Matching procedure

In order to match the analytic computations within the EFT approach to numerical data1 we

introduce the χ2 of the fit, given by

χ2(ci(Λ), kfit) ≡
N∑

n=1

(
Pdata(kn)− PEFT

`-loop (kn, ci(Λ))

Pdata(kn)

)2

, (2.1)

which we minimze to a given fitting value, kfit ≡ kN , with N � 1. PEFT
`-loop is the power spectrum

computed in the EFTofLSS up to `-loop orders with a cutoff scale Λ, whose dependence is

absorbed into a series of i-independent coefficients, ci(Λ), each one with up to ` contributions,

depending on the loop order at which each counter-term first enters.

Before we proceed, let us stress an important point. Our procedure to fit the EFTofLSS to

numerical data will be somewhat different than in previous studies at two loops, e.g. [14]. Unlike

what it has been done in the literature, we will not fix the higher loop order counter-terms,

ci(2), · · · , ci(`), as a function of ci(1) through a renormalization condition. Instead, we allow for

independent contributions from each one of them. The reason is twofold. First of all, because

we use numerical results for power spectrum, it is difficult to cleanly disentangle the (cutoff

dependent) counter-term which cure the mistake of SPT from the (finite) renormalized part which

accounts for the true non-linear information. Therefore the size of the effect from the counter-

terms does not respect the naive (loop) power-counting, while the renormalized parameters do.

This is related to the second reason, which is the fact that we use a cutoff to define the EFT and

therefore the size of the effect of the counter-terms at high loop orders may be as large as lower loop

contributions, simply from the existence of ‘power-law’ cutoff dependence.2 As a consequence, in

what follows we do not distinguish between the counter-terms and the renormalized contributions

and treat the extra parameters in the EFT as matching coefficients (although we will loosely refer

to them as counter-terms in general). Since in our approach all counter-terms will be fixed by

matching, each one of the ci(`)’s loose a physical significance, and only the sum

ci = ci(1) + ci(2) + · · ·+ ci(`) , (2.2)

will be physically relevant.3 In particular, we will see that each one of them is typically very

sensitive to small changes to the (simulated) power spectrum, in particular for wave numbers

close to the upper limit of the fitting range, while the sum remains much more stable.

Fixing the lowest order counter-term by matching, while removing higher order contributions

by the renormalization prescription, is akin to an on-shell scheme in quantum field theory. How-

ever, in principle any other prescription is equally viable, as long as there is convergence. (In

general, we expect the difference between various schemes to be a higher order effect in the sys-

tematic expansion of the EFT, much like different renormalization schemes.) On the other hand,

1We use the (new) ‘Horizon’ Simulation data given in [32].
2This could be resolved by working with an approximate analytic expression for the power spectrum, as in [11],

such that we can explicitly remove the polynomial Λ dependence in the counter-terms.
3The reader should keep in mind that different Wilson coefficients at leading order (i.e. tree-level), and beyond,

contribute at various loop orders in the SPT counting.
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since one of the focus of our work is to understand precisely the properties of the perturbative ex-

pansion within the EFT framework to high loop orders, addressing whether we have convergence

or not should not hinge upon a particular choice of renormalization. In order to bypass this issue,

we will not commit to a specific choice and instead allow for running of the individual `-loop order

counter-terms when fitting to the numerical data.4 In this sense our choice is conservative, yet

we also suffer from potential ‘over-fitting’, something which was already emphasized in [14]. We

will attempt to address this issue throughout the paper. In any case, following our motivation

to assess the best results the EFTofLSS can possibly achieve, we will not refrain from allowing

the most freedom the effective theory can offer. For completeness, we analyze in appendix B the

three loop result using the renormalization prescription of [14].

Another important point for our matching procedure is to determine the uncertainty bands

for a given counter-term, and linear combinations thereof. In order to do so, we will minimize

∆χ2 ≡ ci(`)
∂2 χ2

∂ci(`)∂ci(`′)
ci(`′) , (2.3)

while varying the linear combination of counter-terms we are interested in. We will display error

bands which correspond to variations in χ2 of order ∆χ2 ' 10−3. While, realistically when fitting

data we are subject to larger errors, we are guided by the self-consistency of EFT approach to

three loop orders for a given choice of matching coefficients.5

Not all of the ci coefficients are equally determined by this procedure. The reason is twofold.

First of all, at low values of k their contribution is highly suppressed. Secondly, when they start

to become relevant at higher values of k, the effect of higher order coefficients which we do not

include (see below), together with the failure of the loop expansion, significantly impairs their

determination. This leaves some of our Wilson coefficients poorly constrained. We will return to

this point in sec. 5.

3 Power spectrum to three loops

In this section we discuss the construction of the EFTofLSS in Euler space, and in particular the

number of relevant counter-terms which will be needed to renormalize the SPT computations

up to three loop order. We will also implement the infrared (IR) resummation inherited from

Lagrangian space [19, 25, 29, 30], which improves the predictability of the theory, more radically

at three loops.

3.1 Cutoff our ignorance

The basic idea of the EFT approach is to introduce a cutoff scale, Λ, below which the perturbative

expansion is under control, and above which some UV information is needed. The cutoff depen-

dence is absorbed into Wilson coefficients, ci(Λ), up to a given loop order. The theory becomes

4For example, for the sound speed, the two loop parameter cs(2) may be fixed in terms of the one loop counter-

term, cs(1), by the requirement that the power spectrum remains unchanged at two loop orders in the limit of small

wave number [11]. In our case we will instead keep both cs(1) and cs(2) as independent parameters. While this

increases our freedom, we will also show that the sum, which is the relevant quantity, remains remarkably stable

to variations of kfit.
5For other (perhaps more realistic) choices, e.g. ∆χ2

0 = 0.1, the error bands would be a factor of 10 thicker.
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Figure 1: The SPT power spectrum at a given loop order (P`) is plotted in the first row, calculated

with high (Λ = 60hMpc−1), moderate (Λ = 0.7hMpc−1) and low (Λ = 0.3hMpc−1) cutoffs. The second

row compares the size of each loop term using different cutoffs. The kink in the plot is due to a change in

sign in the P`’s, while we plot the absolute value. The reader will notice that P3 dominates over the other

contributions at moderate values of k, and only becomes (somewhat) smaller in the low cutoff case. This

feature, as we shall see, anticipates much of our conclusions in our paper.

predictable once a finite set of coefficients, which also incorporate the true non-linear information,

are read off either from data or a realization of the full theory. For the SPT computations at

`-loop order we have

P SPT
`-loop(k,Λ) = P0 + P1(k,Λ) + · · ·+ P`(k,Λ) , (3.1)

where P` denotes the SPT prediction of the power spectrum up to ` loops, with the integrals

appearing in the perturbative expansion cut off at k < Λ.6 We will use both, a high (Λ =

60hMpc−1) and a moderate (Λ = 0.7hMpc−1) cutoff, the latter used as a proxy for the non-

linear scale. Figure 1 shows the SPT results at one (P1), two (P2) and three (P3) loop orders.

The reader will immediately notice that P3 is somewhat larger than P2 even for a moderate

cutoff, and it becomes smaller only when Λ . 0.3hMpc−1, which we also display for comparison

in Fig. 1. As we shall see, this fact turns out to have important implications for the convergence

of the EFTofLSS, even after all the counter-terms are included.

3.2 Counter-terms and UV test

Once the counter-terms, ci(Λ), are added the power spectrum in the EFTofLSS takes the form,

schematically:

PEFT
`-loop(k) = P SPT

`-loop(k,Λ) + counter-terms(Λ) , (3.2)

6As it has been repeatedly emphasized, the finiteness of SPT integrals for a given cosmology does not imply

the errors are necessarily small, let alone under theoretical control [23].
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where P SPT
`-loop(k,Λ) is given in (3.1). There are several counter-terms which contribute at three

loop orders. However, one can show many of which are less important to reproduce the data.

For concreteness, the following set can be singled out:7

{
4πc2

sk
2P0(k), 8π2c̄4k

4P0(k), 4πc2,quadk
2 Pquad(k), (3.3)

4π2cstochk
4, 16π3c̄6k

6P0(k), 8π2c4,quadk
4Pquad(k)

}
,

where P0(k) is the linear power spectrum, and

c̄4 = −1

2
c4
s + c4 ,

c̄6 = −c2
s c4 + c6 , (3.4)

(see appendix A for more details). As we discuss momentarily, these coefficients are sufficient

to deal with the UV-sensitivity of the SPT computations. All the above expressions must be

expanded up to the relevant loop order. For instance, the sound speed cs is inherently of one

loop order, but it also enters at higher orders and therefore

c2
s = c2

s(1) + · · ·+ c2
s(`) , (3.5)

to `-loop order. On the other hand, the coefficients c4, c2,quad and cstoch are naturally of two

loop order, hence (` − 1) coefficients would be needed, and so on. Notice that, at two loops

and beyond, we encounter counter-terms which descend from loop corrections to higher n-point

functions, such as c2,quad and c4,quad. The leading contribution comes from a contraction with

the three-point function, see appendix A. Higher order corrections may be obtained from the

expansion of the stress tensor at higher orders in the density field, see e.g. [14].8

In the EFTofLSS we then have one new term at one loop, c2
s(1), four extra coefficients at two

loops, {c2
s(2), c4(1), c2,quad, cstoch}, and three more to three loops, {c2

s(3), c4(2), c6}. A first check

of this choice consists on explicitly checking whether the UV sensitivity of the SPT results can

be absorbed into the counter-terms. For this ‘UV test’ we use the high cutoff SPT result and

renormalize it using the EFTofLSS, and then compare against the moderate cutoff answer, as a

proxy of the non-linear scale, see Fig. 1. As a measure for the fit we use the residuals

χ2
UV-test =

∑

n

(
P SPT
`-loop(kn,Λ = 0.7hMpc−1)− PEFT

`-loop(kn,Λ = 60hMpc−1)

P SPT
`-loop(kn,Λ = 0.7hMpc−1)

)2

, (3.6)

to a given loop order. This is introduced in analogy to the measure in (2.1) we use to test the

quality of the EFT fit to data.

7There are various notations in the EFT literature for the Wilson coefficients. We will keep using cs for the sound

speed. For terms involving n-derivatives we introduce a cn parameter. For terms quadratic in the perturbations

we will also use a ‘quad’ label, as in [14].
8In principle, given our set in (3.3), Pquad should be computed to next-to-leading order, giving rise to another

counter-term, i.e. c2,quad(2). However, we will show that the leading order Pquad is sufficient to renormalize the

theory. The same applies to other counter-terms to three loop orders. In fact, one can show that c4,quad has little

impact at three loops, and therefore it will be omitted when we fit to the numerical data. This will also reduce

the number of free parameters in the EFT approach.
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Figure 2: The residuals from fitting the EFTofLSS with the appropriate counter-terms to the SPT

spectra with a moderate cutoff. The top row uses a fit in the momentum range k ∈ [0.02, 0.2] Mpc−1,

while for the bottom row we use k ∈ [0.02, 0.5] Mpc−1. The three columns show the one, two and three

loop results, respectively.
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Figure 3: The χ2 for the UV test (EFT with high cutoff vs. SPT with moderate cutoff) for different

sets of Wilson coefficients. The left and right plots are for two and three loops respectively.

Figure 2 shows the results for the one, two and three loops for two different fitting regions,

k ∈ [0.02, 0.2] Mpc−1 (top) and k ∈ [0.02, 0.5] Mpc−1 (bottom). In all cases, the residuals are

below 1%. (This is particularly surprising in the bottom row, since the fitting range comes rather

close to the cutoff scale, Λ = 0.7 Mpc−1.) Notice the spike in χ2 in the 2-loop results. This is due

to a zero in the denominator of the measure introduced in (3.6), which can be easily removed

from the fit to get a better agreement. Figure 3 displays the results of the UV test, for models

where different counter-terms are removed from the fit.9 At two loops the UV dependence can

9Notice that the step in the accumulated χ2 results from the spike in Fig. 2, due to the normalization, as
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Figure 4: The cumulative χ2 as a function of the upper bound of the fitting range for the `-loop EFT

results, with ` = 1, 2, 3.

be absorbed into cs, c4 and cstoch. For this UV test, counter-term associated with c2,quad has no

noticeable effect to two loops. As we will see later, this changes when we perform the matching to

the numerical simulations. This means that a renormalized finite contribution will be required to

fit the data. At three loop level, the UV dependence can be removed by adding the sound speed

as well as c4 and c6. The remaining counter-terms have little impact on the UV dependence in

the momentum range we are interested in. Yet, similarly to the two loop case, a renormalized

contribution may be needed.

As we mentioned, because we cannot separate the counter-term from the renormalized (cutoff

independent) contributions, we will match for all of the ci’s without distinction. The UV test,

however, tells us that we have included all the needed counter-terms in (3.3) to account for the

UV dependence in the SPT computations. We will show shortly that we have also included those

which capture (most of) the true non-linear information in the numerical data.

4 Comparison with simulations

We present now the results of the fit to numerical data at redshift z = 0, and the subsequent

determination of the counter-terms of the EFTofLSS. In Figure 4 we display the resulting χ2

including all our available EFT parameters at one, two and three loop orders, respectively. The

range of χ2 chosen is such that the prominent increase shown in the plot is indicative of residuals

moving above the 1% level, which is the accuracy we are aiming at in this paper. We immediately

see that the EFTofLSS to two loops provides an excellent fit to the data up to wavenumbers of

order k ' 0.9hMpc−1. (There is, however, some reliance on an unphysical value (negative) for

the stochastic term for k & 0.7h Mpc−1.) From the plot, we also conclude that the EFTofLSS

mentioned before.
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to three loop orders shows some improvement with respect to the two loop results in the regime

0.2 . k . 0.4hMpc−1. Nevertheless, the increase in accuracy is somewhat marginal. At the

same time, around k ' 0.55hMpc−1, the power spectrum to three loops starts to be in tension

with the numerical data. We will return the reasons for the discrepancy in sec. 5.

4.1 Non-linear information

In Fig. 5 we show several EFT models at two and three loop orders with only a subset of Wilson

coefficients. For comparison, we also provide the χ2 associated with the UV test, which gave

us the necessary counter-terms to remove the short-distance sensitivity of SPT. The difference

between the UV test and the fit to the simulations accounts also for the non-linear information in

the numerical data. As we see, the relative difference is small, which means the extra matching

coefficients to two loop orders not only correct the SPT results, they also incorporate all of the

relevant non-linear information to a very good level of accuracy.

For the two loop results, in the left panel of Fig. 5, we immediately realize that the sound speed

is no longer sufficient, and the fit to the power spectrum beyond one loop order can be significantly

improved, in principle up to k ' 0.9hMpc−1, by including more EFT coefficients. We notice,

however, that at this high k the value of the stochastic term starts to influence the results (see e.g.

[18]). We comment on this below. To three loops, shown in the right panel of Fig. 5, amusingly

adding just the sound speed provides a relatively good fit to the data up to k ' 0.55hMpc−1.

As we noticed earlier, when we performed the UV test, cs alone is not sufficient to remove the

(incorrect) UV portion of the SPT calculation. Therefore, the reason for the apparent success of

the fit is twofold. Firstly, there is non-linear information in the numerical data which resembles

the k2 behavior of the cs counter-term and, secondly, there are partial cancelations between the

part of the counter-terms which correct the SPT result with high cutoff, and the true non-linear

information which is also encoded in the matching coefficients. Notice that, after all, the fit

does improve the more parameters are added. Nonetheless, as anticipated in Fig. 4, and starting

around the same value, k ' 0.55h Mpc−1, the result to three loops starts to deviate from the

data, even when all the counter-terms from the UV test are included. As we argue here, the

reason for the mismatch is not because of the UV sensitivity, or lack of counter-terms, but rather

to contributions from the mildly non-linear regime.

4.2 (Over)fitting the data

As we mentioned earlier, our approach to fit the numerical data gives us more leeway for the

value of the matching coefficients at a given loop order. Therefore, in principle, we are subject to

some degree of overfitting. In order to explore whether that is the case, we studied the behavior

of each of the `-loop order contributions for the EFT coefficients as a function of the fitting range.

In contrast, we also provide the value for the total sum, see (3.5). The results at two loops are

shown in Fig. 6, and in Fig. 7 without the stochastic term, and in Fig. 8 at three loops. The

errors are computed as explained in sec. 2.

Unfortunately, since we are unable to disentangle the counter-term from the true non-linear

information, the contributions from the Wilson coefficients become important at values of k lower

than expected by power-counting, for the sole purpose of removing the SPT (miss-)behavior.
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Figure 5: Same as Figure 4, but for different combinations of counter-terms. For comparison, we also

include the result for the UV test (see text).
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Figure 6: The fit for the relevant EFT coefficients up to two loops in the range kfit ∈ [0.2, 1]h/Mpc.

The error bands are determined as explained in the text.

Hence, our ability to determine each coefficient from the power spectrum alone deteriorates.10

10In cases where the linear theory can be solved exactly, without resorting to numerical input, the perturbative

expansion is written in terms of analytic functions. The counter-term and renormalized coefficients can be then

properly disentangled. Once the counter-terms cancel the unwanted contribution from the loop integrals, the

perturbative expansion obeys a well-defined power-counting in coupling constant(s) of the theory, as long as they
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Figure 7: Same as in Fig. 6, but without the stochastic term.

This is exacerbated by the many new degeneracies between counter-terms at high loop orders.

In spite of these caveats, up to two loops the situation is relatively under control. This is partially

due to the remarkable determination of the (total) sound speed at lower values of k. As we see in

the plots, the other coefficients start to become relevant at k ' 0.3−0.4h Mpc−1, and their values

remain relatively stable until k ' 0.9hMpc−1, where there is a noticeable shift. This is consistent

with the behavior of the χ2 seen in Fig. 4. We also notice the reduction of the error bars, which

is due to the scaling with k of each of the (derivatively coupled) counter-term. In the spirit of

[14], we interpret the sudden change in the counter-terms as an indication of overfitting.11 We

should emphasize, however, that there is a non-trivial sensitivity to the value of the stochastic

term for k & 0.6h Mpc−1. Moreover, the best-fit value for cstoch becomes negative at high values

of k, even after taking into account the part due to the UV counter-term (see Fig. 3). This goes

against the expectation of a positive (renormalized) stochastic coefficient [14]. Nonetheless, we

have checked that omitting the stochastic term produces similar results for the other coefficients

and overall fit up to k ' 0.7h Mpc−1, where potential overfitting starts to show up, see Fig. 7.

This is consistent with Fig. 5, which suggests that while the UV test requires a stochastic term

to correct SPT in the hunt for high accuracy, the EFT matching to the power spectrum alone

remain small.
11Notice, in contrast, the kink in the matching coefficients occurs at a value of k higher than the one reported

in [14]. We attribute the different limiting values to the different choice of renormalization scheme. We have also

studied the renormalization scheme introduced in [14], and reproduce their results at two loops. We also analyzed

the power spectrum to three loop orders using their approach to fix the counter-terms, see appendix B.
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Figure 8: Same as Fit. 6 for the three-loop counter terms. Due to large errors and degeneracies we

display their values in the range kfit ∈ [0.3, 1]h/Mpc.

does not entirely capture the correct renormalized contribution. In view of the lack of additional

information, our results provide a very good fit to the data up to k ' 0.7h Mpc−1 to two loops.

For the three loop results, on the other hand, the failure of a systematic loop expansion in SPT,

already at relatively low values of k, complicates the independent determination of the counter-

terms and extraction of the true non-linear information. While the (total) sound speed remains

very well determined, the other coefficients are less constrained by the data from the power

spectrum, leading to large uncertainties at low values of k (not shown). It is only a somewhat

small window, around k ∈ [0.3, 1]h Mpc−1, that the Wilson coefficients (other than the sound

speed) can be determined more accurately, which is displayed in Fig. 8. In particular, we notice
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that the terms which first appear at two loops, c4 and c2,quad, are much better extracted than

c6.12 This is not surprising, given the high power of k involved for the terms associated with the

latter coefficients, which only become relevant for k & 0.5hMpc−1. This is consistent with what

we observed in Fig 3, where the additional term is required for the UV test but only at higher

values of k. Similarly to the results at two loops, but somewhat earlier, there’s a clear shift in the

value of the Wilson coefficients, more prominently for c4 and c2,quad, around k ' 0.55hMpc−1.

There is also another large variation near k ' 0.85hMpc−1, more prominently for c6. These

results are consistent with our findings for the overall χ2 in Fig. 4. We have also checked that

omitting the stochastic term the plots for the Wilson coefficients are essentially unaltered up to

k ' 0.55hMpc−1. We will return to this point in sec. 5.

4.3 IR-resummation

An important aspect in implementing the EFT approach in Euler space is the so-called IR-

resummation, introduced in [29–31] following the construction of the EFT in Lagrangian space in

[19] (where the resummation is manifest). In Figure 9, we show the impact of the IR-resummation
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Figure 9: The result of the best fit with (continuous line) and without (dashed line) IR-resummation at

different loop orders.

procedure in the EFT approach. The continuous lines indicate the result after fitting to the sim-

ulation with the IR-resummation, while the dashed lines display the best fit without performing

the resummation. The values for the counter-terms do not vary significantly, with or without

resummation. However, the oscillatory behavior is nicely removed by the procedure. The reader

will note that the amplitude of the oscillations increases, the higher the loop order in the expan-

sion. At one loop, they are of the order of 1%, while they reach 2% at two loops and as high as

12We have included the loop correction, c4(2), but we found that adding c4,quad did not change our results

significantly.

13



10% for the three loop results, mainly at high values of k.13 In short, the IR-resummation and

IR-safe integrals were vital at three loops to improve the quality of the matching. This provides

yet another clue that the long-distance behavior, as opposite to the non-linear dynamics, is failing

in SPT (without resummation) at high loop orders.

5 Discussion

We have computed the power spectrum in the EFTofLSS to three loop orders. We show the

residuals in Fig. 10 for the best fits to the data using our renormalization procedure, both for the

two and three loops, with kfit = 0.35h Mpc−1 at redshift z = 0. The values for the counter-terms

are given by:

c2
s(1) = 1.60

(
1

hMpc−1

)2

, c2
s(2) = −0.27

(
1

hMpc−1

)2

, c2
s(3) = −3.54

(
1

hMpc−1

)2

,

c4(1) = −1.82

(
1

hMpc−1

)4

, c4(2) = 2.67

(
1

hMpc−1

)4

,

c2,quad = 1.66

(
1

hMpc−1

)2

, c6 = 1.94

(
1

hMpc−1

)6

, (5.1)

for the three loop results.14 We notice the level of accuracy to three loop orders increases with

respect to two loops at redshift z = 0, although the improvement is somewhat marginal. We also

notice that adding the three loop order makes the best fit to rapidly deviate from the numerical

data, unlike the two loop result which is much better behaved, see also Fig. 4. We interpret this

as an evidence of the asymptotic nature of the loop expansion in the EFTofLSS, as we discuss

here in more detail.

5.1 Perturbative expansion

The parameters that control the EFTofLSS are given by [19]

εs>(k) = k2

∫ ∞

k

d3p

(2π)3

P0(p)

p2
, (5.2)

εs<(k) = k2

∫ k

0

d3p

(2π)3

P0(p)

p2
, (5.3)

εδ<(k) =

∫ k

0

d3p

(2π)3
P0(p) , (5.4)

13Let us emphasize that the use of the IR-safe integrand, as advocated in [26, 33] and [12], was also crucial to

reduce the amplitude of the oscillations to what is shown in Fig. 9. At the end of the day, only the BAO oscillations

are damped by the IR resummation.
14For the best fit to two loops the counter-terms are given by:

c2s(1) = 0.97

(
1

hMpc−1

)2

, c2s(2) = −1.11

(
1

hMpc−1

)2

,

c4 = 0.34

(
1

hMpc−1

)4

, c2,quad = 1.0

(
1

hMpc−1

)2

.
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Figure 10: The best fit to the data with kfit = 0.35h Mpc−1 using our renormalization scheme up to

two (green) and three (blue) loop orders, respectively. The one loop result (in red), in contrast, is fitted

in the range k ∈ [0.1, 0.3]h Mpc−1. The results are essentially unaltered by the presence of a stochastic

term, which is omitted here. Notice that while the three loop results provide a somewhat better fit to

the data in the region k < kfit, the two loop power spectrum (with our renormalization scheme) is better

behaved beyond that point (see text).

where P0 is the leading order (tree-level) power spectrum. For instance, let us take the power

spectrum at one loop, P1, which includes the sum of two diagrams, P13 and P22. In the limit the

loop momenta, p, is higher than the external momenta, k, we find

P1(k) = P13(k) + P22(k)
k�p−−−→ P0(k) εs>(k), (5.5)

while in the opposite limit,

P1(k)
k�p−−−→ P0(k)εδ<(k) . (5.6)

In terms of the EFTofLSS, the behavior due to short-distance modes, encapsulated in εs>, is

absorbed into a series of local (derivatively-coupled) terms and Wilson coefficients. The latter

include each a finite piece responsible for the true non-linear information, but also a counter-term

to correct the SPT contribution beyond the non-linear scale. Notice that εs< does not appear

in the final expression. This is due to a partial cancellation between the two contributions at

equal time. In our universe, however, the parameter εs< is indeed the largest (see Fig. 11). This

means that a proper treatment of the perturbative expansion is mandatory, in order to correctly

account for all physical effects. In Lagrangian space, the perturbative expansion does not rely on

εs< being small and it is automatically resummed. The IR-resummation of [29] translates this

feature into Euler space, removing the oscillatory behavior due to the BAO scale (see Fig. 9).

Finally, εδ< is the long-distance expansion parameter of the effective theory. For example, at
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Figure 11: Parameters measuring the amplitude of non-linear corrections on a mode of wavenumber k,

computed for our universe at z = 0. They quantify the motions created by modes longer, εs>, and shorter,

εs<, than k and the tides, εδ<, from larger scales. See [19, 23] for more details.

`-loop order the renormalized result scales as:15

P`(k)
k�p−−−→ a` P0(k) (εδ<(k))` + · · · , (5.7)

and therefore εδ<(k) must remain somewhat small in order to have a well-defined perturbative

series. We see in Fig. 11 that around k ' 0.4 - 0.6hMpc−1 we have εδ< ' 1. However, at these

values of k the non-linear behavior plays an important role to determine the precise location of

the scale at which perturbation theory breaks down, depending on the convergence properties of

the series expansion. This is, after all, one of the main motivations behind the EFTofLSS. Yet,

we observe that the perturbative series in the EFTofLSS to three loop orders already starts to

deteriorate significantly for k & 0.55h Mpc−1 at z = 0, which also translates in the much more

rapid deviation from the data seen in Fig. 10 at lower values of k, with kfit ' 0.35h Mpc−1. The

sharp increase in the χ2 is also in the region where εδ< is order one (see Fig 11). However, at the

same time, the computation up to two loops can be extended, somewhat surprisingly, to higher

values of k with our (more generic) renormalization scheme. Since, as we see in Fig. 11, the

dependence on k of εδ< is rather mild for k & 0.1hMpc−1, the precise region of analytic control

could in principle be at higher values of k, depending on the exact location of the (non-linear)

scale at which the perturbative expansion ought to break down. In general, the behavior of the

series expansion as a whole, even after renormalization, depends on the form of the a`’s in (5.7),

e.g. [26–28, 34]. In an EFT approach these coefficients commonly growth at each loop order,

leading to an asymptotic behavior for the series expansion. We confirm this expectation in the

present paper.

15The ellipses include logarithmic corrections which may also play an important role to determine the precise

region of analytic control.
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Figure 12: We plot the power spectrum in SPT at `-loop order computed with high cutoff after removing

the associated (leading) c2s(`)(Λ)k2P0 counter-term found by fitting in the low k region, which we denote

as P̄`. As expected, the naive power counting is restored, yet there is a significant increase in P̄3 at

k & 0.1hMpc−1. As we see in Fig. 1 with a low cutoff, this behavior is due to large IR contributions

rather than the need of additional UV counter-terms.

The reason for the (putative) asymptotic behavior behind the renormalized perturbative series

is not due to an incorrect treatment of short-distance modes — which are naturally incorporated in

the EFTofLSS — but instead due to the nature of the perturbative expansion itself.16 Physically,

the renormalized power spectrum is dominated by loop momenta in the range between the peak

of the linear spectrum and a mildly non-linear scale, where lower loop orders provide the best

approximation to the data. We notice that, after removing the leading cs counter-term to each

one of the P`’s (see Fig. 12), the naive power counting is restored at low k, yet there is a rapid

increase in the contribution at three loops as we move to higher wavenumbers. Some of this

behavior is cured by extra counter-terms, however, an important comes from modes near the

non-linear scale.17 This is also evidenced in Fig. 1, where the relative size between P` and P`+1

is reduced at higher loop orders even after implementing a low cutoff (Λ ' 0.3h Mpc−1).

16As an example, let us consider a scaling universe: P s
0(k) = Akn ' (k/kNL)n+3, such that εδ<(k) ' (k/kNL)3+n.

The power spectrum at `-loops, after renormalization, scales like

P s
` (k) ' as

` (k/kNL)(n+3)` P s
0(k) . (5.8)

A proxy for the value of the a`’s for a scaling universe can be obtained from the one dimensional case where

as
` ' (an`)

−n`, with an a numerical factor depending on n [35] (see Eq. 3.24 in [28]). A good approximation of

the power spectrum near the non-linear scale is given by n ' −2 [11], and therefore as
` ' ã`−2

√
`(2`)!, after using

Stirling’s approximation and absorbing numerical factors into ãn. This scaling with ` is paramount of asymptotic

series, with an optimal number of loops given by `opt(k) ' 1/|ã−2εδ<(k)|. Since at the scales of interest we have

εδ< ' 1, it is not surprising then to find `opt ' 3 for our universe.
17This is consistent with the expectation in the soft limit discussed in [36, 37].
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We should emphasize, nonetheless, that for wavenumbers below k ' 0.4h Mpc−1 the EFT

results to three loop orders (slightly) outperform the two loop results, see Figs. 4. At the same

time, it is not too surprising that an EFT approach with more Wilson coefficients can improve the

situation in this regime.18 Yet, this conclusion turns out to be independent of the renormalization

scheme, and therefore quite robust. In fact, as we show in appendix B, similar wavenumbers can

also be reached to three loop orders with the on-shell prescription of [14], and with no additional

counter-term other than c2
s(3). This is an indication that long-distance effects are becoming

important before higher order Wilson coefficients have a chance to kick in, which we would have

expected to play an important role at high values of k according to the UV test (see Fig. 3).19

Hence, while we find that we can extend the reach of perturbation theory previously found in

[14], our analysis using a more generic renormalization procedure demonstrates that (not only

the accuracy of the two loop results was somewhat underestimated in [14]) the value k ' 0.4h

Mpc−1 is plausibly the best we can achieve in terms of accuracy of the EFTofLSS at z = 0.

In conclusion, our results suggest that we do not expect higher orders to change our main

results, but rather to further deteriorate the matching to the data, such that the perturbative

EFT derivation will start to depart from the true answer at even lower values of k. This is made

worse by our inability to disentangle the finite part (carrying the εs>-dependent renormalized

part) of the Wilson coefficient, together with the failure of SPT manifesting itself at relatively

lower values of k (than expected by power-counting). As a result, the explicit counter-term

part of the Wilson coefficient that removes the unwanted contributions from SPT will be needed

earlier than expected (except perhaps for those involving higher powers of k). This introduces

large degeneracies and errors which will hinder the quality of the fit. Hence, as a consequence

of all of the above, we believe that the EFTofLSS to three loop orders already provides the best

approximation to the dark matter power spectrum in the weakly non-linear regime.

It is conceivable that a (Borel or Pade) resummation in εδ< (similar to the attempt in [26]

for SPT) could in principle improve the level of precision in the region of analytic control of

the EFTofLSS. We leave this possibility open for exploration.20 The reader must keep in mind,

however, that our computation only includes the deterministic part of the evolution equations,

and a careful treatment of the stochastic term is required to properly address the ultimate reach of

perturbation theory, see e.g. [15–17]. We also postpone for future work the study of the redshift

dependence of the EFT results, which were largely ignored here. This will have important

implications for future surveys, which can in principle reach up to high values (e.g. z & 2 [3]).

In that case, it is (very) possible higher loop orders can still play an important role.

18 Other counter-terms, which we have not included in the matching, can in principle impact the resulting χ2. For

instance, we have checked that adding the leading c4,quad, or velocity-dependent counter-terms (see appendix A),

both improve the fit with respect to the two loop results, up to k ' 0.5h Mpc−1, but only by a small amount.
19We already commented on the fact that cs alone provides a relatively good fit to data to three loops, see Fig. 5.

This feature appears to translate to the on-shell scheme, where adding P3 and only c2s(3)(c
2
s(1), kren) outperforms

the two loop result with the same number of independent parameters. However, once again, we observe similar

behavior as in our analysis with a more generic scheme, and around the same scale (see appendix B).
20While convergence beyond the non-linear scale is doomed to fail, see e.g. [23], a Pade-type resummation —

which in practice amounts to an ansatz of the form P (x)/Q(x) (with two polynomials) to replace the (asymptotic)

series
∑
n anx

n — could in principle provide a better approximation in the mildly non-linear regime. Nevertheless,

most likely a Pade approximation will not be able to reproduce the true answer at fully non-linear scales.
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A Wilson coefficients to three loops

A.1 Density perturbations

We have considered counter-terms which have the following structure:

k2δ, k2δ2, k4δ, k4δ2 (A.1)

with δ the density perturbation. The computation of the power spectrum in the EFTofLSS to

three loop orders then takes the form:

PEFT
3-loop = P SPT

3-loop − 2(2π)(c2
s(1) + c2

s(2) + c2
s(3))k

2P0 − 2(2π)(c2
s(1) + c2

s(2))k
2P1 − 2(2π)c2

s(1)k
2P2

+ (2π)2
(

(c2
s(1))

2 + 2c2
s(2)c

2
s(1)

)
k4P0 + (2π)2(c2

s(1))
2k4P1

− 2(2π)(c2,quad(1) + c2,quad(2))k
2Pquad − 2(2π)c2,quad(1)k

2Pquad(2) − 2(2π)2(c4(1) + c4(2))k
4P0

− 2(2π)2c4(1)k
4P1 + 2(2π)3c2

s(1)c4(1)k
6P0 + 2(2π)2c2

s(1)c2,quad(1)k
4Pquad + (2π)2cstochk

4

− 2(2π)2c4,quadk
4Pquad − 2(2π)3c6k

6P0. (A.2)

We also used the definitions:

Pquad =

∫

q
P0(|~k − ~q|)P0(q)F2(~k − ~p, ~p), (A.3)

Pquad(2) = 6k2

∫

p1,p2

P0(p1)P0(p2)P0(|~k − ~p1|)F3(~p2,−~p2,~k − ~p1)F2(~k − ~p1, ~p1)+

8k2

∫

p1,p2

P0(p1)P0(|~p1 + ~p2|)P0(|~k − ~p1 − ~p2|)×

F2(−~p1, ~p2 + ~p1)F2(~p1,~k − ~p1 − ~p2)F2(~p2 + ~p1,~k − ~p1 − ~p2). (A.4)

The coefficients in red, which in principle enter at three loops, have been ignored when fitting

to the numerical data. We have found, and shown explicitly for the case of c4,quad in sec. 3.2, that

21https://www.simonsfoundation.org/event/amplitudes-meet-cosmology-2019/
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they are not needed for the UV test. Moreover, we have confirmed they have a small impact on

the fit for the power spectrum. Therefore, in order to reduce the number of additional parameters,

we have omitted them from the analysis in the main text. In principle, more observables would

be needed to assess their true contribution to encode non-linear data.

A.2 Velocity Terms

In principle the new terms in the evolution equations can include the (renormalized) velocity

field, θ ≡ ∇ · ~v. Additional terms may arise also from contractions involving (renormalized)

composite operators such as δ2, see e.g. [38]. Since we have θ(1) ∝ δ(1) at linear order, the

leading order effects in the velocity are degenerate with the density perturbations and therefore

can be absorbed into the existent counter-terms. At second order, one can also show that

∇2Φ(2)
g −∇2Φ(2)

v = −2

7
G2(Φ(1)

g ), (A.5)

with Φg,v the gravitational and velocity potentials, and G2(Φg) is a second-order ‘Galileon’ opera-

tor, see [38]. The latter, which not renormalized at leading order in derivatives, is proportional to

Pquad, which we have already included in our analysis. At cubic order in Φv we start to see new

counter-terms which would enter through a two loop diagram, and therefore may be needed to

renormalize the power spectrum at three loops. (Recall the tree-level cs counter-term is needed

at one loop order and so on and so forth.) We have checked that, while the new counter-term(s)

are not degenerate with those of the density, they have a somewhat minor impact on the fit (see

footnote 18).

B On-shell Renormalization scheme

In our approach we have used a more generic renormalization scheme, allowing for more freedom

in the determination of the EFT parameters. Partly, our chose was driven by the desire to

explore the main features of the perturbative series, as generically as possible. However, in the

renormalization scheme used in [11, 14, 29] the additional parameters are fit using an ‘on-shell’

renormalization scheme. For instance, the sound speed at two loops, cs(2), is obtained by imposing

the condition:

PEFT
2-loop(kren) = PEFT

1-loop(kren) , (B.1)

at a renormalization scale (originally at kren ' 0.2hMpc−1). As a consequence, one has

c2
s(2)(c

2
s(1), kren) =

P2(kren)

2(2π)k2
renP0(kren)

− c2
s(1)

P1(kren)

P0(kren)
+ π(c2

s(1))
2k2

ren, (B.2)

effectively having only one free parameter for the sound speed. Similarly, one can also constrain

cs(3) by this procedure. In this appendix we analysis the three loop results using the on-shell

renormalization scheme. We will see that our conclusions are essentially unmodified by the choice

of scheme, even though the increase in accuracy between two and three loop results appears more

prominently in the on-shell scheme.
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B.1 Two loops

In order to warm up, let us first reproduce the results previously derived at two loops. Here

we will follow the choices made in [14], where the IR-resummation was also implemented. The

renormalization scale was chosen at:

PEFT
2-loop(kren) = PEFT

1-loop(kren) at kren = 0.005hMpc−1 . (B.3)

The range for the best fit was obtained by looking for islands of stability of the Wilson coefficients

as a function of kfit. They found that the percent-level accuracy can be achieved up to k '
0.34hMpc−1. We reproduce their results in Figure 13, with the following (central) values for the

counter-terms:

c2
s(1) = 0.54

(
1

2hMpc−1

)2

, c4(1) = 6.06

(
1

2hMpc−1

)4

, c2,quad = 0.82

(
1

2hMpc−1

)2

,

where we used the normalization used in [14] (with the change c1 → c2,quad). These values are

comparable with those obtained in [14] (see table 2 in sec. 5.2).22 We attribute the small changes

to the use of different cosmologies.
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FPS, 2015
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Figure 13: Residuals for the best fit for the power spectrum using the on-shell prescription of [14]. For

the two loop result (green) the reach is approximately to k ' 0.35hMpc−1 with small variations of the

counter-terms, as discussed in [14], while to three loop order (blue) we find the reach can be extended to

k ' 0.4hMpc−1 at percent level, with kfit ' 0.35hMpc−1.

In Fig. 14 we show the resulting χ2 for two choices of kren, and in comparison with our renor-

malization scheme. Neither includes the stochastic term. Notice the spike at k ' 0.3−0.4hMpc−1

anticipated in [14] with the on-shell scheme. In contrast, the renormalization procedure in this

paper can be extended to higher wavenumbers, see Fig. 10.

22The sign difference in c2,quad and c4 is due to the convention we used in this paper (see (A.2)).
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Figure 14: The value of χ2 for the on-shell prescription, for two values of the renormalization scale:

kren = {0.005, 0.01}hMpc−1 (in green and red), against the scheme used in this paper (in blue).

B.2 Three loops

In Fig. 13 we include also the result for the power spectrum to three loop order using the on-shell

prescription. We used one renormalization scale at kren = 0.005hMpc−1, as in (B.1), and a

second one, k̃ren, for the three loop result:

PEFT
3 -loop(k̃ren) = PEFT

2 -loop(k̃ren) at k̃ren = 0.01hMpc−1 . (B.4)

For simplicity we omit c4,(2) and c6 as well as the stochastic term, such that only cs(3) is added to

the fit and determined as explained above.23 We find for the counter-terms the following values

for the best fit:

c2
s(1) = 0.22

(
1

hMpc−1

)2

, c4(1) = −0.14

(
1

hMpc−1

)4

, c2,quad = 0.53

(
1

hMpc−1

)2

.(B.5)

For comparison, in Fig. 15 we present the χ2 in the EFT to three loops using the two different

prescriptions (without the stochastic term). Notice that the resulting χ2’s are essentially the

same, starting to rapidly change around a similar value, k ' 0.5hMpc−1. This supports the

asymptotic nature of the perturbative series, regardless of the renormalization scheme. We also

notice, comparing with Fig. 14, that the result to three loops outperforms its counterpart at

two loops with the on-shell scheme. By studying the behavior of the counter-term we find that

the on-shell scheme extends the regime from k ' 0.3hMpc−1 up to k ' 0.4hMpc−1, without

overfitting the data. This is consistent with our results to three loop orders.

The reader will immediately notice that the power spectrum using our renormalization scheme

to two loops in Fig. 10 outperforms the on-shell counter-part. This is not all that surprising.

23We find that including these additional counter-terms does not significantly improve the fit in the realm of

convergence of the EFT expansion.
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When the a generalized scheme is used, the low k data fits the combination c2
s(1) +c2

s(2), but leaves

the ‘other direction’ unconstrained. Hence, each one of the individual c2
s(`) is allowed to run as

we move toward shorter distances, k � kren. (This is even more prominent up to three loops,

see Fig. 8.) This possibility, in particular for c2
s(2) was not included in the on-shell prescription

of [14]. As a result, the c2
s(1) in the best fit obtained in [14] has a flat region ending around

k ' 0.3h Mpc−1 (see the top panel in their Fig. 7). This is an indication of a non-trivial running

rather than overfitting, as we see in Fig. 6, where the total value for the sound speed remains

essentially unaltered with our renormalization procedure. In other words, the on-shell scheme

produced an earlier failure of the perturbative expansion due to missing running effects.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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0.000
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3-loop: Full

Figure 15: The value of χ2 for the on-shell prescription (in red), in comparison with the scheme used in

this paper (in blue). Unlike what we see in Fig. 14, we find that both produce essentially the same results

to three loop orders. We have omitted the effects of the stochastic term in this plot.
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