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Abstract. We explore finite size 3D effects in open axion haloscopes such as a dish
antenna, a dielectric disk and a minimal dielectric haloscope consisting of a mirror and
one dielectric disk. Particularly dielectric haloscopes are a promising new method for
detecting dark matter axions in the mass range above 40µeV. By using two specialized
independent approaches — based on finite element methods and Fourier optics — we
compute the electromagnetic fields in these settings expected in the presence of an axion
dark matter field. This allows us to study diffraction and near field effects for realisti-
cally sized experimental setups in contrast to earlier idealized 1D studies with infinitely
extended mirrors and disks. We also study axion velocity effects and disk tiling. Diffrac-
tion effects are found to become less relevant towards larger axion masses and for the
larger disk radii for example aimed at in full size dielectric haloscopes such as MAD-
MAX. The insights of our study not only provide a foundation for a realistic modelling
of open axion dark matter search experiments in general, they are in particular also the
first results taking into account 3D effects for dielectric haloscopes.
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1 Introduction

Originally introduced to explain the absence of charge-parity violation in strong interac-
tions (strong CP problem) [1–3], the axion is one of the best motivated cold dark matter
(CDM) candidates [4–14]. A huge amount of effort is being devoted to discovering the
axion. Many of these efforts rely on the conversion of axions to photons under a strong
magnetic field; for a review cf. [15–17]. The first experimental efforts have been taken
using resonant cavities to detect CDM axions with masses of ma ∼ 1− 40µeV [18–20].
Such a mass range is well-motivated if the breaking of the Peccei-Quinn (PQ) sym-
metry happens before inflation. In this scenario the axion mass is poorly constrained
with ma . 10−2 eV [15], although high masses again require some fine-tuning in the
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theory [21]. However, a post-inflationary PQ symmetry breaking scenario is also possi-
ble but tends to require higher axion masses between 20µeV . ma . 200µeV to allow
for the axion CDM matching the observed abundance [9, 10, 22–25]. Since CDM ax-
ions move non-relativistically, the energy of the converted photons is given by the axion
mass up to small velocity corrections ∼ 10−6ma. Therefore, the photons have smaller
wavelengths at higher ma which implies a smaller volume of resonant cavities. Since
the output power is proportional to the cavity volume, this makes it difficult for cavity
experiments to achieve good sensitivity for higher axion masses. For this reason, var-
ious efforts are underway to develop large-scale and higher mode resonators for axion
detection, see for example references [26–32].

In this paper we focus on effects relevant for axion searches employing volumes
with typical length scales larger than a few photon wavelengths, such as dish anten-
nas [26, 33–37] or dielectric haloscopes like MADMAX [27] or LAMPOST [31]. A dish
antenna converts axion CDM to photons on a magnetized metallic surface. Dielectric
haloscopes generalize this idea by enhancing the axion-photon conversion by placing
multiple dielectric layers in front of a metallic mirror inside a strong magnetic field. The
ratio of the power emitted by such a haloscope compared to a single perfectly conducting
mirror is called the power boost factor β2. In MADMAX for example one aims to use
around 80 dielectric lanthanum aluminate disks in order to achieve β2 ∼ 104−105 [27, 38].
A detailed one-dimensional discussion on the working principle of dielectric haloscopes
has been previously given in [39, 40] (“1D model”). However, the 1D model can only
consider interfaces with an infinite transverse extend. It cannot assess finite size effects
such as diffraction and near fields and their effects on the search sensitivity. Therefore,
in this paper we perform 3D calculations taking such effects explicitly into account.

We will first review the axion-Maxwell equations in 3D and introduce two methods
to solve them for axion haloscopes in section 2. First we consider specialized finite
element methods (FEM) in section 2.2. We present a second method in section 2.3
where we calculate the E-field solutions with a scalar diffraction theory based on Fourier
optics. In section 3 we discuss the well understood solutions in free space. Afterwards
we apply our methods to cases for open axion haloscopes: we consider a dish antenna
in section 4, already pointing out the primary 3D phenomena due to the finite size of
the disks: diffraction and near field effects. In this context we also discuss the interplay
with axion velocity effects. We then study a dielectric disk in section 5 and the effect of
the tiling of multiple dielectrics into one large disk by simulating a disk glued together
from two pieces in section 6. Finally we discuss a minimal dielectric haloscope with a
mirror and a dielectric disk in section 7. We conclude in section 8.

2 Methods for Axion-Electrodynamics

In the following we will discuss the axion-Maxwell equations and methods in order to
solve them in the case of open axion haloscopes. To this end we will pursue two different
methods – specialized finite element methods and a scalar diffraction theory based on
Fourier optics. This will later enable us to validate them with each other. Moreover,
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we will cross check them against other well-understood analytical approaches specialized
for a free space situation in section 3 and for a dish antenna in section 4.

2.1 Axion-Maxwell Equations

The macroscopic axion-Maxwell equations [18] are

∇ ·D = ρf − gaγB · ∇a, (2.1)

∇×H − ∂tD = Jf + gaγ(B∂ta−E ×∇a), (2.2)

∇ ·B = 0, (2.3)

∇×E + ∂tB = 0, (2.4)

(�+m2
a)a = gaγE ·B, (2.5)

where gaγ is the axion-photon coupling, a the pseudo-scalar axion field, E is the electric
field, B the magnetic flux density, D the displacement field, H the magnetic field
strength, ρf the free charge density and Jf the free current density which fulfill the
continuity equation ∇ · Jf + ρ̇f = 0 as in usual electrodynamics. The axion photon
coupling is also often expressed in terms of the dimensionless constant Caγ , the axion
decay constant fa and the fine structure constant α as [39]

gaγ = − α

2πfa
Caγ = −1.16× 10−12GeV−1

(
109GeV

fa

)
Caγ , (2.6)

where Caγ [41] is a model dependent quantity of order unity.

The axion-Maxwell equations (2.1)–(2.5) are a coupled system of partial differential
equations (PDEs) which can be solved by existing numerical algorithms. However, it is
computationally very expensive to solve this highly coupled system of PDEs. To obtain
uncoupled equations, we extend the perturbation approach [42, 43] to all fields, i.e., we
expand all fields in gaγ :

X(x, t) =
∞∑
i=0

giaγm
i
aX

(i)(x, t), (2.7)

with X(i) = E(i),D(i),B(i),H(i),J
(i)
f , ρ

(i)
f , and a(i). In the expansion we have introduced

a further factor of ma such that all expansion factors gaγma are dimensionless.

The equations corresponding to zeroth order in gaγ are the well known unmodified
Maxwell equations plus a free Klein-Gordon equation for the axion field. The free current
density and charge density appearing in the zeroth order case can be chosen such that
one generates the desired zeroth order E(0) and B(0) fields.
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As the coupling gaγ is very small for the viable values of fa & 108GeV, it is sufficient
to consider only the linear order corrections, which gives

∇ ·D(1) = ρ
(1)
f + ρ(1)a , (2.8)

∇×H(1) − ∂tD(1) = J
(1)
f + J (1)

a , (2.9)

∇ ·B(1) = 0, (2.10)

∇×E(1) + ∂tB
(1) = 0, (2.11)

(�+m2
a)a

(1) =
1

ma
E(0) ·B(0), (2.12)

with

ρ(1)a = − 1

ma
B(0) · ∇a(0), (2.13)

J (1)
a =

1

ma
(B(0)∂ta

(0) −E(0) ×∇a(0)). (2.14)

The perturbative approach leads to a decoupling of the first order Klein-Gordon equation
from the other first order equations. It also guarantees that the free charge continuity

equation ∇J (1)
f + ∂tρ

(1)
f = 0 and axion continuity equation ∇J (1)

a + ∂tρ
(1)
a = 0 hold. Of

course this statement is correct for all orders. Physically this means that the zeroth order
fields induce first order fields, e.g., by inducing first order charge and current densities.
The first order charge and current density source the first order E and B-fields, which
then induce second order fields and so on. Furthermore it becomes clear that axions are
sourced only at first order in gaγ if E(0) · B(0) 6= 0. The back reaction of photons to
sourced axions will always be at higher order, and will thus be negligible.

We consider perfect conductors as inner boundaries of the simulation domain. Ob-

jects with finite conductivity σ can be included by setting J
(1)
f = σE(1) inside. In

this work we further assume that linear constitutive relations are fulfilled D = εE,
H = µ−1B, where ε is the relative electric permittivity and µ the relative magnetic
permeability. If we insert them into the equations (2.8)–(2.12) and combine1 equation
(2.9) with equation (2.11) we obtain a wave equation for E(1):

∇× (µ−1∇×E(1)) + ∂2t εE
(1) + σ∂tE

(1) + ∂tJ
(1)
a = 0. (2.15)

This wave equation is a PDE for E(1) which can be solved with standard numerical
methods.

As dark matter must be highly non-relativistic, the axion de Broglie wavelength
is λdB ∼ 10 m (10−3/v) (100µeV/ma) with v the axion velocity. Therefore, the axion
field a(0) can be treated as spatially constant over the size of the experiment. For
small axion velocities one can model the background axion field as the real part of

1Equations (2.8) and (2.10) can be treated as initial conditions to be valid at t = t0 if the two
continuity equations hold separately. In the case of harmonic time dependence equations (2.8) and
(2.10) are trivially fulfilled.
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a(0)(x, t) = a(0)(t) = a0e
−iωt, with a constant a0. Throughout this paper we will always

assume that the axion velocity and therefore the gradient of the axion field is negligible.
Only in section 4 we describe what happens when we also take velocity effects into
account. To simulate an axion haloscope we assume a strong and static external B-field
B(0)(x) and no external E-field2 E(0) = 0. Defining the axion induced field as

Ea(x) ≡ −gaγa0B(0)(x), (2.16)

equation (2.15) reduces in this case to

∇× (µ−1∇×E)− ω2ε̃E = −m2
aEa, (2.17)

with ω = ma (from the zeroth order Klein-Gordon equation), the complex permittivity
ε̃ ≡ ε(1 + iσ

ωε) and the physical first order E-field E = gaγmaE
(1). Furthermore, E

has harmonic time dependence, because of our time harmonic choice of a(0) and the
assumption that time and spatial coordinates in E are separable.

When discussing the free space solution of equation (2.17) in section 3 we will give
the axion induced field a physical meaning. In this work we define the external magnetic
field as B(0) = B̂(0)B̂(0)(x), where B̂(0) is the constant magnitude and B̂(0)(x) contains
the spatial dependency and is of order one. We use the symbol Ea both for the constant
field Ea = gaγa0B̂

(0) as well as for the magnitude |Ea(x)| = Ea = gaγa0B
(0)(x), since

from the context it will be clear what case we mean. In this paper we further assume
only pure dielectric materials (µ = 1) without losses (σ = 0, ε̃ = ε) or perfect electrical
conductors (PEC) as described above.

We would like to stress, that the formalism applied here can also be applied to
hidden photons [26], where we would have to expand the the dark E and B-fields instead
of the pseudo-scalar axion field. The source term in equation (2.17) would then include
the dark E and B-fields. As for the axion field, they can be treated as spatially constant
for non-relativistic CDM velocities and sufficiently small masses.

2.2 Specialized Finite Element Methods (FEM)

We explicitly solve equation (2.17) for complex geometries numerically with the finite
element method (FEM) [44]. In order to resolve the wave structure sufficiently precise,
the space discretization (“mesh”) needs 5 to 10 mesh points per photon wavelength. In
this paper we consider the commercially available COMSOL Multiphysics R© [45] (wave-
optics module) and the open-source package Elmer [46, 47] (VectorHelmholtz module).
Using two different FEM tools enables us to cross-check the results obtained with both
tools and to possibly disentangle systematics from the different algorithms or meshes
from physical effects. Moreover, in this paper we will test our simulations against ana-
lytical well understood cases and semi-analytical methods described in the next sections.

Previous axion-electrodynamics studies [29, 42, 48] for cavity setups aim to find
modes of closed cavities. In the case of a dish antenna and dielectric haloscopes we are

2More generally E(0) only appears in (2.17) if one assumes that the axions have a velocity.
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Figure 1: Exemplary mesh for a minimal dielectric haloscope, which consists of a
circular PEC at z = 0.02 m and a dielectric disk of thickness 0.5 cm, as considered in
section 7. The upper side of the disk is located around z = 0. The shown segment is in
the r, z plane in which we calculate the fields in the 2D3D approach. r =

√
x2 + y2 is

the radial coordinate.

faced with open situations. Therefore in Elmer we use Robin boundary conditions to
describe an open system

n×∇×E− αn× (n×E) = g on Γ, (2.18)

with n the normal vector on the simulation boundary Γ and α = ik, g = 0 (impedance
boundary conditions) [49]. In COMSOL we use more sophisticated perfectly matched
layer (PML) boundary conditions [45, 50], which absorb a large amount of impinging
radiation even under a large incidence angle.

FEM can handle 3D geometries which have typical length scales of a few wave-
lengths in all three spatial dimensions. In this case both direct and iterative solvers
may be used. In Elmer for example we obtain the 3D solution always by using a tuned
“Biconjugate Gradient Stabilized” iterative solver [49, 51, 52], while in COMSOL we use
direct solvers [45, 53]. While iterative solvers may suffer from insufficient convergence, a
direct solver directly calculates the solution to the matrix system. On the other hand a
direct solver is much more memory intensive and therefore computationally demanding.

In order to reduce the size of the problem by one dimension we exploit the radial
symmetry (“2D3D approach”). The reduction by one dimension reduces the compu-
tational costs when using a direct solver [53]. This makes it possible to do parameter
sweeps in a reasonable time (cf. section 5 and 7) and also to use the FEM in the future
for much larger geometries than considered in this paper. Furthermore we can now use
a finer mesh. An example for a setup of a dielectric disk and a circular PEC is shown in
figure 1. The usage of the radial symmetry is possible even though the external B-field
– and therefore also the source term Ea – is linearly polarized and breaks the radial
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symmetry. We achieve this by decomposing3 Ea as a sum of radially symmetric fields:

Ea(r, z) = E+
a (r, φ, z) + E−a (r, φ, z), (2.19)

where we have assumed that the Ea = −Ea(r, z)êy depends only on r and z and that the

external B-field points in y-direction B(0) ∼ êy. r =
√
x2 + y2 is the radial coordinate.

With m = ±1 we can write

Em
a = Ẽm

a e
imφ =

Ea(r, z)

2
(−êφ + imêr)e

imφ. (2.20)

Since we are only interested in a constant external B-field over the dielectric haloscope
or the dish antenna, it is not important for us that the external magnetic field can only
depend on r and z.

This ansatz splits the problem into the solution of two independent differential
equations, each for one source term m = ±1, respectively:

∇× (∇×Em)− k20εEm = −k20Em
a , (2.21)

where k0 = ω. For the corresponding E-field solution we make the ansatz Em =
Ẽm(r, φ, z)eimφ with

Ẽm = Ẽmr (r, z)êr + Ẽmφ (r, z)êφ + Ẽmz (r, z)êz, (2.22)

and eimφ factors out in equation (2.21). Since the φ dependence is known, we solve
the equation for φ = 0 in the r, z plane. We use COMSOL for the FEM simulation
to compute the unknown functions Ẽmr (r, z), Ẽmφ (r, z) and Ẽmz (r, z) on the discretized
mesh. The total solution is obtained as a superposition:

E = Ẽ+eiφ + Ẽ−e−iφ. (2.23)

Therefore, we obtain the full 3D solution for a radial symmetric geometry by solving
two (m = ±1) 2D problems. The strategy of decomposing the linear source term as
in equation (2.19) is used as well for example in the context of the simulation of radial
symmetric antennas [54]. The decomposition can be interpreted as a decomposition
into left and right circular polarized fields [55]. Here we apply this strategy to axion-
electrodynamics for the first time. The H-field can be calculated via H = ∇×E

iωµ and the

time averaged pointing vector in the far field S̄ = −1
2ReE ×H∗. A straightforward

calculation for the power in z-direction which goes through a circular surface at position
z yields

Pz = −Re
iπ

ωµ

∑
m=±1

∫ Rp

0
drẼmφ

(
r∂zẼ

m∗
φ + imẼm∗z

)
+ rẼmr

(
∂zẼ

m∗
r − ∂rẼm∗z

)
,(2.24)

where Rp is the radius of the circular surface, where we consider the power flux.

3For more complicated source terms one can also chose a more general decomposition
∑
m∈Z Ẽ

m
a e

imφ.
The steps which we are doing will go through in exact analogy, but one has to do M 2D simulations in
the end, where M is the number of Ẽm

a ’s which are nonzero.
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2.3 Recursive Fourier Propagation

When solving equation (2.17) in geometries with dielectric materials and conductors we
encounter solutions with two different dispersion relations [40]. One dispersion relation
is axion-like k = 0 in the zero velocity limit. The second dispersion relation is the usual
photon dispersion k2 = n2ω2 known from electrodynamics. Rather than trying to detect
axion-like mass states, which simply give a stationary E-field, a dielectric haloscope or
dish antenna uses translation invariance to convert them into propagating photon-like
states, which can then exit the system. To describe them we exploit the well established
scalar diffraction theory of Fourier optics in this section. A scalar diffraction theory is
applicable if the optical system is much larger than the photon wavelength [56] of the
propagating fields and the fields are propagating along one preferred axes. The optical
size of a dish antenna is given by the dish diameter, while for a dielectric haloscope the
optical size is given by the diameter of the dielectric disks. In the proposed dielectric hal-
socopes MADMAX [27, 38] and LAMPOST [31] as well as in dish antenna experiments
such as BRASS [36] this condition will be fulfilled.

As we discuss more explicitly in section 4, the solutions with a photon dispersion
relation are target of detection in many axion haloscopes. These can be described by
using the classical Maxwell equations, i.e., (2.8)–(2.11) with gaγ = 0. When we combine
the Maxwell-Faraday equation and the Ampere law of the classical Maxwell equations,
we obtain

−∇2E − ω2n2E = 0, (2.25)

with the refractive index n2 = ε. In equation (2.25) we have neglected the term ∇(∇·E),
i.e., there are no charges ρ = 0, but J 6= 0 is still possible. Therefore, this approach
neglects near fields generated by any induced charge distributions. We can treat all
three components of E as scalar fields, since all three components will be independent of
each other in equation (2.25). Equation (2.25) is a wave equation and is solved by plane
waves fulfilling the photon dispersion relation. The general solution for each component
of the electric field Ei can therefore be obtained using a Fourier approach

Ei(x) =

∫
R3

dk3

(2π)3
Êi(k)eik·x, (2.26)

where x = (x, y, z). Let E(x, y) be the field at z = zS , then the propagated field
is [56, 57]

Ei(x) =

∫
R2

dkxdky
(2π)2

F(Ei)(kx, ky)e
i|z−zS |kz(kx,ky)eikxxeikyy, (2.27)

where F denotes the two dimensional Fourier transformation and where kz(kx, ky) is
given by the photon dispersion relation

kz(kx, ky) =
√

(ωn)2 − k2x − k2y. (2.28)
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Figure 2: Illustration of the recursive Fourier propagation approach. The field on the
left surface in brown is given and propagated to the next surface by applying equa-
tion (2.27). As one can see from (2.27) the propagation consists of a Fourier transfor-
mation of the initial field and a backtransformation which is taking into account the
phase factor exp(ikzz). The implementation can be done with the fast Fourier trans-
formation (FFT) algorithm and the corresponding inverse (iFFT). We also illustrate
that the fields are defined on a discretized grid over the different slices. The approach
takes into account diffraction phenomena arising from the finite size disks. Repeating
the propagation recursively and applying reflection and transmission coefficients at each
slice, a 3D multilayer system can be calculated.

Therefore, in comparison to the 1D case, where the phase evolves as eiωnz, the phase
evolves more slowly as eikzz in 3D. It is evident from equations (2.25) and (2.27) that
all components of the E-field are propagated independently. If one E-field component
on the surface at zS is zero, it will be zero in the whole space.

In section 4 we will use the presented scalar theory to compute the fields and the
power which is emitted by a dish antenna. Note that there are also other formulations
of a scalar diffraction theory such as the one from Kirchhoff and Rayleigh [56] suitable
to obtain far field approximations. We will furthermore compare the scalar theory to
a full vectorial treatment taking into account near fields and boundary charges. We
demonstrate that the scalar approach here is sufficient to describe the E-field component
which is parallel to the polarization direction of the external B-field. Recall that this is
the component directly coupled to the axion.

In sections 5 and 7 we demonstrate that one can also use the scalar diffraction theory
to compute the 3D fields for more complex systems such as a dielectric disc and a minimal
dielectric haloscope. This can be achieved by applying the Fourier propagation approach
recursively to propagate the radiation coming from the different interfaces in the system
as sketched in figure 2. After each step we apply transmission and reflection coefficients
when the radiation hits another interface. In this way we are able to recursively construct
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the E-field solution in 3D for systems with more than one interface. Note that one can
store fields at all layers simultaneously and sum up the reflected and transmitted fields
at each layer after each iteration step, such that the numerical complexity grows linear
with the number of iteration steps. Note we can use the fast Fourier transformation
(FFT) algorithm. In addition, this approach also requires only a discretization in x and
y dimensions with grid spacings according to the Nyquist theorem of ≈ λ/2, and thus
makes this method numerically efficient. A more detailed description of this approach
is given for the example of a single dielectric disk in section 5.

3 Free Space

As a first example we consider a vacuum domain, only containing CDM axions and a
static magnetic field. We refer to this in the following as free space. More precisely we
assume that the external magnetic field B(0) changes over scales larger than the Compton
wavelength of the axion, which suppresses effects due to the inhomogeneity of the B-
field [58]. It is easy to see that the axion induced field in equation (2.16) approximately
solves equation (2.17), since in the case when Ea changes over length scales much larger
than a wavelength the derivative terms are negligible. To avoid the effects from these
gradients in our simulations, we let B(0) smoothly drop to zero towards the boundaries,
such that the first derivative at the boundary is zero and the drop stretches over a fewλ.
Because in this case we do not have dominating emitted propagating fields, we will
only compare the results of our FEM calculations with each other and with dedicated
analytical solutions in this section.

Since we are in free space we have µ = 1, ε = 1, ρf = 0, and Jf = 0. A full analytic
solution can be obtained with the theory of retarded potentials for the axion charge and
current terms [59, 60] as in equations (2.13) and (2.14), because in our approach the
axion-Maxwell equations are decoupled. This gives an electric field of

E(x) = Ea

[
ω2

∫
d3x′B̂(0)(x′)G−

∫
d3x′ ∇′G ∇′ · B̂(0)(x′)

]
, (3.1)

with Ea = gaγB̂
(0)a0 the axion induced field in an idealized 1D calculation [39]. Further,

B(0) = B̂(0)B̂(0)(x), where B̂(0) is the constant magnitude of the external B-field and
B̂(0)(x) contains the spatial dependency and is of order one. G is the Green’s function

of the scalar wave equation G(x,x′) = eiω|x−x′|

4π|x−x′| . Note that in the FEM simulations we

have to put an external B-field by hand which can be non-physical, i.e. ∇ · B̂(0) 6= 0.
Such a non-physical B-field with small gradients is not problematic as we will see later.
However, it leads to the second term in the analytical solution in equation (3.1). It

comes from an artificial charge density ∂tρ
(1)
art = −∇ · J (1)

a which guarantees that the
continuity equation is also fulfilled. If this term is not included the retarded potential
solution is not equivalent to the FEM solution of the vectorized Helmholtz equation
(2.17). Note that since the B-field changes only on length scales much larger than the
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photon-wavelength we can express the total E-field as the axion-induced field plus a
small radiative correction in the following:

E(x) = Ea + Erad. (3.2)

Again, if the B-field gradients are small on scales of the wavelength, then the radiative
corrections are small and the total axion-induced E-field follows the shape of the external
B-field B(0) [58].

Specifically, let us take for now

B̂(0)(x) = êy sin2(
πx

Lx
) sin2(

πy

Ly
) sin2(

πz

Lz
), (3.3)

inside the simulation domain [0, Lx]× [0, Ly]× [0, Lz], with Lx = Ly = 9λ, Lz = 20 cm ≈
6.7λ and zero outside. For simplicity we have chosen the externalB-field in equation (3.3)
such that it is non-physical, i.e. it has a small divergence ∇ · B̂(0) 6= 0, since we want
a B-field which is zero at the boundary of the simulation domain to avoid additional
propagating fields coming from the boundaries of the simulation domain. Evaluating
equation (3.1) numerically leads to the fields shown in figure 3 (a). Figure 3 (b) shows
the radiative correction, obtained when subtracting the axion-induced field from equa-
tion (2.16). The radiative correction is much smaller than the axion induced field. This
explicitly confirms that assuming a constant magnetic field for haloscope experiments is
valid as long as the magnetic field only drops over large length scales.

We show the subtraction of the analytical solutions from the results obtained with
our FEM tools in figure 3 (c) for COMSOL and in figure 3 (d) for Elmer. In addition
to COMSOL and Elmer using different meshes, we further verify the independence on
the chosen absorbing boundary condition by using different boundary conditions for
the two solvers, i.e., impedance boundary conditions in Elmer and PML in COMSOL.
Since the radiative correction shown in figure 3 (b) does not reappear, we conclude that
both solvers calculated the radiative correction ∼ O(10−3)Ea correctly. Even smaller
systematics remain, which we think are most likely attributed to boundary conditions
not perfectly resembling a free space. While the numerical noise in COMSOL is smaller
than the radiative correction, it can be as large as the radiative correction in Elmer
thus dominating over other systematics. As stated above, the order of magnitude of
these systematics and numerical deviations is negligible for our purposes. This gives us
confidence that our FEM simulation approaches are working as required.
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Figure 3: Assuming a CDM axion background field for ma ≈ 40µeV and an external
B-field pointing in y-direction as given in equation (3.3), the real part of the resulting
Ey field at z = 15 cm is shown in panel (a) as obtained with the method of retarded
potentials (ret. pot.), cf. equation (3.1), whereas the other panels show the respective
differences to this result when (b) radiative corrections are neglected, and (c) COMSOL
and (d) Elmer are used in the computation of Re(Ey). The considered simulation domain
is a box with 9λ×9λ×6.7λ extend and the frequency of the axion-induced field is 10 GHz
as given by the assumed ma value.

4 Dish Antenna

A dish antenna axion haloscope is comprised of the following experimental concept: A
magnetized perfect electric conductor (PEC) in the axion CDM background leads to an
emission of propagating electromagnetic waves [26] with a photon dispersion relation.
This emission compensates the axion-induced field Ea on the PEC surface such that
the total tangential E-field is zero as required by the axion-Maxwell equations. While
the dish antenna has already been considered in the idealized 1D setup with a PEC of
infinite transverse extend [26, 39], we study a 3D setup with a PEC of finite transverse
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Figure 4: (a) Circular PEC surface of radius R in the xy-plane. The external B-field
B(0) = B(0)êy is considered to be constant over the surface and leads to the induced
Ea field in the presence of the axion CDM background. (b) The circular PEC surface
at zS = 0 is emitting electromagnetic field as sketched by the red arrows. The receiver
surface is a fictitious surface to probe the amount of power that is going through and is
not lost due to diffraction.

extend. This allows us to explore finite size effects such as diffraction, boundary charges
and near fields.

In section 4.1 we will compare the FEM with the Fourier propagation approach
and further diffraction theories to study the diffraction problem and to validate the
different methods against each other. We generalize the analytical result for nonzero
axion velocities explicitly in section 4.2. In section 4.3 we see that a scalar diffraction
theory is unable to describe near field effects and boundary charges. Therefore, we
compare the FEM results also against more complete analytical solutions.

4.1 Diffraction

Let us consider now explicitly a circular PEC of radius R at zS = 0 as shown in fig-
ure 4 with constant external B-field B(0) = B0êy over the whole PEC. In this case the
Fourier approach (2.27) leads to the following formula for the E-field of the emitted
electromagnetic wave:

Ey(r̃, z̃)

Ea
=

∫ ∞
0

dk̃re
i
√
ω̃2n2−k̃2r |z̃|J0(r̃k̃r)J1(k̃r), (4.1)

with r =
√
x2 + y2 the radial coordinate and the normalized variables k̃r = krR, r̃ = r

R ,
z̃ = z

R and ω̃ = ωR. The x and z components of the emitted fields Ex/z are zero, because
we assume a constant external B-field over the PEC which is polarized in y direction
only. Note that the Fourier approach can also be used to calculate the emitted fields of a
PEC in an inhomogeneous external magnetic field. In this case, as discussed in section 3,
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(a) (b) (c)

Figure 5: Single circular PEC located at zS = 0 with radius of 6 cm in the CDM axion
field and assuming an external magnetic field pointing in y-direction. Real part of the
y-component of the E-field in the xz-plane at y = −2.5 cm, at a frequency of 10 GHz, i.e.,
ma ≈ 40µeV, corresponding to a wavelength of the propagating electromagnetic fields
of 3 cm. (a) shows the FEM solution, where we have subtracted the axion induced field
since we are only interested in the emitted fields described by the Fourier approach. The
results from the Fourier approach are shown in panel (b). Panel (c) shows the difference
between the results shown in panels (a) and (b). The largest difference is observed at
the rims of the circular PEC.

the axion-induced field Ea – and therefore also the emitted field compensating Ea on S
– follow the shape of the external magnetic field on S.

In figure 5 we compare the result of the Fourier approach to the FEM solution for
a PEC with radius R = 6 cm. In this paper we chose a circular disk radius which is
smaller than in the planned full size haloscopes such as MADMAX, since smaller radii
for a given axion mass are more prone to 3D finite size effects, which we investigate here.
The results in figure 5 show that the Fourier approach can describe the E-field of the
propagating electromagnetic wave well in the forward direction. The largest differences
between the Fourier approach and the FEM solution are at the rims of the PEC. The
differences are due to near field effects and boundary charges, which will be discussed in
section 4.3.

Let us now discuss what diffraction effects imply for dish antennas or dielectric
haloscopes. Figure 6 shows the fraction of received power over emitted power Ū arriving
on a surface with the same size as the circular PEC. We obtain Ū at different distances
away from the circular PEC with the Fourier approach. This should already give a first
indication of diffraction losses expected between dielectric interfaces in dielectric halo-
scopes such as MADMAX, where the distance between the interfaces is around λ/2 [39],
i.e., at the cm level for our calculation. In figure 6 (a) we see that the diffraction loss
will increase if one wants to probe smaller axion masses, i.e., larger photon wavelengths.
In figure 6 (b) Ū is plotted for different radii. If the photon wavelength is much smaller
than the diameter of the circular PEC, diffraction effects will not have significant impact
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Figure 6: Received power over emitted power Ū for a circular PEC and an ideal receiver
surface of the same size for different distances, obtained with the Fourier approach.
Diffraction losses increase with distance. (a) For decreasing frequencies/axion masses,
i.e., increasing photon wavelength, the diffraction losses increase. The lowest considered
axion mass ma = 10µeV corresponds to a frequency of 2.5 GHz (λ ≈ 13 cm) and the
largest one ma = 400µeV to a frequency of 100 GHz (λ ≈ 3 mm). We already presented
this data in [61]. (b) For increasing PEC radii the diffraction loss is smaller.

on the emitted fields. This statement also applies to dielectric haloscopes which consists
of many radiating surfaces, see also section 7 below.

The calculations above illustrate the effects of diffraction few cm away from the
PEC. In dish antenna experiments the receiver might be placed much farther away from
the PEC. A scalar diffraction theory which is suited to do far field expansions of the
emitted E-fields was developed by Kirchhoff and Rayleigh. If the E-field in the xy-plane
(S) at zS = 0 is given, then the fields in whole space are [56]

Ei(x) =
k

2πi

∫
S
dA′

eikD

D

(
1 +

i

kD

)n′ ·D
D

Ei(x
′, y′), (4.2)

with D = x − x′, n′ is the normal vector on the surface S at point x′ pointing into
the diffraction region. For large observer distances near the z-axis we can expand D in
(x− x′)/z and (y − y′)/z in equation (4.2) [57]. We obtain for the propagated field just
a single Fourier transformation of the field on the surface S

Ei(x) =
k

2πi

1

z
eikzei

kr2

2z

∫
S
dA′e−i

k
z
(xx′+yy′)Ei(x

′, y′), (4.3)

where we have assumed that k(x′2+y′2)
2z < 1. In particular, for a circular PEC in a

homogeneous external magnetic field as depicted in figure 4 this leads the well known
Airy disk formula [57, 62]

Ey(x)

Ea
= −ikR2 e

ikz

z
e
ik
2z
r2 J1(Rma tan θ)

Rma tan θ
, (4.4)
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Figure 7: (a) Rectangular PEC in the xy-plane at zS = 0. The external B-field
is homogeneous over the entire dish antenna and points in y-direction. (b) Diffraction
pattern of the rectangular disk with a = 2 m and b = 1 m at distance z = 10 m away from
the rectangular dish antenna. The axion velocity was set to a large value of vx,y = 0.1
to illustrate the effect better. The maximum of the diffraction pattern is now shifted
from x = 0 and y = 0 to x = vxz and y = vyz. The used wavelength was 30 cm.

where θ is the polar angle from spherical coordinates. The opening angle4 of the
diffracted E-field is defined by the first minimum and is located at

tan θ ≈ 1.22
λ

2R
≈ 38× 10−3

(
1 m

2R

)(
40µeV

ma

)
. (4.5)

This shows again explicitly that diffraction effects decrease with larger radii and axion
masses. Therefore, dish antennas and dielectric haloscopes are limited towards lower
axion masses by diffraction effects.

4.2 Axion Velocity

While in the rest of this paper we consider the axion velocity to be zero, in this sec-
tion we examine axion velocity effects, as also discussed in [63–65]. We describe the
axion field in this case as a(0) = a0e

−iωt+ika·x, where ka is the axion field wave vector
which is only nonzero since we now allow a finite axion velocity. The considered dish
antenna is centered around the coordinate center in the xy-plane and has dimensions
(a, b) as sketched in figure 7 (a). A rectangular geometry is used in various dish antenna
experiments [34–36].

Furthermore we assume a homogeneous external B-field pointing in y-direction.
To compute the far field of the emitted E-field from the dish antenna we use the scalar
diffraction theory by Kirchhoff and Rayleigh, which was introduced in the previous sec-
tion in equation (4.3). The emitted field on the surface S, which now represents the rect-

4When we require all observer coordinates to be large, i.e., D = |x|− x·x′

|x| +O(1/|x|2) [56], we obtain

sin θ = 1.22λ/(2R).
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angular dish antenna, is given by Eae
ikS ·x, where kS is the wave vector of the emitted E-

field. Due to momentum conservation we have kSx,y = kax,y = vx,yω, where v is the axion

group velocity, and kSz ≈ ω = k [40]. The angles tanα ≡ kSx
k ≈ vx, tanβ ≡ kSy

k ≈ vy . 10−3

correspond to the parallel velocities vx, vy of the axion to the surface. Below we see that
they define the angle of the emitted radiation in the far field. With the scalar diffraction
theory we describe only the emitted E-field component parallel to the external B-field,
which is the leading E-field component. The other E-field components are proportional
to the axion velocity [40], which is small. After inserting everything into equation (4.3)
we get

Ei(x)

Ea
=
eikz

iλz
ei
kr2

2z ab sinc

[
ka

2

(
vx −

x

z

)]
sinc

[
kb

2

(
vy −

y

z

)]
, (4.6)

with sinc(x) ≡ sin(x)
x . It is evident that the velocity effect leads to a shift of the diffrac-

tion maximum to (vxz, vyz) after distance z. To illustrate this we plot the fields of a
rectangular PEC with dimensions 2 m × 1 m at distance z = 10 m for a relatively high
axion velocity vx,y = 0.1 in figure 7 (b).

In dielectric haloscopes the emitted fields are propagated many times between the
dielectric interfaces when resonant. Therefore, the shift of the diffraction maximum
grows with propagation distance z and therefore might also be a potential loss mecha-
nism. Assuming the interfaces have distance λ/2, an internal resonance with quality fac-
tor Q̃ causes a virtual propagation distance Q̃ λ/2. Requiring the shift over this distance
to be much smaller than the haloscope radius R, very roughly limits Q̃ � 2R/λ× 103.
Dielectric haloscope designs aim to operate in more broadband configurations and so
naturally avoid the high Q limit. In addition, since the shift of the diffraction maxi-
mum depends on the direction of the axion “CDM wind”, this may be exploited to infer
quantities of the CDM velocity distribution similarly as discussed in [66].

4.3 Near Fields

In figure 5 we observe that the Fourier approach describes well the far field behaviour
of the y-component of the emitted electromagnetic waves. The difference between FEM
and Fourier approach is below 10% in the far field. The largest differences between
Fourier approach and FEM are observed at the rims of the circular PEC. Here additional
radiation appears on the sides of the PEC. Therefore, in the course of this paper we will
refer to the fields not described by the Fourier approach as near fields. For a more
complete analytical understanding we have to take into account the vectorial nature of
the E-field and boundary charges at the rims of the dish antenna. We discuss both
effects in the following.

The vectorial nature of the emitted E-field was neglected in the scalar Fourier
approach by setting ∇(∇ · E) = 0 in deriving equation (2.25). A vectorial description
of diffraction which includes near field effects is given by the vector Kirchhoff diffraction
formula [56]

Ek(x) =

∫
S
dA′
[
iω(n′ ×B)G+ (n′ ×E)×∇′G+ (n′ ·E)∇′G

]
, (4.7)
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Figure 8: Near field effects of a single circular PEC with radius of 6 cm obtained
with a FEM simulation (Elmer), at 10 GHz, i.e., ma ≈ 40µeV, and external magnetic
field pointing in y-direction. (a) Charge distribution on the circular PEC. (b) Ex fields
10 cm ≈ 3.3λ from the circular PEC away. The field pattern can be understood phe-
nomenologically when one imagines an E-field in (a) pointing from the positive charges
towards the negative charges. For example, the x-component of the electric field is 0
along the axis x = 0 since the charge distribution is symmetric when mirrored at this
axis.

where n′ is defined as in the previous section as well as the surface S, i.e., S is the xy-
plane at zS = 0. The E andB-fields which appear in equation (4.7) depend on the primed
variables. For a circular PEC the fields on S are only nonzero for r =

√
x2 + y2 < R.

Here in particular we choose constant fields E = Eaêy and B = −Eaêx over the PEC
and zero fields outside. In the Fourier approach only the y-component of the E-field
is nonzero, but in the FEM solutions we observe that all three E-field components of
the emitted E-field are nonzero. Using the vector Kirchhoff diffraction formula (4.7)
we obtain an additional z-component, but the x-component of the E-fields is still zero,
which is in contrast to the FEM solution for the x-component shown in figure 8 (b).

To also describe the x-component of the emitted field we have to take into account
boundary charges which are present at the rims of a finite sized PEC. Fields induced by
the boundary charges are not taken into account by the Kirchhoff formula. The axion
induced field drives the electrons in the PEC up and down such that at the boundary of
the PEC the charges accumulate. This physical picture can be confirmed with the FEM
solution which we show in figure 8. The free charge density which is maximal at the
PEC rims is shown in figure 8 (a) and we plot the x-component of the FEM E-field in
figure 8 (b). We can describe the boundary charges as a line charge density σL ∼ sinφ
which also comes with a line current density KL ∼ cosφêφ, where φ is the azimuth angle
of cylinder coordinates. The line charge and current density lead to additional terms for
the emitted E-field. We therefore have to add the following two boundary terms to the
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Kirchhoff terms

Eb(x) = R

∫ 2π

0
dφ′σL(∇G)L + iωR

∫ 2π

0
dφ′KLGL, (4.8)

where the subscript L at G and ∇G means that we evaluate the corresponding term
at x′ = R cosφ′êx + R sinφ′êy. The total field emitted by the PEC is then given by
E = Ek + Eb. The charge density term in (4.8) also naturally arises when one takes
into account that the E and B-fields in the Kirchhoff formula are actually not allowed
to be discontinuous. In the case of discontinuous fields one gets a correction term which
is exactly the charge density term in (4.8). The Kirchhoff terms in combination with
the charge density term in (4.8) is known also as the Stratton-Chu formula [67].

In figure 9 we compare the FEM solution to the analytical formula, i.e., the Kirch-
hoff formula plus the boundary fields. The exact magnitude of the line charge and
current density are not known in general and therefore they have been scaled. However,
as we are only trying to identify the underlying physical processes, which lead to the
shown E-fields, needing such a scaling is not problematic. After the scaling all three
components in figure 9 of the E-fields agree. This gives us confidence that we have
understood the physics behind the FEM solution.

In dielectric haloscopes near field effects and boundary charges may be important,
because the dielectric disks are typically separated by a distance of around half a wave-
length [39]. The influence of the near fields and boundary charges among diffraction in
the context of a minimal dielectric haloscope is also discussed more closely in section 7.
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Figure 9: All components of the emitted fields from a single circular PEC located
at zS = 0 with a radius of 6 cm, at 10 GHz, i.e., ma ≈ 40µeV, assuming an external
magnetic field pointing in y-direction. All panels show a xz-slice at y = 2.5 cm. Each
row represents one E-field component, Ex (top), Ey (middle), Ez (bottom). In the
left column we show the result from the FEM solution while the right column shows
the analytical result based on the Kirchhoff fields, cf. equation (4.7), and boundary line
fields, cf. equation (4.8). We show the results obtained with Elmer. The results obtained
with Comsol are the same up to differences dominated by numerical noise.
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5 Dielectric Disk

The most simple setup containing more than one boundary between media with different
dielectric constants ε is a dielectric disk. In this section we assume a circular disk of a
radius of R = 2λ = 6 cm, dielectric constant ε = 9 (sapphire) for varying thicknesses dε.
First, we compare the total emitted power, reflectivity and transmissivity of a dielectric
disk in FEM directly with the 1D model in section 5.1. Afterwards, we compare its
diffraction pattern to predictions from the Fourier propagation approach in section 5.2.

5.1 Boost Factor and Reflectivity

For a single dielectric disk the emitted axion-induced power, reflectivity and transmis-
sivity are the primary output of the 1D model, so comparing them will allow us to most
directly test the effects of going to 3D and disks with finite sized transverse extend.
For the reflection and transmission coefficients, a Gaussian beam [68, 69] with a beam
waist of w0 = 5 cm was focused on the front surface of the dielectric disk. In Elmer the
Gaussian beam was forced to propagate into the system by using the Robin boundary
conditions from equation (2.18) and setting g such that the Gaussian beam fulfills the
boundary condition. The respective power is obtained by integrating the flux

∫
S̄ ·dA at

the front and back simulation domain boundaries, where S̄ is the time averaged Poynt-
ing vector. Numerical errors can be evaluated by varying the integration surface and are
below one percent of the maximal output power.5

We compute the emitted axion-induced power (power boost factor β2) with both
COMSOL and Elmer in full 3D. While Elmer solves the vectorized Helmholtz equation in
3D, we also exploit the radial symmetry in COMSOL (2D3D approach), see section 2.2.
Figure 10 shows the different emitted powers against disk phase depth δε = nωdε com-
pared with the 1D model prediction. The results are within 10% of the 1D model
predictions. Figure 11 shows reflectivity and transmissivity which are within 5% of the
1D model predictions. Similar results are obtained for the phase of the emitted fields.

As we deliberately choose a small radius of only two wavelengths, if deviations from
the 1D model are to be found at all, they would be found here. Diffraction will cause
phase shifts inside the disk compared to the 1D case and power loss to the sides, while
the near fields of each surface may directly affect the emission from the other surface.
The approximate match even for a disk with 2λ radius is encouraging, since haloscope
experiments like MADMAX aim for much larger disks. For such disks one expects these
effects to be less dominant as demonstrated in the previous section.

5.2 Diffraction

We use the recursive Fourier propagation approach to predict the diffraction pattern of
a single dielectric disk as introduced in section 2.3. To this end we have to consider
the emissions from both dielectric disk surfaces, their propagation through the disk and

5A few percent of power is radiated to the outside of the finite integration surface in the 3D FEM
simulations. We estimate this non-captured power with the Fourier approach and correct the obtained
values respectively.
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Figure 10: Power boost factor β2 of a single dielectric disk against disk phase depth
δε = nωdε where dε is the disk thickness. We consider a single circular dielectric disk with
radius R = 2λ, ε = 9, at 10 GHz, i.e., ma ≈ 40µeV, assuming |Caγ | = 1 and B(0) = 10 T.
We show the power obtained in Elmer (squares) and COMSOL (circles) in 3D and by
using 2D radial symmetry in COMSOL (green dotted line), compared with the result
from the 1D model (solid gray line). The lower panel shows the difference with respect
to the 1D model result in terms of power boost factor β2.

eventually their interference outside of the disk. Explicitly, with the disk surfaces at z1
and z2, the diffraction pattern outside of the disk can be approximated by iterating the
following steps for all emitted fields:

• Considering the fields E(z1) emitted at z1, the fields at the opposite interface E(z2)
are obtained using the Fourier approach with equation (2.27).

• The fields E(z2) outside of the disk surfaces at, i.e., at r > R, are set to zero.

• At the next surface T E(z2) is transmitted outside and RE(z2) is reflected in-
side the disk, where R is the complex reflectivity and T = (1 + R) the complex
transmissivity of the surface from inside.

• Repeating the above for N iterations between the two interfaces and adding up all
fields outside, gives a prediction for the diffraction pattern of a single disk.

Note that in the third step we take R = (ni − nj)/(ni + nj), which holds for plane waves
under a normal incident angle in medium i on the boundary to medium j. Other angles
could be accounted for by making R(kx, ky) dependent on the transverse momenta.
However, R only depends at second order on the incident angle (see “Fresnel equations,”
e.g., in [56]), so assuming normal incidence is a good approximation in our case.

Figure 12 shows the diffraction patterns at 10 GHz (ma ≈ 40 µeV) for a circular
dielectric disk with a radius of R = 4λ = 6 cm, ε = 9 and a thickness of dε = 5 mm, i.e.,
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Figure 11: Reflectivity and transmissivity of a single dielectric disk against disk phase
depth δε = nωdε where dε is the disk thickness, analogous to figure 10. We show reflec-
tivity (squares) and transitivity (diamonds) obtained with Elmer for a Gaussian beam
with waist w0 = 5 cm at the disk. The reflectivity from the 1D model is indicated by
solid gray line and the transmissivity from the 1D model by the dashed gray line. The
disk is transparent for phase depths of integer multiples of π. The lower panel shows the
respective differences with respect to the 1D model result.

(a) (b) (c)

Figure 12: Real part of the Ey-field for a circular dielectric disk with ε = 9 and phase
depth δε = π, i.e., with thickness dε = 5 mm at 10 GHz, i.e., ma ≈ 40µeV for an external
magnetic field pointing in y-direction. We show the fields in the xz-plane, analogous to
figure 5. Panel (a) shows the FEM solution after subtraction of the axion-induced field,
panel (b) the result obtained with the recursive Fourier propagation approach for N = 25
iterations, and panel (c) the difference between (a) and (b).

a phase depth of δε = π. We compare the result for the real part of the Ey-field obtained
with the full 3D FEM with the one from the recursive Fourier propagation approach for
N = 25 iterations. We find that the simple propagation approach matches the fields
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Figure 13: Case definition for simulations with tiled disks. We consider either an
infinitesimal thin PEC or a λ/(2n) = 5 mm thick sapphire disk, each with a verti-
cal/horizontal slit filled with either vacuum or glue with ε = 5 and tan δ = 10−3 inside
an external magnetic field pointing in y-direction.

far away from the disk well. In the region around the rims of the disk we find the
largest discrepancies. As we have seen already in section 4, this is due to the fact that
the recursive Fourier propagation approach does not include the charge distributions at
the rims of the disks which lead to an additional emission. In addition, the disk has
an interface to vacuum also at its rims. Therefore, it emits axion-induced radiation in
radial directions at angles where the interface of the rim gets parallel to the external
magnetic field. In a realistic experimental setup we expect these boundary effects to be
small, because the diameter of the disk will be larger and we are not going to detect the
radiation to the sides.

6 Tiled Dielectric Disk

In the previous sections we have established FEMs for simple cases and have outlined
central effects from diffraction and near fields. We now apply this method to settings with
geometrical imperfections that may impact the performance of large volume haloscopes.
In MADMAX to get sufficiently large disks many smaller patches of dielectric material
will need to be glued together. Due to the non-trivial geometry we omit the application
of the Fourier propagation approach in this section and obtain all results in this section
with a 3D FEM simulation. We consider circular disks with a radius of R ≈ 3.3λ ≈ 10 cm
and a slit with an exaggerated width of λ/10 = 3 mm, cf. figure 13. We explore the cases
of a PEC and a sapphire disk with a vacuum slit, as well as a sapphire disk with a slit
filled with a glue. The glue has ε = 5, which is around the expected value for example for
Stycast 2850FT [70], and tan δ = 10−3. For each of these cases we consider slits parallel
and orthogonal to the polarization of the axion induced field Ea. We choose to place
the horizontal (vertical) slit not exactly in the center of the disk but slightly displaced
such that its lower edge (its left edge) lies at the center of the disk. This means that
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Figure 14: Power emitted from untiled disks compared to various different tiled
disks, at 10 GHz, i.e., ma ≈ 40µeV, assuming |Caγ | = 1 and an external magnetic field
B(0) = 10 T pointing in the y-direction (vertical). The power deviation from the un-
tiled disks roughly matches the naive expectation from the reduction of the size of the
emitting surface area of around 2%.

the disk is not separated symmetrically, as in a realistic setup also the tiles will not be
geometrically perfect.

6.1 Boost Factor

Figure 14 shows the power emitted by the various tiled disks mentioned before compared
with the powers emitted by an untiled PEC and by an untiled sapphire disk, as obtained
with Elmer in 3D. We first compare the Elmer results for the power output of the untiled
PEC/disk to corresponding results from the 1D model and observe similar deviations as
in the previous section in figure 10 (i.e., 10% level). As discussed above, we believe them
to arise from diffraction and near field systematics. Since we use the same mesh and
solver for all tiled disk cases considered here, also numerical systematics are expected
to be the same for all compared tiled disks. Therefore, comparing them to each other is
valid although the absolute deviation from the 1D model result is larger.

Now turning our attention to the comparison between the various tiled disks, note
that the slit considered here reduces the surface area emitting axion-induced electromag-
netic waves by ≈ 2%. This seems to lead to a power-reduction of around the same order
compared to the untiled disks as can be seen in figure 14. For the sapphire disk with a
horizontal glue filled slit the power is not significantly reduced because the surface of the
dielectric glue (ε = 5) emits electromagnetic waves as well. However, if the slit with the
glue is placed parallel to the applied external magnetic field, the boundary condition on
the electric field between the glue and the sapphire may constrain possible propagation
modes, inhibiting the emission again. Nevertheless, the overall result is encouraging,
since a reduction of emitted power at the order of the relative area covered by gluing
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Figure 15: Diffraction pattern of different tiled sapphire disks compared to an untiled
sapphire disk at a distance z = 7.5λ = 22.5 cm, at 10 GHz, i.e., ma ≈ 40µeV, assuming
|Caγ | = 1 and an external magnetic field B(0) = 10 T pointing in the y-direction (vertical)
as obtained with Elmer. The gray area indicates the extend of the dielectric disk (D ≈
6.7λ ≈ 20 cm).

slits would not significantly affect the experimental sensitivity, even for multiple slits.

6.2 Diffraction

Figure 15 shows the diffraction pattern of the studied tiled dielectric disks in comparison
to the one of an untiled disk. The patterns are shown at a distance of 7.5λ = 22.5 cm
away from the disk in the polarization direction of the axion-induced field Ea. The
slight asymmetries reflect that the gluing position is not exactly in the center of the
disk as mentioned above. More importantly, the diffraction pattern is suppressed with
respect to the untiled case by ≈ 20% at low radii. At large distances momenta separate
spatially, since they propagate at different angles away from the disk, as discussed above
in equation (4.3). Therefore, the reduction of the diffraction pattern at low radii indicates
that low transverse momenta kx, ky are suppressed by the tiling. It is consistent with
the naive expectation that a gap or gluing spot in the disk inhibits large transverse
wavelengths, corresponding to aforementioned low momentum modes. Note that it is
not trivial to implement these effects in the recursive Fourier propagation approach for
the diffraction patterns presented above, since now the 3 regions of the disk (upper
half, lower half and glue) have to be treated separately with appropriate boundary
conditions. The diffraction pattern determines the momentum in x- and y-direction and
the dispersion relation then the momentum in z-direction, as discussed in section 4.
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Figure 16: Polarization charge distributions ρ = ∇ · E on various tiled sapphire
disks (horizontal/vertical slit filled with vacuum/glue) with radius ≈ 3.3λ ≈ 10 cm, at
10 GHz, i.e., ma ≈ 40µeV, for an external magnetic field pointing in y-direction. The
small asymmetry induced by the slit affects mainly surface wave propagation.

Therefore, a change due to tiling might cause an additional phase shift compared to
the 1D model, which may affect the boost factor. In addition, if the power is radiated
at higher transverse momenta, this increases the diffraction loss, as discussed e.g. in
section 4.1. Lastly, it obviously changes the beam shape within the dielectric haloscope,
which has implications on antenna design.

6.3 Near Fields

Figure 16 shows the effect of the tiling on the polarization charges of a dielectric disk.
It is apparent that the polarization charge distributions over the whole disk become
asymmetric just due to the small asymmetry of the tiling. These asymmetries mainly
manifest in different surface wave patterns on both sides of the disks. This again may
impact the emitted wave from a tiled disk in momentum space, as discussed in the
previous section. In addition, we see additional polarization charge accumulations when
the disk is horizontally separated, just as naively expected. The effects of these additional
charge accumulations cancel out in the far field but may contribute to the near fields
of the disk. In the case of a glue filled slit these changes are more moderate due to the
smaller difference in dielectric constant. The effect of tiling is expected to be even less
relevant for larger disks with larger tiles.
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Figure 17: (a) Real and imaginary part of the emitted E-field in a minimal dielectric
haloscope setup, which consists vacuum gap with phase depth δv = dvω between a PEC
mirror and a dielectric disk of phase depth δε = ndεω [39]. (b) Amplitude boost factor
|β| for the minimal dielectric haloscope as obtained in the 1D model. We indicate
maximally resonant, transparent and intermediate cases as discussed in the main text.
The considered 3D simulations sweep along the parameter space indicated by the dashed
line, i.e., for each disk phase depth the vacuum phase depth is optimized to obtain the
maximal boost factor.

7 Minimal Dielectric Haloscope

In the previous sections 4 and 5 we have studied the axion-induced electromagnetic
emission from a PEC and a circular dielectric disk separately in the presence of a strong
external B-field. Combining these two objects, we study 3D effects of a minimal dielectric
haloscope in this section for the first time. To this end we apply the recursive Fourier
propagation approach and FEMs as described in section 2.

7.1 Boost Factor

Both PEC (dish antenna) and a single dielectric disk are limited in the amount of
generated power. In terms of the boost factor β2, which describes the emitted power
compared to the power emitted by a single PEC in the 1D model, both are limited to
be below one. We now turn our attention to dielectric haloscopes with a single dielectric
disk and a PEC (“minimal dielectric haloscope setup”), which can provide already boost
factors greater than one.

First let us recap the basic properties of such a setup in 1D [39] in order to study
how they change in 3D. In figure 17 (a) we show a sketch of such a minimal dielec-
tric haloscope. For the further discussion we will use the phase depths δv = ωdv and
δε = nωdε, where dv is the distance between disk and mirror and dε the thickness of
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the disk and n =
√
ε its refractive index. In figure 17 (b) we show the boost amplitude

from the 1D calculation, where the white dashed line marks for each δε the optimal δv
such that the boost factor is maximized. As depicted in the figures the optimal phase
depth for this setup is around δv ≈ π. Putting the dielectric disk one wavelength further
away from the PEC does not change the situation in the 1D model, hence the boost
factor is in general periodic and maximal at around δv ≈ π + 2πn, n ∈ N. δv ≈ π means
physically that the distance between disk and mirror is λ

2 . In the resonant case (δε = π
2

and δv ≈ π) the boost factor reaches its global maximum and the minimal dielectric
haloscope is most resonant. This can be understood physically, since for δε = π

2 the
reflectivity of the dielectric disk is maximal (see figure 11). In the transparent case
(δε = π) the reflectivity of the dielectric disk is zero in 1D, but we still get a boost factor
which is larger than one due to constructive interference of the axion-induced emissions
from the PEC mirror and dielectric disk. The case at δε = 3π

4 between resonant and
transparent case is denoted as intermediate case in the following.

In the following we will apply the two techniques introduced in section 2 to ex-
plicitly compute the E-fields and the boost factors for the minimal dielectric haloscope
in 3D. We want to point out that we present here the full 3D field solutions in axion-
electrodynamics, since other axion-electrodynamics studies for cavity experiments typi-
cally do not compute explicitly the full outpropagating power of the system, but just the
modes of the cavity in 3D. The disk and PEC in the considered minimal dielectric halo-
scope have both a radius of R ≈ 3.3λ ≈ 10 cm and we consider dielectric disks with ε = 4
and ε = 9. Note that sapphire disks (ε = 9) with this size are actually currently used in
a MADMAX proof of principle study [38]. In the final MADMAX experiment [27] the
disk diameter will be around 1 m. In addition, we only consider simulations at 10 GHz
(ma ≈ 40µeV), while the envisioned search range of MADMAX reaches from 10 GHz up
to 100 GHz (ma ≈ 400µeV). Therefore, the small radius and frequency considered here
are conservative and, as discussed for the dish antenna in section 4, diffraction effects
are expected to be less dominant for larger radii and frequencies as envisioned in the
final MADMAX setup.

In figure 18 we show the boost factor from the 1D model and compare it to the 3D
calculations. The comparisons are done for three different cases, two different refractive
indices and for two different vacuum phase depths δv ≈ π, 3π. In all cases the 3D
calculations show a boost factor reduction with respect to the idealized 1D calculation.
Thus, 3D effects play a role in dielectric haloscopes. We find the largest boost factor
reduction in the resonant case, i.e., at δε = π

2 ,
3π
2 · · · to be around 25% for a sapphire

disk. In these cases the reflectivity of the dielectric disk is maximal (see figure 11) and
the electromagnetic waves which are emitted from the surfaces stay inside the system the
longest. Therefore, our result follows the naive expectation to find the largest diffraction
losses in the resonant case. Comparing the simulations for ε = 9 and ε = 4, we see
that in the latter case the power reduction is less dominant, which is expected since a
dielectric disk with ε = 4 has a smaller reflectivity than a disk with ε = 9 and makes the
system therefore less resonant. Comparing further the ε = 4 cases with δv ≈ π and 3π,
we see that the power boost is reduced for the larger vacuum gap. This is only evident
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from the 3D solutions and not from the 1D solution, where the power boost is the same.
The larger gap between disk and mirror leads to more diffraction losses in the resonant
system. Note that the planned dielectric haloscopes MADMAX and LAMPOST will not
operate in the most resonant case.

Let us now discuss the comparison between the various 3D methods in figure 18.
We first consider the diffraction-only calculation using the recursive Fourier propaga-
tion approach for N = 200 iterations (yellow dashed lines) and the full 3D COMSOL
result which is obtained by using the radial symmetry (2D3D approach, dotted green
lines). The comparison shows that the recursive Fourier propagation approach can re-
liably describe the boost factor. This is a surprising result, since the recursive Fourier
propagation approach is based on a scalar diffraction theory and neglects boundary and
near field effects, which are taken into account by the FEM solutions. Since the distance
of the disk and PEC is around λ

2 and 3
2λ, one may expect that near field effects can play

a major role. Nevertheless, our study explicitly shows that these effects only cause small
deviations in terms of the emitted power of the minimal dielectric haloscope.

Comparing the full 3D Elmer simulation and the 3D COMSOL simulation making
use of the radial symmetry (2D3D approach) shows significant deviations for the first
time in this paper. Nevertheless note that the boost factor is still most reduced in the
resonant case for the full 3D solution obtained by Elmer. The error bars in figure 18 are
obtained by integrating the outgoing power over different xy-slices and different quad-
rants of the simulation domain, i.e., show the self-consistency of the result. To further
check consistency and convergence, we show the results for two different geometries of
the outer simulation domain, geometry I and a smaller geometry II. For a vacuum phase
depth of about π the Elmer calculations have trouble to converge6, do not lead to con-
sistent results and have large numerical errors. When increasing the distance of the
dielectric disk and mirror by one wavelength (figure 18 (right)), the results from both
geometries become consistent and confirm the other two 3D results. On the one hand
this shows the limitations of a full 3D FEM simulation in Elmer for large geometries,
which can be overcome by assuming radial symmetry (2D3D approach) and reducing the
problem by one dimension, as described in section 2.2. On the other hand, when the full
3D FEM calculations converge, our results explicitly confirm the results obtained assum-
ing radial symmetry (2D3D approach) in COMSOL or just taking diffraction (recursive
Fourier propagation approach) into account. In addition, even considering most conser-
vatively the full 3D Elmer simulations one expects at most a reduction of at most 50%
compared to the 1D model for the power boost factor. Therefore, all our calculations
explicitly confirm the feasibility of the dielectric haloscope concept in 3D.

7.2 Diffraction and Radiation Pattern

In this section we explicitly look at the radiation pattern generated by the minimal
dielectric haloscope in order to study diffraction and near field effects of the system

6While in previous chapters the convergence parameter in Elmer was always around or below 10−7,
for a sapphire disk haloscope the convergence parameter did not reach below 10−4, for a ε = 4 disk it
varied between 10−1 − 10−9 depending on geometry and disk phase depth, more details c.f. [71].
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Figure 18: Power boost factor β2 as a function of the disk phase depths δε = ωndε for
the minimal dielectric haloscope shown in figure 17 at 10 GHz (ma ≈ 40µeV) and for
ε = 9 (top) and 4 (bottom). The disk is considered at vacuum phase distances to the
PEC mirror of δv ≈ π (left) and 3π (right) at which β2 is maximized in the 1D model.
Both disk and PEC mirror have an identical radius of R ≈ 3.3λ ≈ 10 cm. We show
our 3D results obtained with various methods introduced in section 2 in comparison to
1D results [39]. The power boost factor is consistently reduced compared to the 1D
model for resonant configurations, i.e., around δε = π/2, 3π/2, and 5π/2. When we
get good convergence of the full 3D FEM calculations, i.e., self-consistent results, all 3D
methods give results consistent to within a few percent.

more thoroughly. This is important also in order to aid antenna design to receive the
emitted power from such a system in an optimal way.

In figure 19 we show the y-component of the full solution of equation (2.17) for the
radial symmetric minimal dielectric haloscope obtained with the 2D3D FEM approach.
We again consider the resonant case (δε = π

2 ), the transparent case (δε = π) and an
intermediate case (δε = 3

4π). In the right column we observe that the field between the
PEC and the disk decreases when going from the resonant case (top) to the transparent
case (bottom). As expected from the discussion of the boost factor in figure 18 we observe
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that the emitted field is maximal in the resonant case. We clearly observe 3D effects, like
diffraction of the emitted waves. The shown E-field acquires more substructure when
going from resonant to the transparent case. This can be also seen in the left column of
figure 19, where we plot the fields in the xy-slice. Going from the resonant case (top)
to the transparent case (bottom) we observe again that the magnitude of the E-field
decreases. Furthermore we see that for the resonant case the beam is concentrated more
in the center, while we observe more substructure for the transparent case. This is as
expected, since in the transparent case the emissions from both disk surfaces essentially
interfere without being reflected on the disk surface. In the resonant case, however, the
system is aligned to be on resonance for only one particular wavelength in z-direction.
When aligned to be on resonance in the 1D model, the photon dispersion relation fixes the
transverse wavelength of such a resonantly enhanced signal to be very large, suppressing
substructure.

Moreover, note that the radiation patterns obtained with the recursive Fourier
propagation approach again are qualitatively the same than the ones obtained from
COMSOL in figure 19 (left). They agree better than 85% when calculating their cor-
relation |

∫
E∗1E2dA|2 over the shown xy-slices with the normalized fields E1 and E2

from both approaches. The decomposition into plane waves in the Fourier propaga-
tion approach directly corresponds to the above argument on the transverse wavelength.
Therefore, this good match confirms again that near field and boundary charge effects do
not have crucial impact on the y-component of the emitted electric fields. In addition,
this is supported by looking at the details of the radiation pattern: We observe for ex-
ample that the beam in the zy-slice is always dropping off to the boundaries of the disk,
which indicates that boundary charges will be induced mainly by the axion induced field
and only partly by the emitted fields which are boosted. In section 4 we saw that the
x and z-components of the E-field are due to near field effects and boundary charges.
Therefore we expect the x and z-components of the E-field to be small. This can be
confirmed by looking at figure 20 where we show the Ex and Ez-fields. In all cases the x
and z-components of the E-fields are smaller than the y-components. The most extreme
difference is observed in the resonant case, where the x and z-components are roughly
only 10% of the y-component. This confirms, that boundary charges and near fields do
affect the fields in the minimal dielectric haloscope, but they are not boosted because
they do not fulfill the resonance condition and hence are smaller than the Ey-fields. Fi-
nally let us mention that we observe in the x(z)-component a characteristic quadrupole
(dipole) structure that we already observed in the case of a single PEC. The structure
comes from the boundary charge fields and near fields which are now emitted from every
disk and superimposed in the end.
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Figure 19: Radiation patterns for a minimal dielectric haloscope. We show the y-
component of the E-field in the xy-slices (left) and zy-slices (right). The xy-slices are
evaluated 14 cm away from the minimal dielectric haloscope and the zy-slices are eval-
uated at y = 0 cm. The considered frequency is 10 GHz, i.e., ma ≈ 40µeV, and the
external magnetic field points in y-direction. We show the slices for different phase
depths: resonant case δε = π/2 (top), intermediate case δε = 3π/4 (middle), and trans-
parent case δε = π (bottom). The field pattern acquires more substructure when going
from the resonant to the transparent case.
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Figure 20: Radiation patterns for a minimal dielectric haloscope. We show the x-
component (left) and the z-component (right) of the E-field in xy-slices. The xy-
slices are evaluated 14 cm away from the minimal dielectric haloscope for 10 GHz, i.e.,
ma ≈ 40µeV, and the external magnetic field points in y-direction. We show the slices
for different phase depths: resonant case δε = π/2 (top), intermediate case δε = 3π/4
(middle), and transparent case δε = π (bottom). The x-component has always a char-
acteristic quadrupole structure, while the z-component has always a dipole structure.
Note the similarity of the left column to figure 8 (b). Compared to the y-component
shown in figure 19, the x and z-components are small since the resonance condition for
the considered minimal dielectric haloscope is tuned to enhance the y-component.
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8 Conclusions

In this paper we establish various methods to simulate the electromagnetic radiation
generated by axion-induced fields in 3D settings of open axion haloscopes. Previous
work for resonant cavities typically focuses on simulating cavity modes to predict their
matching with the axion field, just assuming the driving of the resonance and its power
loss implicitly [29, 42, 48]. In order to generalize this to open resonators, we explicitly
include the axion source term in our simulations and calculate the out-propagation of
power from the system in this work. We do so by directly including the axion as a current
density term in the electromagnetic wave equation and by simulating for open situations
the power propagating out of the simulation domain. We evaluate different implemen-
tations of Finite Element Methods (FEM) in COMSOL and Elmer. Furthermore, we
reduce the full 3D FEM problem for a radial geometry to a 2D simulation even in the
case where the external B-field is linearly polarized and breaks the rotational symmetry
(2D3D approach). We validate the FEM results with analytically well understood cases
in free space and for a dish antenna, i.e., a single perfectly electrically conducting (PEC)
mirror. In addition, we gather analytical formalisms to describe diffraction and near
fields in simple cases. This allows us to analytically investigate the far field behaviour
of the radiation pattern for a dish antenna, also in the presence of velocity corrections.
Moreover, approximating diffraction effects by decomposing into plane waves recursively
(Recursive Fourier Propagation approach) and neglecting near field effects, we obtain a
second fast method for the calculation of diffraction effects inside dielectric haloscopes.
The validation and the comparison of our methods allows for a fundamental under-
standing of the physics effects at play. Furthermore, the 2D3D FEM and the Fourier
propagation approaches are efficient numerical tools allowing for parameter sweeps like
frequency scans in reasonable times. They pave the way to describe full size open axion
haloscopes in 3D in the future.

Our results have direct implications on the design of dish antennas and dielectric
haloscopes such as MADMAX. First of all, our studies for dish antennas confirm that
diffraction effects are getting important for small diameter-to-wavelength ratios. This
shows explicitly that the dish antenna and dielectric haloscope approaches are limited
towards lower axion masses due to diffraction, i.e., they need to be at least several photon
wavelengths in diameter. To prepare the 3D description of a dielectric haloscope, we show
for a single dielectric disk with a diameter of 4 wavelengths that the results obtained
with the 1D model essentially stay valid, i.e., stay within deviations of smaller than
∼ 10% in 3D.

In order to create large dielectric disks, it may be necessary to glue them together
from smaller pieces. Therefore, we conduct first simulations of a tiled disk. Our results do
not show deviations in the emitted power larger than naively expected from the reduced
surface area. However, we see changes to the diffraction pattern of a tiled disk, which
leaves the necessity of a more quantitative study of tiled disks in various configurations
and with larger diameters for further work.

For a minimal dielectric haloscope setup consisting of a single dielectric disk and
single PEC mirror both with a diameter of approximately 7 wavelengths, we show that
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diffraction losses are a main limitation to the power boost factor β2. However, even in
the most resonant configuration with a sapphire disk in front of the PEC, the diffraction
loss is less than 25%. Such a reduced power boost factor would still allow for an axion
search with reasonable sensitivity. In addition, we again expect this effect to be smaller
for larger disks and higher frequencies. Also note that the idea of a dielectric haloscope
is explicitly not to operate in the most resonant configuration [38, 39]. Moreover, the
comparison of the FEM solutions with the result from the Fourier propagation approach
shows the important fact that near field and boundary charge effects are negligible. A
pure scalar diffraction calculation can predict all relevant effects on the emitted power
for the minimal dielectric haloscope.

It remains to apply the methods gathered here to more general cases with further
geometrical inaccuracies such as more complicated disk tiling and tilts. Also extended
settings with multiple dielectric disks are left for future work.

In summary, we obtain for the first time results on implications of 3D effects such
as diffraction and near fields on dielectric haloscopes. While the 1D calculations ap-
proximately stay valid for a single disk, diffraction losses can reduce the power boost
factor of a dielectric haloscope. This effect is suppressed by going to large disk radii
and high frequencies, as planned in dielectric haloscope searches such as MADMAX and
LAMPOST.

Acknowledgments
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