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Abstract

We analyse here in NLO the physical properties of the discrete eigenvalue solution for the
BFKL equation. We show that a set of positive ω eigenfunctions together with a small con-
tribution from a continuum of negative ω’s provide an excellent description of high-precision
HERA F2 data in the region, x < 0.001, Q2 > 6 GeV2. The phases of the eigenfunctions can
be obtained from a simple parametrisation of the pomeron spectrum, which has a natural
motivation within BFKL. The data analysis shows that the first eigenfunction decouples or
nearly decouples from the proton. This suggests that there exist an additional ground state,
which has no nodes.
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1 Introduction
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Figure 1: Evaluation of F2 in γ∗ p scattering using the BFKL Green Function

The aim of this paper is to find a boundary condition which provides a precise description
of HERA F2 data using the BFKL Green Function approach developed in our two previous
papers [1, 2]. In the search for this condition we were guided by the principle of simplicity
and some analogy to the Balmer series. In the QCD version of the Regge theory developed
here the BFKL equation is considered to be analogous to the Schrödinger equation for the
wavefunction of the pomeron. The BFKL kernel corresponds to the Hamiltonian and the
eigenvalues ω to the energy eigenvalues. Thus, we will specify this boundary condition in
terms of a relation between the eigenvalues ωn of the BFKL equation and the principal
quantum number n. This relation determines then the boundary condition in terms of the
phases ηn of the eigenfunctions close to the non-perturbative region, k ∼ ΛQCD.

The Green Function approach considered here is very suitable since it does not require
any cutoff on the BFKL dynamics and provides a direct relation to the measurements at
low-x. Thus, the deep inelastic structure function F2(x,Q

2) can be directly calculated as a
convolution of the Green function with impact factors that encode the coupling of the Green
function to the external particles that participate in that process.

F2(x,Q
2) =

∫
dtdt′Φγ(Q

2, t)G(t, t′, Y )ΦP (t′), (1.1)

where, Y = ln(1/x), t = ln(k2/Λ2
QCD), t′ = ln(k′ 2/Λ2

QCD); k, k′ being the transverse mo-
menta of the gluons entering the BFKL amplitude. ΦDIS(Q2, t) describes the (perturbativly
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calculable) coupling of the gluon with transverse momentum k to a photon of virtuality Q2

and ΦP (t′) describes the coupling of a gluon of transverse momentum k′ to the target proton,
see Fig.1. 1

The Green Function, defined by (2.3), is directly related to the gluon density (4.2), in
the low x region. The properties of this gluon density are very interesting to the LHC
and cosmic ray physics. They are also interesting by themselves, because in difference to the
DGLAP evolution [13], the BFKL equation describes a system of quasi-bound self-interacting
gluons. Such a system is sensitive to confinement effects and has also some sensitivity to
Super-Symmetry effects in the gluon sector, as was first observed in ref. [4, 5].

The paper is organised as follows: In Section 2 we recall the main properties of the BFKL
Green Function and of their eigenfunctions, determined in our last papers [1, 2]. In Section
3 we introduce the NLO corrections to BFKL and evaluate the properties of eigenvalues and
eigenfunctions in NLO. In Section 4 we apply this formalism to HERA data and describe the
search for a proper boundary condition and its results. Finally, in Section 5 we summarise
the results and conclude.

2 BFKL Green Function

In [1] we determined the BFKL Green Function Gω(t, t′) (in Mellin space) from the equation(
ω − Ω̂(t, ν̂)

)
Gω(t, t′) = δ(t− t′), (2.1)

where Ω̂ denotes the BFKL operator, which was given in terms of the LO characteristic
function, χ(αs(t), ν), by

Ω̂ =
√
ᾱs(t)

(
2Ψ(1)−Ψ

(
1

2
+
∂

∂t

)
−Ψ

(
1

2
− ∂

∂t

))√
ᾱs(t), (2.2)

with ᾱs ≡ CAαs/π. By placing
√
ᾱs(t) on either side of the differential operator we assured

the hermiticity of the whole operator.

We have shown in [1,2] that the Green Function determined in this way has poles on the
positive real axis of the ω plane and a cut along the negative ω axis. Therefore it can be
constructed from the complete set of eigenfunctions of the BFKL operator in the usual way

G(t, t′, Y ) =
∞∑
n=1

x−ωnfωn((t)f ∗ωn(t′) + lim
ωmin→−∞

∫ 0

ωmin

dωx−ωf−|ω|(t)f−|ω|(t
′). (2.3)

The spectrum of the eigenvalues ωn was found to be discrete for positive values of ω and
continuous for negative value of ω. The complete set of eigenfunctions with positive and
negative eigenvalues ω was found to satisfy the closure relation and the orthonormality
condition. In addition, the Green Function was quickly converging so it was sufficient to use
only O(10) discrete eigenfunctions to describe properly the gluon density, as compared to
our previous work [1], where we had to use more than 100 eigenfunctions.

1The variable t is more appropriate for theoretical analysis, whereas k is more appropriate for comparison
with data.
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2.1 Eigenvalues and eigenfunctions

In LO BFKL [14], with the fixed QCD coupling constant αS, the eigenfunctions have a
simple oscillatory behaviour in terms of the gluon transverse variable t,

fω(k) ∼ exp(±iνt), (2.4)

The frequency ν of these oscillations is connected to the eigenvalue ω by the characteristic
equation

ω = αS χ0(ν), (2.5)

with

χ0(ν) ≡ 2Ψ(1)−Ψ

(
1

2
+ iν

)
−Ψ

(
1

2
− iν

)
. (2.6)

With fixed αS the frequency ν is a one-to-one function of ω. However, when αS is running ν
becomes a function of t, νω(t), in order to compensate the t variation of αS. For sufficiently
large values of t there is no more a real solution for νω(t) of eq. 2.5. The transition from the
real to imaginary values of νω(t) singles out a special value of t = tc for which

νω(tc) = 0. (2.7)

For t values below the critical point tc the behaviour of the eigenfunction stays oscillatory,
but above it becomes exponentially suppressed. This fixes the phase of the eigenfunction at
t = tc and together with some fixed non-perturbative phase ηNP leads to quantisation, i.e to
a discrete set of eigenfunctions.

To analyse the behaviour of the BFKL equation in the neighbourhood of the turning
point, tc, it is convenient to define first two related variables, sω(t) and z(t). The variable
sω(t) gives the phase shift from the turning point tc to the point t and corresponds to the
argument of the wave function of eq. 2.4. It is defined as

sω(t) =

∫ tc

t

dt′ νω(t′) (2.8)

and the (ω dependent) variable z(t) is defined as

z(t) = −
(

3

2
sω(t)

) 2
3

. (2.9)

Using these variables we have shown in [1] that the BFKL operator, Ω̂, can be related to the
“generalized Airy operator” as(

ω − Ω̂

(
t,−i ∂

∂t

))
≈ 1

Nω(t)

(
żz − ∂

∂t

1

ż

∂

∂t

)
1

Nω(t)
. (2.10)

In this derivation the diffusion approximation was used in the vicinity of the turning point
and the semi-classical one far away from it. Using these approximations we have shown [1,2]
that the most general solution to equation 2.10 is given by the Green Function

Gω(t, t′) = πNω(t)Nω(t′)
[
Ai(z(t))Bi(z(t′)θ(t− t′) + t↔ t′

]
, (2.11)
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with
Bi(z(t)) = Bi(z(t)) + cot (φ(ω))Ai(z(t)). (2.12)

Here Ai(z) and Bi(z) denote the two independent Airy functions. The function φ(ω) is
defined as

φ(ω) = sω(t0) +
π

4
− ηnp(ω, t0) (2.13)

with ηnp(ω) being a non-perturbative phase, fixed at some small t0. From 2.11 and 2.12 it
follows, as discussed in ref. [1], that the BFKL Green function has poles when

φ(ω) = nπ, n = 0, 1, 2, 3 ... . (2.14)

The equations 2.14 and 2.13 define the eigenvalues ωn, which are a function of the non-
perturbative boundary condition ηnp(n).

Furthermore in [1] we have shown that, in case of positive ωn, the eigenfunctions of the
BFKL operator are given by

fωn(t) =

√
π

φ′(ωn)
Nωn(t)Ai(z(t)), (2.15)

whith Nωn(t) being the normalisation factor, which is given by

Nω(t) =
|z(t)|1/4√

1
2
ᾱs(t)χ′ (νω(t))

. (2.16)

Here χ denotes the BFKL characteristic function which in LO is simply equal to χ0 but is
more complicated in NLO.

When the Airy function in equation 2.15 is asymptotically expanded at t = t0, far away
from tc, we obtain

fωn(t0) ∝ Ai(z(t0)) ≈
1√

π |z(t)|1/4
sin
(
sω(t0) +

π

4

)
. (2.17)

This means that the function φ is the difference between the perturbative and non-perturbative
phases of the wave function, which should not depend on t0.

2

In case of negative values of ω the equation 2.7 is never fulfilled, i.e. there is no critical
point and no quantization of eigenvalues. The negative ω eigenfunction were derived in
ref. [1] and are given by

f−|ω|(t) =

√
2

π

1√
ᾱs(t)χ′ (νω(t))

sin

(∫ t

t0

νω(t′)dt′ + ηNP

)
. (2.18)

The eigenfunction defined by eq. 2.15 and 2.18 fulfil the completeness relation

lim
ωmin→−∞

∫ 0

ωmin

dωf−|ω|(t)f
∗
−|ω|(t

′) +
∞∑
n=1

fωn(t)fωn(t′) = δ(t− t′) (2.19)

and are orthonormal, as shown in [2].

2Although we call this phase no-perturbative we are fixing it in the perturbative region, at t0 equivalent
to k0 = 1 GeV, close to ΛQCD. At this k0 the value of ᾱs is 0.50.
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3 NLO evaluation

To obtain the eigenfunction of the BFKL equation in NLO we need just to replace eq. 2.5
by its NLO counterpart

ω = ᾱsχ0(ν) + ᾱs
2χ1(ν) +O(ᾱs

3) (3.1)

where χ0(ν) and χ1(ν) are the LO and NLO characteristic functions respectively. The NLO
value of αs was fixed by measurement at Z0 pole. In our numerical analysis, we modify χ1

following the method of Salam [7] in which the collinear contributions are resummed, leaving
a remnant which is accessible to a perturbative analysis. For the analysis of this paper we
use Scheme 3 of the Salam paper, see Appendix A.

To create the eigenfunction we have chosen the value of t0 equivalent to k0 = 1 GeV, close
to ΛQCD but still in the perturbative region, with ᾱs(k0) = 0.50. To be able to describe the
measured structure function F2, which has a changing slope λ, ηnp should vary with n and
the value of the non-perturbative phase ηnp for the leading eigenfunctions should be close to
zero, see the discussion in Section 4.1 and 4.3. We adopted therefore the convention that n
in equation 2.14 should be counted from 1 and ηnp should stay in the interval between +π/4
and −3π/4.3 The values of ηn and the corresponding eigenfunctions, used later in the fit,
are not limited to this interval. They are obtained from the periodicity of ηn, i.e. by adding
(or subtracting) multiples of π on both sides of equation 2.13. In the following we will label
the eigenvalues and eigenfunctions with n ≥ 1 and call the n dependent phase ηnp(n) just
ηn.

In Fig. 2 we display the eigenvalues ωn obtained from eq. 3.1, using three different non-
perturbative phases, ηn = 0, π/4,−π/4. The dotted line shows, taking as example the ηn = 0
case, that the dependence of ωn values from n (for n > 1) can be simply parametrised by

ω =
A

n+B
, (3.2)

as noticed already in [3]. For ηn = 0 we found in NLO, that A = 0.52223, B= 1.62001.
Since we apply this parametrisation below to describe data we recall its derivation following
ref. [3]. In LO we can integrate sω(t0) by parts

sω(t0) =

∫ tc

t0

νω(t′)dt′ = −νω(t0)t0 +
1

β̄0ω

∫ νω(t0)

0

χ0(ν
′)dν ′, (3.3)

where in the last step we used the LO relation t = χ0(ν)/β̄0ω. For ω values approaching 0,
we have

χ0 (νω(t)) =
ω

ᾱs(t)
→ 0 (3.4)

Therefore, for small ω and small t0, νω is quickly approaching its asymptotic value, ν0, with

χ0(ν0) = 0. In this limit
∫ νω(t0)
0

χ0(ν
′)dν ′ and νω(t0) becomes independent of ω and eq. 2.13

3Note that with n = 1 and ηnp = 0 the equation 2.13 is well satisfied, however it is not satisfied with
n = 0 and ηnp = 0, since sω(t0) is always positive. The periodicity of equation 2.13 assures that the same
eigenfunction is obtained with n = 1 and ηnp = 0 as with n = 0 and ηnp = π.
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implies that

nπ = a+
b

β̄0ω
+
π

4
− ηn, (3.5)

where a, b are constants independent of ω, what leads to the relation 3.2. In NLO this
relation is satisfied already for n ≥ 2, since νω(t0) is less dependent from ω then in LO.
The relation 3.2 indicates also that tc = χ0(0)/β̄0ωn should grow almost linearly with n, for
larger n. This is also a feature of the NLO computation, see Fig.3. The value of tc is related
to the value of the critical momenta kc by tc = ln k2c/Λ

2
QCD with ΛQCD = 275 MeV.

In Fig. 4 we show as example the first three different eigenfunctions 1,2 and 3, computed
from eq. 2.15 and 3.1, at phases ηn = 0, π/4,−π/4.

η= 0.

η= +π/4

η= -π/4

n

ω

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16 18 20

Figure 2: Eigenvalues ωn determined in NLO for three fixed non-perturbative phases, ηn.
The dotted line shows a simple parametrisation described in the text.

4 Application to data

To apply the BFKL Green Function to data we express the low-x structure function of the
proton, F2(x,Q

2), in terms of the discrete BFKL eigenfunctions by

F2(x,Q
2) =

∫ 1

x

dζ

∫
dk

k
Φγ(ζ,Q, k)xg

(
x

ζ
, k

)
, (4.1)
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Figure 3: The critical momenta tc determined in NLO for three fixed non-perturbative
phases, ηn. tc = ln k2c/Λ

2
QCD with ΛQCD = 275 MeV.

where xg
(
x
ζ
, k
)

denotes the unintegrated gluon density

xg(x, k) =

∫
dk′

k′
Φp(k

′)

(
k′ x

k

)−ωn
k2

(∑
n

f ∗ωn(k′)fωn(k) +

∫ 0

−∞
dωx−ωf−|ω|(t)f−|ω|(t

′)

)
(4.2)

and Φp(k) denotes the impact factor that describes how proton couples to the BFKL am-
plitudes at zero momentum transfer. The impact factor, Φγ(ζ,Q, k), which describes the
coupling of the virtual photon to the eigenfunctions is given in [6]; the dependence on ζ
reflects the fact that beyond the leading logarithm approximation, the longitudinal momen-
tum fraction, x, of the gluon differs from the Bjorken-value, determined by Q2. Φγ(ζ,Q, k)
of Ref. [6] is determined taking into account kinematical constraints allowing for non-zero
quark masses. The (k′/k)ωn factor arises from a mismatch between the “rapidity”, Y , of the
forward gluon-gluon scattering amplitude used in the BFKL approach

Y = ln
( s

kk′

)
and the logarithm of Bjorken x, which is given by

ln

(
1

x

)
= ln

( s
k2

)
.

This ambiguity has no effect in LO but in NLO it can be compensated by replacing the LO
characteristic function χ0(ν) by χ0(ω/2, ν), which modifies the NLO characteristic function
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η=  0.0
η= -π/4

η=+π/4

f n

k GeV

-0.2
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0
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0.3
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0.6

0.7

1 10 10
2

1 10 10
2

1 10 10
2

Figure 4: The first three eigenfunctions computed for three fixed non-perturbative phases,
ηn.
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χ1, see Appendix A.

The proton impact factor is determined by the confining forces. It is therefore barely
known, besides the fact that it should be concentrated at the values of k < O(1) GeV. We
use here a simple parametrisation in the form

Φp(k) = Ak2e−bk
2

, (4.3)

which vanishes at small k2 as a consequence of colour transparency, is everywhere positive
and decreases for large transverse momentum. Since the range of the proton form factor is
much smaller than the oscillation period of the BFKL eigenfunctions we do not expect that
the results should have substantial sensitivity to a value of b.

4.1 Properties of HERA data

The HERA F2 data in the low x region can be simply parametrised by F2 = c (1/x)λ, with
the constants c and λ being a function of Q2, see e.g. [9]. When Q2 changes from 4 GeV2 to
100 GeV2 λ changes from about 0.15 to 0.3. The BFKL evaluation of F2, which assumes that
ηn is independent of n, would predict that λ is a constant independent of Q2 with λ ≈ ω1,
since it is the first pole which dominates F2, when the value of ηn is fixed. Therefore, the
only way to make λ dependent of Q2 is to make ηn dependent of n. Otherwise, the predicted
value of λ will be about 0.25, independent of Q2, see Fig.2, in clear contradiction to HERA
data.

We used for fits the highest precision HERA data [8] given in terms of reduced cross
sections from which we extracted the F2 values, using the assumption that FL is proportional
to F2. We also limited the y range to avoid possible complications of larger FL contribution,
see e.g. [9]. Since we are focusing on the comparison with the F2 measurements we use here
only the 920 GeV data set of [8]. We also limited the comparison with data to the region
x < 0.001 and Q2 > 6 GeV2 since the BFKL equation is valid at very low x only. The Q2

cut was chosen to be relatively high to avoid any complications due to possible saturation
corrections [10]. The number of experimental points used for fits was then Np = 51. (It
represents around 1/3 of the whole low x data sample, defined as x < 0.01, Q2 > 3 GeV2).

We used for this investigation the uncorrelated errors only, obtained by adding in quadra-
ture all the correlated errors of ref. [8]. From the data analysis of ref. [10] we know that the
uncorrelated errors overestimate the error sizeably, so that the χ2/Ndf of a good fit should
be around 0.7, instead of about 1 as in case of correlated errors, see also [12].

4.2 Boundary condition

The challenge of data description with BFKL is to find a simple boundary condition, i.e.,
η − n relation, which would lead to a precise description of data. At the beginning we
tried to parametrise η as a function of n, using polynomial or other functional dependences.
This failed because we were not able to find any functional dependence which would lead
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to χ2 < O(500). In the next step we tried to find a set of ηn (with n =, 1, 2, 3...10) values
using only some assumptions of local continuity. This was essentially a 10 parameter fit,
with some limitations. After a longer search, using permutational methods to avoid any
pre-conceptional bias on the form of η − n relation, we found a set of 10 ηn values which
gave an acceptable χ2 ≈ 40. Studying this set we noticed that it can be well parametrised
by an ω − n relation, similar to eq.3.2,

ω =
A

n+B
+ C , (4.4)

with a C value which is very small, but different from 0. The ηn values were then obtained
from eq. 2.13 and 2.14, by

ηn = sωn(t0) +
π

4
− nπ. (4.5)

The parameters A, B and C, together with ηneg, the phase of the negative omega contri-
bution, were considered as free parameters of the fit, which we call in the following the
ABC-Fit. In addition to these four parameters the overall normalisation was also fitted to
data.

As we observed that the system was exhibiting a multitude of local optima, we used the
Bayesian Analysis Toolkit (BAT) [11] to find the global optimum. BAT generates samples
in the parameter space via Markov chain Monte Carlo (MCMC), distributed according to
the posterior probability of the parameters. The best fit value is the parameter set with the
highest posterior probability, respectively the lowest χ2-value. Fig. 5 shows a marginalised
distribution of the ABC-Fit, for the variables, B and C. The regions of higher probability
are shown as coloured areas, with probability increasing as colour changes from blue over
green to yellow. The small circle shows the position of the best fit, given in Table 1. The
complicated structure of the probability distribution is also seen as a function of A and B
variables, see Fig. 6

Figures 5 and 6 show that the distribution of probability has a complicated structure;
there are several extended regions of higher probability, which are completely disconnected.
In this situation the usual fitting methods, based on MINUIT, are poorly working, since
they are assuming a steady increase of probability towards the real minimum.

Using the BAT and using the above parametrisation we found an excellent agreement
with data, χ2/Ndf ≈ 33/46. We performed this fit for several specific values of the parameter
b of Φp and found that the χ2 values were the same, within the computational precision of
the fit, ∆χ2 = ±1. For each value of b the values of the fit parameters, A,B,C and ηneg, were
somewhat different and compensated the change of b, see as example Table 1. The values of
the A and B parameters are in the usual range, A ≈ 0.5, B ≈ 1.5, similar to the values at
a fixed η phase, see eq. 3.2 and below. The third parameter, C, is very small, O(10−3), i.e.
much smaller than the value of the smallest eigenvalue, ω20 ≈ 0.025, used in the fit.

In spite of the fact that C is very small, it is impossible to put its value to zero without
seriously deteriorating the quality of the ABC fit (to χ2 ≈ 150). In the standard QCD we
should expect that C should be zero and ωn → 0 when n → ∞, as in the LO calculation
discussed above. After a while we noticed though, that the parameter C can to be put to
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Figure 5: Probability density of the ABC fit as a function of the B and C parameters. The
legend shows the probability scale in arbitrary units
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Figure 6: Probability density of the ABC-Fit as a function of the B and A parameters.
The legend shows the probability scale in arbitrary units
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b (GeV−2) 10 20
A 0.48771 0.47905
B 1.37933 1.34020
C 0.001578 0.002424
ηneg -0.0754 -0.0518
χ2 32.9 33.1

Table 1: Results of the ABC-Fit to 51 data points with x < 0.001 and Q2 > 6 GeV2.

zero if we let η1, the phase of the first eigenfunction, to be a free parameter, instead of C.
The fits obtained in this way are of the same quality as the ABC fits, they have however
an unexpected property; the value of the η1 parameter is always chosen such that the first
eigenfunction decouples (or nearly decouples) from the proton. This means that its overlaps
with the proton form-factor becomes zero (or nearly zero), independent of the choice of b.
We call this fit the AB-Fit and give its results in Table 2 for two values of b as example.
Note that the value of η1 is effectively not a free parameter in this fit.

b (GeV−2) 10 20
A 0.51844 0.51913
B 1.58697 1.58657
ηneg -0.0911 -0.0550
χ2 33.9 33.3

Table 2: Results of the AB-Fit to 51 data points with x < 0.001 and Q2 > 6 GeV2.

The results shown here for the AB and ABC fits used 20 eigenfunctions, to see the
convergence, see below. In the AB-Fit the first eigenfunction is not used since it is decoupling
from the proton. The decoupling happens at η1 = 0.0707 for the b = 10 and η1 = 0.0503 for
the b = 20 GeV2 case. In addition we note that an approximate decoupling happens also
in the ABC-Fit, where the contribution of the first pole is much smaller than that of the
second one, by more than a factor of 10.

The assumption of decoupling of the first eigenfunction together with the AB-relation of
eq. 3.2 leads to a much simpler probability structure, see Figure 7, with a steady increase of
probability towards one minimum, i.e., without a multitude of local minima.

In Fig. 8 we show the η−n relation as computed from the parameters A,B of the AB-Fit
for two values of b. Note that η−n relation is visibly different in the two cases, although the
parameters A,B differ by a fraction of per mill only. In Fig. 9 we show the same relation as
computed from the parameters A,B,C of the ABC-Fit for the same two values of b. Note
that the η − n relation is simpler in the AB-Fit than in the ABC-Fit.

In general, we observe that the AB and ABC parameterisations are characterised by a
high sensitivity to the ω values. The values of the parameters A,B for the case of constant
η, given below eq. 3.2, differ only by about a percent from the values of Table 2, and yet
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Figure 7: Probability density of the AB-Fit as a function of the B and A parameters. The
legend shows the probability scale in an arbitrary units
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produce a very different η − n relation; a fit to data with η = const would give χ2 ≈ 3000!

b= 10 GeV2

b= 20 GeV2

n

η

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

0 2 4 6 8 10 12 14 16 18 20

Figure 8: η − n relation as computed from the parameters A,B of the AB-Fit.

4.3 Fit results

In Fig. 10 we show the comparison of the AB-Fit results with data (with b = 10 GeV2).
Figure shows a very good agreement, corresponding to the excellent χ2 value. The results
obtained with different choices of parameter b, or with ABC-Fit, would look the same in this
figure.

The discrete BFKL is able to describe the Q2 dependence of the slope λ, although nei-
ther the eigenfunctions nor the AB(C)-relation are Q2 dependent. In Fig. 11 we show the
comparison of the λ parameter obtained from the AB-Fit with data. The λ parameter was
determined in the very low x < 0.001 region and in the Q2 range between 6.5 and 35 GeV2.
The Q2 dependence of the λ parameter enters indirectly through the choice of the ω − n
relation.

16



b= 10 GeV2

b= 20 GeV2

n

η

-1.5

-1

-0.5

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

Figure 9: η − n relation as computed from the parameters A,B,C of the ABC-Fit.
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Figure 10: Comparison of the AB fit results with data
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Figure 11: Comparison of the λ parameter, obtained in the AB fit, with data.

4.4 Discussion of the phase tuning mechanism

The choice of the ω−n relation determines the set of phases ηn which tune the contributions
of the individual eigenfunctions to describe the data. To see how it happens we display
in Fig. 12 the eigenfunctions 1, 2, 3, and as example of subleading ones the eigenfunctions
7, 8, 9, as a function of k. The eigenfunctions are plotted with the ηn phases, for n ≥ 2,
given by the AB-Fit. The first eigenfunction has the phase η1, which zeroes its overlap
with the proton form factor. Figure shows that the leading eigenfunctions 2 and 3 have the
values fn(k0) ≈ 0, whereas the eigenfunctions 7, 8 and 9, have the values at k0 which are
substantially different from zero.

To see more precisely how the phases determine the overlaps we display in Fig. 13 the
eigenfunctions 1, 2 and 3 in the region close to k0. We see that the eigenfunction 1 starts
negative at k0 = 1 GeV but then crosses zero at k0 ≈ 1.05 and becomes positive. This
small negative region is sufficient to nearly zero the overlap with the proton form factor and
effectively cancel its contribution to F2. The eigenfunction 2 and 3 are not crossing zero,
and in both cases the proton and photon overlap have the same signs. They give, therefore,
large contributions to F2. The contributions of the subleading eigenfunctions 7, 8 and 9 are
also significant because ηn values are substantially different than zero, η7 = 0.23, η8 = 0.32
and η9 = 0.42. This leads to large overlaps with the proton and photon form factor, which
have opposite signs. Their contributions to F2 are therefore relatively large, have negative
sign and so can change the slope λ.
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Figure 12: Eigenfunctions 1, 2, 3, and 7, 8 and 9 in the k region accessible to experiments.
The eigenfunctions are plotted with the ηn phases given by the AB fit. The first eigenfunction
is plotted with the phase which which decouples it from the proton.
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Figure 13: Eigenfunctions 1, 2, 3, in the k region close to k0. The eigenfunctions are plotted
with the ηn phases given by the AB fit. The first eigenfunction is plotted with the phase
which gives zero overlap with the proton form factor.
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Figure 14 shows the contributions to F2 of individual eigenfunctions, on the example
of results at Q2 = 6.5 and 35 GeV2. The larger dots show the measured points, the full
blue lines show the BFKL prediction for F2, the same as in Fig. 10. Other lines show the
contributions of eigenfunctions specified in the legend, i.e. the terms

F
(n)
2 (x,Q2) =

∫ 1

x

dζ

∫
dk

k
ΦDIS(ζ,Q, k)

∫
dk′

k′
Φp(k

′)

(
k′ x

k

)−ωn
k2f ∗ωn(k′)fωn(k) (4.6)

With exception of the contributions of the second and of the continuous negative ω terms,
the contributions of other eigenfunctions are displayed as a sum of two eigenfunctions, (3+4),
(5+6), ... (19+20), to simplify the picture. The black full line shows the contribution of the
second, leading eigenfunction, which is substantially larger than F2.

The contribution of the second eigenfunction, together with the contribution (3+4) and
the negative ω one, is positive. The contributions of the eigenfunctions 5 to 20 are all nega-
tive. The negative contributions correct the positive one to reproduce precisely the measured
F2. In this way the effective slope is also changed; the contribution of the dominating, second
term, which has ω2 = 0.144, is modified to λ = 0.176 at Q2 = 6.5 GeV2 and λ = 0.265 at
Q2 = 35 GeV2, in agreement with data. Note that the corrections at Q2 = 35 GeV2 are much
larger than at Q2 = 6.5 GeV2 due to the increased overlap with the DIS form factor. Note
also that the sub-leading terms have to converge more slowly than the eigenfunctions itself to
obtain the variation of λ in BFKL. Nevertheless, we see from Fig. 14 that the contributions
of eigenfunctions with n > 16 start to approach zero., i.e. show convergence.

Summarising we can tell that the excellent description of data is achieved by a fine tune
of the non-perturbative phases ηn. This phase tune is a results of a simple ω − n relation
which is well motivated in BFKL and is driven by only two or three parameters.

4.5 Decoupling of the first eigenfunction

The decoupling of the first eigenfunction is an unexpected and puzzling feature of this inves-
tigation. Therefore, we have also checked that the results are not depending on the number
of eigenfunction which we use in the fit. In Table 3 we show the results of fits made with
the first 20, 16, 12 and 10 eigenfunctions. All the fits were made with the ABC relation and
the phase of the first eigenfunction fixed at the decoupling point.

All the fits which we performed show clearly that the first eigenfunction decouples or
nearly decouples, irrespectively of the number of eigenfunctions used in the fit or the assumed
value of the proton form factor. From the technical point of view this (near) decoupling
happens because the position of the critical point of the first eigenfunction is close to the
physical region, kc(1) ≈ 50 GeV, whereas the critical point of the subsequent eigenfunctions
is far away from it, kc(2) ≈ 3, 3 TeV, kc(3) ≈ 270 TeV, kc(4) ≈ 20000 TeV, etc. Therefore,
the first eigenfunction varies more quickly near k0 than the subsequent ones, so that very
small change of the η1 phase lead to a large change of the first contribution.

As seen in Fig. 13, the decoupling of the first eigenfunction can only happen because
there is a transition from the negative to positive values in a region close to the starting
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Figure 14: Contributions to F2 of individual eigenfunctions. The dots show the measured
points at Q2 = 6.5 and 35 GeV2, The full blue line shows the BFKL prediction at these Q2’s,
other lines show the contributions of eigenfunctions specified in the legend. With exception
of the second eigenfunction and the continuous negative ω contributions, the contributions of
the eigenfunctions are displayed as a sum of two eigenfunctions, (3+4), (5+6), ... (19+20).

23



Nef 20 16 12 10
A 0.51768 0.47904 0.44987 0.42753
B 1.58209 1.32672 1.16597 1.95858
C 0.000037 0.002092 0.00431 0.00586
ηneg -0.0895 -0.0723 -0.0738 -0.0770
χ2 33.4 34.0 34.4 34.7

Table 3: Results of the ABC-Fit performed with different number of eigenfunctions, Nef .
All fits were using the same 51 data points, with x < 0.001 and Q2 > 6 GeV2. The value of
the proton form factor was b = 10 GeV2.

point k0. Such a transition is a clear indication that the first eigenfunction, chosen by the
fit, cannot be a wave function of a ground state. As shown in Appendix B, the wave function
of the BFKL ground state has to be completely positive. Therefore, the decoupling of the
first eigenfunction could be interpreted as an indication that there exist an additional ground
state, corresponding to n = 0.

Our computation gives us though some hints about the properties of such a state. From
the values of the turning points, tc(n), which are almost linearly growing with n, Fig. 3,
we can estimate the kc value of the ground state, n = 0, as being around 500 to 700 MeV,
4 well below our starting value of k0 = 1 GeV. Such a state would have a high intercept,
ω0 ≈ 0.3, and would not have any oscillations above k0, it would just be exponentially
decaying with increasing ln(k). It was already pointed out by Gribov [15] that such a bare
pomeron state should be renormalised in the framework of the reggeon calculus and that its
effective intercept may become small, as in the soft pomeron case.

Indeed, the kc value of the additional ground state, of 500 to 700 MeV, lays right in the
middle of the saturation region [16–23], where multiple pomeron exchanges should domi-
nate [24]. In our approach, these exchanges would almost entirely involve the interaction of
the low kc ground state with itself, since its size is much larger than the size of higher eigen-
functions and the eigenfunctions are orthogonal to each other. This will lead to unitarisation
(saturation) corrections which would substantially affect the properties of the ground state.
We know, for example from the analysis of HERA data in terms of the Golec-Wuesthoff
or BGK model [19, 21], that the saturation corrections damps the effective exponent of the
gluon density, λ ≈ 0.3 at Q2 ≈ 50 GeV2, to the value which is compatible with the non-
perturbative pomeron state, λ ≈ 0.1, at low Q2 ≈ 0.5 GeV2 . In our case, the unitarisation
corrections could also damp 5 the ω value of our hypothetical ground state, ω0 ≈ 0.3, to a
value compatible with the soft pomeron.

4 Taking as example the b=10 GeV−2 fit, the tc values of the first five eigenstates are tc(1) = 10.332,
tc(2) = 18.838, tc(3) = 27.429, tc(4) = 36, 306, which correspond to the characteristic momenta of kc(1) ≈ 50
GeV, kc(2) ≈ 3, 3 TeV, kc(3) ≈ 260 TeV, kc(4) ≈ 21000 TeV. Taking as ∆t = tc(2)− tc(1) ≈ 8.5 we obtain
from tc(0) = tc(1) − ∆t a value kc ≈ 700 MeV. Other values of kc(0) can be obtained by noting that the
increment ∆t varies slightly with increasing n.

5Note that the gluon density (4.2) can be unitarised, by eikonalization, in a similar way as the gluon
density in [21] or [22].
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Furthermore, we expect that this hypothetical, highly unitarised, ground state should
have a k distribution which is quickly falling for k > kc. Therefore, its overlap with the
photon form factor would also be quickly diminishing with Q2 and so its contribution would
be small at larger Q2. Indeed, the Q2 dependence of the fit quality suggests that such a state
could be present, see below.

4.6 Q2 dependence

In Table 4 we show the AB-Fit results for different Q2 regions, Q2 > 4, 6 and 9 GeV2, for
b = 10 GeV−2 as an example. The fits with b = 20 GeV2 and/or the ABC fits show very
similar results. The fit with Q2 > 4 GeV2 of Table 4 has a substantially lower quality than

Q2 cut (GeV2) 4 6 9
A 0.51852 0.51844 0.51818
B 1.58847 1.58697 1.58356
ηneg -0.0911 -0.0911 -0.0911
Np 59 51 37
χ2 68.5 33.9 17.4

χ2/Ndf 1.25 0.72 0,52

Table 4: Results of the AB-Fit with x < 0.001 and b = 10 GeV−2.

the Q2 > 6 GeV2 one. This may be due to the presence of saturation effects, although the
worsening of the fit quality seems to be large as compared to the effects discussed e.g. in
ref. [10]. The sizeable improvement of the fit quality for Q2 > 9 GeV2 cannot be, however,
attributed to any kind of saturation effects, because the Q2 cut is so high. Therefore, it is
possible that the worsening of the fit quality with decreasing Q2 cut, is due to the presence
of our hypothetical ground state discussed above.

4.7 Extrapolation to very low x

In Fig. 15 we show the extrapolation of the AB fit to very low x values, which can be possibly
achieved in some future ep collider like VHEeP or LHeC. We see that at very large energies
the increase of F2 shows similar slopes at different Q2 values, unlike at HERA. This is due
to the dominance of the leading trajectory at very low x values.
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Figure 15: Extrapolation of the AB fit results to very low x
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5 Conclusions and Outlook

We have shown here that there exists a boundary condition, which leads to a precise de-
scription of HERA F2 data, for x < 0.001. We formulated it in terms of a relation be-
tween the eigenvalues, ωn, and the principal eigenfunction number, n. It has a simple form
ωn = A/(B+n) or ωn = A/(B+n)+C, called here AB or ABC respectively. Both relations
are well motivated in BFKL for larger n. The ω − n relation determines, within the BFKL
Green Function solution, the values of the phases of the eigenfunctions, ηn, close to the
non-perturbative region of small k ∼ ΛQCD. The fits using both relations give an excellent
description of data with equivalent χ2 values.

The fits lead to an unexpected result that the first eigenfunction decouples or nearly
decouples. This means that the overlaps of the first eigenfunction with the proton form
factor are very small or even compatible with zero due to the fact that the first eigenfunction
has a transition region from negative to positive values, i.e. a node. Therefore, the first
eigenfunction chosen by the fit cannot be a ground state, as is proven in Appendix B. The
discussion in the text suggests, as a consequence, the existence of a multiply interacting
ground state which could be identified with the soft, saturated, pomeron. The contributions
of such a state would quickly disappear as Q2 increases. We may try to learn more about
it in our forthcoming paper by focusing the investigation on the region closer to ΛQCD, by
varying k0 and, last but not least, using the full information about the errors of HERA
data [12].

The present BFKL fits to HERA data predict that in the very low x region, x << 10−4,
F2 should grow with a slope λ which is close to the eigenvalue of the second eigenfunction
and which is Q2 independent. This prediction could be easily verified on some future ep
collider, like VHEeP [26] or LHeC [25].
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6 Appendix A

We rephrase here the original derivation of the BFKL resummation given in ref. [7]. It is
convenient to write

χ0(ν) ≡ χ(0, ν)

where

χ(a, ν) ≡ 2Ψ(1)−Ψ

(
1

2
+ a+ iν

)
−Ψ

(
1

2
+ a− iν

)
(6.1)

and

χ̇(a, ν) ≡ d

da
χ(a, ν) = −Ψ′

(
1

2
+ a+ iν

)
−Ψ′

(
1

2
+ a− iν

)
(6.2)

If a is small then up to order a we have

χ(a, ν) = χ(0, ν) + aχ̇(0, ν) +O
(
a2
)
, (6.3)

We may write χ1(ν) (defining a quantity χreg1 (ν) ) as

χ1(ν) ≡ −Aχ(0, ν) +Bχ̇(0, ν) +
1

2
χ(0, ν)χ̇(0, ν) + χreg1 (ν) (6.4)

By a suitable choice of the constants A and B, we can arrange for χreg1 (ν) to be free of
singularities as ν →,± i

2

In this limit we have

χ(0, ν)
ν→±i/2−→ 1(

1
2
± iν

) +O
(

1

2
± iν

)
(6.5)

and

χ̇(0, ν)
ν→±i/2−→ − 1(

1
2
± iν

)2 +
π2

3
+O

(
1

2
± iν

)
(6.6)

So that

χ1(ν)
ν→±i/2−→ − 1

2
(
1
2
± iν

)3 − B(
1
2
± iν

)2 − (A+
π2

6

)
1(

1
2
± iν

) (6.7)

Therefore the constants A and B are selected to match the single and double poles
respectively of the function χ1(ν) and in that way χreg1 is free from such singularities.

Salam points out that the correction due to χreg1 is genuinely negligible and the entire
large correction to the characteristic function come from the terms which are singular as
ν → ±i/2.
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Now let us consider another function ω̃(ν) which is defined as the solution to the tran-
scendental (implicit) equation

ω̃(ν) ≡ ᾱs(1− ᾱsA)χ

(
ω̃

2
+ ᾱsB, ν

)
+ ᾱs

2χreg1 (ν) (6.8)

Solving to leading order in ᾱs we have

ω̃ = ᾱsχ(0, ν) +O
(
ᾱs

2)
)
. (6.9)

Expanding ω̃(ν) up to order ᾱs
2, and using (6.3) we obtain

ω̃(ν) = ᾱs(χ(0, ν) + ᾱs
2

[
−Aχ(0, ν) +Bχ̇(0, ν) +

1

2
χ(0, ν)χ̇(0, ν) + χreg1 (ν)

]
+O

(
ᾱs

3
)

= ᾱs(χ0(ν) + ᾱs
2χ1(ν) +O

(
ᾱs

3
)

(6.10)

Thus we see that up to order ᾱs
2, the quantities ω(ν) and ω̃(ν) are identical so that up

to that accuracy we may replace the usual perturbative expression given in (3.1) by ω̃(ν).

On the other hand, the quantity ω̃(ν) does not contain any singularities as ν → ± i
2
.

The singularities we see in eq(6.10) are only present as a result of an expansion. They are
therefore an artifact of this expansion and are not present for the entire function. Since it
is these singular terms that give rise to the large NLO corrections found in χ1(ν) we may
consider the quantity ω̃(ν) to be the expression in which all of these large corrections have
been resummed.

For the case of the cubic pole, this has been established exactly, since we know what the
origin of the triple pole is. Salam explains that this arises from a mismatch between the
“rapidity”, Y , of the forward gluon-gluon scattering amplitude used in the BFKL approach

Y = ln
( s

kk′

)
For the resummation of the double and single poles, this is not known uniquely and there

are several resummation schemes, of which the one described here is one. What they have
in common is that they all resum all the collinear singularities (i.e. all poles as ν → ± i

2

and they are all equivalent to the ordinary pertubative expansion for ω up to order ᾱs
2.

They, of course, differ, in the terms proportional to ᾱs
3 and higher - but we have no reason

to select one of these schemes above another in the absence of the NNLO calculation of the
characteristic function. Scheme 3, which is the scheme considered here is the most convenient
for our purposes.
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7 Appendix B

Absence of nodes in the wave function of a ground state

One can define the kinetic energy, T̃ [ψ], as

T̃ [ψ] = − 1

2m

∫ ∞
−∞

ψ(x)ψ′′(x)dx. (7.1)

Integrating by parts we obtain

T [ψ] =
1

2m

∫ ∞
−∞

((ψ′(x))2dx, (7.2)

provided the wave function ψ(x) is continuous and has continuous first derivatives. (The
transition from (7.1) to (7.2) is not valid for the continuous wave functions which do not
have a fully continuous first derivatives, like e.g. ψ(x) ∼ α|x| or ψ(x) ∼ exp(−α|x|).) In the
following, we prefer to use for kinetic energy the expression (7.2) since, in contrast to (7.1),
it is always positive.

Let us first consider the case of the one-dimensional Schrödinger equation and define the
total energy as a functional

E[ψ] = T [ψ] + V [ψ] =
1

2m

∫ ∞
−∞

(ψ′(x))2dx+

∫ ∞
−∞

(ψ(x))2V (x) dx . (7.3)

In the case of a ground state of energy E0, the functional E[ψ] takes the minimal value
calculated on all possible normalized wave functions

E0 = min
ψ

E(ψ)

||ψ||2
, ||ψ||2 ≡

∫ ∞
−∞

(ψ(x))2 dx . (7.4)

Let us assume, that the ψ-function changes its sign, for example, ψ(x)|x→0 ∼ x, and
prove, that there is a positive function χ(x) with χ(0) 6= 0, which has a smaller energy E.
It would mean, that the wave function ψ with a node at x = 0 cannot be the wave function
of the ground state.

We are choosing the trial wave function χ(x) in the form

χ(x)||x|>ε ≡ |ψ(x)| , χ(x)||x|<ε ≡
|ψ′(0)|

2|ε|
(
x2 + ε2

)
, ψ(x)||x|<ε ≈ |ψ

′(0)|x , (7.5)

where ε → 0. Note, that χ(x) is a continuous function having also continuous derivatives
at x = ±ε. One can neglect small corrections ∼ ε3 to the normalisation integral and to the
potential energy V (χ). The main contribution to δE(χ) is obtained from the kinetic energy

δE = T (χ)− T (ψ) =
1

2m

∫ ε

−ε
(ψ′(0))2

(
x2/ε2 − 1

)
dx = −2(ψ′(0))2ε

3m
. (7.6)
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Because δE < 0 we conclude that, in case of the Schrödinger equation, the ground state
wave function cannot have nodes.

Let us turn now to the BFKL equation with the running coupling constant. In the leading
logarithmic approximation we have

− ω f = HBFKL f , (7.7)

with

HBFKL =
√
αs(t)

(
Ψ

(
1

2
+ iν

)
+ Ψ

(
1

2
− iν

)
− 2Ψ (1)

) √
αs(t) , (7.8)

where

αs(t) =
1

β̄0t
, t = ln

|k⊥|2

Λ2
QCD

. (7.9)

Here E = −ω plays the role of the total energy in the Schrödinger equation. The operator
ν denotes the momentum canonically conjugated to the coordinate t,

[ν, t] = i . (7.10)

As usual in QCD, one can use the perturbative hamiltonian H for large t > t0 > 0 only.
For t < t0 it should be substituted by an hermitian non-perturbative hamiltonian H̃ and the
corresponding wave functions and their derivatives are matched at t = t0.

We prove now that the ground state wave function f0, with energy E0, cannot have a
node at t = t1 > t0. For this purpose, as in the above case of the usual quantum mechanics,
we use a simple trial function χ(t), which is different from |f(t)| (with f(t1) = 0) only in the
small region ∼ ε around t = t1

χ(t)||t−t1|<ε ≡
|f ′(t1)|

2|ε|
(
(t− t1)2 + ε2

)
, f(t)||t−t1|<ε ≈ |f

′(t1)|(t− t1) , ε� 1 . (7.11)

Note, that for the BFKL hamiltonian, which has a non-linear dependence from ν2, it would
be natural to introduce a trial function χ with continuous higher derivatives in the points
t− t1 = ±ε. But in the correction to the total energy, expressed in terms of the functional

E =

∫
dt f(t)H f(t) , ||f || = 1 (7.12)

with the substitution f(t) → |f(t)| → χ(t), the contribution from the region |t − t1| > ε
will cancel. In the region |t − t1| < ε, the higher derivatives of the BFKL hamiltonian H,
acting on the simple polynomial functions χ(t) and f(t), should be neglected. Note that this
corresponds to the diffusion approximation, because only terms proportional to ν2, in the
expansion of the hamiltonian H, should be taken into account.

As above, corrections to the normalisation condition and to the running coupling factors√
αs(t) are small. Thus, the main correction to the total energy of the trial function can be

written as

δE =

∫ t1+ε

t1−ε
αs(t1) 14ζ(3) (χ′ 2(t)− f ′ 2(t))dt = −14ζ(3)αs(t1) f

′ 2(t1)
4ε

3
, (7.13)

when ε → 0. Because this correction is negative. we conclude that the ground state wave
function for the BFKL pomeron cannot have nodes.
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