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Abstract: The existence of a second Higgs doublet in Nature could lead to a cos-

mological first order electroweak phase transition and explain the origin of the matter-

antimatter asymmetry in the Universe. We explore the parameter space of such a two-

Higgs-doublet-model and show that a first order electroweak phase transition strongly

correlates with a significant uplifting of the Higgs vacuum w.r.t. its Standard Model

value. We then obtain the spectrum and properties of the new scalars H0, A0 and H±

that signal such a phase transition, showing that the decay A0 → H0Z at the LHC

and a sizable deviation in the Higgs self-coupling λhhh from its SM value are sensitive

indicators of a strongly first order electroweak phase transition in the 2HDM.
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1 Introduction

In a cold, nearly empty Universe, spontaneous breaking of the electroweak (EW) sym-

metry takes place because the Higgs potential energy is minimized when the Higgs

field(s) acquire non-vanishing vacuum expectation values (VEVs). But in the early

Universe, when the scalar fields are surrounded by a thermal plasma of particles, the

net free-energy of the entire system has further contributions stemming from inter-

actions with this thermal bath, which yield a restoration of the EW symmetry for

temperatures T & 100 GeV. Tracing the thermal history of the Higgs field from the

high temperature regime down to the T = 0 vacuum of today reveals the properties of

the Electroweak Phase Transition (EWPT), the process of EW symmetry breaking in

the early Universe.

The detailed dynamics of the EWPT is a crucial ingredient for a number of cos-

mological observables. One example is the baryon asymmetry of the Universe (BAU),

which could be dynamically generated during a first order EWPT as long as the nu-

cleation and expansion of vacuum bubbles provide a strong enough departure from

thermal equilibrium as required by the Sakharov conditions [1]. For the minimal Higgs

sector of the SM, a first order transition would only be achieved for a Higgs mass mh

lower than the mass of the W boson, mh . mW [2], and thus does not occur in the

SM [3]. The BAU therefore constitutes concrete evidence of physics beyond the SM

which can be connected to the EWPT and the precise nature of the Higgs sector. In

addition, a first order EWPT would generate a stochastic background of gravitational

waves, potentially observable with the upcoming space-based gravitational wave inter-

ferometer LISA (see [4] for a review). Since the properties of the EWPT are highly

sensitive to the presence of new degrees of freedom at the EW scale coupling to the

Higgs field, its study provides a tantalising research topic at the interface of particle

physics and cosmology, shedding light on the ultimate structure of the sector responsi-

ble for EW symmetry breaking in Nature. This is a key goal of the physics programme

of the LHC and future colliders.

To fully determine the nature of the EWPT one typically has to inspect the shape

and evolution of the Higgs thermal effective potential with temperature, which faces

various theoretical issues (see e.g. [5–7]). Furthermore, determining the phase transition

strength is usually a computationally expensive algorithm. On the other hand, it has

been recently pointed out that, in theories where a modified scalar sector acts as the

main source of a strong phase transition, the EWPT strength is closely correlated with

the zero temperature vacuum energy difference of the theory [8, 9]. The amount by

which the EW broken vacuum is “uplifted” with respect to the SM case constitutes a

good indicator of the increase in the strength of the EWPT.
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In this work we will investigate this correlation in the context of two-Higgs-doublet

models (2HDMs) (see [10] for a review). Despite the minimality of the model, the

existence of additional scalars can induce a strongly first order phase transition [11–14],

as well as introduce new sources of Charge-Parity (CP) violation to enable the successful

generation of the BAU via EW baryogenesis in some regions of its parameter space [15–

17]. Ultimately, lattice calculations will provide a detailed map of the 2HDM parameter

region in which a strong first order EWPT occurs, but perturbative calculations can

already point to the main features of such a map. We show that the correlation between

the EWPT strength and the zero temperature vacuum energy uplifting is a powerful

analytic tool to explore the interplay between experimental/theoretical constraints and

the strength of the EWPT in 2HDM scenarios.

Our analysis indicates that this interplay results in a strong EWPT favouring a

hierarchical 2HDM scalar spectrum, with a preference for a heavy charged and pseu-

doscalar as compared to the neutral scalars (which includes the 125 GeV Higgs boson).

This leads to a “smoking-gun” signature at the LHC [14] (see also [18, 19]). We also

show a significant deviation of the Higgs self-coupling from its SM value to be a col-

lateral prediction of 2HDM scenarios with a strong EWPT [20, 21]. Accessing the

Higgs self-coupling is a key goal of the LHC and future colliders (see e.g. [22–25] for

recent analyses), as it provides a direct probe of the nature of EW symmetry breaking.

In the High-Luminosity LHC the sensitivity of such measurement is expected to be

∼ 50 % [26, 27]. We will show that this could be enough to probe some scenarios with

a strong EWPT in 2HDMs.

In section 2 we provide a review of the 2HDM and establish our notation as well as

the relevant theoretical constraints on the model parameters. Section 3 elaborates on

the computation of the vacuum energy difference in the 2HDM. Section 4 presents the

numerical scan of the 2HDM parameter space, establishing the correlation between the

vacuum energy difference and the strength of the EWPT, well as highlighting a number

of key features of 2HDMs that exhibit strongly first order EWPTs. We move to a more

analytical treatment in section 5, using the vacuum energy difference as a proxy for the

phase transition strength, delving deeper into the effects that establish the preferred

regions of parameter space. Section 6 discusses the connection of the phase transition

with the trilinear Higgs self-coupling before conclusions are drawn in section 7.

2 Reviewing Two Higgs Doublet Scenarios

Let us start with a brief review of the 2HDM, which also defines our notation in

this work. We consider a 2HDM scalar potential with a softly broken Z2 symmetry

to inhibit tree-level flavour changing neutral currents (FCNC), and for simplicity we
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neglect effects from CP violation1. The scalar potential then reads

Vtree(Φ1,Φ2) = µ2
1 |Φ1|2 + µ2

2 |Φ2|2 − µ2
[
Φ†1Φ2 + h.c.

]
+
λ1

2
|Φ1|4 +

λ2

2
|Φ2|4

+ λ3 |Φ1|2 |Φ2|2 + λ4

∣∣∣Φ†1Φ2

∣∣∣2 +
λ5

2

[(
Φ†1Φ2

)2

+ h.c.

]
, (2.1)

where the two scalar SU(2)L doublets Φj (j = 1, 2) may be written as

Φk =

(
φ+
k

vk+ϕk+i ηk√
2

)
. (2.2)

The physical scalar sector of a 2HDM is comprised of two CP-even neutral scalars, h

and H0 (with mH0 ≥ mh), plus a neutral CP-odd scalar A0 and a charged scalar H±.

In this work we identify h with the observed 125 GeV Higgs boson, but we stress that

our main arguments can be easily extended to the flipped case where H0 is the recently

observed particle and h is a lighter and yet undetected scalar (experimental constraints

on this scenario have been recently discussed in [29–31]).

Apart from mh and v = 246 GeV, the scalar potential (2.1) may be parametrized

in terms of tan β ≡ v2/v1 (with v2
1 + v2

2 = v2), the angle α parametrising the mixing

between the CP-even states, the scalar masses mH0 , mA0 , mH± and the mass scale M ,

M2 ≡ µ2(tβ + t−1
β ). (2.3)

The relation between the physical states h, H0, A0, H
± and the states ϕj, ηj, φ

±
j is

given by

H± = −sβ φ±1 + cβ φ
±
2 , A0 = −sβ η1 + cβ η2,

h = −sα ϕ1 + cα ϕ2, H0 = −cα ϕ1 − sα ϕ2,

with sβ, cβ, sα, cα ≡ sin β, cos β, sinα, cosα, respectively. Regarding the couplings of

the two doublets Φ1,2 to fermions, the Z2 symmetry in (2.1), even when softly broken

by µ2, may be used to forbid potentially dangerous tree-level FCNCs by requiring that

each fermion type couple to one doublet only [32]. By convention, up-type quarks

couple to Φ2. In Type I 2HDM all the other fermions also couple to Φ2, while for

Type II down-type quarks and leptons couple to H1. There are two more possibilities

(depending on the Z2 parity assignment for leptons with respect to down-type quarks),

1CP violation is important for the computation of the final baryon asymmetry, but its impact on

the phase transition strength is typically negligible, as EDM constraints require the CP violating phase

to be small [17, 28].
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but we focus here on Types I and II. The parameters tβ ≡ tan β and cβ−α ≡ cos (β−α)

control the strength of the couplings of h, H0, A0 and H± to gauge bosons and fermions.

In particular, one can identify the so-called alignment limit [33] cβ−α = 0, for which

h couples to SM particles exactly like the SM Higgs. The parameters in the scalar

potential can be related to the masses and mixings in the scalar sector as shown in

Appendix A.

In order to obtain a viable 2HDM scenario, theoretical constraints from unitarity,

perturbativity and stability/boundedness from below of the scalar potential (2.1) need

to be satisfied. These will play an important role in the following discussion. Tree-level

boundedness from below of the potential (2.1) requires

λ1 > 0 , λ2 > 0 , λ3 > −
√
λ1λ2 , λ3 + λ4 − |λ5| > −

√
λ1λ2 . (2.4)

At the same time, tree-level unitarity2 imposes bounds on the size of various combina-

tions of the quartic couplings λi [35, 36]. Similar (although generically less stringent)

bounds on λi may be obtained from perturbativity arguments. Finally, in order to

guarantee absolute tree-level stability of the EW minimum (that is, the non-existence

of a “panic vacuum” [37, 38]), the couplings must satisfy[(
m2
H±

v2
+
λ4

2

)
− |λ5|2

4

] [
m2
H±

v2
+

√
λ1 λ2 − λ3

2

]
> 0, (2.5)

which can be rewritten as

M2m2
A0

2v4

{
M2

v2
+

(m2
H0
−m2

h)

v2

[
s2
β−α − c2

β−α − cβ−α sβ−α(tβ − t−1
β )
]

+
√
λ1 λ2

}
> 0. (2.6)

Note that, in alignment, the condition that no panic-vacua exist at tree-level is satisfied

for M2 > 0.

In the following, it will prove convenient to use the Higgs basis of the 2HDM [33],

given by the rotation from the doublet fields in (2.2) via

H1 = cβ Φ1 + sβ Φ2,

H2 = −sβ Φ1 + cβ Φ2 . (2.7)

The two doublets in the Higgs basis read

H1 =

(
G+

v+h1+iG0√
2

)
, H2 =

(
H+

h2+i A0√
2

)
, (2.8)

2For a recent one-loop analysis, leading to slightly more stringent bounds, see [34].
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such that the EW broken phase is characterized by 〈h1〉 = v, 〈h2〉 = 0, with h1, h2 the

CP even field directions of H1 and H2. The 2HDM tree-level potential for Hi reads

Vtree(H1, H2) = µ̄2
1 |H1|2 + µ̄2

2 |H2|2 − µ̄2
[
H†1H2 + H.c.

]
+
λ̄1

2
|H1|4

+
λ̄2

2
|H2|4 + λ̄3 |H1|2 |H2|2 + λ̄4

∣∣∣H†1H2

∣∣∣2 +
λ̄5

2

[(
H†1H2

)2

+ H.c.

]
+λ̄6

[
|H1|2H†1H2 + H.c.

]
+ λ̄7

[
|H2|2H†1H2 + H.c.

]
, (2.9)

with the modified mass parameters µ̄2
1, µ̄2

2, µ̄2 and quartic couplings λ̄1−7 being functions

of m2
H± , m2

A0
, m2

H0
, m2

h, M
2, cβ−α and tβ (see Appendix A.2). We also note that in the

Higgs basis M precisely corresponds to the mass scale of the second doublet prior to

EW symmetry breaking.

3 The Electroweak Phase Transition with Two Higgs Doublets

The evolution of the Higgs vacuum in the early Universe, in thermal equilibrium, can

be described by means of the finite temperature effective potential V T
eff(φ, T ) for the

Higgs (and possibly other scalar fields subject to evolution in the early Universe)

V T
eff(φ, T ) = Vtree(φ) + V1(φ) + VT (φ, T ) , (3.1)

with φ representing the set of relevant scalar fields including the Higgs, V1 being the

T = 0 radiative Coleman-Weinberg piece of the effective potential and VT the ther-

mal contribution. The free-energy density difference FT between the SU(2)L × U(1)Y

symmetric phase 〈φ〉 = 0 and the broken phase 〈φ〉 = vT 6= 0 at temperature T is then

FT = V T
eff(vT , T )− V T

eff(0, T )

≡ F0 + V0(vT )− V0(v0) + VT (vT , T )− VT (0, T ) = F0 + ∆VT .
(3.2)

The first contribution, F0 < 0, corresponds to the vacuum energy difference at T = 0,

while the second contribution ∆VT ≥ 0 is monotonically increasing with T , vanishing

as T vanishes. The critical temperature, Tc, below which the EWPT can proceed in

the early Universe is then defined by FTc = 0.

A first order EWPT is characterized by the presence of a potential barrier between

the symmetric and broken phases as FT turns negative during the evolution of the

Universe. Such a first order transition could be responsible for the generation of the

matter-antimatter asymmetry of the Universe through EW baryogenesis, should the
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strength of the transition be sufficiently large (see [39–41] for reviews on the EWPT

and baryogenesis). The details of the tunneling process [42–44] between symmetric and

broken phases in a first order EWPT depend on the functional form of ∆VT in (3.2).

Nevertheless, it has been recently shown that in a wide class of extensions of the SM

potentially leading to a first order EWPT, the strength of the transition, which is

the relevant quantity for EW baryogenesis, is dominantly controlled by the value of

F0 w.r.t. its corresponding value for the SM, FSM
0 [8, 9]. In this work we show that

this is indeed the case for the 2HDM. It is then possible to perform a systematic

study of the 2HDM parameter space in which a strongly first order EWPT is favoured

by analyzing the behaviour of ∆F0 ≡ F0 − FSM
0 . Moreover, we stress that ∆F0 is

renormalization scale independent and safe from potential gauge dependence issues [5,

6], being manifestly gauge invariant. These highlight the advantage of using ∆F0 to

explore the regions of 2HDM parameter space where a strongly first order EWPT is

possible, as well as its phenomenological implications.

Let us now discuss the vacuum energy at 1-loop in 2HDM scenarios. For the

renormalization of the 2HDM 1-loop effective potential we use an on-shell scheme,

imposing (among other conditions) that the value of the 1-loop vevs for the two doublets

and the 1-loop physical masses mh, mH0 , mA0 and mH± are equal to their tree-level

values. The renormalized 1-loop effective potential in the Higgs basis reads

Vtree(H1, H2) + VCT(H1, H2) + V1, (3.3)

with the counterterm potential being

VCT(H1, H2) = −δµ̄2
1 |H1|2 + δµ̄2

2 |H2|2 − δµ̄2
[
H†1H2 + H.c.

]
+
δλ̄1

2
|H1|4

+
δλ̄2

2
|H2|4 + δλ̄3 |H1|2 |H2|2 + δλ̄4

∣∣∣H†1H2

∣∣∣2 +
δλ̄5

2

[(
H†1H2

)2

+ H.c.

]
+δλ̄6

[
|H1|2H†1H2 + H.c.

]
+ δλ̄7

[
|H2|2H†1H2 + H.c.

]
. (3.4)

An immediate advantage of working in the Higgs basis is that, in order to obtain the

vacuum energy F0, we only need to compute the on-shell renormalization conditions

explicitly3 for δµ̄2
1 and δλ̄1

−δµ̄2
1 +

δλ̄1 v
2

2
+

1

v

∂V1

∂h1

∣∣∣∣
v

= 0 , −δµ̄2
1 +

3 δλ̄1 v
2

2
+
∂2V1

∂h2
1

∣∣∣∣
v

= 0 . (3.5)

3The Higgs basis condition 〈h2〉 = 0 is maintained at 1-loop by the choice of δµ̄2 and δλ̄6.
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The 1-loop piece of the scalar potential V1 in (3.3) is given in Landau gauge (see

e.g. [15]) by

V1 =
∑
α

nα
m4
α(h1, h2)

64π2

(
log
|m2

α(h1, h2)|
Q2

− Cα
)
. (3.6)

The index α sums over W, Z gauge bosons, top quark and 2HDM scalars including

Goldstone bosons4, with nα > 0 (nα < 0) for bosons (fermions). The various Cα are

constants which depend on the renormalization scheme, and may be disregarded as

they drop out in the following analysis. The vacuum energy F0 reads

F0 = −m
2
hv

2

8
− v2

8
c2
β−α (m2

H0
−m2

h) + ∆V1 −
δµ̄2

1 v
2

2
+
δλ̄1 v

4

8
, (3.7)

where ∆V1 is to be understood as the difference of the Coleman-Weinberg terms (3.6)

evaluated at the electroweak minimum and at the origin. As we are ultimately inter-

ested in ∆F0, we also need to compute FSM
0 using the same on-shell renormalization

procedure (demanding the 1-loop Higgs vev and mass to match their tree level values),

obtaining

FSM
0 = −m

2
hv

2

8
+

1

64π2

(
3m4

W +
3

2
m4
Z − 6m4

t

)
+

m4
h

64π2
(3 + log 2) . (3.8)

The first term in (3.7) and (3.8) corresponds to the tree-level vacuum energy difference

for the SM. We also note that the contributions to ∆V1 from the gauge bosons W and

Z and the top quark are identical in the SM and 2HDM, and so drop out from ∆F0.

Combining (3.7) and (3.8), we obtain

∆F0 = −v
2

8
c2
β−α (m2

H0
−m2

h)−
m4
h

64π2
(3 + log 2)−

∑
k

m4
0k

64π2

(
log
|m2

0k
|

Q2
− 1

2

)
(3.9)

+
1

64π2

∑
k

1

4

{
(vIk)

2 − 2m4
k +

[(
vIk − 2m2

k

)2
+m2

k

(
v2Jk − vIk

)]
log

m2
k

Q2

}
,

with m2
0k

the (possibly negative) squared scalar masses for k = H±, A0, H0, h evaluated

at the origin. Further details on the derivation of ∆F0 including explicit expressions

for Ik and Jk are given in Appendix B.

It is possible to show that the Q2 dependence in (3.9) cancels out, so that ∆F0

is renormalization scale independent. We also note that the first term in (3.9), which

4We note the squared masses of the scalars do not vanish at the origin in general. As these masses

may be negative for certain values of h1, h2, the absolute value in the argument of the logarithm

ensures only the real part of the potential is evaluated.
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corresponds to the tree-level contribution to ∆F0, is negative definite and vanishes in

the alignment limit cβ−α → 0. In this limit, (3.9) simplifies considerably and reads

∆F0 =
1

64π2

[(
m2
h − 2M2

)2

(
3

2
+

1

2
log

[
4mA0 mH0 m

2
H±

(m2
h − 2M2)

2

])

+
1

2

(
m4
A0

+m4
H0

+ 2m4
H±

)
+
(
m2
h − 2M2

) (
m2
A0

+m2
H0

+ 2m2
H±

)]
. (3.10)

4 Vacuum Energy vs EW Phase Transition Strength:

Numerical scan

In order to show explicitly the correlation between the vacuum energy difference ∆F0

and the nature of the EW phase transition in 2HDMs, we perform a Monte-Carlo scan

over an extensive region of the 2HDM parameter space. We vary mass parameters

from 100− 1000 GeV (but with mH0 > mh), and limit ourselves to the low tan β < 10

region, since very large tan β is uninteresting for practical applications such as the

baryon asymmetry computation. Each scanned point is tested for:

• Tree-level unitarity and perturbativity (by requiring the tree-level quartic self-

couplings among the physical scalars to be smaller than 2π)5.

• Stability of the electroweak vacuum at tree-level (c.f. eqs. (2.4) and (2.6)) and at

1-loop level by directly searching for lower secondary minima and/or unbound-

edness of the effective potential up to a cutoff Λ = 5 TeV6.

• Limits from EW precision observables [45–48].

• Flavour constraints, of which the most relevant in the low tan β region are B0−B̄0

mixing [49, 50] and B̄ → Xsγ decays [51–55].

• Bounds from direct scalar searches using HiggsBounds [56], and agreement with

measured properties of the mh = 125 GeV Higgs boson using HiggsSignals [57].

5In the literature, perturbativity is typically imposed as λ1−5 < 4π. However, the scalar vertex

entering a loop expansion involves the self-coupling of physical states, rather than the flavour eigen-

states, hence the limits must be imposed on the physical quartic couplings. Furthermore, we chose a

more stringent upper bound of 2π for the tree-level couplings, as this tends to ensure well-behaved

running up to or beyond Λ & 2 TeV. For the impact of requiring the running couplings to remain

small all the way up to a certain cutoff scale, see discussion in section 5.
6This is generally more stringent than evaluating the stability conditions in eq. (2.4) with the 1-loop

running couplings, as the latter method only takes the logarithmic contributions into account. Note

also that one would find even more accurate exclusion regions by scanning the RG improved 1-loop

effective potential with the 2-loop running couplings.
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A point passing all these tests is considered physical. For each of these, the strength

of the phase transition is computed by increasing the temperature, starting at T = 0,

and following the electroweak minimum (whose norm at temperature T is denoted vT ),

until we reach the critical temperature Tc for which FTc = 0. The phase transition is

considered strong if

ξ ≡ vTc
Tc
≥ 1. (4.1)
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Figure 1. Results of a numerical scan of the 2HDM parameter space (see text for details)

showing the correlation between the ∆F0 and (top) the critical temperature (bottom) the

strength of the EWPT for Type I (left) and Type II (right). Filled contours indicate the

density of physical points. Also shown are contours of Pξ>1, the posterior probability of

having a strong first order EWPT.

Clearly, the larger ∆F0 is, the smaller the temperature corrections required in order

to reach FTc = 0. Since vT also grows as T decreases, the overall result is that the

strength of the phase transition should be directly related to ∆F0. This is illustrated
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in Fig. 1. Here, the filled green contours indicate the number of physical points in a

given region of the parameter space. In any such region we also define

Pξ>1 ≡
# points with ξ > 1

# physical points
, (4.2)

whose contours are shown in the empty curves indicating the percentage of points in

the encircled region for which the phase transition is strong (e.g. in Fig. 1 (top), 95%

of points inside the black solid curve have ξ ≥ 1). Note that the latter curves, being the

ratio of density distributions in a certain region, are less sensitive to the priors of the

scan than the actual distribution of points alone, and therefore offer a more meaningful

physical picture in that they can be interpreted as a posterior probability density for

requiring a strongly first-order EWPT given the existing constraints on the model.

For convenience, we normalize the vacuum energy by the SM value at 1-loop7

FSM
0 ≈ −1.25× 108 GeV4. It is clear from Fig. 1 (top) that as ∆F0/FSM

0 decreases both

Tc and the likelihood of having a strong phase transition increase. Notice, furthermore,

that the phase transition is guaranteed to be strong if ∆F0/FSM
0 . −0.34 for the sample

generated in our scan. This can be used as an efficient criterion to judge the nature

of the phase transition, as it does not require the evaluation of the thermal potential

(although it is not used in what follows). We however emphasize that the details of the

temperature-dependent part of the effective potential are obviously important for the

thermal evolution of the system, and oftentimes one cannot precisely judge the nature

of the phase transition by the vacuum energy alone. E.g. for ∆F0 = 0 in Type I, the

EWPT can be weak or strong, as shown in Fig. 1 (bottom, left).

Yet, a direct correlation certainly exists between these quantities, from which one

can understand and predict the favoured corners of the parameter space for a strong

EWPT. Eq. (3.9) shows that the vacuum energy difference receives a negative tree-

level contribution away from alignment, which increases with mH0 . We thus expect a

strong EWPT to favour the alignment limit, and the more so the heavier H0 is. These

expectations are confirmed by the data, as shown in Fig. 2. In both Type I and II

scenarios the probability contours increasingly favour alignment for a strong EWPT as

mH0 grows. For Type I, even though the distribution of physical points already narrows

around alignment for mH0 & 550 GeV, the narrowing of the Pξ>1 bands is significantly

more drastic and does not merely follow that of the physical distribution. It is also

worth noticing that, while for Type I the low-mass region is the mostly populated, for

Type II the lower bound mH± > 480 GeV from flavour constraints tends to shift the

masses of the additional scalars towards rather large values, which is why the physical

points are mostly concentrated in the region of mH0 ∼ 500 GeV. For Type II we

7As FSM
0 is negative, larger values of ∆F0 will correspond to more negative values of ∆F0/FSM

0 .
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Figure 2. Distribution of physical points, as in Figure 1, and Pξ>1 contours in the

(mH0 , cβ−α) plane. As H0 gets heavier, a strong first order EWPT increasingly favours

alignment. In Type II the wrong-sign scenario, albeit less populated, can also lead to a

strong EWPT.
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Figure 3. Distribution of physical points, as in Figure 1, and Pξ>1 contours in the

(∆F0/FSM
0 , M) plane.

also note the physical region for cβ−α & 0.4, corresponding to the 2HDM wrong-sign

scenario [58]. Both in Type I and II scenarios one sees that away from the alignment

limit there is a tension between a strong EWPT and a heavy H0.

The dependence of the vacuum uplifting with the overall mass scale M is deter-

mined mostly by stability, perturbativity and unitarity constraints. Indeed, close to
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the alignment limit the quartic couplings λ1,2 read

v2 λ1 ≈ m2
h + t2β Ω2 , v2 λ2 ≈ m2

h + t−2
β Ω2, (4.3)

where the parameter

Ω2 ≡ m2
H0
−M2 (4.4)

has been introduced for its usefulness in the analysis of the stability and unitarity

requirements. Recalling eq. (2.4), both couplings λ1,2 must be positive and it follows

that

m2
h > −max(t2β, t

−2
β ) Ω2, (4.5)

so that as M2 grows larger, m2
H0

has to follow it closely. In addition eq. (2.4) shows

that

v2 λ3 ≈ 2m2
H± − 2m2

H0
+ Ω2 +m2

h,

v2 λ4 ≈ m2
A0
−m2

H0
+ Ω2 − 2m2

H±

(4.6)

cannot grow too negative either, from which it follows that m2
H± and m2

A0
cannot

be much smaller than a large M2. In summary, for M2 � m2
h, stability enforces

m2
H0
,m2

A0
,m2

H± ∼ M2, for which the decoupling limit is approached and ∆F0 → 0, as

can be verified by setting mH0 = mH± = mA0 ≈ M � mh in eq. (3.9). Therefore, a

significant uplifting of the vacuum energy can only be achieved for M ∼ v, which is

confirmed by Fig. 3. We note that again in Type II the distribution of physical points

is peaked around larger values due to the lower bound on mH± from the B̄ → Xsγ

constraint. However, in both types a moderate uplifting of the vacuum energy is

achieved only for M . 500 GeV.

A strongly first order EWPT generally relies on the existence of sizable couplings

between the symmetry breaking scalar field (the Higgs) and the particles in the plasma,

which means that one or more of the additional scalars must be significantly heavier

than the overall mass scale M , as the mass splitting would be controlled by these large

couplings. We have already established that a large mH0 becomes disadvantageous for

a strong EWPT away (even if only slightly) from alignment. Furthermore, for tβ 6= 1

a large Ω2 quickly violates perturbativity bounds. On the other hand, EW precision

observables constrain the charged scalar H± to be close in mass to either mH0 or mA0 .

This leaves A0 as the only scalar whose mass is free to be large8, and Fig. 4 confirms

that a rather heavy9 A0 is indeed the most favoured scenario, with > 94% of strong

phase transition points lying above the lower bound mA0 & 300 GeV.

8H± may also be significantly heavier than M if paired to A0, but not on its own.
9We note that a heavy pseudoscalar (m2

A0
� M2) does induce a negative quartic coupling λ5 =

(M2 −m2
A0

)/v2. However, this does not pose a problem for stability, since only the absolute value of

λ5 enters eq. (2.4).
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Figure 4. Distribution of physical points and Pξ>1 contours in the (∆F0/FSM
0 , mA0) plane.

These results are put together in Fig. 5, illustrating how the likelihood of a strong

EWPT varies with mH0 and mA0 . In both Type I and II 2HDM scenarios a strong

transition favoures a large splitting mA0 > mH0 + mZ , pointing to the A0 → ZH0

decay as a smoking gun signature of a 2HDM with a strongly first order EWPT. The

detection prospects of this channel, and its importance as complementary to searches

into SM final states, have been discussed in [14, 18, 19, 65].
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Figure 5. Distribution of physical points and Pξ>1 contours in the (mH0 , mA0) plane. A

strong first order EWPT is clearly favoured by a splitting mA0 > mH0 +mZ .
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5 Analytic results

We now turn to an analytic exploration of the 2HDM vacuum uplifting as computed

from eq. (3.9). Given the large dimensionality of the 2HDM parameter space, we per-

form the study in various limits which allow us to explicitly investigate the relevant

parameter dependences. In the following section we focus on the alignment limit,

pair mH± exactly with either mH0 or mA0 , and work out the dependence of the vac-

uum energy and phase transition strength with the splitting ∆mAH ≡ mA0 −mH0 and

Ω ≡
√
|Ω2|×sign(Ω2) for different fixed values of mH0 . Then, in section 5.2 we allow for

deviations from the alignment limit, fixing a degenerate spectrum (mH0 = mA0 = mH±)

for simplicity. Finally we devote section 5.3 to the special case of the Inert 2HDM where

only one double takes a vev and the Z2 symmetry is exact.

5.1 The Alignment Limit cβ−α = 0

We start by considering the alignment limit cβ−α = 0, where h behaves exactly as the

SM Higgs boson. In this case, ∆F0 is given by (3.10). Since measurements of EW pre-

cision observables (in particular the T -parameter) require an approximate degeneracy

mH± ∼ mH0 or mH± ∼ mA0 , we set for simplicity this pairing as exact, analysing both

possibilities. With these parameters fixed, ∆F0 is then solely dependent on mH0 , mA0 ,

and Ω2.

We first fix mH± = mA0 and show in Fig. 6 the parameter space regions of constant

∆F0/FSM
0 in the (Ω, ∆mAH) plane, respectively formH0 = 200, 500 GeV (Left to Right)

and tβ = 1.5, 3, 5 (Top to Bottom). In each case we show the constraints from tree-

level unitarity, boundedness from below of the scalar potential and non-existence of

a panic vacuum. We note that as opposed to unitarity and stability, ∆F0/FSM
0 and

the existence of a panic vacuum do not depend on tβ (this last one for cβ−α = 0). To

estimate the breakdown of perturbativity, we show the region for which any quartic

coupling grows larger than 4π at a cutoff µ = 5 TeV from 2-loop running [63], starting

from µ0 = max(mH0 ,mH± ,mA0) to ensure that the heavy degrees of freedom will only

contribute above their threshold. While this is not a hard limit on the model compared

to the others presented, it provides an idea of the UV scale of new physics that would

be required in such a picture. Finally, we also show the lines of a constant strength

of the EWPT ξ in the (Ω, ∆mAH) plane, obtained numerically. These smoothly track

the lines of constant ∆F0/FSM
0 , confirming the observations in section 4 regarding the

tight correlation between the strength of the EWPT and ∆F0 in 2HDM scenarios.

From Fig. 6 we see that a strongly first order EWPT is achieved by increasing ∆mAH

in all cases. For mH0 � v (mH0 = 500 GeV in Fig. 6) and tβ ∼ 1 it is also possible

to achieve such a strongly first order transition by increasing Ω (with Ω < mH0) for
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Figure 6. Ω ≡
√
|Ω2| × sign(Ω2) vs ∆mAH ≡ mA0 − mH0 assuming mH± = mA0 , for

mH0 = 200, 500 GeV (Left to Right) and tβ = 1.5, 3, 5 (Top to Bottom). Red lines show

constant values of ∆F0/FSM
0 . Blue lines show constant values of the strength of the EWPT

ξ. The grey region is excluded by boundedness from below of the scalar potential, while the

brown region is excluded by unitarity. In the hatched region, a panic vacuum develops.

∆mAH < 0, but this possibility is forbidden by unitarity as tβ departs significantly from

1. We repeat the analysis, now for mH± = mH0 , and show the results in Fig. 7. These

are qualitatively similar to those from Fig. 6 for the mH± = mA0 scenario. Together,
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Figure 7. Ω vs ∆mAH assuming mH± = mH0 , for mH0 = 200, 500 GeV (Left to Right) and

tβ = 1.5, 3, 5 (Top to Bottom). Labels as in Fig. 6.

these show that a strongly first order EWPT within the 2HDM generically favours

mA0 −mH0 & 100 GeV, leading to the landmark signature A0 → H0Z at colliders.

Before continuing, let us note that in our analytical study of the 2HDM vacuum

energy we haven’t imposed several experimental constraints that would further restrict

the allowed parameter space within the 2HDM, briefly outlined in section 4. The reason

for not doing so is that these constraints depend significantly on the Type of 2HDM,
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while our analysis of the EWPT and the bounds from stability, unitarity, perturbativity

and existence of a panic vacuum do not. However, it is important to briefly discuss

these experimental constraints so that the reader is well informed of their potential

impact on the 2HDM parameter space: (i) LEP searches yield the limit mH± > 72

GeV (80 GeV) for 2HDM Type I (II) [60] as well as the bound mH0 + mA0 & 209

GeV [61]. (ii) LHC measurements of Higgs signal strengths constrain the allowed value

of cβ−α as a function of tβ (see e.g. [62–65]). These do not provide a constraint in

the alignment limit cβ−α = 0 (since the 125 GeV Higgs behaves as the SM one in this

case), but do constrain significant deviations from the alignment limit, and thus will be

relevant for the analysis of section 5.2. In addition, Higgs signal strength measurements

constrain the size of the h→ A0A0 partial width for mA0 < 62 GeV, which in alignment

translates into the strong constraint Ω2 ' m2
H0
−m2

A0
−m2

h/2 on the allowed range of

Ω in this region [66]. (iii) LHC searches for H0, A0 and H± constrain the masses of

the new scalars as a function of cβ−α and tβ (and Ω in certain regions of parameter

space). In the alignment limit, and for the parameters considered in Figs. 6 and 7,

relevant limits come from A0 → ZH0 (H0 → ZA0) 8 TeV CMS searches [67] in the

region ∆mAH > 0 (∆mAH < 0), as discussed in [65]. Searches for H± are also relevant

for mH± < mt (see e.g. [68]). (iv) Flavour constraints, particularly from B̄ → Xsγ

B-meson decays, yield strong limits on the (mH± , tβ) parameter space both for Type

I [54] and Type II [54, 55] 2HDM (see also [69]).

In order to shed some more light on the impact of the quartic coupling values from

the 2HDM potential (2.1) on the strength of the EWPT, we now analyze the interplay

between ∆F0 and the theoretical constraints using a different choice of independent

parameters: cβ−α, tβ, M2, λ3, λ4, λ5. Together with v = 246 GeV and mh = 125 GeV,

these completely determine the parameters in (2.1). We fix cβ−α = 0, and note that ∆F0

in this limit, given by (3.10), is symmetric undermA0 ↔ mH0 . FixingmH± to be close to

eithermA0 ormH0 breaks this symmetry. However, there is still a symmetry between the

scenario mH± = mA0 with ∆mAH > 0 and the scenario mH± = mH0 with ∆mAH < 0.

Using the relations from Appendix A.1 we find that in the former scenario λ4 = λ5

while in the latter λ4 = m2
h/v

2−(2λ3+λ5). In both cases m2
A0
−m2

H0
= v2(λ3+λ4)−m2

h.

Choosing M = 246 GeV as an illustrative example, we compare in Fig. 8 the vacuum

energy difference ∆F0 and theoretical constraints in the (λ3 + λ4, λ5) plane, for the

mH± = mA0 and mH± = mH0 scenarios. In each case, besides the lines of constant

∆F0/FSM
0 = 0, −0.2, −0.4 and −1 (F0 > 0), we show the contours of mA0−mH0 = mZ

(when the decay A0 → ZH0 becomes kinematically accessible) and mH0 −mA0 = mZ

(when the decay H0 → ZA0 becomes kinematically accessible), as well as the tree-level

stability and unitarity bounds for tβ = 1.5, 3, 5. Fig. 8 explicitly shows that for tβ ∼ 1

sufficient vacuum uplifting for a strongly first order EWPT in the 2HDM is compatible
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Figure 8. λ3 +λ4 vs λ5 for M = 246 GeV and assuming respectively mH± = mA0 (Left) and

mH± = mH0 (Right). Red lines show constant values of ∆F0/FSM
0 , with the green region

corresponding to ∆F0/FSM < −1 (F0 > 0). Blue lines show the contours mA0 −mH0 > mZ

(solid) and mH0−mA0 > mZ (dashed). The grey and orange regions are respectively excluded

by boundedness from below of the scalar potential and by unitarity, for tβ = 1.5, 3, 5 (dark

to light). The brown region is unphysical (mH0 < 0 and/or mA0 < 0).

with both mA0 − mH0 > mZ and mH0 − mA0 > mZ (and even mH0 = mA0). This

is the case for both the mH± = mA0 (Fig. 8 Left) and mH± = mH0 (Fig. 8 Right)

scenarios. However, as tβ increases, the region mH0 > mA0 becomes progressively

excluded by unitarity, and already for tβ = 3 a vacuum uplifting ∆F0/FSM
0 = −0.2

demands mA0 −mH0 > mZ , as can also be inferred from Figs. 6 and 7.

5.2 Away from the Alignment Limit: Degenerate 2HDM Spectrum

We now investigate the effect of departing from the alignment limit, setting for sim-

plicity mH0 = mA0 = mH± = mφ. In this approximation the vacuum energy difference

can be expressed in terms of cβ−α, tβ, m2
φ and Ω2 (see Appendix B for details). We

show in Fig. 9 the behaviour of the vacuum energy difference in the (Ω, cβ−α) plane for

mφ = 200, 500 GeV (Left to Right) and tβ = 1.5, 3, 5 (Top to Bottom). In all cases a

sizable vacuum uplifting demands Ω & v (the only exception corresponds to mφ = 500

GeV, tβ = 5 and cβ−α & 0.4, excluded by vacuum stability). As shown in Fig. 9 (Left),

for light mφ uplifting of the vacuum is in conflict with the panic vacuum constraint

(and also excluded by unitarity for tβ � 1). In contrast, Fig. 9 (Right) shows that

sufficient vacuum uplifting is possible for mφ = 500 GeV and v . Ω . mH0 , provided
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Figure 9. Ω ≡
√
|Ω2| × sign(Ω2) vs cβ−α for mφ = 200, 500 GeV (Left to Right) and

tβ = 1.5, 3, 5 (Top to Bottom). Red lines show constant values of ∆F0/FSM
0 . The grey

region is excluded by boundedness from below of the scalar potential, while the orange region

is excluded by unitarity. In the hatched region, a panic vacuum develops.

that tβ ∼ 1. Again, as tβ increases the parameter space region where the 2HDM Higgs

vacuum is uplifted compared to the SM one becomes excluded by unitarity.
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5.3 An Inert Second Doublet

The inert doublet model [70–72] (IDM) is a special case of 2HDM scenario in which

the second doublet is protected by a Z2 symmetry and does not develop a vev. This

Z2 symmetry leads to the lightest state of the second doublet being stable, yielding a

viable dark matter (DM) candidate if this corresponds to either A0 or H0. This scenario

has been widely studied in the literature (see e.g. [73, 74] for updated analyses, and

references therein), including its impact on the EWPT [75–78].

The scalar potential for the IDM is given by (2.1) with µ = 0, and due to the

unbroken Z2 symmetry the dictionaries from Appendix A.1 – A.2 do not apply in any

particular limit, and instead the relations among parameters are given in A.3 (note

however that some of the parameter relations are identical to those of the Higgs basis

with cβ−α = 0 and M2 = 0). The relevant IDM parameters can be conveniently chosen

to be mH0 , mA0 , mH± , λ345 ≡ λ3 + λ4 + λ5 and λ2. In the following we consider DM to

be H0 (both choices are physically equivalent in the IDM), which amounts to requiring

∆mAH > 0, and we also consider mH± = mA0 as a simplifying assumption to satisfy

EW precision constraints.

Using (3.5), (3.6) and the results from Appendix B we can easily obtain the vacuum

energy difference ∆F0 for the IDM, which reads

∆F0 =
1

64π2

[(
m2
H0
− λ345v

2

2

)2

log

[
m2
H0
m6
A0(

m2
H0
− λ345v2

2

)4

]
+

1

2
(m4

A0
−m4

H0
) + 3

(
λ345v

2

2

)2

+ 4

(
m2
H0
−m2

A0
− λ345v

2

2

)(
m2
H0
− λ345v

2

2

)
+

(
m2
H0
−m2

A0
− λ345v

2

2

)2
]
, (5.1)

and we investigate its interplay with theoretical constraints: stability, unitarity and

the requirement that the Z2 symmetry is preserved in the EW broken vacuum, which

leads to the condition

µ2
1/
√
λ1 < µ2

2/
√
λ2 . (5.2)

We also include in our analysis the constraint on the IDM parameter space from the

latest LUX bounds on the spin-independent DM-nucleon scattering cross section [79],

as well as the IDM parameter space region for which the H0 relic abundance through

thermal freeze-out ΩH0 does not exceed the observed DM relic density ΩDM = 0.1199±
0.0022 [80]. The H0 relic abundance and the spin-independent H0-nucleon scattering

cross section are both obtained with micrOMEGAs 4.3 [81], and we note that the

nucleon scattering cross section has to be weighted by ΩH0/ΩDM when comparing with

the LUX limits (as these assume ΩH0 = ΩDM).

In Fig. 10 we show the vacuum energy difference in the plane (λ345, ∆mAH) for

benchmark values mH0 = 70 GeV (left) and mH0 = 150 GeV (right), as well as
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the theoretical constraints for λ2 = 1, 0.1. We also show the contours of constant

ΩH0/ΩDM = 1, 0.1, 0.02, 0.01 and the bound from LUX. For mH0 = 70 GeV the LUX

bound combined with ΩH0/ΩDM ≤ 1 exclude the entire parameter space except for the

small island ∆mAH . 10 GeV and −0.05 . λ345 . 0.05. As shown in Fig. 10 significant

vacuum uplifting requires ∆mAH & v and is thus not possible in this case10. In contrast

for mH0 = 150 GeV, sizable uplifting and thus a strongly first order EWPT is possible,

requiring ∆mAH & 200 GeV. We emphasize that while previous works have already

identified a large mass splitting ∆mAH in the IDM as providing a strong EWPT (see

e.g. [78]), the dominant strengthening effect was attributed to the thermal contribu-

tions of H0, A0, H± to V T
eff . While these do play an important role, we show here that

the most important effect is due to the uplifting of the T = 0 vacuum.
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Figure 10. λ345 vs ∆mAH assuming mH± = mA0 , for mH0 = 70 GeV. Red lines show

constant values of ∆F0/FSM
0 , with the green region corresponding to ∆F0/FSM < −1 (F0 >

0). The grey and brown regions are respectively excluded by boundedness from below of

the scalar potential and by the failure to fulfill eq. (5.2), respectively for λ2 = 1 (dark) and

λ2 = 0.1 (light). Contours of constant ΩH0/ΩDM = 1, 0.1, 0.02, 0.01 are shown as solid,

dashed, dash-dotted and dotted black lines. The excluded region from LUX [79] is shown in

pale yellow.

6 Trilinear Higgs self-coupling

Finally, it is useful to discuss the behaviour of the trilinear Higgs self-coupling λhhh in

the (Ω, ∆mAH) plane, w.r.t. its value in the SM λSM
hhh. It has been suggested that a

10We note that for this value of mH0 a strong EWPT was deemed possible in [78], but we find the

most recent LUX limits exclude this possibility.
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strong first order EWPT in the 2HDM is tightly correlated with sizable deviation in

the value of λhhh w.r.t. the SM value [20, 21]. In the alignment limit, we note that

λhhh = λSM
hhh at tree-level (as was also noted in [20, 21]). However, in the 2HDM 1-loop

corrections may lead to sizable deviations from the SM value. The Higgs self-coupling

λhhh in the 2HDM is approximately given at 1-loop by

λhhh =
3m2

h

v
+
∑
k

nk
32π2v3

(vIk)
3

m2
k

=
3m2

h

v

(
1− m4

t

π2m2
h v

2

)
+

∑
k=H0,A0,H±

nk
m4
k

4π2v3

(
1 +

m2
h

2m2
k

− M2

m2
k

)3

=λSM
hhh +

∑
k=H0,A0,H±

nk
m4
k

4π2v3

(
1 +

m2
h

2m2
k

− M2

m2
k

)3

(6.1)

where λSM
hhh includes the SM 1-loop corrections due to the top quark, Higgs and gauge

bosons. Our result agrees with [20, 21] and includes some sub-leading pieces that

become relevant when the new scalar states are not so heavy with respect to the 125

GeV Higgs boson. Given the tight correlation between the vacuum energy difference

and the strength of the EWPT, one would also expect a relationship to exist between the

former and the Higgs self-coupling. Defining κhhh ≡ λhhh/λ
SM
hhh, the region |1− κhhh| ≥

0.5 is of particular interest, since such a deviation in λhhh from its SM value could be

probed at the HL-LHC [26, 27]. In Fig. 11 we show contours of κhhh, for mH0 = 200

GeV and mH0 = 500 GeV in both mH± = mH0 and mH± = mA0 scenarios. We

also superimpose the normalized vacuum energy difference ∆F0/FSM
0 , highlighting (in

red/green) the values 0 and -1. The latter case corresponds to the limit above which

the EW vacuum is lifted above the trivial one (F0 > 0), preventing EWSB from ever

occurring, while the former denotes a vacuum energy difference equal to that of the

SM. Interestingly, we see that the region of unchanged vacuum energy difference with

respect to the SM coincides almost exactly with the region where the Higgs self-coupling

does not deviate from the SM prediction. Furthermore, the self-coupling grows as the

EW vacuum is uplifted, reaching values of 2-4 times the SM prediction in the regions

shown in Figs. 6 and 7 where a strong EWPT is expected to occur.

The strong correlation between the vacuum energy and the trilinear Higgs coupling

shown in Fig. 11 can qualitatively be understood in terms of an effective potential for

the SM Higgs. The extra Higgs states induce higher dimensional operators, with the

leading one being of mass dimension six. When only keeping the mass term, the quartic

coupling and the dimension-6 operator in the Higgs potential, we can vary the vacuum

energy independently of the Higgs mass and trade the coefficient of the dimension-6

operator for the vacuum energy to parametrize this effective potential [9]. We can then
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Figure 11. Contours of the deviation in the 2HDM Higgs self-coupling κhhh = λhhh/λ
SM
hhh

overlaying the vacuum energy difference. The dashed curve corresponds to κhhh = 1, where

the prediction is unchanged with respect to the SM. The values of 1.5 and 0.5 correspond to

the expected precision envisaged for the HL-LHC. Vacuum energy difference values of 0 and

-1 are also highlighted in which either no EWSB can occur or the vacuum energy difference

is the same as in the SM respectively.

compute the third derivative of this potential to obtain the trilinear Higgs coupling.

Setting this in ratio to the SM result, which corresponds to a vanishing dimension-6

operator, we obtain

κhhh =
3m2

hv
2 + 16F0

3m2
hv

2 + 16FSM
0

. (6.2)
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Clearly F0 > FSM
0 means κhhh > 1. Quantitatively, we find that this estimate falls short

of the full result in Fig. 11 up to about 30%. This is not surprising, as the Higgs states

integrated out are not very much heavier than v. So we expect operators of higher mass

dimension to play a role, which, however, do not spoil the overall qualitative picture.

In fact, the contribution to the dimension-6 operator affecting the Higgs potential

from integrating out the new states in the 2HDM is known [82]. Only one operator

O6 = λ
c̄6

v2

(
Φ†Φ

)3
(6.3)

plays a role here. Its effect of the vacuum energy difference and the Higgs trilinear

coupling is as follows

κhhh = 1 + c̄6,
∆F0

|FSM
0 |

= 1 +
c̄6

2
. (6.4)

In the alignment limit, the Wilson coefficient of interest has been calculated as

c̄6 = (λ̄2
4 + λ̄2

5)
v2

192π2µ̄2
2

(6.5)

=
(m2

A0
−m2

H±)2 + (m2
H0
−m2

H±)2

48π2v2(2M2 −m2
h)

. (6.6)

Being positive definite, we see that it contributes both to an uplifting of the EW vacuum

and an increase in the Higgs trilinear coupling. Furthermore, since EW precision tests

constrain the charged Higgs mass to be near one or the other neutral state (mH± ∼H0

or mH± ∼A0), we are left with precisely the aforementioned mass splitting between the

two, new neutral states controlling the effects of interest, lending further support to

our previous findings.

7 Conclusions

In this work we have established a correlation between the strength of the electroweak

phase transition and the zero-temperature free-energy of the broken minimum in two-

Higgs-doublet models. Considering similar statements made previously in the literature

in the context of other SM scalar sector extensions [8, 9], we claim this is a general

effect of any model where the modified scalar sector acts as the main source of strong

phase transition.

Because working with the zero-temperature vacuum energy is analytically much

simpler than with the full thermal potential, this correlation can be used to better

predict the behaviour of a certain model concerning the nature of the EWPT, as well
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as to better understand the impact of parameter space constraints on the strength of

the phase transition predicted by the model. In particular, we have in this way clarified

the preferred hierarchy in the scalar sector from the requirement of a strong EWPT,

with a heavier pseudoscalar and charged scalar.

We have further investigated the relation between the triple Higgs self-coupling and

the vacuum energy uplifting in the model. Large deviations from the SM predictions

of these couplings are expected as a collateral effect of a model with a strong EWPT,

and we have shown that these deviations can be measurable at the HL-LHC in some

scenarios here presented. A measurement of the Higgs self-couplings is a key goal in any

future collider experiment as a probe of the ultimate structure of the Higgs potential.

Results such as the ones we present here show that this measurement would also serve

as an indirect probe for the nature of the nature of the electroweak phase transition, and

of the viability of electroweak baryogenesis as an explanation for the baryon asymmetry

of the Universe.
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A Physical dictionaries of the Z2 and Higgs bases for two

Higgs doublets

Here we provide the detailed expressions for the scalar potential parameters of the

2HDM as a function of the masses and mixings of the scalar sector. We define Ω2 ≡
m2
H0
− µ2(tβ + t−1

β ).

A.1 Z2 basis

See eq. (2.1) for the definition of the potential parameters.

µ2
1 = µ2tβ −

1

2

[
m2
h + (m2

H0
−m2

h)cβ−α (cβ−α + sβ−αtβ)
]
,

µ2
2 = µ2t−1

β −
1

2

[
m2
h + (m2

H0
−m2

h)cβ−α
(
cβ−α − sβ−αt−1

β

)] (A.1)
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v2λ1 = m2
h + Ω2t2β − (m2

H0
−m2

h)
[
1− (sβ−α + cβ−αtβ)2

]
t2β,

v2λ2 = m2
h + Ω2t−2

β − (m2
H0
−m2

h)
[
1− (sβ−α − cβ−αt−1

β )2
]
t−2
β ,

v2λ3 = 2m2
H± + Ω2 −m2

h − (m2
H0
−m2

h)
[
1 + (sβ−α + cβ−αt

−1
β )(sβ−α − cβ−αtβ)

]
,

v2λ4 = m2
A0
− 2m2

H± +m2
H0
− Ω2 ,

v2λ5 = m2
H0
−m2

A0
− Ω2 .

A.2 Higgs basis

See eq. (2.9) for the definition of the potential parameters.

µ̄2
1 = −1

2

[
m2
h + (m2

H0
−m2

h)c
2
β−α
]
< 0

µ̄2
2 = −Ω2 +

1

2
m2
h +

1

2
(m2

H0
−m2

h)
[
1 + sβ−α

(
sβ−α − cβ−α(tβ − t−1

β )
) ]

µ̄2 = −(m2
H0
−m2

h)sβ−αcβ−α

(A.2)

v2λ̄1 = −2µ̄2
1

v2λ̄2 = m2
h + Ω2(tβ − t−1

β )2 + (m2
H0
−m2

h)
[
1− (sβ−α − cβ−α(tβ − t−1

β ))2
]

v2λ̄3 = 2m2
H± − 2µ̄2

2

v2λ̄4 = m2
A0 − 2m2

H± +m2
h + (m2

H0 −m2
h)s

2
β−α

v2λ̄5 = −m2
A0 +m2

h + (m2
H0 −m2

h)s
2
β−α

v2λ̄6 = 2µ̄2

v2λ̄7 = −Ω2(tβ − t−1
β )− (m2

H0
−m2

h)cβ−α
(
sβ−α − cβ−α(tβ − t−1

β )
)

(A.3)

The Higgs basis does allow to read in a straightforward way the masses for the new

scalars in the symmetric and broken EW phases, which is what will enter into the

vacuum energy difference.

A.3 Inert Doublet Model

The potential parameters in this case are defined by eq. (2.1), with µ2 = 0.

µ2
1 = −m

2
h

2

µ2
2 = m2

H0
− λ345

2
v2

v2λ1 = m2
h

v2λ3 = 2
(
m2
H± −m2

H0

)
+ λ345 v

2

v2λ4 = m2
H0

+m2
A0
− 2m2

H±

v2λ5 = m2
H0
−m2

A0

(A.4)
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with λ345 ≡ λ3 + λ4 + λ5, λ2 and the scalar masses mH0 , mA0 , mH± as independent

parameters.

B On-Shell Renormalization of the 2HDM: F0 in the Higgs

basis

We recall the scalar contribution to the zero-temperature 2HDM vacuum energy in the

basis of 2.9 (eq. (3.7))

F0 =− m2
hv

2

8
− v2

8
c2
β−α (m2

H0
−m2

h) + ∆V1 −
δµ̄2

1 v
2

2
+
δλ̄1 v

4

8
. (B.1)

The first two terms correspond to the tree-level piece, −λ̄1v
4/8, translated with eq. (A.2).

The second half of the expression is the 1-loop correction, comprising of the difference

between the Coleman Weinberg potential evaluated at the EW minimum and the origin

as well as the relevant counterterms. The latter are chosen to preserve the tree-level

minimum and scalar masses at 1-loop, which fixes their value to

δµ̄2
1 ≡

1

2

(
∂2V1

∂h2
1

∣∣∣∣
v

− 3

v

∂V1

∂h1

∣∣∣∣
v

)
, δλ̄1 ≡

1

v2

(
∂2V1

∂h2
1

∣∣∣∣
v

− 1

v

∂V1

∂h1

∣∣∣∣
v

)
, (B.2)

with11

∂V1

∂φi
=
∑
k

nk
m2
k

32π2

∂m2
k

∂φi
log

m2
k

Q2
, (B.3)

∂2V1

∂φi∂φj
=
∑
k

nk
32π2

[
∂m2

k

∂φi

∂m2
k

∂φj

(
log

m2
k

Q2
+ 1

)
+m2

k log

(
m2
k

Q2

)
∂2m2

k

∂φi∂φj

]
. (B.4)

11Note that there is a caveat in carrying out the condition in eq. (B.4). For the Goldstone bosons,

the first term in eq. (B.4) is infrared divergent, so that trying to define the physical mass by taking

derivatives of Veff actually yields unphysical results. This happens because, by definition, the effective

potential takes into account only diagrams with vanishing external momenta, whereas the physical

mass must be evaluated on-shell, with p2 = m2. A rigorous solution to the problem has been developed

in [11], and also in [83, 84] via resummation of the Goldstone contributions. Here we choose to adopt

the more straightforward approach of replacing the vanishing Goldstone masses in the logarithmic

divergent term by an IR cutoff at m2
IR = m2

h0 , which gives a good approximation to the exact procedure

of on-shell renormalization, as argued in [15].
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Plugging eqs. (B.2) and (B.4) into (B.1), one finds the contribution of the counter-

terms to the effective potential at the electroweak minimum,

V CT
∣∣
v

=−
∑
k

nk
4× 64π2

[
(vIk)

2

(
log
|m2

k|
Q2

+ 1

)
+m2

k log
|m2

k|
Q2

(
v2Jk − 5vIk

) ]
,

with Ik ≡
∂m2

k

∂h1

∣∣∣∣∣
v

and Jk ≡
∂2m2

k

∂h2
1

∣∣∣∣∣
v

. (B.5)

Finally, putting everything together back into eq. (B.1), including the explicit con-

tributions to ∆V1, we find

F0 = FSM
0 − v2

8
c2
β−α (m2

H0
−m2

h)−
m4
h

64π2
(3 + log 2)−

∑
k

m4
k,0

64π2

(
log
|m2

k,0|
Q2

− 1

2

)
+

1

4× 64π2

∑
k

{
(v Ik)

2 − 2m4
k +

[(
v Ik − 2m2

k

)2
+m2

k

(
v2Jk − vIk

)]
log

m2
k

Q2

}
,

(B.6)

where the SM vacuum energy of eq. (3.8) has been reintroduced and the contribution

to the vacuum energy from loops of the SM Higgs and Goldstones, which also occur in

∆V1, are explicitly subtracted to avoid double counting these terms. Here, m2
k,0 denotes

a field dependent mass squared evaluated at the origin. This defines the vacuum energy

difference of eq. (3.9).

What remains is to compute the derivatives of the field dependent masses with

respect to h1 via the general relations [85]

∂m2
k

∂φi
=

(
R̄
∂M

∂φi
R̄T

)
kk

, (B.7)

∂2m2
k

∂φi∂φj
=

(
R̄

∂2M

∂φi∂φj
R̄T

)
kk

+ 2

(
R̄
∂M

∂φi
R̄T

)
ki

(
m2
k I−Mdiag

)+

ii

(
R̄
∂M

∂φj
R̄T

)
ik

,

where R̄ is the orthogonal transformation that diagonalises the scalar mass matrix

and (m2
k−Mdiag)+ denotes the Moore-Penrose pseudoinverse of the diagonal matrix in

parenthesis. For such a diagonal matrix, the entries of the pseudoinverse are

(m2
k −Mdiag)+

ii =

{
0, (Mdiag)ii = m2

k,

[m2
k − (Mdiag)ii]

−1
, else.

(B.8)

Note from eq. (B.4) that second derivatives of Goldstone masses always enter multiplied

by the Goldstone masses themselves, which vanish at the electroweak minimum. So we

will not need to compute them.
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Defining the quantities

∆m2
0 ≡ (m2

H0
−m2

h) ,

A ≡ sαcα
sβcβ

= (cβ−α + sβ−αtβ)(cβ−α − sβ−αt−1
β ),

(B.9)

the required mass derivatives are given by

v IG = m2
h + ∆m2

0 c
2
β−α (Goldstone Bosons)

v IH± = 2m2
H± +m2

h c
2
β−α +m2

H0
s2
β−α −

[
2M2 −∆m2

0A
]

v2 JH± = v IH± + 2c2
β−αs

2
β−α

(∆m2
0)2

m2
H±

v IA0 = v IH± − 2m2
H± + 2m2

A0

v2 JA0 = v IA0 + 2c2
β−αs

2
β−α

(∆m2
0)2

m2
A0

v Ih = 3m2
h − c2

β−α
[
2M2 −∆m2

0A
]

v2 Jh = v Ih −
2 c2

β−α s
2
β−α

∆m2
0

[
2M2 −∆m2

0A
]2

v IH0 = 3m2
H0
− s2

β−α
[
2M2 −∆m2

0A
]

v2 JH0 = v IH0 +
2 c2

β−α s
2
β−α

∆m2
0

[
2M2 −∆m2

0A
]2
.

(B.10)

It is easy to show that eq. (B.6) simplifies to eq. (3.10) in alignment. Through a

laborious computation one can also show that the Q2 dependence always cancels out,

so that F0 is indeed renormalization scale independent.
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