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Abstract

We consider idealized parton shower event generators that treat parton spin and color exactly, leaving

aside the choice of practical approximations for spin and color. We investigate how the structure of such a

parton shower generator is related to the structure of QCD. We argue that a parton shower with splitting

functions proportional to αs can be viewed not just as a model, but as the lowest order approximation to

a shower that is defined at any perturbative order. To support this argument, we present a formulation

for a parton shower at order αk
s for any k. Since some of the input functions needed are specified by their

properties but not calculated, this formulation does not provide a useful recipe for an order αk
s parton shower

algorithm. However, in this formulation we see how the operators that generate the shower are related to

operators that specify the infrared singularities of QCD.
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I. INTRODUCTION

Parton shower event generators for hadron collisions, such as Herwig [1], Pythia [2], and

Sherpa [3], perform calculations of cross sections according to an approximation to the standard

model or its possible extensions. They are essential for the analysis of experiments at the Large

Hadron Collider. The main ideas behind these generators were developed in the 1980s [4–6]. There

has been extensive development of the algorithms since then [7–16]. The successor programs [1–

3, 17–23], are quite sophisticated. Useful reviews of the field can be found in [24, 25]. One of

the available successor programs is our own, Deductor [15, 21, 26–33]. This paper concerns the

perturbative part of these parton shower generators, leaving aside models for the underlying event

and hadronization. Furthermore, we consider an idealized version of a parton shower generator in

which one accounts exactly for spin and color. Approximations for spin and color are a separate

issue, which we do not discuss here.

Our aim in this paper is to investigate how the structure of a shower that treats spin and color

exactly is related to the structure of QCD. In particular, we ask whether a shower with splitting

functions proportional to αs can be the leading order approximation to something that is defined

at any order in αs. We find an affirmative answer to this question. Specifically, we find that there

is a construction for defining a parton shower that generalizes current showers at any order of

perturbation theory. We find also that the problem of relating the structure of a parton shower

to the structure of QCD is not as straightforward as one might have naively guessed. First, the

construction makes use of functions analogous to the Catani-Seymour dipole splitting functions [34]

that specify the infrared behavior of QCD, but beyond leading order the shower splitting functions

are not related to the functions that specify the infrared behavior of QCD by anything so simple

as just changing their sign. Second, the formulas for the shower automatically includes factors

that sum threshold logarithms [35–80]. These factors are not included in current parton shower

generators at even leading order, except for Deductor [32, 33]. Third, the formulas automatically

include matching of the parton shower to a perturbative calculation beyond leading order of the

hard scattering that starts the shower. This is fairly straightforward [81–102] for a leading order

shower, but not for a shower beyond leading order.

We believe that is important to understand that a lowest order parton shower generator can

represent the lowest order in a systematically improvable approximation. However, the construction

in this paper is not a useful recipe for actually creating a parton shower algorithm beyond the

leading order: some of the components of the recipe are specified by their properties but not
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explicitly constructed. A complete construction will require specifying such choices as a shower

ordering variable and momentum mappings. Such a specification will require considerable effort,

which lies beyond the scope of this paper.

The papers [103–107] present treatments of a parton shower at order α2
s . Ref. [105] attempts

to extend the dipole splittings often used in a leading order shower to a higher order analogue

for the case of e+e− annihilation. This approach is similar in spirit to what we do in this paper.

An alternative approach [103, 104, 106, 107], concentrates on the NLO DGLAP kernel for the

evolution of parton distribution functions. Although the parton evolution kernels play a role in

our formalism, it is not a central role.

II. OVERVIEW

The construction of a parton shower at any perturbative order, presented in Sec. VI, is rather

abstract. In this section, we attempt to provide an overview of what the later mathematics is

intending to do.

In our view, it is most useful to think of a parton shower algorithm as beginning with the theorem

[108] that allows us to write a cross section for an infrared safe observable as a convolution of a

hard scattering factor with parton distribution functions. Then the parton shower fills in more

detail by using the renormalization group. The parton shower develops with decreasing values of

a parameter that is a measure of the hardness of interactions.1 The essential insight is that the

scattering process appears differently depending on the hardness scale at which one examines it.

At the hardest scale, the scale of the hard interaction, there are just a few partons (typically quarks

and gluons). Then, as the hardness scale at which we examine the process decreases, these partons

split, making more partons in a parton shower.2 At any stage, a certain amount of structure has

emerged, while softer structure remains unresolved.

In this paper, we start with the principle that a parton shower should fully reflect the infrared

singularity structure of Feynman graphs for QCD and also the role of parton distribution functions

in absorbing initial state singularities. Thus, we start with the infrared sensitive operator associated

with the parton distributions and with a perturbative operator D(µ2) that represents the infrared

singularities of QCD Feynman diagrams. We connect D(µ2) to both the shower splitting kernels and

to the subtractions [109–116] needed to calculate a perturbative cross section beyond the leading

1
Herwig then rearranges the ordering of splittings in its shower so that larger angle splittings come first.

2 Thus, with respect to initial state partons, the shower evolution starts from the hard interaction and moves

backward in time to softer initial state interactions.
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order (LO). We work at arbitrary perturbative order. That is, we consider a hard scattering

cross section calculated, with subtractions, at NkLO and a parton shower with Nk−1LO splitting

functions. (This counts a LO shower as having splitting functions proportional to αs.)

The construction that we present is based on the operator D(µ2). This operator is to contain

the infrared singularity structure of Feynman graphs for QCD. There is no unique recipe for

constructing the αns contribution, D(n)(µ2), to D(µ2). As described in Sec. V, one needs to specify

a definition of hardness associated with the integrations in graphs, one needs a momentum mapping,

and one needs to specify the form of the functions used as one moves away from the strict soft and

collinear limits. At first order, we have made these choices, so that dD(1)(µ2)/d log(µ2) is part of

Deductor. At higher orders, we do not attempt to construct the D(n)(µ2). Rather, we provide

formulas for what to do once one has D(n)(µ2) for n ≤ k.

The formalism uses another operator V(µ2). This operator is obtained from D(µ2) and factors

associated with the parton distributions but it is obtained by integrating over all of the parton

splitting variables, so that it is infrared finite. In a standard first order parton shower, the Sudakov

exponent is quite directly related to the part of V(µ2) that comes from one real parton emission.

There is some freedom in setting the color and spin structure of V(µ2). Thus we leave V(µ2) partly

unspecified.

The parton shower defined here needs to respect the structure of quantum field theory. Thus

it includes quantum interference and maintains an exact accounting for the quantum spins and

colors of the partons in the shower. The formulation is based on what we call the statistical space,

introduce in Ref. [15]. It consists of states that describe the momenta, flavors, colors, and spins of

any number of partons. The colors and spins are treated as fully quantum mechanical. This means

that the statistical states are density matrices in the quantum color and spin space. We review the

statistical space in Sec. IV.

Using the statistical space, we maintain an exact accounting for the quantum spins and colors.

It is not known how to make this practical in computer code, particularly for color. Thus one needs

separate approximations, such as the LC+ approximation for color that is used in Deductor. We

view the issue of approximations for spin and color as separate from the construction of the shower

with exact spin and color. We do not discuss spin and color approximations in this paper.

The final result of the construction, presented in Eq. (134), is

σ[J ] =
(
1
∣∣OJ U(µ2

f , µ
2
h)UV(µ2

f , µ
2
h)F(µ2

h)
∣∣ρh
)

+ O(αk+B+1
s ) + O(µ2

f /Q[J ]2) . (1)

Here
∣∣ρh
)

is a statistical state representing the hard scattering, calculated at order αk+Bs , where
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αBs is the order of the Born hard scattering process. The hard scattering statistical state
∣∣ρh
)

includes subtractions, as in a normal NkLO perturbative calculation. Then F(µ2
h) is an operator

on the statistical space that multiplies by appropriate parton distribution functions and a parton

luminosity factor.

The next operator in Eq. (1),

UV(µ2
f , µ

2
h) = T exp

(∫ µ2h

µ2f

dµ2

µ2
SV(µ2)

)
, (2)

is a process independent operator on the statistical space that leaves the number of partons un-

changed and provides perturbative corrections needed to keep the measured cross section correct

to order αk+Bs . This factor also sums threshold logarithms associated with the hard scattering

statistical state. The threshold logarithms are an essential part of the construction. As we will

discuss, they are included in Deductor, but they are not part of other leading order shower gen-

erators. We presented an earlier formulation of threshold summation in a leading order shower in

Ref. [32]. This formulation turned out to have certain flaws. In a companion paper [33], we exhibit

the practical effects of the threshold summation according to Eq. (1) (but with
∣∣ρh
)

evaluated at

leading order only).

The next operator in Eq. (1),

U(µ2
f , µ

2
h) = T exp

(∫ µ2h

µ2f

dµ2

µ2
S(µ2)

)
, (3)

is a process independent operator that creates more partons in a parton shower. In the first order

case, k = 1, this is a rather standard parton shower if we average over spins and take the leading

color approximation. In general, the splitting generator S(µ2) consists of terms that are of order

αns with 1 ≤ n ≤ k. The shower starts at a hardness scale µ2
h appropriate for the hard scattering

and ends at smaller hardness scale µ2
f that should be large enough so that perturbation theory at

this scale can still be trusted.

The final operator in Eq. (1), OJ , specifies the infrared safe measurement that one wants to

make on the parton state after the shower. The hardness scale associated with this measurement

is Q[J ]2. Finally,
(
1
∣∣ is an instruction to integrate over all of the parton variables.

The cross section σ[J ] is then correct to order αk+Bs and includes a version of the cross section

beyond this order, within the approximations of a parton shower. Notice that the property that the

cross section including showering, σ[J ], is correct to order αk+Bs means that the shower is matched

to an order αk+Bs perturbative calculation of σ[J ]. This matching is an intrinsic part of the shower

formulation.
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TABLE I. New and old notation

New Old

S(1,0)
pert Hpert

I

S(0,1)
pert −Spert

[F ◦ S̄(1,0)]F−1 V

S(1) − S(0,1)
iπ HI − V

S(1)
V

+ S(0,1)
iπ V − S

We discuss a very general formulation of parton showers. However, we want to keep the notation

simple, so, without loss of generality, we use Higgs boson production as an example. We use five

flavors of quarks. In practical applications, one uses a variable flavor number scheme in which

non-zero values of mb and mc appear. However, this creates complications, especially if we want

to work at an arbitrary order of perturbation theory. Thus in this paper we set mb = mc = 0.

We have found it useful to change some of the notation that we used in our previous papers in

order to address a much more general problem. We hope that this does not cause confusion. We

provide a translation in table I.

Following this brief overview, we include a brief Sec. III on factorization, which plays an im-

portant role in the conceptual development. Then we devote Sec. IV to partons and the spin and

color density operator, which we use to define the statistical space. This leads us describe the

perturbative cross section and the infrared sensitive operator D(µ2) in Sec. V. Then in Sec. VI

we manipulate the perturbative cross section to define the parton shower. Sec. VII presents a

summary and outlook.

There are four appendices. Appendix A presents a toy model for the operators used in the

construction. We hope that this concrete model will prove instructive. Appendix B discusses the

definition of parton distribution functions needed for a shower. Appendix C discusses how certain

scale parameters can be chosen dynamically instead of statically, as in the main text. Appendix D

discusses the relation of MS renormalization to the definition of the parton shower.
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III. FACTORIZATION

We consider a hard scattering process in the collisions of two high energy hadrons, A and B. The

hadrons carry momenta PA and PB. The hadron energies are high enough that we can simplify the

equations describing the collision kinematics by treating the colliding hadrons as being massless.

Then with a suitable choice of reference frame, the hadron momenta are

PA =
(
P+
A , 0,0

)
,

PB =
(
0, P−

B ,0
)
.

(4)

Here we use momentum components (p+, p−,p⊥) with p± = (p0 ± p3)/
√

2. We then imagine a

parton level process in which a parton from hadron A, with flavor a and momentum pa = ηaPA

collides with a parton from hadron B, with flavor b and momentum pb = ηbPB.

We will be interested in an inclusive cross section to create some hard state, for instance, a

Z boson plus possibly jets, or just jets. We will use the production of a Higgs boson, A + B →
H + QCD partons as our principle example. At the Born level, it is produced via the partonic

process g + g → H. We treat the Higgs boson as being stable and on shell. We denote the

momentum of the Higgs boson by

ph = (eyh
√

(m2
h + p2

h,⊥)/2, e−yh
√

(m2
h + p2

h,⊥)/2,ph,⊥) . (5)

The collision also produces QCD partons with flavors fi and momenta pi, with i = 1, . . . ,m. In

this paper, we consider the QCD partons to be massless. Each final state parton has rapidity yi

and transverse momentum pi,⊥, so that the components of its momentum are

pi = (eyi
√

p2
i,⊥/2, e−yi

√
p2
i,⊥/2,pi,⊥) . (6)

It is up to us to decide what we want to measure about the final state of our process. We

can consider many cases at once by simply saying that we are interested in a cross section σ[J ]

to measure an observable quantity J , leaving the definition of J unspecified. We will see in the

following subsection how σ[J ] can be specified for a general observable J . Then parton distribution

functions relate σ[J ] to an analogous cross section σ̂[J ] for the collision of two partons. In its briefest

form, the relation is

σ[J ] ≈
∑

a,b

∫
dηa

∫
dηb fa/A(ηa, µ

2) fb/B(ηb, µ
2) σ̂[J ] . (7)
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A. Infrared safety

We demand that the observable J be infrared safe. To specify what that means, we write Eq. (7)

in more detail:

σ[J ] =

∫
dyh

dσ0
dyh

J0(ph) +

∫
dyh dy1 dp1,⊥

dσ1
dyh dy1 dp1,⊥

J1(ph, p1)

+
1

2!

∫
dyh dy1 dy2 dp1,⊥ dp2,⊥

dσ2
dyh dy1 dy2 dp1,⊥, dp2,⊥

J2(ph, p1, p2)

+ · · · .

(8)

Here we start with the cross section to produce the Higgs boson plus m partons with momenta

{p}m = {ph, p1, . . . , pm} . (9)

We multiply the cross section by a function Jm({p}m) that specifies the measurement that we want

to make on the final state partons. These functions are taken to be symmetric under interchange

of the QCD momentum arguments {p1, . . . , pm}. Accordingly, we divide by the number m! of

permutations of the QCD parton labels. We integrate over the momenta of the final state partons.

The transverse momentum of the Higgs boson and the needed momentum fractions for the incoming

partons are determined by momentum conservation. Finally, we sum over the number m of final

state QCD partons.

Infrared safety is a property of the functions Jm that relates each function Jm+1({p}m+1) to the

function Jm({p}m) with one fewer parton. There are two requirements needed for J to be infrared

safe.

First, consider the limit in which partons m + 1 and m become collinear:

pm+1 → zp̃m ,

pm → (1 − z)p̃m .
(10)

Here p̃m is a lightlike momentum and 0 < z < 1. We can concentrate on just partons with labels

m+1 and m because the functions J are assumed to be symmetric under interchange of the parton

labels. In order for J to be infrared safe, we demand that

Jm+1({ph, p1, . . . , pm−1, pm, pm+1}) → Jm({ph, p1, . . . , pm−1, p̃m}) (11)

in the collinear limit (10).

Second, consider also the limit in which parton m + 1 becomes collinear to one of the beams,

pm+1 → ξPA (12)
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or

pm+1 → ξPB . (13)

Here 0 ≤ ξ. When ξ = 0, parton m + 1 is simply becoming infinitely soft. In order for J to be

infrared safe, we demand that

Jm+1({ph, p1, . . . , pm, pm+1}) → Jm({ph, p1, . . . , pm}) (14)

in either limit (12) or (13).

Briefly, then, infrared safety means that the result of the measurement is not sensitive to whether

or not one parton splits into two almost collinear partons and it is not sensitive to any partons

that have very small momenta transverse to the beam directions.

B. A more quantitative view of infrared safety

We now discuss infrared safety a little more quantitatively. Consider, as above, two final state

partons that are nearly collinear. This is modeled in a parton shower algorithm as a splitting of a

parton with momentum p̃m into two partons with momenta pm and pm+1. We can measure how

close we are to the collinear limit by calculating3

µ2
split =

√
Q2

H

Em + Em+1
(pm + pm+1)

2 . (15)

Here QH is a momentum vector that describes the hard scattering, for instance the momentum pH

of the produced Higgs boson in our example. We define the parton energies in the rest frame of

QH. The limit expressed in Eq. (10) is µ2
split → 0.

Alternatively, we can consider a splitting of an initial state parton as modeled in a parton shower

algorithm. It suffices to consider the splitting of an initial state parton in hadron A. The initial

state parton with momentum p̃a becomes a new initial state parton with momentum pa and a new

final state parton with momentum pm+1.
4 We can measure how close we are to the collinear limit

by calculating

µ2
split = −

√
Q2

H

Ea − Em+1
(pa − pm+1)

2 . (16)

Again, the limit expressed in Eq. (12) is µ2
split → 0.

3 One could choose other hardness measures µ2. This one is based on the parton shower formulation in [21, 29].
4 This is in the “backwards evolution” picture. Going forward in time, the parton with momentum pa splits.
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We now suppose that we measure the cross section σ[J ] corresponding to an infrared safe

measurement function J , using Eq. (8). When µ2
split = 0 in either example, application of Eq. (8)

gives a cross section that we can call σ0[J ]. In applying Eq. (8), we can use the term with m+1 final

state partons, with parton m+1 exactly collinear with either parton m or parton “a.” Equivalently,

we can use the m parton state before the splitting. Because of Eq. (11) or Eq. (14), the result is

exactly the same. Now, when µ2
split is small but not zero, we get a slightly different result, σ[J ]. Let

δσ[J ] = σ0[J ]−σ[J ]. We assume that Jm+1({p}m+1) is a smooth function of the parton momenta,

at least near the soft or collinear limits. Then we will have δσ[J ] → 0 as µ2
split → 0. A typical

case is δσ[J ] ∝ µ2
split as µ2

split → 0. Then we can define a scale Q2[J ] that is characteristic of the

observable by
〈
δσ[J ]

µ2
split

〉
=

σ[J ]

Q2[J ]
. (17)

The ratio in Eq. (17) can be sensitive to the parton configuration, so we average over all configu-

rations with the same µ2
split. The scale Q2[J ] measures how sensitive the cross section is to parton

splittings.

An example may be helpful. Let σ[J ] measure the one-jet-inclusive cross section for jet trans-

verse momentum PJ at small rapidity, using the anti-kT jet algorithm with radius parameter R.

Consider a very narrow jet in which one parton splits into two, one of which is soft. Then a simple

estimate using the definitions above is

Q2[J ] ≈

√
Q2

H

PJ

(RPJ)2

N
. (18)

Here N measures how fast the jet cross section falls with increasing PJ:

N =

∣∣∣∣
PJ

σ(PJ)

dσ(PJ)

dPJ

∣∣∣∣ . (19)

This is a fairly large number, so that the effective scale Q2[J ] for the jet measurement is smaller

than P 2
J . Additionally, R is typically chosen to be less than one. The smaller R is, the smaller

Q2[J ] is.

We see that we can understand infrared safety in terms of measurements that we might make

in a parton shower simulation of a high energy scattering event. As the shower progresses, there

are splittings. The corresponding values of µ2
split get smaller and smaller. If we measure σ[J ] at

each stage of the shower, we will see that σ[J ] changes as the shower develops, but the changes get

smaller and smaller according to

δσ[J ] ∼
µ2
split

Q2[J ]
σ[J ] . (20)
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This leads us to a limit on the possible accuracy of a perturbative approach to calculating

σ[J ]. When the parton shower has evolved to a 1 GeV scale, then we have reached the limits of

perturbation theory. The fractional uncertainty associated with one more splitting is then

δσ[J ] ∼ (1 GeV)2

Q2[J ]
σ[J ] . (21)

The accuracy of the perturbative calculation can never be better than this.

C. Factorization

We can now state how one calculates the cross section for whatever observable J we want – as

long as J is infrared safe. The formula we use was stated in Eq. (7) and we restate it here in a

slightly more detailed form [108]:

σ[J ] =
∑

a,b

∫
dηa

∫
dηb fa/A(ηa, µ

2) fb/B(ηb, µ
2) σ̂a,b[ηa, ηb, µ

2;J ] + O([m/Q]n) . (22)

The intuitive basis for this is very simple. The factor fa/A(ηa, µ
2) dηa represents the probability to

find a parton of flavor a in a hadron of flavor A. For the other hadron, the corresponding probability

is fb/B(ηb, µ
2) dηb. Then σ̂[J ] is the cross section to obtain the observable J from the scattering

of these partons, as given in Eq. (8). Naturally, this parton level cross section depends on the

parton variables a, b, ηa, ηb. Here the differential cross sections to produce m final state partons

contain delta functions that relate the momentum fractions ηa and ηb to the final state parton

momenta. The parton distributions depend on a scale µ. This is often called the factorization

scale µF and distinguished from the argument of αs and other running couplings, which is called

the renormalization scale µR. In order to keep our notation simple, we set µF = µR = µ.

The cross section σ̂[J ] has a perturbative expansion in powers of αs(µ
2). That is

σ̂a,b[ηa, ηb, µ
2;J ] = σ̂

(0)
a,b [ηa, ηb, µ

2;J ] +

[
αs(µ

2)

2π

]
σ̂
(1)
a,b [ηa, ηb, µ

2;J ]

+

[
αs(µ

2)

2π

]2
σ̂
(2)
a,b [ηa, ηb, µ

2;J ] + · · · .
(23)

Here we do not display the factors of αs or αew that appear in the Born level cross section σ̂(0).

Perturbative calculations can be at lowest order (LO), corresponding to one term in the expansion,

next-to-lowest order (NLO) with two terms, sometimes NNLO, and, in general, NkLO.

One useful property is that the dependence of the calculated cross section on µ2 diminishes as

we go to higher orders. Indeed, the cross section in nature, σ[J ], does not depend on µ2. Thus if
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we calculate to order αks , the derivative of the calculated cross section with respect to µ2 will be

of order αk+1
s .

There is an error term in Eq. (22). No matter how many terms are included in σ̂, there are

contributions that are left out. These terms are suppressed by a power of m ∼ 1 GeV divided by

a large scale parameter Q that characterizes the hard scattering process to be measured. These

contributions arise from the approximations needed to derive Eq. (22). For instance if a loop

momentum l flows through the wave function of quarks in a proton, we have to neglect l compared

to the hard momenta, say the transverse momentum of an observed jet. Not much is known about

the general form of the power corrections for hadron-hadron collisions. In the rest of this paper,

we will assume that the power n in Eq. (22) is n = 2 and we use
√

Q2[J ] from Eq. (20) for Q.

However, even if we lack a good estimate of the power corrections, it is important that they are

there. If Q is of order 100 GeV, then the power corrections are completely negligible. However, if

Q is of order 5 GeV, then we ought not to claim 1% accuracy in the calculation of σ[J ], no matter

how many orders of perturbation theory we use.

IV. PARTONS AND THE DENSITY OPERATOR

We will describe perturbative calculations of cross sections, how these are connected to the

parton shower description of these same cross sections, and how this is connected to factorization.

We begin in this section with definitions that we need to describe the evolution of a parton shower.

We follow the framework of Ref. [15].

A. Amplitudes and the density operator in spin and color

In a perturbative calculation of a cross section, one constructs an amplitude
∣∣M({p, f}m)

〉
. This

amplitude depends on the momenta and flavors of two initial state partons, whatever outgoing

electroweak partons there are, and m outgoing QCD partons. For our example of Higgs boson

production, the momentum and flavor observables are

{p, f}m = {ηa, a, ηb, b, ph, p1, f1, · · · , pm, fm} . (24)

The partons carry spin and color, so the amplitude is a vector in the partonic spin and color space

for m final state QCD partons plus the two incoming partons, as indicted by the representation

of the amplitude as a ket vector
∣∣M({p, f}m)

〉
. We use basis vectors

∣∣{s}m
〉

for the partonic
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spin space and basis vectors
∣∣{c}m

〉
for the partonic color space.5 To describe the evolution of a

parton shower, it is useful to use quantum statistical mechanics, keeping the full quantum nature

of the colors and spins. Thus we use the density operator in the color and spin space. The density

operator is a linear combination of basis operators
∣∣{s, c}m

〉〈
{s′, c′}m

∣∣. Thus to describe the system

at a certain stage of evolution, we use a function ρ of the number m of final state QCD partons and

of the momenta and flavors {p, f}m, where the value of ρ is a color-spin density operator. That is

ρ({p, f}m) =
∑

{s,s′,c,c′}m

ρ({p, f, s, s′, c, c′}m)
∣∣{s, c}m

〉〈
{s′, c′}m

∣∣ . (25)

The interpretation of this is that the differential probability dP for there to be m final state QCD

partons with momenta and flavors {p, f}m, times the expectation value of an operator O on the

color and spin space, is

dP × 〈O〉 = [d{p}m]
∑

{s,s′,c,c′}m

ρ({p, f, s, s′, c, c′}m)
〈
{s′, c′}m

∣∣O
∣∣{s, c}m

〉
, (26)

where

[
d{p}m

]
≡ ddph

(2π)d
2πδ+(p2h −m2

h)
m∏

i=1

{
ddpi
(2π)d

2πδ+(p2i )

}
dηa dηb

× (2π)dδ

(
pa + pb − ph −

m∑

i=1

pi

)
.

(27)

Here we use dimensional regularization with d = 4 − 2ǫ.

The set of all such functions ρ constitutes a vector space, which we call the statistical space.

We represent the vector ρ as a ket vector,
∣∣ρ
)
. The rounded end of the ket is meant to distinguish

a vector in the statistical space from a vector in the quantum spin⊗color space.

Notice that we use the symbol ρ for four different but related concepts. First, for each choice

of m and {p, f, s, s′, c, c′}m, ρ({p, f, s, s′, c, c′}m) is a complex number. Second, for each choice of

m and {p, f}m, ρ({p, f}m) is a linear operator on the quantum spin⊗color space for the m + 2

partons. Third, ρ is a linear map from m and {p, f}m to the space of operators on the quantum

spin⊗color space. Fourth,
∣∣ρ
)

is this linear map considered as an element of a vector space, the

statistical space. This may seem complicated, but in the end we use almost entirely the statistical

vectors
∣∣ρ
)
. This then gives us what we think is a compact and powerful notation.

We can define basis vectors
∣∣{p, f, s, s′, c, c′}m

)
in the statistical space in such a way that

(
{p, f, s, s′, c, c′}m

∣∣ρ
)

= ρ({p, f, s, s′, c, c′}m) . (28)

5 The spin basis vectors can be chosen in a very simple way, but it is not so trivial to choose useful basis vectors for

the color space. The choice that we make for Deductor is specified in Ref. [15]. With this choice, the color basis

vectors are not exactly normalized and the basis vectors for different colors are not exactly orthogonal.
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The completeness relation for the basis vectors is

1 =
∑

m

1

m!

∫
[d{p}m]

∑

{f}m

∑

{s,s′,c,c′}m

∣∣{p, f, s, s′, c, c′}m
)(
{p, f, s, s′, c, c′}m

∣∣ . (29)

B. Making an inclusive measurement

There is a special vector
(
1
∣∣ defined by

(
1
∣∣{p, f, s, s′, c, c′}m

)
=
〈
{s′, c′}m

∣∣{s, c}m
〉
. (30)

With this definition,

(
1
∣∣ρ
)

=
∑

m

1

m!

∫
[d{p}m]

∑

{f}m

∑

{s,s′,c,c′}m

ρ({p, f, s, s′, c, c′}m)
〈
{s′, c′}m

∣∣{s, c}m
〉

(31)

is the total probability associated with the statistical state
∣∣ρ
)

as defined in Eq. (26) with O = 1.

With this notation, we begin with perturbatively calculated amplitudes
∣∣M({p, f}m)

〉
for just

a few partons. Thus we begin with a perturbatively calculated vector
∣∣ρ
)

in the statistical space.

Then we use perturbative operations that are represented as linear operators on the statistical

space. Similarly, the measurement J in Sec. III A is represented as a linear operator on the

statistical space. Finally, multiplication by
(
1
∣∣ allows us to obtain the expectation value of the

measurement operator.

C. Scales

The formalism also uses a reference vector QH and several scales: a renormalization scale µ2
R,

a factorization scale µ2
F, and an ultraviolet cutoff scale µ2

s . For simplicity, all of these scales are

set to a single scale µ2. The vector QH is used to set the value µ2
h of the common scale associated

with the hard state
∣∣ρh
)
, defined later in Eq. (58): µ2

h = Q2
H

. A parton shower needs a measure of

hardness of parton splittings. We also use QH as a vector to help define one possible measure of

hardness, Λ2 defined in Eq. (55). For this purpose, QH should be roughly in the direction of pa +pb

in an imagined initial hard scattering. The simplest way to define QH is to use the hard core part

of the intended measurement. For instance, if we are looking for the cross section to produce a

Higgs boson with rapidity near zero, we can take Q2
H

= m2
h with zero rapidity and zero transverse

part for QH. We will mention another, more dynamic, way to define QH later, in Appendix C.
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D. Multiplying by parton distribution functions

In order to turn matrix elements into cross sections, we divide by a parton luminosity factor6

nc(a)ns(a)nc(b)ns(b) 4pa · pb. Here the color counting factor is nc(f) = 3 for a quark flavor f and

nc(f) = 8 for f = g. The spin counting factor is ns(f) = 2 for a quark flavor f and ns(f) = 2(1−ǫ)

for f = g when we work in 4 − 2ǫ dimensions in order to regularize infrared divergences. Then we

need to multiply by a parton distribution factor

Fa,b(ηa, ηb, µ
2) = fa/A(ηa, µ

2) fb/B(ηb, µ
2) . (32)

The parton distribution functions here could be the five flavor MS parton distribution functions,

or they could have a different definition. We combine the two parton distribution functions as one

operator F(µ2) that acts on the statistical space:

F(µ2)
∣∣{p, f, s, s′, c, c′}m

)
=

Fa,b(ηa, ηb, µ
2)

nc(a)ns(a)nc(b)ns(b) 4pa · pb
∣∣{p, f, s, s′, c, c′}m

)
. (33)

We sometimes need a more general parton factor in which the parton distributions are convolved

with a function that is also a matrix in the parton flavors. For instance, the evolution equation for

the product of parton distribution functions is

µ2 d

dµ2
Fa,b(ηa, ηb, µ

2) = F ′
a,b(ηa, ηb, µ

2) , (34)

where the prime denotes differentiation and F ′ is given by the convolution product of F with an

evolution kernel P ,

F ′ = F ◦ P . (35)

The precise definition is7

F ′
a,b(ηa, ηb, µ

2) =
∑

a′,b′

∫ 1

0

dza
za

∫ 1

0

dzb
zb

Fa′,b′(ηa/za, ηb/zb, µ
2) Pa,a′,b,b′(za, zb, µ

2) . (36)

The evolution kernel for the product of parton distributions is the sum of parton evolution kernels

for each of the two parton distribution functions:

Pa,a′,b,b′(za, zb, µ
2) = Pa,a′(za, µ

2) δb,b′ δ(zb − 1) + δa,a′ δ(za − 1)Pb,b′(zb, µ
2) . (37)

6 We have noticed that this factor was too small by a factor 2 in Eq. (3.15) of [15].
7 Based on the order of the flavor indices, it would be more conventional to write this as P ◦ F , but we believe that

the notation in Eq. (35) better expresses the physics in the context of this paper.
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This gives us an operator F ′(µ2) defined by

F ′(µ2)
∣∣{p, f, s, s′, c, c′}m

)
=

F ′
a,b(ηa, ηb, µ

2)

nc(a)ns(a)nc(b)ns(b) 4pa · pb
∣∣{p, f, s, s′, c, c′}m

)
. (38)

In place of F ′(µ2), we use a notation that directly displays that F ′
a,b(ηa, ηb, µ

2) is constructed

according to Eq. (36),

F ′(µ2) = [F(µ2) ◦ P(µ2)] . (39)

The circle indicates the convolution and the square brackets [· · · ] indicate what is included in the

convolution.

V. THE PERTURBATIVE CROSS SECTION

We now consider the cross section for some hard process. We can use any hard process that can

lead to an infrared safe cross section, but the details of the notation depend on what hard process

we consider. In order to keep the notation simple, we consider a specific process, the cross section

make a Higgs boson plus QCD partons, calculated at NkLO. We let J represent an infrared safe

measurement of interest as in Sec. III A. The hardest scale associated with this measurement is

µ2
h. The scale Q2[J ] introduced in Eq. (17) could be much smaller, as long as it is large compared

to 1 GeV2. In that case, the sort of fixed order calculation discussed in this section is not so

useful because there are large logarithms, log(µ2
h/Q

2[J ]). Thus in this section, it may be helpful

to imagine that Q2[J ] is not very different from µ2
h.

A. The Born cross section

Let us begin at the Born level. We call the statistical state corresponding to the Born level

matrix element
∣∣ρ(0,0)(µ2)

)
. The measurement J can be represented as an operator OJ . To make a

cross section, we need a luminosity factor and parton distribution functions. We define an operator

F
ms

(µ2) as in Eq. (33) by

F
ms

(µ2)
∣∣{p, f, s, s′, c, c′}m

)
=

fms

a/A(ηa, µ
2) fms

b/B(ηb, µ
2)

nc(a)ns(a)nc(b)ns(b) 4pa · pb
∣∣{p, f, s, s′, c, c′}m

)
. (40)

We use MS parton distributions for five flavors. Then the cross section for measurement operator

OJ is

σ[J ] =
(
1
∣∣F

ms
(µ2)OJ

∣∣ρ(0,0)(µ2)
)
. (41)
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B. The higher order cross section

Now we consider higher orders of perturbation theory. Including terms up to order αks , the

NkLO cross section can be written as

σ[J ] =
(
1
∣∣[F

ms
(µ2) ◦ ZF (µ2)

]
OJ

∣∣ρ(µ2)
)

+ O(αk+1
s ) . (42)

Here we convolve F
ms

(µ2) with the renormalization factor ZF (µ2) for five flavor MS parton distri-

bution functions.8 This factor is just 1 at order α0
s . Its higher order contributions are defined by

working in 4 − 2ǫ dimensions and consist of the 1/ǫn pole terms needed to remove the ultraviolet

poles from the renormalized operator that defines parton distributions. Eq. (42) is a perturbative

formula. We are to expand all of the factors up to the desired order αks and neglect the remainder,

indicated by the error estimate O(αk+1
s ).

The statistical state
∣∣ρ(µ2)

)
has a perturbative expansion

∣∣ρ(µ2)
)

=
∣∣ρ(0)(µ2)

)
+

k∑

n=1

[
αs(µ

2)

2π

]n ∣∣ρ(n)(µ2)
)

+ O(αk+1
s ) . (43)

The order n contribution to the statistical state is a sum of terms,9

∣∣ρ(n)(µ2)
)

=

n∑

nr=0

n∑

nv=0

θ(nr + nv = n)
∣∣ρ(nr,nv)(µ2)

)
. (44)

In
∣∣ρ(nr,nv)(µ2)

)
, there are nr final state partons and nv virtual loops. This is for Higgs boson

production as the Born process. If we had chosen two jet production as the Born level hard

process, then there would be 2 + nr partons in the final state.

The nv virtual loops in
∣∣ρ(nr,nv)(µ2)

)
can each produce 1/ǫ and 1/ǫ2 poles. The nr partons

in the final state can give soft and collinear singularities. The statistical state vector is singular

when any of these partons become soft or collinear with the beam directions or collinear with each

other. In the case of a Born process that has final state QCD partons, there are also singularities

when any of the nr additional partons becomes collinear with starting final state partons. In these

singular regions, the infrared safe measurement operator OJ sees the partons that are collinear

to a given direction as equivalent to a single parton and it does not see partons that are soft or

8 This is for massless partons. Conceptually, ZF (µ
2) should be understood as the inverse, in the sense of convolutions,

of the product of two parton-in-a-parton distribution functions with on-shell massless incoming parton states.

Then this factor removes infrared poles from the cross section. At the level of bare operators, fbare
a/b (ξ) = δabδ(1−

ξ). Convolving the renormalized parton-in-a-parton distribution functions with ZF gives the bare distribution

functions, leading to Eq. (42).
9 It may be helpful to note that we define

∣

∣ρ(n)(µ2)
)

using on-shell matrix elements
∣

∣M({p, f}m)
〉

and their complex

conjugates, including the factors needed to make
∣

∣M({p, f}m)
〉

into an S-matrix element. Then the right hand

side of Eq. (43) is invariant under changes of the renormalization scale µ2 up to order αk+1
s .
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FIG. 1. An infrared singular diagram. Each yellow blob represents a graph, possibly with loops, in which

everything is harder than the scale µ2
hard.

collinear to the beam directions at all. Thus, it is as if we had a completely inclusive measurement

as defined by left multiplying by
(
1
∣∣. Then we again get 1/ǫ and 1/ǫ2 poles. Many of the poles

cancel between real and virtual graphs. There are, however, some poles associated with momenta

that are collinear with the initial state parton momenta. These cancel the poles in ZF (µ2). We

are left with a finite result.

C. Introduction of the infrared sensitive operator D(µ2)

The formula (42) is not completely practical because each term
∣∣ρ(nr,nv)(µ2)

)
generates in-

frared singularities or poles. Only at the end of a calculation, which includes some complicated

integrations that include the measurement function, do the poles produced by the infrared singu-

larities cancel. To make this more practical, we define a certain operator D(µ2) and insert a factor

D(µ2)D−1(µ2) into Eq. (42), giving

σ[J ] =
(
1
∣∣[F

ms
(µ2) ◦ ZF (µ2)

]
D(µ2)D−1(µ2)OJ

∣∣ρ(µ2)
)

+ O(αk+1
s ) . (45)

The operator D(µ2) depends on the dimensional regularization parameter ǫ, but we do not display

this dependence explicitly. It depends on a second scale µ2
s along with µ2, but we set µ2 = µ2

s .

The idea behind D(µ2) is that a contribution to
∣∣ρ(µ2)

)
has poles from virtual loops and has

singularities when some of its external lines become collinear or soft. This is illustrated in Fig. 1.

It is simplest to think of the graphs depicted as being in a physical gauge. There are two hard

subgraphs, represented as yellow blobs, one for the amplitude and one for the conjugate amplitude.

The subgraphs can be tree graphs or can contain virtual loops. We suppose that everything inside
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D(µ2)

FIG. 2. The diagram in Fig. 1 after separating the hard diagram from D(µ2).

the hard subgraphs is harder than a reference scale µ2
hard. That is, all of the internal propagators

are far off shell. Two initial state lines and m final state parton lines emerge from the hard

subgraph. Here m = 3. Then there are additional interactions. Some number nr of additional

partons are emitted and nv parton lines are exchanged. Here nr = 1 and nv = 1. The external

parton momenta are labelled {p̂}m+nr
. There is an infrared divergence when the the virtual gluon

becomes soft and there are singularities when the real gluon momentum becomes soft or collinear

to the antiquark line while the virtual gluon momentum is becoming soft.

We want to capture the structure of these infrared singularities, as illustrated in Fig. 2. We note

that near the singularities, the partons emerging from the hard subgraphs are nearly on shell and

their momenta lie in the directions of the external parton momenta. The momenta carried by lines

internal to the hard subgraphs are almost unchanged. Therefore, we can approximate the graph

by letting the momenta {p}m of the partons emerging from the hard subgraphs be exactly on shell.

Their momenta are given as functions of the momenta {p̂}m+nr
of the external partons. Here, we

need to define a momentum mapping {p̂}m+nr
→ {p}m. Then we can approximate the original

graph by a hard part
(
{p, f, s, s′, c, c′}m

∣∣ρhard(µ2)
)

and a singular factor. We call the singular

factor
(
{p̂, f̂ , ŝ, ŝ′, ĉ, ĉ′}m+nr

∣∣D(µ2)
∣∣{p, f, s, s′, c, c′}m

)
. The singular factor is derived just from the

singular part of the graph. It is independent of what is in the hard part.

We thus assert that any such set of poles and singularities can be organized into a hard subgraph,

19



∣∣ρhard(µ2)
)
, convolved with a singular factor:

(
{p̂, f̂ , ŝ, ŝ′, ĉ, ĉ′}m+nr

∣∣ρ(µ2)
)

∼ 1

m!

∫
[d{p}m]

∑

{f}m

∑

{s,s′,c,c′}m

×
(
{p̂, f̂ , ŝ, ŝ′, ĉ, ĉ′}m+nr

∣∣D(µ2)
∣∣{p, f, s, s′, c, c′}m

)

×
(
{p, f, s, s′, c, c′}m

∣∣ρhard(µ2)
)
.

(46)

The division between singular and hard factors depends on the singularity to be examined. In the

hard factor, the external momenta {p}m and any internal loop momenta are to be hard at some

scale that we can call µ2
hard. This means that they are not closely collinear to each other or soft at

scales softer than µ2
hard.

The singular factor is typically represented as separate factors labeled soft and jet i, where soft

can include Glauber exchanges and two of the jets are in the beam directions. However, we do not

need to separate the singular factor into separate subfactors. An early and instructive analysis of

the singularities of QCD was given by Libby and Sterman [117]. An extensive modern analysis

can be found in Collins [118]. For one real gluon emission, an example of D(µ2) can be defined

from the Catani-Seymour dipole splitting functions [34]. The operators Sp of Catani, de Florian,

and Rodrigo [119] are also closely related to D(µ2) for certain cases. At one loop, our version of

dD(µ2)/d log µ2 is implemented in Deductor.

The operator D(µ2) has a perturbative expansion

D(µ2) = 1 +

k∑

n=1

[
αs(µ

2)

2π

]n
D(n)(µ2) + O(αk+1

s ) . (47)

The order n contribution, D(n)(µ2), is a sum of infrared sensitive operators,

D(n)(µ2) =
n∑

nr=0

n∑

nv=0

θ(nr + nv = n)D(nr,nv)(µ2) . (48)

Acting on a state
∣∣{p, f, s, s′, c, c′}m

)
with m final state QCD partons, D(nr,nv)(µ2) produces a state

with m+nr final state QCD partons with momenta {p̂}m+nr
. There are integrations over the loop

momenta {ℓ1, . . . , ℓnv
} of nv virtual loops.

The operator D(µ2) depends on a hardness scale µ2
s that defines an infrared sensitive region

R(µ2
s ) in the space of the momenta {p̂}m+nr

and {ℓ1, . . . , ℓnv
}. We can think of µ2

s as being

comparable to the scale µ2
hard of

∣∣ρhard(µ2)
)
. The infrared sensitive region R(µ2

s ) surrounds the

leading singularity, at which each of the momenta {p̂}m+nr
and {ℓ1, . . . , ℓnv

} is soft or collinear to

one of the input momenta {p}m. In the case of the output momenta {p̂}m+nr
, this means that,
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at the leading singularity, these momenta form m infinitely narrow jets with momenta {p}m. Of

course, if we look just a little bit away from the limit of infinitely narrow jets, we see that the

jets can have subjets. The singularity structure of the subjets, including both real and virtual

momenta, is included in D(µ2).

We need the infrared sensitive region R(µ2
s ) because, when we form D(µ2) by making approxi-

mations that apply near the leading singularity, we necessarily simplify the behavior away from this

singularity. We introduce cuts such that D(nr,nv)(µ2) gets contributions only from inside R(µ2
s ).

The leading singularity is inside the region for any µ2
s , but for larger µ2

s , the region is larger. Of

course, there is more than one way to introduce µ2
s .

For simplicity, we set the renormalization and factorization scale µ2 equal to µ2
s .

We will say more about the D(n)(µ2) later, although we do not construct them. For now

we simply assume that they are available and investigate how they can be used to construct

subtractions for a fixed order calculation and splitting functions for a parton shower. See Appendix

A for an example of the operators D(n)(µ2) in a toy model.

D. Subtractions for the perturbative cross section

Given D(µ2), we can construct

D−1(µ2) = 1 −
k∑

n=1

[
αs(µ

2)

2π

]n
D̃(n)(µ2) + O(αk+1

s ) . (49)

The perturbative coefficients D̃(n)(µ2) are defined by

D−1(µ2)D(µ2) = 1 . (50)

This gives, for instance,

D̃(1)(µ2) = D(1)(µ2) ,

D̃(2)(µ2) = D(2)(µ2) −D(1)(µ2)D(1)(µ2) ,
(51)

or for the higher orders

D̃(n)(µ2) = D(n)(µ2) −
n−1∑

k=1

D(k)(µ2) D̃(n−k)(µ2) . (52)

The order n contribution, D̃(n)(µ2), is a sum of operators,

D̃(n)(µ2) =

n∑

nr=0

n∑

nv=0

θ(nr + nv = n) D̃(nr,nv)(µ2) . (53)
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Acting on a state
∣∣{p, f, s, s′, c, c′}m

)
with m partons, D̃(nr,nv)(µ2) produces a state with m + nr

partons while integrating over nv virtual loops. One constructs D̃(nr,nv)(µ2) using Eq. (50).

The operator D−1(µ2) is very useful. In Eq. (45), we have the factor D−1(µ2)OJ

∣∣ρ(µ2)
)
. We are

to expand this product in powers of αs, keeping the terms up to order αks . The factor OJ

∣∣ρ(µ2)
)

has

infrared singularities and poles, but the operator D−1(µ2) removes them. The simple argument is

that D(µ2)
∣∣{p, f, s, s′, c, c′}m

)
contains the infrared singularities and poles produced by QCD from

a hard parton state
∣∣{p, f, s, s′, c, c′}m

)
but, according to Eq. (50), when we apply D−1(µ2) to this

state, the poles and singular terms are cancelled. That is, D−1(µ2) provides the subtraction terms

that we need to remove the singularities and poles from an NkLO perturbative calculation.

To understand what the operator D−1(µ2) does, it is helpful to examine the familiar case of an

NLO calculation. At this order, Eq. (45) becomes

σ[J ] =
(
1
∣∣[F

ms
(µ2) ◦ ZF (µ2)

]
D(µ2)

×
{
OJ

∣∣ρ(0,0)(µ2)
)

+
αs(µ

2)

2π

[
OJ

∣∣ρ(0,1)(µ2)
)
−D(0,1)(µ2)OJ

∣∣ρ(0,0)(µ2)
)]

+
αs(µ

2)

2π

[
OJ

∣∣ρ(1,0)(µ2)
)
−D(1,0)(µ2)OJ

∣∣ρ(0,0)(µ2)
)]}

+ O(α2
s ) .

(54)

We have defined D(0,1)(µ2) so that it leaves the number of partons unchanged and so that it

has infrared poles. Furthermore, the poles in D(0,1)(µ2)
∣∣ρ(0,0)

)
should directly cancel those of

∣∣ρ(0,1)(µ2)
)
. We have defined D(1,0)(µ2) so that, acting on the state

∣∣ρ(0,0)(µ2)
)
, it adds one

parton and so that when this parton is soft or nearly collinear with one of the existing partons

(in our example, the initial state partons) D(1,0)(µ2)OJ

∣∣ρ(0,0)(µ2)
)

approaches OJ

∣∣ρ(1,0)(µ2)
)
. In

a standard application, one performs the integrations over the momentum of the emitted parton

numerically. The integrand in the subtraction cancels the integrand in
∣∣ρ(1,0)(µ2)

)
in the infrared

region, so that one obtains a convergent integration. Having subtracted the operators D(1,0) and

D(0,1), we add them back as part of D. Now, in a standard application, all of the integrations

corresponding to the first line of Eq. (54) are performed analytically. All of the 1/ǫ2 and 1/ǫ poles

cancel and we are left with a completely finite order αs contribution to the cross section. Note

that the contribution from the first line beyond just the parton distribution functions is infrared

finite, but it is not zero. It forms a significant part of the NLO calculation. In Eq. (54), we have a

product of one infrared finite object times another, each expanded to order αs. In the customary

NLO calculation, one expands the product to order αs and drops the α2
s term, but one could keep
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the α2
s term if desired.

We note that if we had wanted to use D(µ2) for the single purpose of defining subtractions for

the hard scattering,
∣∣ρ(µ2)

)
, we could have used a fixed scale. We need an adjustable scale µ2

s to

use D(µ2) in a shower algorithm because the hardness scale of the shower changes as the shower

progresses.

E. Properties of the infrared sensitive operator

We can now say a little more about the infrared sensitive operator D(µ2), without giving

a detailed specification. This operator is decomposed into operators D(nr,nv)(µ2) according to

eqs. (47) and (48). Acting on a state
∣∣{p, f, s, s′, c, c′}m

)
with m partons, D(nr,nv)(µ2) produces

a state with m + nr partons while adding nv virtual loops. The resulting state can be expanded

in basis states for m + nr partons,
∣∣{p̂, f̂ , ŝ, ŝ′, ĉ, ĉ′}m+nr

)
. There is then an invertible mapping

between the new momenta {p̂}m+nr
and the starting momenta {p}m together with a set of splitting

variables ζp(nr). One can choose what this mapping is.

To make this a little more concrete, consider D(1,0)(µ2) with one parton emitted. There is one

term in the emission probability for each final state parton l ∈ {1, . . . ,m} and one for each initial

state parton l ∈ {a,b}. We think of l as the emitting parton and let the emission probability

be singular when p̂m+1 becomes collinear with p̂l. The emission probabilities are also singular

in the limit in which p̂m+1 becomes soft, p̂m+1 → 0. Deductor uses something similar to the

Catani-Seymour [34] dipole splitting functions to construct D(1,0)(µ2). The splitting variables ζp

are taken to be an azimuthal angle φ, a momentum fraction z, and a measure of the hardness of

the splitting. In Deductor, the hardness variable is the virtuality of the splitting divided by the

energy of the mother parton,

Λ2 ≡ 2p̂l · p̂m+1

2pl ·QH

Q2
H , (55)

where the vector QH is defined globally as described at the end of Sec. IV A. Alternatively, it can

be defined dynamically as described in Appendix C.

There is freedom to choose the functional form of D(1,0)(µ2) away from the limits of soft and

collinear emissions.

There is also freedom to choose the momentum mapping. The simplest case is a splitting of a

parton l into two partons l and m + 1. Then we cannot have pl be the same as p̂l + p̂m+1 with

p2l = p̂2l = p̂2m+1 = 0, so the momentum mapping has to take a some momentum from the other
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partons and supply it to p̂l+ p̂m+1. In Deductor, we use a global mapping, taking a small amount

of momentum from each of the other partons. A second possibility beyond a simple splitting is

interference between emission of a gluon m + 1 from parton lL in the ket state and emission from

another parton lR in the bra state. In this case, D(1,0)(µ2) in Deductor is a linear combination of

contributions that use the momentum mappings for a splitting of parton lL and for a splitting of

parton lR. The coefficients in the linear combination are a “dipole partitioning” function A′ that

is specified in Deductor.

The operator D(1,0)(µ2), acting on a state
∣∣{p, f, s, s′, c, c′}m

)
, produces a state with one more

parton, parton m + 1. It is crucial that there be an ultraviolet cutoff for p̂m+1. The cutoff is

specified by a parameter that we call µ2
s . In Deductor, we use Λ2 as given in Eq. (55) to define

the cutoff. In D(1,0)(µ2), we require

Λ2 < µ2
s . (56)

A similar cutoff applies inside the integration for a virtual loop in D(0,1)(µ2). Defining this

cutoff is more involved than we can review here. The calculations are described in Refs. [32, 33].

VI. FROM THE PERTURBATIVE CROSS SECTION TO A PARTON SHOWER

In this section, we begin with Eq. (45) for the perturbative cross section. We set the scale to

µ2
h, which we take to be equal to Q2

H
. We now seek a more powerful formulation that will enable

us to use more general measurement operators OJ for which a perturbative expansion of the cross

section might contain large logarithms of the generic form αns log2n(k2/Q2). Often, a parton shower

can approximately sum such logarithms.

A. Moving the measurement operator

The first step towards a more general formulation is to interchange the order of the measurement

operator OJ and the operators D−1(µ2
h) and D(µ2

h). This doesn’t change the result, since DD−1 = 1

and OJ commutes with 1. With the OJ moved, we have

σ[J ] =
(
1
∣∣[F

ms
(µ2

h) ◦ ZF (µ2
h)
]
OJ D(µ2

h)
∣∣ρh
)

+ O(αk+1
s ) . (57)

Here we have denoted

∣∣ρh
)

= D−1(µ2
h)
∣∣ρ(µ2

h)
)
, (58)
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where the product is expanded to NkLO using eqs. (43), (44), (49), and (53):

∣∣ρh
)

=

k∑

n=0

[
αs(µ

2
h)

2π

]n n∑

nr=0

n∑

nv=0

θ(nr + nv = n)
∣∣ρ(nr,nv)

h

)
+ O(αk+1

s ) , (59)

where

∣∣ρ(nr,nv)
h

)
=
∣∣ρ(nr,nv)(µ2

h)
)
−

nr∑

r=0

nv∑

l=0
r+l>0

D̃(r,l)(µ2
h)
∣∣ρ(nr−r,nv−l)(µ2

h)
)
.

(60)

These quantities
∣∣ρ(nr,nv)

h

)
are finite without dimensional regularization.

B. Introducing shower oriented parton distribution functions

We can do a little more by introducing an operator F(µ2
h) that multiplies by parton distribution

functions fa/A(ηa, µ
2) fb/B(ηb, µ

2) and a luminosity factor. However, these are not the five-flavor

MS parton distribution functions that we used in F
ms

(µ2). Rather, they are adapted to the choice

of the definition for D(µ2) that we use.

The shower oriented parton operator F(µ2) is related to F
ms

(µ2) by factor K(µ2),

F
ms

(µ2) = [F(µ2) ◦ K(µ2)] . (61)

This is a rather compact notation, so it is worthwhile to write it in more detail. The left hand side

is defined by

F
ms

(µ2)
∣∣{p, f, s, s′, c, c′}m

)
=

fms

a/A(ηa, µ
2) fms

b/B(ηb, µ
2)

nc(a)ns(a)nc(b)ns(b) 4pa · pb
∣∣{p, f, s, s′, c, c′}m

)
. (62)

The right hand side is

[F(µ2) ◦ K(µ2)]
∣∣{p, f, s, s′, c, c′}m

)

=
∑

a′,b′

∫ 1

0

dza
za

∫ 1

0

dzb
zb

fa′/A(ηa/za, µ
2) fb′/B(ηb/zb, µ

2)

nc(a)ns(a)nc(b)ns(b) 4pa · pb

×K
(a)
a,a′(za, µ

2, {p, f}m)K
(b)
b,b′(zb, µ

2, {p, f}m)
∣∣{p, f, s, s′, c, c′}m

)
.

(63)

Here we take the kernel K to be a product, so that each of the two parton distributions is trans-

formed separately. We allow each kernel to depend on the momentum and flavor variables of the

parton state to which [F(µ2) ◦ K(µ2)] is applied. The kernels each have a perturbative expansion

beginning with

K
(a)
a,a′(z, µ

2, {p, f}m) = δa,a′δ(1 − z) +
αs(µ

2)

2π
K

(a,1)
a,a′ (z, µ2, {p, f}m) + O(α2

s ) . (64)
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The choice of K(µ2) defines the shower-oriented parton distribution functions. The evolution of

these parton distribution functions needs to be matched to the parton splitting functions introduced

in the following sections. In particular, the choice of K(µ2) is largely determined by the definition

of the cutoff µ2
s that we use for the shower. We provide an example in Appendix B.

The parton operators F
ms

(µ2) and F(µ2) obey evolution equations

µ2 d

dµ2
F(µ2) = [F(µ2) ◦ P(µ2)] ,

µ2 d

dµ2
F
ms

(µ2) = [F
ms

(µ2) ◦ P
ms

(µ2)] .

(65)

Using Eq. (61), we see that the evolution kernels are related by

P(µ2) = [K(µ2) ◦ P
ms

(µ2) ◦ K−1(µ2)] −
[(

µ2 d

dµ2
K(µ2)

)
◦ K−1(µ2)]

]
. (66)

With the transformation from F
ms

(µ2) to F(µ2), we write

[F
ms

(µ2) ◦ ZF (µ2)] = [F(µ2) ◦ K(µ2) ◦ ZF (µ2)] . (67)

Thus our cross section is

σ[J ] =
(
1
∣∣[F(µ2

h) ◦ K(µ2
h) ◦ ZF (µ2

h)
]
OJ D(µ2

h)
∣∣ρh
)

+ O(αk+1
s ) . (68)

We will introduce F(µ2) into another place in the formalism shortly.

C. Changing the scale of the subtraction operators

Next, we would like to change the scale of the operators in Eq. (68) from a large scale µ2
h

to something smaller. We let µ2
i be an “intermediate” size scale that is much smaller than the

scale Q2[J ] associated with the operator OJ but is nevertheless large compared to 1 GeV2 and is

certainly large enough to allow the use of perturbation theory in αs(µ
2
i ). We can change the parton

factor to be evaluated at scale µ2
i because this factor is a renormalization group invariant:

[
F(µ2

h) ◦ K(µ2
h) ◦ ZF (µ2

h)
]

=
[
F(µ2

i ) ◦ K(µ2
i ) ◦ ZF (µ2

i )
]
. (69)

The operator D(µ2) is not invariant under changes of scale. However, we can write

D(µ2
1) = D(µ2

2)Upert(µ
2
2, µ

2
1) , (70)

where

Upert(µ
2
2, µ

2
1) = D−1(µ2

2)D(µ2
1) . (71)
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Here we note that D(µ2
1) generates 1/ǫ poles and infrared singularities, but D−1(µ2

2) provides the

proper subtractions to remove the poles and infrared singularities when we expand the product

of operators to a fixed order of perturbation theory. Thus we can evaluate Upert(µ
2
2, µ

2
1) in four

dimensions instead of 4 − 2ǫ dimensions. The perturbative evolution operator Upert(µ
2, µ′ 2) obeys

the differential equation

µ2 d

dµ2
Upert(µ

2, µ′ 2) = −Spert(µ
2)Upert(µ

2, µ′ 2) , (72)

where

Spert(µ
2) = D−1(µ2)µ2 d

dµ2
D(µ2) . (73)

Since Upert(µ
2
2, µ

2
1) is infrared finite, so is Spert(µ

2). We can write the solution of Eq. (72) as

Upert(µ
2, µ′ 2) = T exp

(∫ µ′ 2

µ2

dµ2

µ2
Spert(µ

2)

)
, (74)

where T indicates µ2 ordering of the exponential with smaller µ2 to the left. Working to order αs

with use of eqs. (47) and (48), we have

Spert(µ
2) =

αs(µ
2)

2π
S(1,0)
pert (µ2) +

αs(µ
2)

2π
S(0,1)
pert (µ2) + O(α2

s ) , (75)

where αs(µ
2) is the running coupling in the four dimensional theory and

S(1,0)
pert (µ2) = µ2 d

dµ2
D(1,0)(µ2) ,

S(0,1)
pert (µ2) = µ2 d

dµ2
D(0,1)(µ2) .

(76)

Recall that µ2 = µ2
s . Thus S(1,0)

pert (µ2) is the derivative of (approximated) real emission graphs

with respect to the ultraviolet cutoff that we impose. Similarly, S(0,1)
pert (µ2) is the derivative of

approximated one loop virtual graphs with respect to the ultraviolet cutoff. The subscript “pert”

emphasizes that only perturbative Feynman diagrams are used to obtain S(1,0)
pert (µ2) and S(0,1)

pert (µ2).

With these changes, we have

σ[J ] =
(
1
∣∣[F(µ2

i ) ◦ K(µ2
i ) ◦ ZF (µ2

i )
]
OJ D(µ2

i )Upert(µ
2
i , µ

2
h)
∣∣ρh
)

+ O(αk+1
s ) . (77)

Now we note that very soft or collinear splittings at scales much smaller than Q[J ]2 are not

resolved by the measurement operator OJ . The operator D(µ2
i ) generates splittings at scales µ2

i

and smaller. Since we have chosen µ2
i ≪ Q[J ]2, the operator OJ commutes with D(µ2

i ) to a good

approximation, with an error of order µ2
i /Q[J ]2. Thus Eq. (68) can be written as

σ[J ] =
(
1
∣∣[F(µ2

i ) ◦ K(µ2
i ) ◦ ZF (µ2

i )
]
D(µ2

i )OJ Upert(µ
2
i , µ

2
h)
∣∣ρh
)

+ O(αk+1
s ) + O(µ2

i /Q[J ]2) .
(78)
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D. The inclusive infrared finite operator V(µ2)

We now introduce an operator X (µ2) defined by

X (µ2) =
[
F(µ2) ◦ K(µ2) ◦ ZF (µ2)

]
D(µ2)F−1(µ2) . (79)

Using X (µ2), Eq. (78) is more compact:

σ[J ] =
(
1
∣∣X (µ2

i )F(µ2
i )OJ Upert(µ

2
i , µ

2
h)
∣∣ρh
)

+ O(αk+1
s ) + O(µ2

i /Q[J ]2) . (80)

The operator X (µ2) involves parton distribution functions and purely perturbative operators. If

we evaluate the perturbative operators at order zero, we get simply F(µ2)F−1(µ2). Thus

X (µ2) = 1 + O(αs) . (81)

The operator X (µ2), when expanded in powers of αs, creates partons, up to k partons at order αks .

The operator X (µ2) is infrared sensitive. When we apply X (µ2) to a state
∣∣{p, f, s, s′, c, c′}m

)
,

we get a state X (µ2)
∣∣{p, f, s, s′, c, c′}m

)
containing poles 1/ǫ and singularities when the partons

that X (µ2) creates become soft or collinear with other partons or with each other. In that sense,

X (µ2) is like D(µ2). However, X (µ2) contains the parton factor
[
F(µ2) ◦ K(µ2) ◦ ZF (µ2)

]
. This

factor gives X (µ2) a property not shared by D(µ2). If we integrate over the momenta of the

partons created by X (µ2) and sum over their colors and flavors by forming the inclusive sum
(
1
∣∣X (µ2)

∣∣{p, f, s, s′, c, c′}m
)
, then the singularities cancel and we obtain a finite result.

In fact, we need to ensure that
(
1
∣∣X (µ2)

∣∣{p, f, s, s′, c, c′}m
)

is not only finite after dimensional

regularization is removed but that it vanishes in the limit µ2 → 0. For example, if this quantity

arises from an integration

(
1
∣∣X (µ2)

∣∣{p, f, s, s′, c, c′}m
)

=

∫ µ2

0

dk2

k2
G(k2) , (82)

then, with subtractions included, G(k2) needs to be a smooth function that is well enough behaved

for k2 → 0 that the integral is convergent. This property is needed later in Eq. (133).

Suppose for a moment that we worked in a modified theory, denoted by subscripts M, in which

partons carried only momenta and flavors, but not color and spin. Then from the inclusive sum
(
1
∣∣XM(µ2)

∣∣{p, f}m
)

we could define another operator VM(µ2) that leaves the number of partons,

their momenta and flavors unchanged:

VM(µ2)
∣∣{p, f}m

)
= λ({p, f}m)

∣∣{p, f}m
)
. (83)

28



Then λ({p, f}m, µ2) =
(
1
∣∣VM(µ2)

∣∣{p, f}m
)
. We define VM(µ2) by Eq. (83) and

(
1
∣∣VM(µ2)

∣∣{p, f}m
)

=
(
1
∣∣XM(µ2)

∣∣{p, f}m
)
. (84)

Now return to QCD. With spin and color, we can define an operator V(µ2) that satisfies
(
1
∣∣V(µ2) =

(
1
∣∣X (µ2). However, its structure is more complex. The operator X (µ2) can be ex-

panded in powers of αs:

X (µ2) = 1 +

k∑

n=1

[
αs(µ

2)

2π

]n
X (n)(µ2) + O(αk+1

s ) . (85)

The order n contribution, X (n)(µ2), is a sum of infrared sensitive operators,

X (n)(µ2) =
n∑

nr=0

n∑

nv=0

θ(nr + nv = n)X (nr,nv)(µ2) . (86)

Acting on a state
∣∣{p, f, s, s′, c, c′}m

)
with m final state partons, X (nr,nv)(µ2) produces a state with

m + nr final state partons with momenta and flavors {p̂, f̂}m+nr
. There are integrations over the

loop momenta {ℓ1, . . . , ℓnv
} of nv virtual loops.

We need to understand the color and spin structure of X (nr,nv)(µ2). Suppose that we have

constructed a basis of operators that act on the quantum spin⊗color space and create a quantum

spin⊗color state for nr more partons. We label the basis operators by an index i. A convenient

choice would be

i = {m, {ŝ, ĉ}m+nr
, {s, c}m} . (87)

Then we could let

σ
(nr)
i

∣∣{s′, c′}m′

〉
=





∣∣{ŝ, ĉ}m+nr

〉
m = m′ & {s, c}m = {s′, c′}m

0 otherwise

. (88)

Using these basis operators, we can expand X (nr,nv)(µ2) as

X (nr,nv)(µ2) =
∑

i,j

X (nr,nv)
i,j (µ2) σ

(nr)
i ⊗ σ

(nr)†
j . (89)

Here X (nr,nv)
i,j (µ2) is still an operator on the momentum and flavor part of the statistical space,

which has basis vectors
∣∣{p, f}m

)
. In the case nr = 0, this operator adds no partons and leaves

the parton momenta and flavors {p, f}m unchanged.

Now we wish to define another operator V(µ2) with an expansion

V(µ2) = 1 +
k∑

n=1

[
αs(µ

2)

2π

]n
V(n)(µ2) + O(αk+1

s ) . (90)
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The order n contribution is to add no partons and leave the parton momenta and flavors {p, f}m
unchanged, but it still can be a non-trivial operator on the spin⊗color space

V(n)(µ2) =
∑

i,j

V(n)
i,j (µ2) σ

(0)
i ⊗ σ

(0)†
j . (91)

Here V(n)
i,j (µ2) is still an operator on the momentum and flavor part of the statistical space. We

want V(µ2) to be related to X (µ2) by

(
1
∣∣V(µ2) =

(
1
∣∣X (µ2) . (92)

Thus we want

(
1
∣∣∑

i,j

V(n)
i,j (µ2) σ

(0)
i ⊗ σ

(0)†
j

∣∣{p, f, s, s′, c, c′}m
)

=
n∑

nr=0

∑

i,j

(
1
∣∣X (nr,n−nr)

i,j (µ2) σ
(nr)
i ⊗ σ

(nr)†
j

∣∣{p, f, s, s′, c, c′}m
)
.

(93)

This is the same as

∑

i,j

〈
{s′, c′}m

∣∣σ(0)†
j σ

(0)
i

∣∣{s, c}m
〉(

1
∣∣V(n)
i,j (µ2)

∣∣{p, f}m
)

=
n∑

nr=0

∑

i,j

〈
{s′, c′}m

∣∣σ(nr)†
j σ

(nr)
i

∣∣{s, c}m
〉(

1
∣∣X (nr,n−nr)

i,j (µ2)
∣∣{p, f}m

)
.

(94)

This needs to work for any choice of m-parton spin⊗color states
〈
{s′, c′}m

∣∣ and
∣∣{s, c}m

〉
, so we

need an identity of spin⊗color operators,

∑

i,j

σ
(0)†
j σ

(0)
i

(
1
∣∣V(n)
i,j (µ2)

∣∣{p, f}m
)

=

n∑

nr=0

∑

i,j

σ
(nr)†
j σ

(nr)
i

(
1
∣∣X (nr,n−nr)

i,j (µ2)
∣∣{p, f}m

)
.

(95)

The right hand side of Eq. (95) is an operator on the spin⊗color space for m final state partons. On

the left hand side, the operators σ
(0)
i form a basis for this space of operators, as do the operators

σ
(0)†
j , so the operators σ

(0)†
j σ

(0)
i span this space and are, in fact, over-complete. That is, one can

always find coefficients
(
1
∣∣V(n)
i,j (µ2)

∣∣{p, f}m
)

so that we match the operator on the right hand side.

However, the choice is not unique. At order n = 1, we have made a simple choice in Deductor.

It is beyond our scope here to investigate what choices might be best at NLO, n = 2.

Since
(
1
∣∣X (µ2) is infrared finite, Eq. (92) tells us that V(µ2) is infrared finite.
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E. A more sophisticated shower evolution operator

Using Eq. (92), Eq. (80) becomes

σ[J ] =
(
1
∣∣V(µ2

i )F(µ2
i )OJ Upert(µ

2
i , µ

2
h)
∣∣ρh
)

+ O(αk+1
s ) + O(µ2

i /Q[J ]2) . (96)

Since V(µ2
i )F(µ2

i ) does not change the number, momenta, or flavors of partons, it commutes with

OJ . Thus

σ[J ] =
(
1
∣∣OJ V(µ2

i )F(µ2
i )Upert(µ

2
i , µ

2
h)
∣∣ρh
)

+ O(αk+1
s ) + O(µ2

i /Q[J ]2) . (97)

Now we can define the shower evolution operator that we need,

U(µ2
2, µ

2
1) = V(µ2

2)F(µ2
2)Upert(µ

2
2, µ

2
1)F−1(µ2

1)V−1(µ2
1) . (98)

With this definition, the cross section is

σ[J ] =
(
1
∣∣OJ U(µ2

i , µ
2
h)V(µ2

h)F(µ2
h)
∣∣ρh
)

+ O(αk+1
s ) + O(µ2

i /Q[J ]2) . (99)

This moves F next to
∣∣ρh
)

so that at the hard interaction we have the proper factors to make a

cross section. It also moves V next to
∣∣ρh
)
. We will see later what the consequences of this are.

In Eq. (99), we use a scale µ2
i that was left undefined except that it should be small compared

to Q2[J ] (which was the scale of OJ ) and should be large enough to allow the use of perturbation

theory with coupling αs(µ
2
i ). Our cross section is independent of the value of µ2

i . Let us now fix

on a standard choice near the lower end of this range. We take µ2
i → µ2

f , where µ2
f is on the order

of 1 GeV2. Then

σ[J ] =
(
1
∣∣OJ U(µ2

f , µ
2
h)V(µ2

h)F(µ2
h)
∣∣ρh
)

+ O(αk+1
s ) + O(µ2

f /Q[J ]2) . (100)

We can write U(µ2
2, µ

2
1) in a simpler form. We note that, using eqs. (71) and (79),

U(µ2
2, µ

2
1) = V(µ2

2)F(µ2
2)D−1(µ2

2)D(µ2
1)F−1(µ2

1)V−1(µ2
1)

= V(µ2
2)X−1(µ2

2)
[
F(µ2

2) ◦ K(µ2
2) ◦ ZF (µ2

2)
]

×
[
F(µ2

1) ◦ K(µ2
1) ◦ ZF (µ2

1)
]−1 X (µ2

1)V−1(µ1) .

(101)

Since the operator
[
F(µ2) ◦ K(µ2) ◦ ZF (µ2)

]
is independent of scale, this is

U(µ2
2, µ

2
1) = V(µ2

2)X−1(µ2
2)X (µ2

1)V−1(µ1) . (102)
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F. Probability preservation in U(µ2

2
, µ2

1
)

The operator U(µ2
2, µ

2
1) has an important property, which we now derive. From Eq. (102), we

have

(
1
∣∣U(µ2

2, µ
2
1) =

(
1
∣∣V(µ2

2)X−1(µ2
2)X (µ2

1)V−1(µ2
1) . (103)

Then using Eq. (92) twice, we have

(
1
∣∣U(µ2

2, µ
2
1) =

(
1
∣∣ . (104)

Multiplying any statistical state
∣∣ρ
)

by
(
1
∣∣ gives the total probability associated with that state.

Thus Eq. (104) says that shower evolution as represented in U(µ2
2, µ

2
1) is probability preserving.

Current parton shower algorithms are typically constructed to have this property. Here probability

preservation is a derived property.

G. Factorization

Let Q2[J ] be the smallest scale associated with the measurement operator OJ in Eq. (100), as

discussed in Sec. III A. If Q2[J ] us close to the scale µ2
h of the hard process with which we start the

shower, then measuring σ[J ] does not make use of the full power of a parton shower. Suppose now

that Q2[J ] ≫ 1 GeV2 but that Q2[J ] ≪ µ2
h. Then perturbation theory for σ[J ] is still applicable,

but there may be large logarithms, log(µ2
h/Q

2[J ]) in the perturbative expansion of σ[J ]. In many

cases, a parton shower is useful for summing such logarithms. It takes a dedicated analysis to show

that a given parton shower algorithm does sum the logarithms associated with a given operator

OJ , but there is at least a chance that if we use a parton shower we will do better than if we

simply use fixed order perturbation theory. Thus we consider this sort of measurement operator

and examine how factorization works when Q2[J ] ≪ µ2
h.

We argued in Sec. III A that shower splittings at scale µ2 can change the measurement by a

fraction µ2/Q2[J ]. We can neglect these modifications as long as µ2 is small enough, say

µ2 < ǫsQ
2[J ] . (105)

We want ǫs to be small enough that we can regard fractional errors of order ǫs as negligible.

However, we may want log(1/ǫs) not to be large.

We can use our knowledge of the scale of OJ by writing

U(µ2
f , µ

2) = U(µ2
f , ǫsQ

2[J ])U(ǫs Q
2[J ], µ2

h) . (106)
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Then writing

OJ U(µ2
f , ǫs Q

2[J ]) ≈ U(µ2
f , ǫsQ

2[J ])OJ (107)

results in a negligible error. With this substitution, Eq. (100) becomes

σ[J ] =
(
1
∣∣U(µ2

f , ǫs Q
2[J ])OJ U(ǫsQ

2[J ], µ2
h)V(µ2

h)F(µ2
h)
∣∣ρh
)

+ O(αk+1
s ) + O(ǫs) . (108)

Now, factorization for the cross section measured by OJ requires that splittings at scales smaller

than ǫsQ
2[J ] not affect the cross section. Thus we need

σ[J ] =
(
1
∣∣OJ U(ǫsQ

2[J ], µ2
h)V(µ2

h)F(µ2
h)
∣∣ρh
)

+ O(αk+1
s ) + O(ǫs) . (109)

This follows by using Eq. (104) to obtain
(
1
∣∣U(µ2

f , ǫsQ
2[J ]) =

(
1
∣∣.

We should emphasize that in order to measure the cross section corresponding to the infrared

safe operator OJ with scale Q2[J ], it is not necessary to cut off the shower at scale ǫsQ
2[J ] as in

Eq. (109). Rather, one simply runs the shower down to µ2
f and measures OJ on the final state

produced by the full shower, as in Eq. (100). When we do that, we are setting ǫs = µ2
f /Q

2[J ], so

the error estimate O(ǫs) becomes O(µ2
f /Q

2[J ]).

H. The shower evolution equation

Using its definition Eq. (98), we see that the shower evolution operator U(µ2, µ′ 2) obeys an

evolution equation of the form

µ2 d

dµ2
U(µ2, µ′ 2) = −S(µ2)U(µ2, µ′ 2) . (110)

Thus

U(µ2, µ′ 2) = T exp

(∫ µ′ 2

µ2

dµ2

µ2
S(µ2)

)
. (111)

Since, according to Eq. (104),
(
1
∣∣U(µ2, µ′ 2) =

(
1
∣∣, we have

(
1
∣∣S(µ2) = 0 . (112)

Using eqs. (98) and (72), we see that the shower generator S in Eq. (110) is

S(µ2) = V(µ2)F(µ2)Spert(µ
2)F−1(µ2)V−1(µ2)

−
(
µ2 d

dµ2
V(µ2)F(µ2)

)
F−1(µ2)V−1(µ2)

= V(µ2)F(µ2)Spert(µ
2)F−1(µ2)V−1(µ2)

− V(µ2)

(
µ2 d

dµ2
F(µ2)

)
F−1(µ2)V−1(µ2) −

(
µ2 d

dµ2
V(µ2)

)
V−1(µ2) .

(113)
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It is convenient to define

SV(µ2) = V−1(µ2)µ2 d

dµ2
V(µ2) . (114)

Also, we can use Eq. (65) for the evolution of F(µ2) and we can note that since V(µ2) does not

change the number of partons or their momenta or flavors, V(µ2) commutes with F(µ2). Then

S(µ2) = V(µ2)F(µ2)Spert(µ
2)F−1(µ2)V−1(µ2)

− [F(µ2) ◦ P(µ2)]F−1(µ2) − V(µ2)SV(µ2)V−1(µ2) .
(115)

The operator V(µ2) here has a perturbative expansion beginning with

V(µ2) = 1 +
αs(µ

2)

2π
V(1)(µ2) + · · · . (116)

Then also

SV(µ2) =
αs(µ

2)

2π
S(1)
V (µ2) + · · · . (117)

A sensible procedure for determining S(µ2) is to expand it perturbatively to whatever order is

known, e.g. order αks ,

S(µ2) =
αs(µ

2)

2π
S(1)(µ2) + · · · . (118)

It is of interest to see how this works out at order αs. Since Spert(µ
2) and SV are already order

αs, we can simply replace V(µ2) by 1 in the first and third terms of Eq. (115). Then we have

S(1)(µ2) = F(µ2)S(1)
pert(µ

2)F−1(µ2) − [F(µ2) ◦ P(1)(µ2)]F−1(µ2) − S(1)
V (µ2) . (119)

Let us multiply by
(
1
∣∣ and use

(
1
∣∣S(1)(µ2) = 0. In Ref. [32], we found that

(
1
∣∣S(1,0)

pert (µ2) has a

simple form,

(
1
∣∣F(µ2)S(1,0)

pert (µ2)F−1(µ2) =
(
1
∣∣[F(µ2) ◦ S̄(1,0)(µ2)]F−1(µ2) , (120)

where S̄(1,0)
pert (µ2) leaves the number of partons, their momenta and their flavors unchanged but has

a non-trivial color structure.10 We also divide S(0,1)
pert (µ2) into two pieces

S(0,1)
pert (µ2) = S(0,1)

iπ (µ2) + S(0,1)
Re (µ2) . (121)

10 The operator [F(µ2) ◦ S̄(1,0)(µ2)]F−1(µ2) was called V in Ref. [32], but here we are letting V denote a different

operator.
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Here S(0,1)
iπ (µ2) is the contribution from the virtual graphs that is proportional to iπ, while S(0,1)

Re (µ2)

is the remaining part. We note that [32]

(
1
∣∣S(0,1)

iπ (µ2) = 0 . (122)

This gives us

(
1
∣∣S(1)

V (µ2) =
(
1
∣∣
{

[F(µ2) ◦ S̄(1,0)(µ2)]F−1(µ2) + S(0,1)
Re (µ2)

− [F(µ2) ◦ P(1)(µ2)]F−1(µ2)
}
.

(123)

All of the operators here leave the parton state unchanged except for being operators on the color

and spin space. We define S(1)
V (µ2) to have the color and spin structure of the right hand side of

the equation, so that

S(1)
V (µ2) = [F(µ2) ◦ S̄(1,0)(µ2)]F−1(µ2) + S(0,1)

Re (µ2) − [F(µ2) ◦ P(1)(µ2)]F−1(µ2) . (124)

This result also gives us11

S(1)(µ2) = F(µ2)S(1,0)
pert (µ2)F−1(µ2) − [F(µ2) ◦ S̄(1,0)(µ2)]F−1(µ2) + S(0,1)

iπ (µ2) . (125)

Compare this to the more general Eq. (D27) in Appendix D.

To use S(1)(µ2), one solves Eq. (110) in the form

U(µ2
2, µ

2
1) = N (µ2

2, µ
2
1)

+

∫ µ21

µ22

dµ2

µ2
U(µ2

2, µ
2)F(µ2)

αs(µ
2)

2π
S(1,0)
pert (µ2)F−1(µ2)N (µ2, µ2

1) ,
(126)

where

N (µ2
2,µ

2
1)

= T exp

(∫ µ21

µ22

dµ2

µ2

αs(µ
2)

2π

{
−[F(µ2) ◦ S̄(1,0)(µ2)]F−1(µ2) + S(0,1)

iπ (µ2)
})

.
(127)

Here the Sudakov factor N is the exponential of the part of S that does not change the number

of partons or their momenta or flavors. Normally its spin and color structure is simplified and the

iπ contribution is not included. The splitting operator F(µ2)S(1,0)
pert (µ2)F−1(µ2) adds one parton.

Its spin and color structure is also normally simplified. Then Eq. (126) is implemented by solving

it iteratively, so that there are some number of splittings interleaved with Sudakov factors.

11 In Ref. [32], we neglected the iπ term and we averaged over spin. Then the right hand side of Eq. (125) was called

HI − V.
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I. The structure of V(µ2)

In Eq. (100), there is a factor V(µ2
h) that multiplies F(µ2

h) and
∣∣ρh
)
. We can write this operator

as

V(µ2
h) = V(µ2

f )UV(µ2
f , µ

2
h) , (128)

where

UV(µ2
2, µ

2
1) = V−1(µ2

2)V(µ2
1) . (129)

The operator UV(µ2, µ′ 2) obeys the evolution equation

µ2 d

dµ2
UV(µ2, µ′ 2) = −SV(µ2)UV(µ2, µ′2) , (130)

where SV(µ2) was defined in Eq. (114). Thus

UV(µ2
f , µ

2
h) = T exp

(∫ µ2h

µ2f

dµ2

µ2
SV(µ2)

)
. (131)

To use Eq. (131), we apply UV(µ2
f , µ

2
h) to a statistical state

∣∣{p, f, s, s′, c, c′}m
)

that contributes to
∣∣ρh
)
. We expand SV(µ2) in powers of αs(µ

2) with factors involving the running parton distributions

F(µ2). The available scales other than µ2 come from
∣∣ρh
)
, so the relevant matrix elements involve

µ2/µ2
h. Since V(µ2) is an infrared finite operator, the perturbative coefficients in SV(µ2) will then be

proportional to µ2/µ2
h, possibly times logarithms of µ2/µ2

h. Thus the low µ2 end of the integration

is power suppressed. However, it is important that there is a lower bound µ2
f on the integration.

That is because the running coupling αs(µ
2) and the running parton distributions F(µ2) are not

well defined for very small µ2.

We are left with a factor

V(µ2
f ) = 1 + O(αs(µ

2
f )) . (132)

We can expand this perturbatively in powers of αs(µ
2
f ), using parton distributions F(µ2

f ). The

coefficients of αns (µ2
f ) for n ≥ 1 are then proportional to µ2

f /µ
2
h, possibly times logarithms of µ2

f /µ
2
h.

Since µ2
f ≪ µ2

h, we can safely neglect all of the higher order terms and simply replace

V(µ2
f ) → 1 . (133)

Thus we make the replacement V(µ2
h) → UV(µ2

f , µ
2
h) in Eq. (100), giving us

σ[J ] =
(
1
∣∣OJ U(µ2

f , µ
2
h)UV(µ2

f , µ
2
h)F(µ2

h)
∣∣ρh
)

+ O(αk+1
s ) + O(µ2

f /Q[J ]2) . (134)
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The factor UV(µ2
f , µ

2
h) does two things. First, it provides perturbative corrections to the hard

scattering state
∣∣ρh
)
, which we need in order to calculate the cross section correct to NkLO. For

this purpose, it would suffice to expand the exponential in UV(µ2
f , µ

2
h) to the desired perturbative

order. The second function of UV(µ2
f , µ

2
h) is to sum threshold logarithms. For this purpose, it is

important that UV(µ2
f , µ

2
h) is an exponential.

To understand relation of the operator UV(µ2
f , µ

2
h) to threshold logarithms, it is instructive to

look at it at order αs. It is structurally the same as the operator introduced in Ref. [32], which

concerned the summation of threshold logarithms.12 The analysis in Ref. [32] simply averaged over

spins, so we leave out spin here. The operator SV(µ2) in Ref. [32] contains several terms. Rather

than listing them all, we simply recall the most important terms:

SV(µ2)
∣∣{p, f, c, c′}m

)
=

αs

2π

∫ 1

1/(1+µ2/µ2h)
dz

[(
1 −

fa/A(ηa/z, µ
2)

fa/A(ηa, µ2)

)
2Ca

1 − z

+

(
1 −

fb/B(ηb/z, µ
2)

fb/B(ηb, µ2)

)
2Cb

1 − z

]
[1 ⊗ 1]

∣∣{p, f, c, c′}m
)

+ · · · ,

(135)

where Ca = CF when a is a quark flavor and Cg = CA. The operator [1 ⊗ 1] is the unit operator

in the color space. Note that when µ2 ≪ µ2
h, the range of the z integration shrinks to just a tiny

region near z = 1. Thus, this contribution might seem unimportant. However, in Eq. (135) there

is a factor 1/(1 − z). This multiplies a factor involving the parton distribution functions. The

result is that UV(µ2
f , µ

2
h) is substantially different from 1 when the parton distribution functions

are falling quickly as the momentum fraction grows. This gives the “threshold logarithm” effect

that we can sum in a leading approximation by using UV(µ2
f , µ

2
h).

VII. SUMMARY AND OUTLOOK

We began with an expression (42) for the cross section σ[J ] for an infrared safe measurement

J calculated at NkLO. The pieces in this expression are infrared divergent in four dimensions, so

that they are defined by working in 4 − 2ǫ dimensions. Integrating over the phase space that is

unresolved by the measurement leads to some cancellations of poles 1/ǫ. Other poles cancel after

factorization of initial state infrared sensitivity into parton distribution functions. This leaves a

result that is finite in four dimensions, even though it consists of pieces that are divergent in four

12 In Ref. [32], an approximate version of UV(µ
2
2, µ

2
1) was used to sum threshold logarithms, but it appeared between

each pair of parton splittings at scales µ2
1 and µ2

2 and also between the initial hard interaction and the first splitting.

This caused problems, which were alleviated by inserting an artificial cut in SV(µ
2).
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dimensions. We introduced an infrared sensitive operator D(µ2) and an inclusive infrared finite

operator V(µ2) to help organize the cancellations.

After some analysis, we have represented the cross section as Eq. (134). Here the separate

factors are all finite in four dimensions. If we expand this expression to order αks , we have the

same cross section that we started with except for a power suppressed contribution that we have

dropped.

In Eq. (134), we have a hard scattering state
∣∣ρh
)

and a factor F(µ2
h) that supplies parton

distribution functions and a parton luminosity factor so that if we trace over colors and spins, we

have a differential cross section in the space of parton number, flavors, and momenta. Then we

have a factor UV(µ2
f , µ

2
h) that supplies a summation of threshold logarithms associated with the

hard state and also part of the NkLO perturbative corrections to the hard scattering cross section.

Next, we have a complete parton shower generated by U(µ2
f , µ

2
h). The parton shower operator

preserves inclusive probabilities:
(
1
∣∣U(µ2

2, µ
2
1) =

(
1
∣∣. We have ended the shower at a scale µ2

f .

After that, the factor
(
1
∣∣OJ represents the measurement that we want to make. We suppose that

this is an infrared safe measurement that is not sensitive to soft or collinear parton splittings at

the scale µ2
f or below. That means that the error in the calculation, estimated by O(µ2

f /Q[J ]2),

is small. With such an infrared safe measurement, the result of the measurement is not sensitive

to hadronization. If we wanted to use a measurement operator that is sensitive to hadronization,

then we would need to include a model of hadronization before the measurement operator. It is

then less certain what a good error estimate is.

There is some temptation to imagine Eq. (134) as being simpler than it is. In our Higgs

boson example, if we expand
(
1
∣∣UV(µ2

f , µ
2
h)F(µ2

h)
∣∣ρh
)

to order αks , it is the NkLO inclusive cross

section to make a Higgs boson. The operator U(µ2
f , µ

2
h) generates a probability preserving parton

shower. Thus it might seem that one takes the hard scattering cross section and then distributes

the probability across different final states according to what the shower generates. However,

UV(µ2
f , µ

2
h)F(µ2

h)
∣∣ρh
)

is not a cross section. It is a statistical state, representing different numbers

of final state partons, which come with their own quantum color and spin states. The shower

operator acts separately on each component of this statistical state. Then if we measure σ[J ] for

an observable that is more complicated than just the inclusive measurement of a Higgs boson, the

separate contributions are not sensible by themselves, but they sum to give σ[J ] correct to order

αks with only a power suppressed correction.

We have spoken of getting σ[J ] correct to order αks , but, of course, that is not the point of

a parton shower. In applying Eq. (134), one would evaluate the splitting function S(µ2) in the
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exponent of U(µ2
f , µ

2
h) to order αks , then retain U(µ2

f , µ
2
h) as an exponential. When the desired

measurement operator OJ contains widely different scales, the cross section will contain large

logarithms. Then U(µ2
f , µ

2
h) has the potential to sum these logarithms. After all, it exponentiates

the soft and collinear singularities of QCD at order αks . Unfortunately, one needs to study the

structure of U(µ2
f , µ

2
h) as it relates to the structure of OJ in order to check how well the shower

does in summing the logarithms.

One can wonder whether the formalism of this paper is of any use for just a LO shower. We

suggest that it is. If one averages over spins and makes the leading color approximation, the shower

operator U(µ2
f , µ

2
h) generates a rather conventional probability preserving dipole shower. With Λ2

as the ordering variable, it is the leading color version of the shower in Deductor. One can choose

other ordering variables. The operator UV(µ2
f , µ

2
h) generates threshold corrections, as described in

Ref. [32]. These corrections are numerically important in some cases and could be included in

standard parton shower programs.

In fact, Eq. (134) has been useful in improving Deductor. While working on our paper [32]

on threshold corrections, we did not have Eq. (134). The result was a structure that had certain

undesirable features that needed to be controlled by means of an ad hoc cutoff. The current more

general formulation in Eq. (134) removes this problem, although it does not much change the

numerical results. We present phenomenological results from the new version of Deductor in a

separate paper [33].

The formalism is based on an operator D(µ2) that encodes the infrared structure of QCD starting

with a state with any number m of final state partons. If we know D(µ2) up to order αks , then we

generate, in an automatic way, the subtraction terms for an NkLO perturbative calculation. See the

example of the toy model in Appendix A. This appears to us to be simpler than constructing the

subtraction terms directly [109–116]. From D(µ2) at order αks , we also generate, in an automatic

way, the shower splitting kernels at order αks .

The perturbative contributions to D(µ2) are not simple in full QCD. Furthermore, their form

depends on choices like the momentum mapping scheme and the choice of a hardness ordering

variable. At order α1
s , we have made the required choices, made suitable approximations, and

calculated the corresponding splitting functions S(µ2) in Refs. [32, 33]. Similarly, from D(µ2)

we generate the inclusive infrared finite operator V(µ2). In general, there are some choices that

one can make in defining V(µ2). At order α1
s , we have made the required choices, made suitable

approximations, and calculated SV(µ2) in Ref. [32, 33].

We leave it to future work to make suitable choices for a momentum mapping scheme, a hardness

39



ordering variable, and definitions away from the strict soft and collinear limits so as to construct

order α2
s contributions to D(µ2). With a choice for color structure, we could then also construct

V(µ2). We thus hope that the formalism presented in this paper might prove useful in developing

a parton shower with order α2
s splitting functions.

We also hope that the formalism presented in this paper might provide support for the view

that a parton shower is similar to a more straightforward perturbative calculation at NkLO. In this

view, the parton shower is an approximate way to calculate cross sections, but the approximation

is systematically improvable by working at higher perturbative order. In a practical program, there

may be further approximations with respect to color and spin. These need a separate justification.
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Appendix A: A toy model for parton shower operators

The construction in this paper relies on an operator D that contains the infrared singularities

of statistical states |ρ) that represent the color and spin density matrix elements of QCD. The

operators D can be used to construct both the infrared subtractions needed for a perturbative

calculation of the cross section at NkLO and also the splitting kernels needed to construct a parton

shower at the corresponding order, Nk−1LO. This construction has been quite abstract, especially

since we lack an example of D at N2LO, which would correspond to an NLO shower.

In this appendix, we illustrate some of the ideas of the paper using a toy model that provides

a concrete example of |ρ) and D at N2LO. In this example, we construct the splitting kernel Spert
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at NLO. The toy model is very simple. There are no parton distributions. The coupling αs does

not run. The momenta are one dimensional. There is no spin. There is quantum color, but the

color structure is vastly simplified compared to what one has in real QCD.

1. Statistical states in the toy model

We use momentum states {p1, p2, · · · , pm} for m partons, with each pi being a real number in

the range 0 < pi < ∞. We use “color” represented by basis states labelled by an index pair (cr, cv)

with cr ∈ {0, 1, . . . ,m}, cv ∈ {0, 1, . . . }. The statistical states have the form

∣∣{p}m, (cr, cv)
)

=
∣∣{p1, p2, · · · , pm}, (cr, cv)

)
. (A1)

These are defined to be invariant under permutations of the pi. The Born level cross section is
∣∣{}0, (0, 0)

)
.

We will make use of color operators CR and CV that act on the space of statistical states. These

have the form

CR = 1 + A†
R ,

CV = 1 + A†
V ,

(A2)

where A†
R and A†

R are raising operators:

A†
R

∣∣{p}m, (cr, cv)
)

=
∣∣{p}m, (cr + 1, cv)

)
,

A†
V

∣∣{p}m, (cr, cv)
)

=
∣∣{p}m, (cr, cv + 1)

)
.

(A3)

The inclusive probabilities corresponding to our statistical states are defined by

(
1
∣∣{p}m, (cr, cv)

)
=

(
1

N2
c

)cr+cv
. (A4)

Here Nc = 3 represents the number of colors. Thus keeping only cr = cv = 0 is analogous to the

leading color approximation.

We include an operator representing an observable. The observable depends only on the parton

momenta, not on their color state:

OJ

∣∣{p}m, (cr, cv)
)

=

(
1 +

p21 + p22 + · · · p2m
Q2

) ∣∣{p}m, (cr, cv)
)
. (A5)

2. Perturbative hard scattering states

We take the perturbative hard scattering states in the toy model to have the form

∣∣ρ
)

=
∣∣ρ(0,0)

)
+ αs

(∣∣ρ(1,0)
)

+
∣∣ρ(0,1)

))
+ α2

s

(∣∣ρ(2,0)
)

+
∣∣ρ(1,1)

)
+
∣∣ρ(0,2)

))
+ O(α3

s ) . (A6)
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Here |ρ(nr,nv)) represents a perturbative contribution with nr real partons emitted and nv virtual

loops. The contributions are defined to be

∣∣ρ(0,0)
)

=
∣∣{}0, (0, 0)

)
,

∣∣ρ(1,0)
)

=

∫ Q2

0

dp21
p21

(
p21
Q2

)ǫ
Q2

p21 + Q2
CR
∣∣{p}1, (0, 0)

)
,

∣∣ρ(0,1)
)

= −
∫ ∞

0

dk21
k21

(
k21
Q2

)ǫ
Q2

k21 + Q2
CV
∣∣{}0, (0, 0)

)
,

∣∣ρ(2,0)
)

=

∫ Q2

0

dp22
p22

(
p22
Q2

)ǫ ∫ Q2

0

dp21
p21 + 2p22

(
p21
Q2

)ǫ
Q2

p21 + p22 + Q2
C2
R

∣∣{p}2, (0, 0)
)
,

∣∣ρ(1,1)
)

= −
{∫ Q2

0

dp21
p21

(
p21
Q2

)ǫ ∫ ∞

0

dk21
k21 + 2p21

(
k21
Q2

)ǫ
Q2

k21 + p21 + Q2

+

∫ ∞

0

dk21
k21

(
k21
Q2

)ǫ ∫ Q2

0

dp21
p21 + 2k21

(
p21
Q2

)ǫ
Q2

p21 + k21 + Q2

}

× CRCV
∣∣{p}1, (0, 0)

)
,

∣∣ρ(0,2)
)

=

∫ ∞

0

dk22
k22

(
k22
Q2

)ǫ ∫ ∞

0

dk21
k21 + 2k22

(
k21
Q2

)ǫ
Q2

k21 + k22 + Q2
C2
V

∣∣{}0, (0, 0)
)
.

(A7)

The integrals here are regularized in the infrared by factors (p2/Q2)ǫ. The individual contributions

|ρ(nr,nv)) contain singularities when parton momenta become small and 1/ǫ poles that arise from

integration from virtual parton momenta. Furthermore, the contributions with real parton emis-

sions have different color states than the corresponding contributions with virtual loops. However,

when we calculate the cross section (1|OJ |ρ), we can use the fact that

(
1
∣∣CR =

(
1
∣∣CV , (A8)

so that the color contributions from real emissions and virtual loops match. Then, in fact, there

are real − virtual cancellations, with the result that (1|OJ |ρ) is infrared finite.

3. The infrared sensitive operator

The infrared structure of this is fairly simple and can be represented using the infrared sensitive

operator D(µ2
s ) with

D(µ2
s ) = 1 + αs

(
D(1,0)(µ2

s ) + D(0,1)(µ2
s )
)

+ α2
s

(
D(2,0)(µ2

s ) + D(1,1)(µ2
s ) + D(0,2)(µ2

s )
)

+ O(α3
s ) ,

(A9)
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with

D(1,0)(µ2
s )
∣∣{p}m, (cr, cv)

)
=

∫ µ2s

0

dp2m+1

p2m+1

(
p2m+1

Q2

)ǫ
CR
∣∣{p}m+1, (cr, cv)

)
,

D(0,1)(µ2
s )
∣∣{p}m, (cr, cv)

)
= −

∫ µ2s

0

dk21
k21

(
k21
Q2

)ǫ
CV
∣∣{p}m, (cr, cv)

)
,

D(2,0)(µ2
s )
∣∣{p}m, (cr, cv)

)
=

∫ µ2s

0

dp2m+2

p2m+2

(
p2m+2

Q2

)ǫ ∫ µ2s

0

dp2m+1

p2m+1 + 2p2m+2

(
p2m+1

Q2

)ǫ

× C2
R

∣∣{p}m+2, (cr, cv)
)
,

D(1,1)(µ2
s )
∣∣{p}m, (cr, cv)

)
= −

{∫ µ2s

0

dp2m+1

p2m+1

(
p2m+1

Q2

)ǫ ∫ µ2s

0

dk21
k21 + 2p2m+1

(
k21
Q2

)ǫ

+

∫ µ2s

0

dk21
k21

(
k21
Q2

)ǫ ∫ µ2s

0

dp2m+1

p2m+1 + 2k21

(
p2m+1

Q2

)ǫ}

× CRCV
∣∣{p}m+1, (cr, cv)

)
,

D(0,2)(µ2
s )
∣∣{p}m, (cr, cv)

)
=

∫ µ2s

0

dk22
k22

(
k22
Q2

)ǫ ∫ µ2s

0

dk21
k21 + 2k22

(
k21
Q2

)ǫ

× C2
V

∣∣{p}m, (cr, cv)
)
.

(A10)

From D(µ2
s ) we can construct D−1(µ2

s ),

D−1(µ2
s ) = 1 − αs

(
D(1,0)(µ2

s ) + D(0,1)(µ2
s )
)

− α2
s

(
D(2,0)(µ2

s ) + D(1,1)(µ2
s ) + D(0,2)(µ2

s )

−D(1,0)(µ2
s )D(1,0)(µ2

s ) −D(1,0)(µ2
s )D(0,1)(µ2

s )

−D(0,1)(µ2
s )D(1,0)(µ2

s ) −D(0,1)(µ2
s )D(0,1)(µ2

s )
)

+ O(α3
s ) .

(A11)

4. Subtractions for the hard scattering states

We can now construct the subtracted statistical state including the measurement operator,

∣∣ρ̂
)

= D−1(µ2
s )OJ

∣∣ρ
)
. (A12)

This has the expansion

∣∣ρ̂
)

=
∣∣ρ(0,0)

)
+ αs

(∣∣ρ̂(1,0)
)

+
∣∣ρ̂(0,1)

))
+ α2

s

(∣∣ρ̂(2,0)
)

+
∣∣ρ̂(1,1)

)
+
∣∣ρ̂(0,2)

))
+ O(α3

s ) . (A13)

At first order in αs, there are two terms. The first is

∣∣ρ̂(1,0)
)

= OJ

∣∣ρ(1,0)
)
−D(1,0)(µ2

s )OJ

∣∣ρ(0,0)
)
. (A14)
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This is

∣∣ρ̂(1,0)
)

=

∫ ∞

0

dp21
p21

(
p21
Q2

)ǫ {
θ(p21 < Q2)

Q2

p21 + Q2

(
1 +

p21
Q2

)
− θ(p21 < µ2

s )

}

× CR
∣∣{p}1, (0, 0)

)
.

(A15)

The first term is singular when p21 → 0, but the subtraction from D(1,0)(µ2
s ) eliminates the singu-

larity. Then (1|ρ̂(1,0)) is finite at ǫ = 0. The coefficient of αs that corresponds to virtual graphs

is

∣∣ρ̂(0,1)
)

= OJ

∣∣ρ(0,1)
)
−D(0,1)(µ2

s )OJ

∣∣ρ(0,0)
)
. (A16)

This is

∣∣ρ̂(0,1)
)

= −
∫ ∞

0

dk21
k21

(
k21
Q2

)ǫ {
Q2

k21 + Q2
− θ(k21 < µ2

s )

}
CV
∣∣{}0, (0, 0)

)
. (A17)

The first term has a 1/ǫ pole from k21 → 0, but the subtraction from D(0,1)(µ2
s ) eliminates the

k21 → 0 singularity. Then |ρ̂(0,1)) is finite at ǫ = 0.

At order α2
s , there are three terms in |ρ̂). Let us look at the contribution from two real emissions:

∣∣ρ̂(2,0)
)

= OJ

∣∣ρ(2,0)
)
−D(2,0)(µ2

s )OJ

∣∣ρ(0,0)
)

−D(1,0)(µ2
s )OJ

∣∣ρ(1,0)
)

+ D(1,0)(µ2
s )D(1,0)(µ2

s )OJ

∣∣ρ(0,0)
)
.

(A18)

This is

∣∣ρ̂(2,0)
)

=

∫ ∞

0

dp22
p22

(
p22
Q2

)ǫ ∫ ∞

0

dp21
p21

(
p21
Q2

)ǫ

×
{

p21
p21 + 2p22

[
θ(p22 < Q2) θ(p21 < Q2)

Q2

p21 + p22 + Q2

(
1 +

p21 + p22
Q2

)

− θ(p22 < µ2
s ) θ(p21 < µ2

s )

]

− θ(p22 < µ2
s )

[
θ(p21 < Q2)

Q2

p21 + Q2

(
1 +

p21
Q2

)
− θ(p21 < µ2

s )

]}

× C2
R

∣∣{p}2, (0, 0)
)
.

(A19)

Each term here exhibits infrared singularities, but the singularities cancel. Then (1|ρ̂(2,0)) can be

evaluated at ǫ = 0. Specifically, for p22 → 0 at fixed p21, the first term cancels the third term and the

second term cancels the fourth term. For p21 → 0 with fixed p22, the first two terms are nonsingular,

while the third term cancels the fourth term. When p22 → 0 and p21 → 0, the first term cancels the

second term and the third term cancels the fourth term.
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The contribution to |ρ̂) from two virtual emissions is similar. We have

∣∣ρ̂(0,2)
)

= OJ

∣∣ρ(0,2)
)
−D(0,2)(µ2

s )OJ

∣∣ρ(0,0)
)

−D(0,1)(µ2
s )OJ

∣∣ρ(0,1)
)

+ D(0,1)(µ2
s )D(0,1)(µ2

s )OJ

∣∣ρ(0,0)
)
.

(A20)

This is

∣∣ρ̂(0,2)
)

=

∫ ∞

0

dk22
k22

(
k22
Q2

)ǫ ∫ ∞

0

dk21
k21

(
k21
Q2

)ǫ

×
{

k21
k21 + 2k22

[
Q2

k21 + k22 + Q2
− θ(k22 < µ2

s ) θ(k21 < µ2
s )

]

− θ(k22 < µ2
s )

[
Q2

k21 + Q2
− θ(k21 < µ2

s )

]}

× C2
V

∣∣{}0, (0, 0)
)
.

(A21)

Each term here exhibits 1/ǫ poles, but the poles cancel. The pattern of cancellations is the same

as for |ρ̂(2,0)).
The contribution to |ρ̂) from one real emission and one virtual emission is a little more compli-

cated. We have

∣∣ρ̂(1,1)
)

= OJ

∣∣ρ(1,1)
)
−D(1,1)(µ2

s )OJ

∣∣ρ(0,0)
)

−D(1,0)(µ2
s )OJ

∣∣ρ(0,1)
)
−D(0,1)(µ2

s )OJ

∣∣ρ(1,0)
)

+ D(1,0)(µ2
s )D(0,1)(µ2

s )OJ

∣∣ρ(0,0)
)

+ D(0,1)(µ2
s )D(1,0)(µ2

s )OJ

∣∣ρ(0,0)
)
.

(A22)

We obtain

∣∣ρ̂(1,1)
)

=

∫ ∞

0

dp21
p21

(
p21
Q2

)ǫ ∫ ∞

0

dk21
k21

(
k21
Q2

)ǫ

×
{
− θ(p21 < Q2)

Q2

k21 + p21 + Q2

[
k21

k21 + 2p21
+

p21
p21 + 2k21

](
1 +

p21
Q2

)

+ θ(p21 < µ2
s ) θ(k21 < µ2

s )

[
k21

k21 + 2p21
+

p21
p21 + 2k21

]

+ θ(p21 < µ2
s )

[
Q2

k21 + Q2
− 2θ(k21 < µ2

s )

]

+ θ(p21 < Q2) θ(k21 < µ2
s )

Q2

p21 + Q2

(
1 +

p21
Q2

)}

× CRCV
∣∣{p}1, (0, 0)

)
.

(A23)

Each term here exhibits 1/ǫ poles and singularities but the poles and singularities cancel. Then

|ρ̂(1,1)) can be evaluated at ǫ = 0. Specifically, for the singularity in the integrand at k21 → 0 with

fixed p21, the first line cancels the second term in the third line and the second line plus the fourth

line cancels the first term in the third line. For the singularity at p21 → 0 with fixed k21 , the first
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term cancels the first term in the third line and the second line plus the fourth line cancels the

second term in the third line. For the singularity when p21 → 0 and k21 → 0, the first line cancels

the second line and the third line cancels the fourth line.

We thus see that D−1(µ2
s) provides subtraction terms that cancel all of the singularities of |ρ)

at order αs and α2
s . If we had wanted to construct all of the subtraction terms directly, it would

have been somewhat difficult. However, constructing D(µ2
s) for our toy model was quite simple.

Then obtaining the subtraction terms was automatic.

We also note that the perturbative states |ρ(nr,nv)) have non-trivial color structures in our toy

model. Then the operators D(nr,nv)(µ2
s ) must reflect this color structure. If they do not, the

subtractions will not work.

5. The perturbative shower evolution operator

We are now in a position to construct the order αs and α2
s terms in the perturbative shower

generating operator, Eq. (73),

Spert(µ
2
s ) = D−1(µ2

s )µ2
s

d

dµ2
s

D(µ2
s ) . (A24)

The operator Spert will have the expansion

Spert(µ
2
s ) = αs

(
S(1,0)
pert (µ2

s ) + S(0,1)
pert (µ2

s )
)

+ α2
s

(
S(2,0)
pert (µ2

s ) + S(1,1)
pert (µ2

s ) + S(0,2)
pert (µ2

s )
)

+ O(α3
s ) ,

(A25)

where

S(1,0)
pert (µ2

s ) = µ2
s

d

dµ2
s

D(1,0)(µ2
s ) ,

S(0,1)
pert (µ2

s ) = µ2
s

d

dµ2
s

D(0,1)(µ2
s ) ,

S(2,0)
pert (µ2

s ) = µ2
s

d

dµ2
s

D(2,0)(µ2
s ) −D(1,0)(µ2

s )µ
2
s

d

dµ2
s

D(1,0)(µ2
s ) ,

S(1,1)
pert (µ2

s ) = µ2
s

d

dµ2
s

D(1,1)(µ2
s ) −D(1,0)(µ2

s )µ
2
s

d

dµ2
s

D(0,1)(µ2
s )

−D(0,1)(µ2
s )µ

2
s

d

dµ2
s

D(1,0)(µ2
s ) ,

S(0,2)
pert (µ2

s ) = µ2
s

d

dµ2
s

D(0,2)(µ2
s ) −D(0,1)(µ2

s )µ
2
s

d

dµ2
s

D(0,1)(µ2
s ) .

(A26)

To use this, we first need the derivatives of D(nr,nv)(µ2
s ).
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The derivatives of D(1,0)(µ2
s ) and D(1,0)(µ2

s ) are simple

µ2
s

d

dµ2
s

D(1,0)(µ2
s )
∣∣{p}m, (cr, cv)

)
=

(
µ2
s

Q2

)ǫ
CR
∣∣{p1, . . . , pm, µs}, (cr, cv)

)
,

µ2
s

d

dµ2
s

D(0,1)(µ2
s )
∣∣{p}m, (cr, cv)

)
= −

(
µ2
s

Q2

)ǫ
CV
∣∣{p}m, (cr, cv)

)
.

(A27)

Here in the state |{p1, . . . , pm, pm+1}, (cr, cv)), we have substituted µs for the real number pm+1.

The derivative of D(2,0)(µ2
s ) is a little more complicated. There are two terms. If we rename the

integration variable and permute the arguments of the statistical state to match in the two terms,

we obtain

µ2
s

d

dµ2
s

D(2,0)(µ2
s )
∣∣{p}m, (cr, cv)

)

=

(
µ2
s

Q2

)ǫ ∫ µ2s

0

dp2m+1

p2m+1

(
p2m+1

Q2

)ǫ [
p2m+1

p2m+1 + 2µ2
s

+
µ2
s

µ2
s + 2p2m+1

]

× C2
R

∣∣{p1, . . . , pm, pm+1, µs}, (cr, cv)
)
.

(A28)

The derivative of D(0,2)(µ2
s ) is similar to the derivative of D(2,0)(µ2

s ):

µ2
s

d

dµ2
s

D(0,2)(µ2
s )
∣∣{p}m, (cr, cv)

)

=

(
µ2
s

Q2

)ǫ ∫ µ2s

0

dk21
k21

(
k21
Q2

)ǫ [
k21

k21 + 2µ2
s

+
µ2
s

µ2
s + 2k21

]
C2
V

∣∣{p}m, (cr, cv)
)
.

(A29)

The singularity at k21 → 0 gives us a 1/ǫ pole after integration.

The derivative of D(1,1)(µ2
s ) is more complicated. After combining terms, we obtain

µ2
s

d

dµ2
s

D(1,1)(µ2
s )
∣∣{p}m, (cr, cv)

)

= −
(
µ2
s

Q2

)ǫ ∫ µ2s

0

dk21
k21

(
k21
Q2

)ǫ [
k21

k21 + 2µ2
s

+
µ2
s

µ2
s + 2k21

]

× CRCV
∣∣{p1, . . . , pm, µs}, (cr, cv)

)

−
(
µ2
s

Q2

)ǫ ∫ µ2s

0

dp2m+1

p2m+1

(
p2m+1

Q2

)ǫ [
p2m+1

p2m+1 + 2µ2
s

+
µ2
s

µ2
s + 2p2m+1

]

× CRCV
∣∣{p}m+1, (cr, cv)

)
.

(A30)

In the first term, there is a pole from the integration region k21 → 0, while in the second term there

is a singularity at p2m+1 → 0.

With the derivatives of D(nr,nv)(µ2
s ) at hand, it is straightforward to use Eq. (A26) to construct

the shower kernel Spert(µ
2
s ).

The shower kernel at order αs is simple:

S(1,0)
pert (µ2

s )
∣∣{p}m, (cr, cv)

)
= CR

∣∣{p1, . . . , pm, µs}, (cr, cv)
)
,

S(0,1)
pert (µ2

s )
∣∣{p}m, (cr, cv)

)
= − CV

∣∣{p}m, (cr, cv)
)
.

(A31)
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For the shower kernel for two real emissions, we find

S(2,0)
pert (µ2

s )
∣∣{p}m, (cr, cv)

)

=

(
µ2
s

Q2

)ǫ ∫ µ2s

0

dp2m+1

p2m+1

(
p2m+1

Q2

)ǫ [
p2m+1

p2m+1 + 2µ2
s

+
µ2
s

µ2
s + 2p2m+1

− 1

]

× C2
R

∣∣{p1, . . . , pm, pm+1, µs}, (cr, cv)
)
.

(A32)

The subtraction removes the infrared singularity at p2m+1 → 0, allowing us to set ǫ → 0. This gives

S(2,0)
pert (µ2

s )
∣∣{p}m, (cr, cv)

)
=

∫ µ2s

0
dp2m+1

[
1

p2m+1 + 2µ2
s

− 2

µ2
s + 2p2m+1

]

× C2
R

∣∣{p1, . . . , pm, pm+1, µs}, (cr, cv)
)
.

(A33)

For the shower kernel for two virtual loops, we find a result that is analogous to what we found

above. The subtraction removes the infrared singularity at k21 → 0 so that we can set ǫ → 0, giving

S(0,2)
pert (µ2

s )
∣∣{p}m, (cr, cv)

)
=

∫ µ2s

0
dk21

[
1

k21 + 2µ2
s

− 2

µ2
s + 2k21

]
C2
V

∣∣{p}m, (cr, cv)
)
. (A34)

For the shower kernel with one real emission and one virtual loop, we obtain

S(1,1)
pert (µ2

s )
∣∣{p}m, (cr, cv)

)

= −
(
µ2
s

Q2

)ǫ ∫ µ2s

0

dk21
k21

(
k21
Q2

)ǫ [
k21

k21 + 2µ2
s

+
µ2
s

µ2
s + 2k21

− 1

]

× CRCV
∣∣{p1, . . . , pm, µs}, (cr, cv)

)

−
(
µ2
s

Q2

)ǫ ∫ µ2s

0

dp2m+1

p2m+1

(
p2m+1

Q2

)ǫ [
p2m+1

p2m+1 + 2µ2
s

+
µ2
s

µ2
s + 2p2m+1

− 1

]

× CRCV
∣∣{p}m+1, (cr, cv)

)
.

(A35)

Again, the subtraction removes the infrared singularities. Then we can set ǫ → 0, giving

S(1,1)
pert (µ2

s )
∣∣{p}m, (cr, cv)

)

= −
∫ µ2s

0
dk21

[
1

k21 + 2µ2
s

− 2

µ2
s + 2k21

]
CRCV

∣∣{p1, . . . , pm, µs}, (cr, cv)
)

−
∫ µ2s

0
dp2m+1

[
1

p2m+1 + 2µ2
s

− 2

µ2
s + 2p2m+1

]
CRCV

∣∣{p}m+1, (cr, cv)
)
.

(A36)

Thus Eq. (A26) gives us a completely straightforward way to calculate the operators S(nr,nv)
pert (µ2

s ).

All of these operators at order α1
s and α2

s are infrared finite.
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6. The operator V(µ2

s
)

We also construct an operator X (µ2
s ) in Eq. (79). In our toy model, which has no parton

distributions, we have

X (µ2
s ) = D(µ2

s ) . (A37)

Then we define an operator V(µ2
s ) using Eq. (92),

(
1
∣∣X (µ2

s ) =
(
1
∣∣V(µ2

s ) . (A38)

In our toy model, at least up to the order that we have defined it, the relation (1|CR = (1|CV gives

us

(
1
∣∣D(µ2

s ) =
(
1
∣∣ . (A39)

Thus

V(µ2
s ) = 1 . (A40)

Then according to the definition Eq. (98) (with F = 1) we have

U(µ2
2, µ

2
1) = Upert(µ

2
2, µ

2
1) . (A41)

The full shower operator U is the same as Upert.

Appendix B: Transformation to shower oriented parton distribution functions

In Sec. VI B, we introduced shower oriented parton distribution functions that are adapted to

the choice of the cutoff µ2
s used in the shower. The shower oriented parton distributions fa/A(ηa, µ

2)

are related to the five-flavor MS parton distribution functions fms

a/A(ηa, µ
2) by means of a kernel K.

Following the notation of Sec. VI B, the transformation of the parton distribution for hadron A is

fms

a/A(ηa, µ
2) =

∑

a′

∫ 1

0

dz

z
K

(a)
aa′(z, µ

2, {p, f}m) fa′/A(ηa/z, µ
2) . (B1)

The kernel K depends on the flavor indices a′ and a, a momentum fraction variable z and the

scale µ2. We also allow it to depend on the momenta and flavors {p, f}m of the partonic statistical

state. Then K has a perturbative expansion beginning with

K
(a)
aa′(z, µ

2, {p, f}m) = δaa′δ(1 − z) +
αs(µ

2)

2π
K

(a,1)
aa′ (z, µ2, {p, f}m) + O(α2

s ) . (B2)
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In order to keep the presentation in this paper as simple as possible, we set the masses of all

five quarks d,u,s,c,b to zero. In a more complete picture, one uses a variable flavor number scheme.

Then, even with MS evolution, we change the renormalization scheme when the scale µ decreases

past the bottom quark mass and then the charm quark mass. Thus the β function for αs evolution

and the parton evolution kernel change. For the shower oriented parton distributions fa/A(ηa, µ
2)

and fb/B(ηb, µ
2), there is a different dependence on the c- and b-quark masses in the evolution

kernels compared to what one uses in the variable flavor number version of MS evolution.

There are various possible versions of K
(a)
aa′(z, µ

2, {p, f}m). The simplest is

K
(a,1)
aa′ (z, µ2, {p, f}m) = δaa′

[
2zCa
1 − z

log

(
Q2

H

(1 − z)2pa ·QH

)]

+

+
∑

â

P reg
aa′ (z) log

(
Q2

H

(1 − z)2pa ·QH

)

+ δaa′ δ(1 − z)γa log

(
Q2

H

2pa ·QH

)
− P

(ǫ)
aa′(z) .

(B3)

The first order MS DGLAP kernel is

Pms

aa′(z) = δaa′

[
2zCa
1 − z

]

+

+ P reg
aa′ (z) + δaa′ δ(1 − z) γa . (B4)

Here Ca = CF and γa = 3CF/2 when a is a quark flavor and Cg = CA, γg = 11CA/6 − 2TRnf/3.

The functions P reg
aa′ (z) and P

(ǫ)
aa′(z) are

P reg
qq (z) = CF(1 − z) , P (ǫ)

qq (z) = CF(1 − z) ,

P reg
gg (z) = 2CA

(
1 − z

z
+ z(1 − z)

)
, P (ǫ)

gg (z) = 0 ,

P reg
qg (z) = TR (1 − 2 z (1 − z)) , P (ǫ)

qg (z) = TR2z(1 − z) ,

P reg
gq (z) = CF

(
z + 2

1 − z

z

)
, P (ǫ)

gq (z) = CFz .

(B5)

The kernel K
(a,1)
aa′ (z, µ2, {p, f}m) is a distribution in z with a singularity at z → 1. The singularity

is represented by the + prescription in the first term of Eq. (B3) and by the term proportional to

δ(1 − z). The coefficient of δ(1 − z) is associated with how the virtual loop function D(0,1)(µ2) is

treated. We have here taken a simple choice based on what is in Ref. [32], but other choices are

possible.

The logarithms of Q2
H
/[(1 − z)2pa · QH] in Eq. (B3) come about as follows. We attempt to

calculate
(
1
∣∣X (µ2) using the definition (79) of X (µ2). We look at emissions of a parton in the

initial state. Call the virtuality associated with this splitting |k2| = 2p̂a · p̂m+1. We integrate
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over |k2| and over the momentum fraction z. We use the hardness variable Λ2, Eq. (55), used in

Deductor. This means that there is an upper bound for the integration over |k2|,

|k2| < 2pa ·QH

Q2
H

µ2
s . (B6)

There is an infrared divergence coming from the |k2| → 0 limit of the integration. This divergence

is regularized by integrating in 4− 2ǫ dimensions. Now, dimensional regularization effectively acts

as an infrared cutoff on the transverse momentum

|k2T| = (1 − z)|k2| . (B7)

Thus we integrate over |k2T| with an upper bound

|k2T| <
2pa ·QH

Q2
H

(1 − z)µ2
s . (B8)

The 1/ǫ pole produced by the integration over |k2T| is removed by the factor ZF(µ2) in X (µ2). This

leaves us with a log(Q2
H
/[(1 − z)2pa · QH]), which multiplies the DGLAP splitting kernel Paâ(z).

This remaining contribution does not have a 1/ǫ pole. It has a term log(µ2/µ2
s ), where µ2

s is the

scale that defines the upper cutoff in the momentum integration and µ2 is the renormalization

scale. We do not see this logarithm because we set these scales equal to each other. The Feynman

rules for the splitting functions have some explicit ǫ dependence, giving a function of the form

f(ǫ)/ǫ = f(0)/ǫ + f ′(0) + O(ǫ). The term f ′(0) gives us the contributions P
(ǫ)
aa′(z).

This calculation leaves us with an order αs contribution to
(
1
∣∣X (µ2) =

(
1
∣∣V(µ2) that we need

to eliminate because it does not vanish in the limit µ2 → 0. If we did not eliminate this term, we

would lose Eq. (133). The offending contribution can be removed by the factor K(µ2) in X (µ2) if

we choose the definition (B3).

We also note that if we use k2T instead of Λ2, Eq. (55), as the shower hardness variable, then

there is no log(1 − z). Then by redefining µ2
s by a factor Q2

H
/[2pa ·QH], we obtain

K
(a,1)
aa′ (z, µ2, {p, f}m) = − P

(ǫ)
aa′(z) . (B9)

That is, the shower oriented parton distribution functions are close to the MS parton distribution

functions. However, they are not quite equal. That is because for the shower oriented parton

distribution functions we are imposing an ultraviolet cutoff with a theta function, while with the

MS prescription we subtract a pole 1/ǫ.

We now turn to a construction that puts a different cut on parton splitting, leading to a less

simple kernel K
(a)
a,a′(z, µ

2, {p, f}m). We retain the ultraviolet cut (B6) when µ2
s is not too small.
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However, when µ2
s is small, the upper bound Eq. (B8) can be very small indeed. We can relax this

cut to

|k2T| < max

[
2pa ·QH

Q2
H

(1 − z)µ2
s ,m

2
⊥

]
, (B10)

where m2
⊥ is, say, 1 GeV2. Then the matching kernel that defines the shower adapted parton

distributions is

K
(a,1)
a,a′ (z, µ2, {p, f}m) = δaâ

[
2zCa
1 − z

log

(
min

[
Q2

H

(1 − z)2pa ·QH

,
µ2
s

m2
⊥

])]

+

+
∑

a′

P reg
aa′ (z) log

(
min

[
Q2

H

(1 − z)2pa ·QH

,
µ2
s

m2
⊥

])

+ δaâ δ(1 − z) γa log

(
min

[
Q2

H

2pa ·QH

,
µ2
s

m2
⊥

])
− P

(ǫ)
aâ (z) .

(B11)

When m2
⊥ ≪ µ2

s , this reduces to our previous definition. When µ2
s < m2

⊥Q2
H
/2pa ·QH, this becomes,

after using Eq. (B4),

K
(a,1)
a,a′ (z, µ2, {p, f}m) = log

(
µ2
s

m2
⊥

)
Pms

aâ (z) − P
(ǫ)
aâ (z) . (B12)

If we write Eq. (B1) to first order as

fa/A(ηa, µ
2) = fms

a′/A(ηa/z, µ
2)

− αs

2π

∑

a′

∫ 1

0

dz

z
K

(a,1)
a,a′ (z, µ2, {p, f}m) fms

a′/A(ηa/z,m
2
⊥)

(B13)

and use Eq. (B12), recognizing that the MS kernel generates scale changes in fms

a/A(ηa, µ
2), we find

fa/A(ηa, µ
2) = fms

a/A(ηa, µ
2) −

[
fms

a/A(ηa, µ
2) − fms

a/A(ηa,m
2
⊥)
]

+
αs

2π

∑

a′

∫ 1

0

dz

z
P

(ǫ)
aâ (z) fms

a′/A(ηa/z,m
2
⊥)

= fms

a/A(ηa,m
2
⊥) +

αs

2π

∑

a′

∫ 1

0

dz

z
P

(ǫ)
aâ (z) fms

a′/A(ηa/z,m
2
⊥) .

(B14)

That is, with this definition, for small values of the scale µ2, the shower oriented parton distribution

functions approximately equal the MS parton distribution functions at scale m2
⊥. However, at

larger scales, the shower oriented parton distribution functions evolve differently from the MS

ones. Deductor uses a definition similar to this, except with non-zero c and b quark masses and

a corresponding variable flavor number scheme.13

13 The contribution from P
(ǫ)
aâ (z) is ignored in Deductor.
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Appendix C: Choosing QH and µ2 dynamically

In Sec. IV C, we introduced a vector QH that is used to set scales and to help define one measure

of hardness, Λ2, that can be used in the shower. (See Eq. (55).) We stated that one can use the

intended measurement operator to set QH globally. There is another possibility: we can use the

statistical state
∣∣ρh
)

that represents the hard scattering, Eq. (58). This state has the expansion

∣∣ρh
)

=
∑

m

1

m!

∫
[d{p}m]

∑

{f}m

∑

{s,s′,c,c′}m

∣∣{p, f, s, s′, c, c′}m
)(
{p, f, s, s′, c, c′}m

∣∣ρh
)
. (C1)

Our example process in this paper is Higgs boson production. With this example, the Higgs boson

momentum ph is part of {p, f, s, s′, c, c′}m. We can set Q2
H

= m2
h and set the rapidity of QH to be

the rapidity of ph while letting the transverse part of QH be zero. Another example would be jet

production, for which the Born process is the production of two jets. In this case, we could use

whatever infrared safe jet algorithm we like to find the two highest PT jets in {p}m. Letting the

momenta of these jets be P1 and P2, we could set Q2
H

= (~P 2
1,T + ~P 2

2,T)/2, set the rapidity of QH to

the rapidity of P1 + P2, and set the transverse part of QH to zero.

This procedure requires some additional definitions since we have defined
∣∣ρh
)

= D−1(µ2
h)
∣∣ρ(µ2

h)
)
,

so that we need QH and µ2
h = Q2

H
to create

∣∣ρh
)
, but we cannot use these variables before they

have been defined.

Let us see what is needed in the case of jet production, for which the number of final state

partons at the Born level is m = 2. We content ourselves with what happens with an NLO hard

cross section. We have

∣∣ρh
)

=

[
αs(µ

2)

2π

]2{∣∣ρ(2,0)
)

+
αs(µ

2)

2π

[∣∣ρ(2,1)(µ2)
)
−D(0,1)(µ2)

∣∣ρ(2,0)
)]

+
αs(µ

2)

2π

[∣∣ρ(3,0)
)
−D(1,0)(µ2)

∣∣ρ(2,0)
)]

+ O(α2
s )

}
.

(C2)

We need to implement setting µ2 to µ2
h. In the case of the argument of αs, this is a simple

replacement. For the Born statistical state
∣∣ρ(2,0)

)
, there is nothing further to do. In the terms

∣∣ρ(2,1)(µ2)
)

and D(0,1)(µ2)
∣∣ρ(2,0)(µ2)

)
, there are cancelling poles. Then from D(0,1)(µ2) there is a

left over log µ2 from the cutoff µ2
s in the integration over the virtual loop graph. We simply have to

set µ2 = µ2
h here. In the term

∣∣ρ(3,0)
)
, there is nothing further to do. In the term D(1,0)(µ2)

∣∣ρ(2,0)
)
,

the momenta {p}3 determine the momenta {p}2 in
∣∣ρ(2,0)

)
and also the splitting variables k2, z, φ

in D(1,0)(µ2). Increasing the ultraviolet cutoff µ2
s provides an increased range for k2. As a result,
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the range in {p}3 that is covered increases. Setting µ2 = µ2
h, we check whether the point {p}m is

inside the allowed range. If it is, we multiply by 1. If it is not, we multiply by zero.

It seems clear that this procedure works beyond NLO, although it becomes more complicated.

We work term by term in the expansion of
∣∣ρh
)
. Once we have set QH and µ2

h, we set µ2 = µ2
h in

the argument of αs and in all explicit logs that come from virtual loop integrals. We check whether

the point {p}m is generated by a subtraction term with an ultraviolet cutoff µ2
h. If not, we omit

this term. Our description here has been algorithmic. To formulate this in terms of operators on

the statistical space requires additional notation, which we omit.

Appendix D: Renormalization

In this paper we use MS renormalization. In particular, this defines αs and the MS parton

distributions that we start with. In the parton shower algorithm that we obtain, each element

of the calculation is infrared finite and ultraviolet finite in four dimensions. However, part of the

cancellation of infrared divergences is tied to the removal of ultraviolet divergences by renormal-

ization. For this reason, the details of the ultraviolet renormalization scheme are significant. In

this appendix, we gather the most important formulas that we use, mostly following Ref. [118].

1. Renormalization of the QCD coupling

In the MS scheme, the renormalization of the coupling is14

αbare
s Sǫ = Zα(µ2)µ2ǫ αs(µ

2) , (D1)

where µ is the renormalization scale, αbare
s has mass dimension 2ǫ, and

Sǫ =
(4π)ǫ

Γ(1 − ǫ)
. (D2)

The renormalization constant of the strong coupling is given as a sum,

Zα(µ2) = 1 +

∞∑

n=1

[
αs(µ

2)

2π

]n n∑

k=1

Z
[n,k]
α

ǫk
. (D3)

The scale independent coefficients of the singularities, Z
[n,k]
α , can be given in terms of the expansion

parameters of the β(αs) function by a recursion relation:

Z [n,k+1]
α = − 1

n

n−1∑

l=k

(l + 1)βn−l Z
[l,k]
α , Z [n,1]

α = − 1

n
βn . (D4)

14 We find this definition useful for our purposes. Ref. [118] uses a different strong coupling, α̃s, with αs = Sǫα̃s.
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The running coupling obeys the evolution equation

µ2dαs(µ
2)

dµ2
= −αs(µ

2)
(
ǫ + β(αs)

)
= −αs(µ

2)

(
ǫ +

∞∑

n=1

[
αs(µ

2)

2π

]n
βn

)
, (D5)

where the first two βi coefficients are

β1 =
11CA − 4TRnf

6
, β2 =

17C2
A − 10CATRnf − 6CFTRnf

6
. (D6)

2. Renormalization of the parton distribution functions

The MS parton distribution functions enter the cross section formula (42) in the form

[F
ms

(µ2)◦ZF (µ2)]
∣∣{p, f, s, s′, c, c′}m

)

=
∑

a′,b′

∫ 1

0

dza
za

∫ 1

0

dzb
zb

fms

a′/A(ηa/za, µ
2) fms

b′/B(ηb/zb, µ
2)

nc(a)ns(a)nc(b)ns(b) 4pa · pb

× ZF (a, a′; za, αs(µ
2))ZF (b, b′; zb, αs(µ

2))
∣∣{p, f, s, s′, c, c′}m

)
.

(D7)

The renormalization factor ZF is a product, so that each of the two parton distributions is trans-

formed separately. The renormalization kernel ZF relates the renormalized parton distribution to

the bare parton distribution:

fbare
a/A (η) =

∑

a′

∫ 1

0

dz

z
ZF (a, a′; z, αs(µ

2)) fms

a′/A(η/z, µ2) . (D8)

The kernel has a perturbative expansion

ZF (a, a′; z, αs(µ
2)) = δa,a′ δ(1 − z) +

∞∑

n=1

[
αs(µ

2)

2π

]n n∑

k=1

Z
[n,k]
a,a′ (z)

ǫk
. (D9)

It follows from the requirement that fbare
a/A (η) is independent of µ2 and fms

a/A(η, µ2) has no poles

that the renormalized parton distribution function obeys the DGLAP evolution equation,

µ2
dfms

a/A(η, µ2)

dµ2
=

∫ 1

0

dz

z
Pa,a′(z, µ

2) fms

a′/A(η/z, µ2) , (D10)

where

Pa,a′(z, µ
2) =

∞∑

n=1

[
αs(µ

2)

2π

]n
P

(n)
a,a′(z) (D11)

with

P
(n)
a,a′(z) = nZ

[n,1]
a,a′ (z) . (D12)
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The coefficients of 1/ǫ to higher powers are then determined by the recursion relation

Z
[n,k+1]
a,a′ (z) =

1

n

n−1∑

l=k

∫ 1

z

dx

x

∑

c

Z [l,k]
a,c (z/x)

[
P

(n−l)
c,a′ (x) − δc,a′δ(1 − x) l βn−l

]
. (D13)

We can also write the evolution kernel as

Pa,a′(z, µ
2) = −

∫ 1

z

dx

x

∑

c

Z−1
F (a, c; z/x, αs(µ

2)) µ2dZF (c, a′; z, αs(µ
2))

dµ2
. (D14)

The factors contain poles 1/ǫk, but the poles cancel.

3. Renormalization scale dependence

The physical states
∣∣ρ(µ2)

)
defined in Eq. (43) represent the quantum density operator of the

partonic scattering. It is constructed from amplitudes
∣∣M({p, f}m)

〉
and conjugate amplitudes

〈
M({p, f}m)

∣∣. We include the proper Lehmann-Symanzik-Zimmermann (LSZ) factors for the

incoming and outgoing partons so that the amplitudes are S-matrix elements in the renormalized

theory. With massless partons and dimensional regularization in Feynman gauge, this amounts

to multiplying by field strength renormalization factors Z
−1/2
ψ or Z

−1/2
A for each external leg of

an amputated graph. Then
∣∣ρ(µ2)

)
is independent of the renormalization scale if calculated at all

perturbative orders. When we calculate it up to order αks as in Eq. (43), we have

µ2 d

dµ2

∣∣ρ(µ2)
)

= O(αk+1
s ) . (D15)

Let us consider next the infrared sensitive operator D(µ2). This operator depends on two scales,

the renormalization scale µ2 and shower scale µ2
s . We have set these scales to equal each other, but

in this appendix we highlight their separate roles. Thus we write D(µ2, µ2
s) with two arguments

and let the operator with only one argument denote

D(µ2) = D(µ2, µ2) . (D16)

For any basis state
∣∣{p, f, s, s′, c, c′}m

)
, the state D(µ2, µ2

s)
∣∣{p, f, s, s′, c, c′}m

)
is to be defined so as

to have the properties of a physical statistical state
∣∣ρ(µ2)

)
. It is constructed in the renormalized

theory and has the proper field strength renormalization factors for its external partons so that

D(µ2, µ2
s) is independent of the renormalization scale up to the order that we calculate. That is, if

D(µ2, µ2
s) is calculated up to order αks , we have

µ2 ∂

∂µ2
D(µ2, µ2

s) = O(αk+1
s ) . (D17)
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In order to calculate the parton shower generators Spert(µ
2) and S(µ2), we need the total

derivative of D(µ2) with respect to the common scale. Since D(µ2, µ2
s) is independent of µ2, this

is actually the derivative with respect to µ2
s :

d

dµ2
D(µ2) =

∂

∂µ2
D(µ2, µ2

s)

∣∣∣∣
µ2s=µ

2

+
∂

∂µ2
s

D(µ2, µ2
s)

∣∣∣∣
µ2s=µ

2

=
∂

∂µ2
s

D(µ2, µ2
s)

∣∣∣∣
µ2s=µ2

+ O(αk+1
s ) .

(D18)

The perturbative expansion of this is

µ2 d

dµ2
D(µ2) =

k∑

n=1

[
αs(µ

2)

2π

]n
µ2 ∂

∂µ2
s

D(n)(µ2, µ2
s)

∣∣∣∣
µ2s=µ2

+ O(αk+1
s ) . (D19)

Using this, the generators of the perturbative shower operator can be obtained from eqs. (73) and

(49) as

1

µ2
S
(n)
pert(µ

2) =

[
∂

∂µ2
s

D(n)(µ2, µ2
s) −

n−1∑

k=1

D̃(k)(µ2)
∂

∂µ2
s

D(n−k)(µ2, µ2
s)

]

µ2s=µ
2

. (D20)

This simplifies the shower generators. The operators D(n)(µ2, µ2
s) always contains a theta function

like θ(Λ2 < µ2
s) or the equivalent constraint for the loop contributions. The partial derivative turns

one of these theta functions into a Dirac delta function.

The inclusive infrared finite operator V(µ2) is defined by the condition (92). This operator is

derived from the infrared sensitive operator D and, just like D, depends on both the renormalization

and shower scales. Thus we write V(µ2, µ2
s) with two arguments and let the operator with only

one argument denote

V(µ2) = V(µ2, µ2) . (D21)

Using eqs. (79), (92), we have

(
1
∣∣V(µ2, µ2

s)F(µ2) =
(
1
∣∣[F(µ2) ◦ K(µ2) ◦ ZF (µ2)

]
D(µ2, µ2

s) . (D22)

Recall that
[
F(µ2) ◦ K(µ2) ◦ ZF (µ2)

]
is independent of µ2. We have just seen that D(µ2, µ2

s) is

independent of µ2 at fixed µ2
s . Recall from Sec. VI D that we fix the color and spin content of

V(µ2, µ2
s) to make Eq. (D22) work for

(
1
∣∣V(µ2, µ2

s). Once we have done that for one choice of

µ2 at a given µ2
s , we can keep the same operator V(µ2, µ2

s) for other choices of µ2 and Eq. (D22)

will continue to hold. That is, we can define V(µ2, µ2
s)F(µ2) so that it is independent of µ2 up to

whatever order we calculate:

∂

∂µ2

[
V(µ2, µ2

s)F(µ2)
]

= 0 + O(αk+1
s ) . (D23)
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This gives us

V(µ2, µ2
s)−1 ∂

∂µ2
V(µ2, µ2

s) = −
[

d

dµ2
F(µ2)

]
F−1(µ2) + O(αk+1

s ) . (D24)

The generator SV(µ2) of UV(µ2
2, µ

2
1) is defined in Eq. (114) as

1

µ2
SV(µ2) = V−1(µ2)

[
∂

∂µ2
V(µ2, µ2

s) +
∂

∂µ2
s

V(µ2, µ2
s)

]

µ2s=µ
2

. (D25)

This gives us

1

µ2
SV(µ2) = V−1(µ2)

∂

∂µ2
s

V(µ2, µ2
s)

∣∣∣∣
µ2s=µ

2

− dF(µ2)

dµ2
F−1(µ2) . (D26)

Here the first term represents the evolution of the perturbative part of V and the second term gives

the evolution of the parton distribution functions. This generalizes Eq. (124) for the first order

contribution to SV .

Finally the generator of the probability preserving shower evolution operator is given in

eqs. (115) and (73). We can simplify this by using eqs. (D18) and (D26)

1

µ2
S(µ2) = V(µ2)F(µ2)D−1(µ2)

∂D(µ2, µ2
s)

∂µ2
s

F−1(µ2)V−1(µ2)

∣∣∣∣
µ2s=µ

2

− ∂V(µ2, µ2
s)

∂µ2
s

V−1(µ2)

∣∣∣∣
µ2s=µ

2

.

(D27)
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