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Abstract

We present several advances in the effective field theory calculation of the Higgs mass in MSSM

scenarios with heavy superparticles. In particular, we compute the dominant two-loop threshold

corrections to the quartic Higgs coupling for generic values of the relevant SUSY-breaking param-

eters, including all contributions controlled by the strong gauge coupling and by the third-family

Yukawa couplings. We also study the effects of a representative subset of dimension-six opera-

tors in the effective theory valid below the SUSY scale. Our results will allow for an improved

determination of the Higgs mass and of the associated theoretical uncertainty.
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1 Introduction

At the price of doubling the particle content of the Standard Model (SM), supersymmetry (SUSY)

provides elegant solutions to several open issues, including the stability of the electroweak (EW)

scale, the nature of dark matter and the possibility of embedding the SM in a grand-unified gauge

theory. Common features of supersymmetric extensions of the SM are an extended Higgs sector and

the existence of tree-level relations between the quartic Higgs couplings and the other couplings of

the considered model, which translate into predictions for the Higgs boson masses. When radiative

corrections are included, those predictions are sensitive to the whole particle spectrum of the model,

and can be used to constrain its parameter space even before the discovery of SUSY particles.

In the minimal SUSY extension of the SM, or MSSM, the mass mh of the lightest Higgs scalar is

bounded at tree level from above by mZ | cos 2β|, where mZ is the Z-boson mass and tanβ ≡ v2/v1 is

the ratio of the vacuum expectation values (vevs) of the two Higgs doublets that participate in the

breaking of the EW symmetry. However, as has been known [1–6] since the early 1990s, the tree-level

upper bound on mh can be significantly raised by radiative corrections involving top quarks and their

SUSY partners, the stop squarks. By now, the computation of radiative corrections to the MSSM

Higgs masses 1 is quite advanced: full one-loop corrections [7–13] and two-loop corrections in the

limit of vanishing external momentum [14–27] are available, and the dominant momentum-dependent

two-loop corrections [28–30] as well as the dominant three-loop corrections [31, 32] have also been

obtained. Over the years, many of the known corrections have been implemented in widely-used

codes for the determination of the MSSM mass spectrum. In particular, FeynHiggs [33] includes full

one-loop corrections to the Higgs masses from ref. [13] and dominant two-loop corrections in the on-

shell (OS) renormalization scheme from refs. [17, 22–25, 29], whereas SoftSusy [34, 35], SuSpect [36]

and SPheno [37, 38] include full one-loop corrections to the Higgs masses from ref. [12] and dominant

two-loop corrections in the DR scheme from refs. [22–25,39].

For the MSSM, both the discovery in 2012 [40, 41] of a SM-like Higgs boson with mass about

125 GeV [42] and the negative results of the searches for stop squarks at the LHC [43–48] favor

scenarios with a SUSY mass scale MS in the TeV range. In particular, the observed value of the Higgs

mass requires the radiative correction to the squared-mass parameter, ∆m2
h , to be at least as large

as its tree-level value: if the stops are heavy enough, this can be realized via the dominant top/stop

contributions, which are controlled by the top Yukawa coupling, gt ∼ O(1), and are enhanced by

logarithms of the ratio between the stop and top masses. A further increase in ∆m2
h can be obtained

if the left-right stop mixing parameter Xt is about twice the average stop mass. Roughly speaking, for

tanβ large enough to almost saturate the tree-level bound on the lightest-scalar mass, mh ≈ 125 GeV

requires the average stop mass to be somewhere around 1 TeV for the “maximal” (i.e., most favorable)

value of Xt, and above 10 TeV for vanishing Xt. However, when the SUSY scale is significantly larger

than the EW scale, fixed-order calculations of mh such as the ones implemented in the codes mentioned

1 We focus here on the MSSM with real parameters. Significant efforts have also been devoted to the Higgs-mass

calculation in the presence of CP-violating phases, as well as in non-minimal SUSY extensions of the SM.
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above may become inadequate, because radiative corrections of order n in the loop expansion contain

terms enhanced by as much as lnn(MS/mt) – where we take the top mass as a proxy for the EW scale.

Indeed, a possible symptom of such heavy-SUSY malaise is the fact that, in scenarios with TeV-scale

stop masses and large stop mixing, the spread in the predictions of those codes for mh exceeds the

theoretical accuracy of their (largely equivalent) two-loop calculations, which was estimated in the

early 2000s to be about 3 GeV [49, 50] in what were then considered natural regions of the MSSM

parameter space.

In the presence of a significant hierarchy between the SUSY scale and the EW scale, the computa-

tion of the Higgs mass needs to be reorganized in an effective field theory (EFT) approach: the heavy

particles are integrated out at the scale MS , where they only affect the matching conditions for the

couplings of the EFT valid below MS ; the appropriate renormalization group equations (RGEs) are

then used to evolve those couplings between the SUSY scale and the EW scale, where the running

couplings are related to physical observables such as the Higgs boson mass and the masses of gauge

bosons and fermions. In this approach, the computation is free of large logarithmic terms both at

the SUSY scale and at the EW scale, while the effect of those terms is accounted for to all orders in

the loop expansion by the evolution of the couplings between the two scales. More precisely, large

corrections can be resummed to the (next-to)n-leading-logarithmic (NnLL) order by means of n-loop

calculations at the SUSY and EW scales combined with (n+1)-loop RGEs. On the other hand, the

common procedure of matching the MSSM to a renormalizable EFT – such as the plain SM – in

the unbroken phase of the EW symmetry amounts to neglecting corrections suppressed by powers of

v2/M2
S , where we denote by v the vev of a SM-like Higgs scalar. Those corrections can in fact be

mapped to the effect of non-renormalizable, higher-dimensional operators in the EFT Lagrangian.

The EFT approach to the computation of the MSSM Higgs mass dates back to the early 1990s [51–

53]. Over the years, it has also been exploited to determine analytically the coefficients of the loga-

rithmic terms in ∆m2
h at one [54], two [55–58] and even three [49,59] loops, by solving perturbatively

the appropriate systems of boundary conditions and RGEs. However, when the focus was on “nat-

ural” scenarios with SUSY masses of a few hundred GeV, the omission of O(v2/M2
S) terms limited

the accuracy of the EFT approach, and the effect of the resummation of logarithmic corrections was

not deemed important enough to justify abandoning the fixed-order calculations of the Higgs mass in

favor of a complicated EFT set-up with higher-dimensional operators.2 More recently, an interest in

“unnatural” scenarios such as split SUSY [61, 62] and high-scale SUSY (see, e.g., ref. [63]), and then

the LHC results pushing the expectations for the SUSY scale into the TeV range, have brought the

EFT approach back into fashion. On the one hand, in ref. [64] the authors of FeynHiggs combined

the fixed-order calculation of mh implemented in their code with a resummation of the LL and NLL

terms controlled exclusively by gt and by the strong gauge coupling g3. On the other hand, three

papers [65–67] presented updates of the traditional EFT calculation: the use of the state-of-the-art

results collected in ref. [68] for the SM part (i.e., three-loop RGEs and two-loop EW-scale matching

2See, however, ref. [60] for the effect of dimension-six operators in a scenario with only one light stop.
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conditions), together with the full one-loop and partial two-loop matching conditions at the SUSY

scale, allow for a full NLL and partial NNLL resummation of the logarithmic corrections.3 Several

public codes for the EFT calculation of the Higgs mass in the MSSM with heavy SUSY have also been

released: SusyHD [69], based on ref. [67]; MhEFT [70], based on refs. [65,71] and covering as well scenar-

ios with a light two-Higgs-doublet model (THDM); HSSUSY [72, 73], a module of FlexibleSUSY [74]

with the same essential features as the original SusyHD; FlexibleEFTHiggs [72, 73], which combines

a full one-loop computation of mh with a LL resummation of the logarithmic corrections; finally, an

EFT approach similar to the one of ref. [73] was recently implemented in SPheno/SARAH [75].

In MSSM scenarios with stop masses of several TeV, where the effects of O(v2/M2
S) can be safely

neglected, the theoretical uncertainty of the EFT prediction for the Higgs mass stems from missing

terms of higher orders in the loop expansion, both in the calculation of the matching conditions at the

SUSY scale and in the SM part of the calculation. In refs. [66, 67] such uncertainty was estimated to

be at most 1 GeV in a simplified MSSM scenario with degenerate SUSY masses of 10 TeV, tanβ = 20

and vanishing Xt , where mh ≈ 123.5 GeV. In such scenario, the prediction for mh of the “hybrid” (i.e.,

fixed-order+partial NLL) calculation of ref. [64] was about 3 GeV higher, well outside the theoretical

uncertainty of the EFT result. In refs. [67, 71] it was suggested that most of the discrepancy came

from the determination of the coupling gt used in the resummation procedure, for which ref. [64]

omitted one-loop EW and two-loop QCD effects, consistently with the accuracy of the mh calculation

in that paper. Those effects were later included in FeynHiggs, which now also allows for a full NLL

and partial NNLL resummation of the logarithmic corrections [76]. In the simplified MSSM scenario

mentioned above, the refinements in the resummation procedure of FeynHiggs reduce the discrepancy

with the EFT prediction for mh to a few hundred MeV.

As mentioned earlier, MSSM scenarios with stop masses below a couple of TeV and large stop

mixing – which are definitely more interesting from the point of view of LHC phenomenology – suffer

from even larger spreads in the predictions of different codes for mh. For example, in a benchmark

point with degenerate SUSY masses of 1 TeV, tanβ = 20, and Xt varied so as to maximize mh, the

EFT calculation finds mmax
h ≈ 123 GeV, whereas SoftSusy, SuSpect and SPheno – which implement

the same corrections to the Higgs masses, but differ in the determination of the running couplings –

find mmax
h ≈ 124.5−126.5 GeV, and the latest version of FeynHiggs [77] finds mmax

h ≈ 126−128 GeV

(depending on the code’s settings). However, in this case the comparison between the EFT prediction

for mh and the various fixed-order (or hybrid) predictions is less straightforward than in scenarios with

multi-TeV stop masses, because there is no obvious argument to favor one calculational approach over

the others: the O(v2/M2
S) terms might or might not be negligible, and the logarithmic corrections

might or might not be important enough to mandate their resummation. For all approaches, this

unsatisfactory situation points to two urgent needs: first, to improve the calculation of mh with the

inclusion of higher-order effects; second, to provide a better estimate of the theoretical uncertainty,

tailored to the “difficult” region of the parameter space with stop masses about 1−2 TeV.

3Refs. [64,65] also obtained analytic results for the coefficients of logarithmic terms in ∆m2
h beyond three loops.
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In this paper we take several steps towards an improved EFT determination of the Higgs mass

in the MSSM with heavy superpartners. In particular, in section 2 we compute the two-loop, O(g6t )

contribution to the SUSY-scale matching condition for the quartic Higgs coupling – which was pre-

viously known only in simplified scenarios [21, 65, 67] – allowing for generic values of all the relevant

SUSY-breaking parameters. We also include the two-loop contributions controlled by the bottom and

tau Yukawa couplings, addressing some subtleties related to the presence of potentially large tanβ-

enhanced corrections. Our new results bring the matching condition for the quartic Higgs coupling to

the same level, in terms of an expansion in coupling constants, as the two-loop Higgs-mass calculations

in SoftSusy, SuSpect and SPheno. In section 3 we study instead the effects of a representative subset

of dimension-six operators in the EFT. We obtain both an improvement in our prediction for mh in

scenarios with stop masses about 1−2 TeV and a more-realistic estimate of the theoretical uncertainty

associated to O(v2/M2
S) effects. The results presented in this paper have been implemented in mod-

ified versions of the codes SusyHD [69] and HSSUSY [72]. All the analytic formulae that proved too

lengthy to be printed here are available upon request in electronic form.

2 Two-loop matching of the quartic Higgs coupling

In this section we describe our calculation of the two-loop matching condition for the quartic Higgs

coupling. We consider a setup in which all SUSY particles as well as a linear combination of the two

Higgs doublets of the MSSM are integrated out at a common renormalization scale Q ≈MS , so that

the EFT valid below the matching scale is just the SM. Using the conventions outlined in section 2

of ref. [66], the two-loop matching condition for the quartic coupling of the SM-like Higgs doublet H

takes the form

λ(Q) =
1

4

[
g2(Q) + g′ 2(Q)

]
cos2 2β + ∆λ1` + ∆λ2` , (1)

where g and g′ are the EW gauge couplings, β can be interpreted as the angle that rotates the two

original MSSM doublets into a light doublet H and a massive doublet A, and ∆λn` is the n-loop

threshold correction to the quartic coupling arising from integrating out the heavy particles at the

scale MS . The contributions to ∆λ1` controlled by the EW gauge couplings and by the top Yukawa

coupling, for generic values of all SUSY parameters, were given in ref. [66], completing and correcting

earlier results of refs. [78,79]. For completeness, we report in the appendix the full result for the one-

loop contributions of heavy scalars, including also terms controlled by the bottom and tau Yukawa

couplings. However, the only one-loop contributions relevant to our computation of the two-loop

threshold correction, where we will consider the “gaugeless” limit g = g′ = 0, are those proportional

to the fourth power of a third-family Yukawa coupling, which read:

∆λg
4
f =

∑
f=t,b,τ

ĝ4f N
f
c

(4π)2

{
ln
m2
f̃L
m2
f̃R

Q4
+ 2 X̃f

[
F̃1(xf ) −

X̃f

12
F̃2(xf )

]}
, (2)
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where by ĝf we denote SM-like Yukawa couplings,4 related to their MSSM counterparts ŷf by ĝt =

ŷt sinβ , ĝb = ŷb cosβ and ĝτ = ŷτ cosβ . Moreover, for each fermion species f : Nf
c is the number

of colors; (mf̃L
,mf̃R

) are the soft SUSY-breaking sfermion masses, i.e. (mQ3 ,mU3), (mQ3 ,mD3) and

(mL3 ,mE3) for stops, sbottoms and staus, respectively; X̃f = X2
f/(mf̃L

mf̃R
), where Xf = Af − µ rf ,

Af is the trilinear soft SUSY-breaking Higgs-sfermion coupling, µ is the Higgs mass term in the MSSM

superpotential, rt = cotβ and rb = rτ = tanβ ; xf = mf̃L
/mf̃R

; finally, the loop functions F̃1 and F̃2

are defined in appendix A of ref. [66].

For what concerns the two-loop threshold correction ∆λ2`, simplified results for the O(g4t g
2
3) and

O(g6t ) contributions, valid in the limit mQ3 = mU3 = mA = mg̃ ≡ MS (where mA is the mass of

the heavy Higgs doublet and mg̃ is the gluino mass), were made available as far back as in ref. [21].

Among the recent EFT analyses, refs. [66,67] obtained formulae for the O(g4t g
2
3) contributions valid for

arbitrary values of all the relevant SUSY-breaking parameters. The O(g6t ) contributions, on the other

hand, were neglected in ref. [66], while they were included in refs. [65, 67] only through simplified

formulae derived from those of ref. [21]. In this paper we extend the calculations of refs. [66, 67]

to obtain all contributions to ∆λ2` controlled only by the third-family Yukawa couplings, again for

arbitrary values of all the relevant SUSY-breaking parameters. Besides improving our knowledge of

the O(g6t ) contributions from two-loop diagrams involving stops, this allows us to properly account

for sbottom and stau contributions that can become relevant at large values of tanβ. We also discuss

how to obtain the O(g4b g
2
3) contributions from the known results for the O(g4t g

2
3) ones. Altogether,

our results amount to a complete determination of ∆λ2` in the limit of vanishing EW gauge (and

first-two-generation Yukawa) couplings.

2.1 Outline of the calculation

The two-loop, Yukawa-induced threshold correction to the quartic Higgs coupling λ at the matching

scale Q can be expressed as

∆λ2` =
1

2

∂4∆V 2`, heavy

∂2H†∂2H

∣∣∣∣
H=0

+ ∆λshift, f + ∆λshift, f̃ , (3)

where by ∆V 2`, heavy we denote the contribution to the MSSM scalar potential from two-loop diagrams

involving sfermions that interact with themselves, with Higgs doublets or with matter fermions and

higgsinos only through the third-family Yukawa couplings, as well as from two-loop diagrams involving

only the heavy Higgs doublet and matter fermions. The last two terms in eq. (3) contain additional

two-loop contributions that will be described below. In the following we will focus on the contributions

to ∆λ2` that involve the top and bottom Yukawa couplings, and comment only briefly on the inclusion

of the contributions that involve the tau Yukawa coupling, which are in general much smaller. However,

we stress that the results that we implemented in SusyHD [69] and HSSUSY [72] (and that we make

available upon request) do include the tau-Yukawa contributions through two loops.

4Beyond tree level, we must distinguish these couplings from the proper Yukawa couplings of the SM, denoted as gf ,

and specify a renormalization prescription for the angle β.
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In the gaugeless limit adopted in our calculation, the field-dependent mass spectrum of the particles

that enter the relevant two-loop diagrams simplifies considerably: we can approximate the masses

of the lightest Higgs scalar and of the would-be Goldstone bosons to zero, and the masses of all

components (scalar, pseudoscalar and charged) of the heavy Higgs doublet to m2
A; the charged and

neutral components of the two higgsino doublets combine into Dirac spinors with degenerate mass

eigenvalues |µ|2; the tree-level mixing angle in the CP-even sector is just α = β − π/2. For the

contributions to ∆V 2`, heavy that involve the top and bottom Yukawa couplings, we adapt the results

used for the effective-potential calculation of the MSSM Higgs masses in ref. [25].5 To compute the

fourth derivative of the effective potential entering eq. (3) we follow the approach outlined in section 2.3

of ref. [66]: we express the stop and sbottom masses and mixing angles as functions of field-dependent

top and bottom masses, mt = ĝt |H| and mb = ĝb |H|, and obtain

∂4∆V 2`, heavy

∂2H†∂2H

∣∣∣∣
H=0

=

[
ĝ4t

(
2V

(2)
tt + 4m2

t V
(3)
ttt + m4

t V
(4)
tttt

)
+ ĝ2t ĝ

2
b

(
2V

(2)
tb + 12m2

t V
(3)
ttb + 4m4

t V
(4)
tttb + 3m2

t m
2
b V

(4)
ttbb

)]
mt,mb→ 0

+

[
t ←→ b

]
, (4)

where the term in the last line is obtained from the terms in the first two lines by swapping top and

bottom, and we used the shortcuts

V (k)
q1... qk

=
dk∆V 2`, heavy

dm2
q1 . . . dm

2
qk

. (5)

The derivatives of the field-dependent stop and sbottom parameters and the limit of vanishing top

and bottom masses in eq. (4) are obtained as described in ref. [66]. As in the case of the O(g4t g
2
3)

contributions, we find that the fourth derivative of the two-loop effective potential contains terms

proportional to ln(m2
q/Q

2), which would diverge for vanishing quark masses but cancel out against

similar terms in the contribution denoted as ∆λshift, f in eq. (3). Indeed, above the matching scale the

one-loop contribution to the quartic Higgs coupling from box diagrams with a top or bottom quark,

δλg
4
q , q = −

∑
q=t,b

ĝ4q Nc

(4π)2

(
2 ln

m2
q

Q2
+ 3

)
, (6)

is expressed in terms of the MSSM couplings ĝq, whereas below the matching scale the same contribu-

tion is expressed in terms of the SM couplings gq. To properly compute the two-loop, Yukawa-only part

of the matching condition for the quartic Higgs coupling, we must re-express the MSSM couplings en-

tering δλg
4
q , q above the matching scale (including those implicit in mq) according to ĝq → gq (1+∆gYq ),

5We compared our result for the top and bottom Yukawa contribution to ∆V 2`, heavy with the one obtained by

imposing the gaugeless limit and removing the SM-like contribution in eq. (D.6) of ref. [21]. We find agreement except

for the overall sign of the next-to-last line of that equation.
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where ∆gYq denotes the terms controlled by the Yukawa couplings in the threshold correction to gq.

In particular, we find for the top and bottom Yukawa couplings

∆gYt = − ĝ2t
(4π)2 sin2 β

[
3

4
ln
µ2

Q2
+

3

8
cos2 β

(
2 ln

m2
A

Q2
− 1

)
+ F̃6

(
mQ3

µ

)
+

1

2
F̃6

(
mU3

µ

)]

−
ĝ2b

(4π)2 cos2 β

[
1

4
ln
µ2

Q2
+

1

8
sin2 β

(
2 ln

m2
A

Q2
− 1

)
+ cos2 β

(
ln
m2
A

Q2
− 1

)
+

1

2
F̃6

(
mD3

µ

)
+
Xb cotβ

2µ
F̃9

(
mQ3

µ
,
mD3

µ

)]
− δZ q̃H

2
, (7)

∆gYb = −
ĝ2b

(4π)2 cos2 β

[
3

4
ln
µ2

Q2
+

3

8
sin2 β

(
2 ln

m2
A

Q2
− 1

)
+ F̃6

(
mQ3

µ

)
+

1

2
F̃6

(
mD3

µ

)]

− ĝ2t
(4π)2 sin2 β

[
1

4
ln
µ2

Q2
+

1

8
cos2 β

(
2 ln

m2
A

Q2
− 1

)
+ sin2 β

(
ln
m2
A

Q2
− 1

)

+
1

2
F̃6

(
mU3

µ

)
+
Xt tanβ

2µ
F̃9

(
mQ3

µ
,
mU3

µ

)]
− δZ q̃H

2
, (8)

where the last term on the right-hand side of each equation reads, in a notation analogous to the one

of eq. (2),

δZ q̃H = −
∑
q=t,b

ĝ2q Nc

(4π)2
X̃q

6
F̃5(xq) , (9)

and corresponds to the threshold correction to the light-Higgs WFR arising from squark loops. The

loop functions F̃5, F̃6 and F̃9 are defined in appendix A of ref. [66]. We also remark that eqs. (7)–(9)

assume that the angle β entering the relations between the SM-like couplings ĝq and their MSSM

counterparts ŷq is renormalized as described in section 2.2 of ref. [66], removing entirely the contribu-

tions of the off-diagonal WFR of the Higgs doublets. Combining the effects of the shifts in the Yukawa

couplings with the renormalization of the Higgs fields (keeping into account also the field-dependent

quark masses in the logarithms) we obtain the total contribution to ∆λ2` arising from the quark-box

diagrams of eq. (6),

∆λshift, f = −
∑
q=t,b

ĝ4q Nc

(4π)2

(
2 ln

m2
q

Q2
+ 4

)(
4 ∆gYq + 2 δZ q̃H

)
, (10)

which cancels the logarithmic dependence on the quark masses of the derivatives of ∆V 2`, heavy. We

checked that the contributions in eq. (4) that involve more than two derivatives of the two-loop effective

potential cancel out completely against the shift of the corresponding contributions in the one-loop

part – namely, the non-logarithmic term in the right-hand side of eq. (6) – so that the final result for

∆λ2` can be related to the two-loop correction to the light-Higgs mass. This is the same “decoupling”

property found in ref. [66] for the O(g4t g
2
3) part of ∆λ2`. Finally, it can be inferred from eqs. (7)–(10)

that the contribution of δZ q̃H cancels out of ∆λshift, f .
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The last term in eq. (3), ∆λshift, f̃ , arises from shifts in the sfermion contribution to the one-loop

matching condition for the quartic Higgs coupling, eq. (2). In particular, it contains terms arising from

the WFR of the Higgs fields, which are not captured by the derivatives of ∆V 2`, heavy, plus additional

contributions that arise if we express the one-loop threshold correction in eq. (2) in terms of the SM

Yukawa couplings, gq, instead of the MSSM ones, ĝq. We remark here that, while the shift of the

Yukawa couplings in the quark-box diagrams of eq. (6) is required for a consistent two-loop matching

of the quartic Higgs coupling, an analogous shift in the squark contribution of eq. (2) is to some extent

a matter of choice. In refs. [66,67] the top Yukawa coupling entering the one-loop part of the threshold

correction to the quartic Higgs coupling was interpreted as the SM one. Applying that choice to both

the top and bottom Yukawa couplings, we would find

∆λshift, f̃ =
∑
q=t,b

ĝ4q Nc

(4π)2

{
ln
m2
q̃L
m2
q̃R

Q4
+ 2 X̃q

[
F̃1(xq) −

X̃q

12
F̃2(xq)

]}(
4 ∆gYq + 2 δZ q̃H

)
, (11)

where again the contributions of the WFR of the Higgs fields cancel out against analogous terms in

the shifts of the Yukawa couplings. After including in ∆λ2` the shifts in eqs. (10) and (11), we checked

that, in the limit of gb = 0 and mQ3 = mU3 = mA ≡ MS , the O(g6t ) part of ∆λ2` coincides with the

simplified result given in eq. (21) of ref. [67].

On the other hand, it is well known [80–82] that the relation between the bottom Yukawa coupling

of the SM and its MSSM counterpart is subject to potentially large corrections enhanced by tanβ,

which, in the gaugeless limit, arise from diagrams involving either gluino-sbottom or higgsino-stop

loops. As discussed, e.g., in ref. [83], these tanβ-enhanced terms can be “resummed” in the DR-

renormalized coupling of the MSSM by expressing it as

ĝb(Q) =
gb(Q)

1−
(
∆gsb + ∆gYb

) , (12)

where gb(Q) is the MS-renormalized coupling of the SM, extracted at the EW scale from the bottom

mass and evolved up to the matching scale Q with SM RGEs, ∆gYb is given in eq. (8), and

∆gsb = − g23 CF
(4π)2

[
1 + ln

m2
g̃

Q2
+ F̃6

(
mQ3

mg̃

)
+ F̃6

(
mD3

mg̃

)
− Xb

mg̃
F̃9

(
mQ3

mg̃
,
mD3

mg̃

)]
, (13)

where CF = 4/3 is a color factor, and we recall that Xb = Ab−µ tanβ. In contrast with our treatment

of the top Yukawa coupling, we will therefore choose to interpret the bottom Yukawa coupling entering

the one-loop part of the threshold correction to the quartic Higgs coupling as the MSSM one, in order

to absorb the tanβ-enhanced effects directly in ∆λ1`. We recall that a similar approach was discussed

in refs. [18, 24,25] in the context of the fixed-order calculation of the Higgs masses in the MSSM.

With our choice for the bottom Yukawa coupling entering ∆λ1`, we must omit the term 4 ∆gYb in

the formula for ∆λshift, f̃ , see eq. (11), when computing the contributions to ∆λ2` controlled only by
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the top and bottom Yukawa couplings. Concerning the O(g4b g
2
3) contributions, they can be obtained

from the O(g4t g
2
3) contributions computed in refs. [66, 67] via

∆λg
4
b g

2
3 = ∆λg

4
t g

2
3 [ t → b ]

− 4 ∆gsb
ĝ4b Nc

(4π)2

{
ln
m2
Q3
m2
D3

Q4
+ 2 X̃b

[
F̃1(xb) −

X̃b

12
F̃2(xb)

]}
, (14)

where the notation [ t → b ] in the first line represents the replacements gt → gb, Xt → Xb and

mU3 → mD3 in the formulae for the O(g4t g
2
3) contributions. We note that, in practice, our choice

removes from ∆λ2` potentially large terms characterized by a higher power of tanβ than of ĝb, i.e. terms

scaling like ĝ4b g
2
3 tan5β or like ĝ4b ĝ

2
t tan5β.

We now comment on the inclusion of the contributions to ∆λ2` controlled by the tau Yukawa

coupling. The two-loop contributions of O(g6τ ), i.e. those involving only the tau Yukawa coupling, do

not require a separate calculation, since they can be obtained from the top-only, O(g6t ) ones via the

replacements gt → gτ , At → Aτ , Nc → 1, mQ3 → mL3 , mU3 → mE3 and cosβ ↔ sinβ (see also

ref. [25]). Indeed, as long as we neglect the EW gauge couplings, the threshold correction to the tau

Yukawa coupling does not contain any tanβ-enhanced terms, and reads

∆gτ = − ĝ2τ
(4π)2 cos2 β

[
3

4
ln
µ2

Q2
+

3

8
sin2 β

(
2 ln

m2
A

Q2
− 1

)
+ F̃6

(
mL3

µ

)
+

1

2
F̃6

(
mE3

µ

)]
− δZ f̃H

2
,

(15)

where the sfermion contribution to the Higgs WFR, δZ f̃H , is obtained including also the stau contri-

bution (with Nc = 1) in eq. (9). We can therefore treat the tau Yukawa coupling in the same way

as the top one, expressing the stau contribution to ∆λ1` in terms of the SM coupling gτ . In addi-

tion, “mixed” contributions to the two-loop effective potential controlled by both the tau and bottom

Yukawa couplings arise from diagrams that involve the quartic sbottom-stau coupling, see appendix

B of ref. [50]. The corresponding contributions to ∆λ2` can be obtained directly from the derivatives

of the effective potential (without additional shifts) with the procedure outlined around eq. (4), after

replacing t → τ in the latter. Finally, the choice of using the MSSM coupling ĝb in ∆λ1` spoils the

cancellation of Higgs WFR effects in ∆λshift, f̃ , see eq. (11). As a result, when we take into account

the O(g2τ ) contribution from stau loops in δZ f̃H , we find an additional O(g4b g
2
τ ) contribution to ∆λ2`.

2.2 Numerical examples

We now provide some illustration of the numerical impact of the newly computed two-loop corrections

to the quartic Higgs coupling. To this purpose, we implemented those corrections in modified versions

of the codes SusyHD [69] and HSSUSY [72]. All plots presented in this section were produced with

HSSUSY, but we checked that fully analogous plots can be obtained with SusyHD. Small discrepancies

in the predictions for mh arise from differences in the calculations implemented in the two codes,

as discussed in section 2.3 of ref. [73], but they do not affect the qualitative behavior and relative

9



importance of the new two-loop corrections. The SM input parameters used for HSSUSY in our studies,

which we take from ref. [84], are: the Fermi constant GF = 1.16638×10−5 GeV−2; the Z boson

mass mZ = 91.1876 GeV; the pole top mass Mpole
t = 173.21 GeV; the MS-renormalized bottom mass

mb(mb) = 4.18 GeV; the tau mass mτ = 1777 MeV; finally, the strong and electromagnetic coupling

constants in the five-flavor MS scheme, αs(mZ) = 0.1181 and α(mZ) = 1/127.950.

To start with, we omit all contributions to ∆λ2` controlled by the bottom and tau Yukawa cou-

plings, and focus on the effect of extending the contributions controlled by the top Yukawa coupling

to generic values of the relevant SUSY-breaking parameters. We consider a scenario in which all

SUSY-particle masses are larger than one TeV, but the stop masses are not degenerate. In particular,

we take mU3 = 1.5 TeV and mQ3 = κmU3 , where κ is a scaling parameter that we vary in the range

1 ≤ κ ≤ 4. We also take mg̃ = mA = mU3 , µ = 4mU3 and tanβ = 20, and we fix At via the “maximal”

stop mixing condition At − µ cotβ = (6mQ3 mU3)1/2. For the remaining MSSM parameters, which

affect the one-loop part of the calculation, we set all sfermion masses other than those of the stops,

as well as the EW gaugino masses, equal to mU3 , and we take Ab = Aτ = At. All of the MSSM

parameters listed above – with the exception of tanβ, which is defined as described in section 2.2 of

ref. [66] – are interpreted as DR-renormalized parameters at the scale Q = (mQ3 mU3)1/2.

In figure 1 we compare the predictions for mh obtained with the “exact” (i.e., valid for generic

SUSY masses) formulae for the top-Yukawa contributions to ∆λ2` with “approximate” predictions

obtained by replacing the scalar and gluino masses of our scenario with the degenerate masses m′Q3
=

m′U3
= m′A = m′g̃ = (mQ3 mU3)1/2, and then using for the O(g4t g

2
3) and O(g6t ) contributions to ∆λ2`

the simplified formulae given in refs. [66] and [67], respectively. In particular, the dotted black line

in the left plot of figure 1 represents the prediction for mh, as a function of the stop mass ratio

κ = mQ3/mU3 , obtained by neglecting all two-loop contributions to the matching of the quartic Higgs

coupling, and using the exact results from refs. [66,67] for the one-loop contributions; the dashed blue

line includes also the simplified O(g4t g
2
3) contributions given in eq. (36) of ref. [66]; the solid blue line

includes instead the exact O(g4t g
2
3) contributions from refs. [66, 67]; the dashed red line includes, on

top of the exact O(g4t g
2
3) contributions, the simplified O(g6t ) contributions given in eq. (21) of ref. [67];

finally, the solid red line includes instead the exact O(g6t ) contributions derived in this paper. In

the right plot of of figure 1 we show for clarity the effect on mh of the different implementations of

the two-loop corrections alone, i.e. we show the difference between the (dashed or solid, blue or red)

two-loop lines and the (dotted, black) one-loop line of the left plot. The meaning of each line in the

right plot mirrors the one of the corresponding line in the left plot.

Figure 1 confirms that, as already noticed in refs. [66, 67], the overall effect of the top-Yukawa

contributions to ∆λ2` on the EFT predictions for mh in scenarios with multi-TeV stop masses is

rather small, typically less than one GeV. However, the comparison between the dashed and solid

lines in the plots of figure 1 shows that, in scenarios with non-degenerate mass spectra, the use of

simplified formulae with an “average” SUSY mass can lead to a rather poor approximation of the

exact results. In particular, the comparison between dashed and solid blue lines shows that by using
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Figure 1: Effects of the top-Yukawa contributions to ∆λ2` in a scenario with non-degenerate SUSY

masses, compared with approximate results obtained with degenerate masses. The left plot shows the

predictions for mh as a function of the ratio of soft SUSY-breaking stop masses mQ3/mU3 , while the

right plot shows the shifts in mh induced by the two-loop contributions alone. The choices of MSSM

parameters and the meaning of the different curves are described in the text.

eq. (36) of ref. [66] for the O(g4t g
2
3) corrections we would significantly overestimate their effect on mh

when κ & 2 in our scenario. In turn, the dashed and solid red lines show that, by using eq. (21) of

ref. [67] for the O(g6t ) corrections, we could entirely mischaracterize their effect on the Higgs mass:

between the point where the solid blue line crosses the solid red one and the point where it crosses

the dashed red one, the approximate calculation of the O(g6t ) corrections gives a negative shift in

mh, while the exact calculation gives a positive shift. We remark, however, that the latter finding

depends on the somewhat large value of µ adopted in our scenario: for smaller µ the quality of the

approximation for the O(g6t ) corrections would improve.

We now turn our attention to the effect of the threshold corrections to the quartic Higgs coupling

controlled by the bottom Yukawa coupling. In figure 2 we show the EFT prediction for mh as a

function of tanβ, in a simplified MSSM scenario with all soft SUSY-breaking masses of sfermions and

EW gauginos, as well as the heavy Higgs-doublet mass mA, set equal to MS = 1.5 TeV, while the

gluino mass is set to mg̃ = 2.5 TeV; the trilinear Higgs-stop coupling At is fixed by the maximal mixing

condition At − µ cotβ =
√

6MS , and Ab = Aτ = At; finally, we take µ = −1.5 TeV, to enhance the

effect of the corrections controlled by the bottom Yukawa coupling. Indeed, negative values of the

products µmg̃ and µAt ensure that ĝb – which we extract at the matching scale from the SM coupling

gb via eq. (12) – becomes larger for increasing tanβ, and possibly hits a pole as the denominator on
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Figure 2: Predictions for mh as a function of tanβ for different implementations of the corrections

controlled by the bottom Yukawa coupling. We consider an MSSM scenario with all SUSY masses equal

to MS = 1.5 TeV except mg̃ = 2.5 TeV, and with µ = −1.5 TeV, Xt =
√

6MS and Ab = Aτ = At.

The meaning of the different curves is explained in the text.

the right-hand side of eq. (12) approaches zero. Again, all soft SUSY-breaking parameters as well as

µ are renormalized in the DR scheme at the matching scale Q = MS .

The dotted black line in figure 2, which shows very little dependence on tanβ, represents the

prediction for mh obtained by omitting the one- and two-loop corrections to the quartic Higgs coupling

controlled by the bottom Yukawa coupling altogether; the dashed black line includes the one-loopO(g4b )

contribution to ∆λ1`, which, as discussed in section 2.1, we express in terms of the MSSM coupling

ĝb ; the solid blue line includes also the two-loop O(g4b g
2
3) contributions to ∆λ2`; finally, the solid red

line includes also the two-loop O(g6b , g
4
b g

2
t , g

2
b g

4
t ) contributions to ∆λ2`. The comparison between the

dashed black line and the solid blue and red lines shows that, when expressed in terms of the MSSM

coupling ĝb, the O(g4b ) contribution to ∆λ1` already determines the bulk of the dependence of mh on

tanβ. Indeed, only at rather large tanβ, where the dependence becomes steep, can the O(g4b g
2
3) and

O(g6b , g
4
b g

2
t , g

2
b g

4
t ) contributions to ∆λ2` shift the prediction for mh by more than one GeV. Moreover,

those corrections partially cancel out for our choice of MSSM parameters.

Finally, we recall that the strong dependence of mh on tanβ depicted in figure 2 follows from our

choice of signs for the products µmg̃ and µAt . If both of those products were positive instead of

negative, the threshold correction (∆gsb + ∆gYb ) in eq. (12) would suppress the MSSM coupling ĝb – as

well as the corresponding contributions to the quartic Higgs coupling and, in turn, to mh – at large

values of tanβ. If the two products had opposite signs, the dependence of mh on tanβ would hinge

on whether it is ∆gsb or ∆gYb that prevails in eq. (12).
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3 On the effects of dimension-six operators

In MSSM scenarios with SUSY masses up to a couple of TeV, the effects suppressed by powers of v2/M2
S

– which are not accounted for when the EFT valid below the SUSY scale involves only renormalizable

operators – might still be relevant. In the code SusyHD [67, 69] the uncertainty of the prediction for

the Higgs mass associated to the omission of those effects is obtained by multiplying the contribution

to ∆λ1` from each SUSY particle by a factor 6 (1± 2 v2/M2
i ) , where Mi is that particle’s mass. In a

simplified scenario with tanβ = 20, degenerate SUSY masses Mi ≡MS and “maximal” Xt =
√

6MS ,

the uncertainty arising from missing O(v2/M2
S) effects was thus estimated in ref. [67] to be about

0.6 GeV for MS = 1 TeV, and to decrease rapidly for larger MS . The total theoretical uncertainty of

the EFT prediction for mh, including also the effects of missing higher-order terms in the matching at

the SUSY scale and in the SM part of the calculation, was estimated in ref. [67] to be less than 2 GeV

for MS = 1 TeV, where SusyHD finds mh ≈ 123 GeV. As mentioned in section 1, in that scenario the

predictions for the Higgs mass of various fixed-order (or hybrid) codes differ form each other by several

GeV, and in general lie outside the estimated uncertainty of the EFT result. In this section we aim

to improve the EFT calculation of the Higgs mass at moderate values of MS by including some of the

most important O(v2/M2
S) effects, and to appraise the existing estimate of the uncertainty associated

to the missing ones.

3.1 Outline of the calculation

In the EFT framework, the effects of O(v2/M2
S) in the predictions for physical observables such as

the Higgs mass arise from non-renormalizable, dimension-six effective operators. The most general

dimension-six Lagrangian respecting the field content and symmetries of the SM contains a large num-

ber of operators, see refs. [85–89] for recent reviews. In this section we focus on the two operators that

induce one-loop corrections to m2
h proportional to g2t m

4
t /M

2
S and two-loop corrections proportional

to g2t g
2
3m

4
t /M

2
S , i.e. the terms suppressed by m2

t /M
2
S in what are usually denoted as one-loop O(αt)

and two-loop O(αtαs) corrections to the Higgs mass, where αt ≡ g2t /(4π) and αs ≡ g23/(4π). We write

the Lagrangian of the SM extended by dimension-six operators as

LEFT = LSM − c6 |H|6 +
(
ct |H|2 tRHT ε qL + h.c.

)
, (16)

where qL and tR are third-generation quarks, ε is the antisymmetric tensor (with ε12 = 1) acting on

the SU(2) indices, and, to fix our notation,

LSM ⊃ −m2
H |H|2 −

λ

2
|H|4 +

(
gt tRH

T ε qL + h.c.
)
. (17)

We stress that the choice of considering only the two dimension-six operators shown in eq. (16)

implies that our treatment of the O(v2/M2
S) effects is by no means complete, even when we restrict

6Note that in this paper we normalize the Higgs vev as v = 〈H0〉, with v ≈ 174 GeV.
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the calculation to the “gaugeless” limit g= g′ = 0. Indeed, to account for the terms proportional to

g4t m
4
t /M

2
S , which are part of the two-loop O(α2

t ) corrections to m2
h already included in most fixed-

order codes, we should include in eq. (16) also dimension-six operators that correct the kinetic term

of the Higgs doublet.7 Concerning the resummation of the O(v2/M2
S) logarithmic corrections to m2

h

beyond two loops, even to account only for the effects controlled by the highest powers of g3 – i.e.,

the (n+1)-loop terms proportional to g2t g
2n
3 m4

t /M
2
S lnn(MS/mt) – we should include in eq. (16) a set

of dimension-six operators involving gluons.8 However, it must be kept in mind that the suppression

by a factor m2
t /M

2
S implies that, for those corrections to be relevant, the argument of the resummed

logarithms cannot be too large. As a result, there is no guarantee that the three-loop (and higher)

logarithmic effects of O(v2/M2
S) that we could account for via resummation are more important than

other effects that we are neglecting, such as, e.g., non-logarithmic three-loop corrections unsuppressed

by m2
t /M

2
S . The sure benefits of extending the SM Lagrangian with the two dimension-six operators

of eq. (16) are that i) we include in our calculation of the Higgs mass the O(v2/M2
S) part of one- and

two-loop corrections that are known to be among the most significant ones, and ii) we can exploit our

knowledge of the size of those corrections to estimate the theoretical uncertainty associated to other

O(v2/M2
S) effects that we are neglecting.

The boundary conditions on the Wilson coefficients c6 and ct are obtained by matching the EFT

Lagrangian with the full MSSM Lagrangian at a renormalization scale Q ≈MS . We start by remarking

that those two coefficients receive contributions already at the tree level, controlled by the EW gauge

couplings and generated when the heavy Higgs doublet – whose mass we denote by mA – is integrated

out of the MSSM Lagrangian:

ctree6 = − (g2 + g′ 2)2

64m2
A

sin2 4β , ctreet =
gt (g2 + g′ 2)

8m2
A

sin 4β cotβ . (18)

However, in the limit of large tanβ both contributions scale like 1/ tan2 β. For tanβ & 10 , which

we require to saturate the tree-level prediction for mh and allow for stop masses around one TeV,

the resulting suppression makes the tree-level contributions to c6 and ct numerically comparable with

the one-loop contributions controlled by the EW gauge couplings, which we are not considering in

our study. We will therefore omit the tree-level contributions of eq. (18) altogether in what follows,

and we now move on to summarizing our calculation of the one- and two-loop matching conditions

relevant to the O(αt) and O(αtαs) corrections to the Higgs mass.

7For those operators several definitions are possible. E.g., ref. [90] chose (H†H)�(H†H) and (H†DµH)∗(H†DµH).
8Focusing on the CP-even operators, those are fabcGaµν G

b
νρ G

c
ρµ , |H|2Gaµν Gaµν and tR σ

µν T aHT ε qLG
a
µν .
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Matching of ct : The one-loop matching condition for ct can be derived by equating the expressions

for the pole top quark mass computed below and above the matching scale:

Mpole

t = gt v + c1`t v
3 − Σ1`

t (mt)
EFT,MS = ĝt v̂ − Σ1`

t (mt)
MSSM,DR , (19)

where Σ1`
t (mt) is the one-loop self energy of the top quark computed with the external momentum

p2 = m2
t , and v is the Higgs vev in the EFT, while v̂ =

√
v21 + v22 is the corresponding quantity in the

MSSM. We adopt as usual the DR scheme for the MSSM calculation and the MS scheme for the EFT

calculation (note, however, that c1`t is the same in both schemes). We focus here on the O(g23) and

O(g3t g
2
3) contributions to the matching conditions for gt and ct, respectively, which are necessary to

reproduce the two-loop O(αtαs) corrections to the Higgs mass. Defining ĝt(Q) = gt(Q) (1 + ∆gst ), and

considering that the distinction between v and v̂ does not matter at O(g23), we can extract ∆gst and

c1`t from the terms of O(v) and O(v3), respectively, in an expansion of the stop-gluino contribution to

the top self energy in powers of v. Starting from eq. (B2) of ref. [22] for the unexpanded self energy,

we find

∆gst = − g23
(4π)2

CF

[
1 + ln

m2
g̃

Q2
+ F̃6(xQ) + F̃6(xU) − Xt

mg̃
F̃9(xQ, xU)

]
, (20)

c1`t (Q) =
ĝ3t g

2
3

(4π)2
CF
m2
g̃

{
11 + x2Q (2x2Q − 7)

6 (x2Q − 1)3
− 2 lnxQ

(x2Q − 1)4

+

(
Xt

mg̃
− X2

t

2m2
g̃

)[
x2Q − 5

2 (x2Q − 1)2 (x2U − 1)
− 4 lnxQ

(x2Q − 1)3 (x2Q − x2U)

]

− 2X3
t

m3
g̃

[
1

(x2Q − 1) (x2Q − x2U)2
−

2 (2x4Q − x2Q − x2U) lnxQ

(x2Q − 1)2 (x2Q − x2U)3

]}

+

[
xQ ←→ xU

]
, (21)

where the functions F̃6 and F̃9 can be found in appendix A of ref. [66], we defined xQ = mQ3/mg̃ and

xU = mU3/mg̃ , and the term in the last line of eq. (21) is obtained from the terms in the first three

lines by swapping xQ and xU . We note that the right-hand side of eq. (21) does not depend explicitly

on the scale Q. For the simplified choice mQ3 = mU3 = mg̃ = MS , the O(g3t g
2
3) contribution to the

matching condition for ct reduces to

c1`t (Q) =
ĝ3t g

2
3

(4π)2
CF

12M2
S

(
6 + 6

Xt

MS
− 3

X2
t

M2
S

− 2
X3
t

M3
S

)
. (22)

Matching of c6 : The matching condition for the Wilson coefficient of the operator |H|6 in eq. (16)

can, in analogy with the calculation of the matching condition for the quartic Higgs coupling described

in section 2.1, be obtained from the derivatives with respect to the Higgs field of the sfermion contri-

butions to the effective potential of the MSSM. In particular, the O(g6t ) contribution to the one-loop
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coefficient c1`6 at the matching scale Q reads

c1`6 (Q) =
1

36

∂6∆V 1`, t̃

∂3H†∂3H

∣∣∣∣∣
H=0

, (23)

where ∆V 1`, t̃ is the stop contribution to the Coleman-Weinberg potential of the MSSM

∆V 1`, t̃ =
Nc

(4π)2

∑
i=1,2

m4
t̃i

2

(
ln
m2
t̃i

Q2
− 3

2

)
. (24)

As outlined in section 2.3 of ref. [66], the derivatives of ∆V 1`, t̃ with respect to the Higgs field can

be easily computed after expressing the stop masses m2
t̃i

as functions of the field-dependent top mass

mt = ĝt |H|, leading to

∂6∆V 1`, t̃

∂3H†∂3H

∣∣∣∣∣
H=0

= ĝ6t

[
6V

(3)
ttt + 18m2

t V
(4)
tttt + 9m4

t V
(5)
ttttt + m6

t V
(6)
tttttt

]
mt→0

, (25)

where we used for the derivatives of the one-loop potential shortcuts analogous to those defined in

eq. (5) for the derivatives of the two-loop potential. Explicitly, we find

c1`6 (Q) =
ĝ6t

(4π)2
Nc

mQ3mU3

{
1 + x2t

6xt
− X̃t

2
+ X̃2

t

[
xt (1 + x2t )

2 (1− x2t )2
+

2x3t lnxt
(1− x2t )3

]

− X̃3
t

[
x2t (1 + 10x2t + x4t )

6 (1− x2t )4
+

2x4t (1 + x2t ) lnxt
(1− x2t )5

]}
, (26)

where, following the notation of eq. (2), we defined xt = mQ3/mU3 and X̃t = X2
t /(mQ3mU3). Eq. (26)

agrees with the corresponding results in refs. [91, 92] 9, which employed the method known as “co-

variant derivative expansion” [93–95] to compute the one-loop matching conditions for all bosonic

dimension-six operators induced by integrating the squarks out of the MSSM Lagrangian. In the limit

of degenerate squark masses mQ3 = mU3 = MS , the O(g6t ) contribution to c1`6 reduces to

c1`6 (Q) =
ĝ6t

(4π)2
Nc

M2
S

(
1

3
− X2

t

2M2
S

+
X4
t

6M4
S

− X6
t

60M6
S

)
, (27)

in agreement with the result presented long ago in ref. [53].

The O(g6t g
2
3) contribution to the two-loop coefficient c2`6 at the matching scale Q reads

c2`6 (Q) =
1

36

∂6∆V 2`, t̃

∂3H†∂3H

∣∣∣∣∣
H=0

− δcEFT
6 + δcshift, t̃6 , (28)

where ∆V 2`, t̃ denotes the contribution to the MSSM scalar potential from two-loop diagrams involving

the strong gauge interactions of the stop squarks, given e.g. in eq. (28) of ref. [66]. The derivatives

9In ref. [92] there is a misprint in the last line of eq. (D.4): the logarithmic term should come with a minus sign.
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of ∆V 2`, t̃ are again obtained from eq. (25) after expressing the stop masses and mixing angle as

functions of the field-dependent top mass. As in the case of the two-loop matching condition for the

quartic Higgs coupling discussed in section 2.1, in the derivatives of the two-loop scalar potential we

find terms proportional to ln(m2
t /Q

2), which would diverge in the limit of vanishing top mass. Those

terms, however, cancel against analogous terms in δcEFT
6 , which represents the one-loop contribution

of the dimension-six operators to the Wilson coefficient of |H|6 as computed in the EFT. In particular,

the contribution relevant at O(g6t g
2
3) arises from a box diagram with a top-quark loop, three regular

Yukawa vertices and one dimension-six vertex. We find

δcEFT
6 = − Nc

(4π)2
g3t c

1`
t (Q)

(
4 ln

m2
t

Q2
+

32

3

)
, (29)

where for c1`t (Q) we use the O(g3t g
2
3) contribution to the matching condition given in eq. (21). Finally,

the third term on the right-hand side of eq. (28) arises from the fact that, in analogy with our two-

loop calculation of the quartic Higgs coupling, we choose to express the one-loop stop contribution

to c1`6 in terms of the MS-renormalized top Yukawa coupling of the EFT, i.e. gt, as opposed to the

DR-renormalized coupling of the MSSM, i.e. the ĝt entering eqs. (25)–(27) 10. The resulting O(g6t g
2
3)

shift in c2`6 reads

δcshift, t̃6 = 6 ∆gst c
1`
6 (Q) , (30)

where ∆gst is given in eq. (20) and c1`6 (Q) is given in eq. (26).

The analytic formula for c2`6 (Q) for generic stop and gluino masses is too lengthy to be printed, and

we make it available on request in electronic form. For the simplified choice mQ3 = mU3 = mg̃ = MS ,

we obtain

c2`6 (Q) = − ĝ
6
t g

2
3

(4π)4
CFNc

M2
S

[
2

3
− 4Xt

MS
+
X2
t

M2
S

+
14X3

t

3M3
S

+
X4
t

6M4
S

− 13X5
t

10M5
S

− 19X6
t

180M6
S

+
X7
t

10M7
S

+

(
8

3
+

2Xt

MS
− 4X2

t

M2
S

− 2X3
t

M3
S

+
X4
t

M4
S

+
2X5

t

5M5
S

− X6
t

30M6
S

)
ln
M2
S

Q2

]
.

(31)

We also remark that c2`6 (Q) contains terms enhanced by powers of the ratios between the gluino mass

and the stop masses. In particular, in the simplified scenario where mQ3 = mU3 = MS , Xt = ±
√

6MS

and mg̃ �MS we find

c2`6 (Q) = − ĝ
6
t g

2
3

(4π)4
4CFNc

15M2
S

[
1 − 18 ln

M2
S

Q2
+ 13 ln

m2
g̃

M2
S

− mg̃

MS

(
± 9
√

6 + 31
mg̃

MS

)(
1− ln

m2
g̃

Q2

)

+ O
(
MS

mg̃

)]
, (32)

10On the other hand, in the two-loop corrections the distinction between gt and ĝt amounts to a higher-order effect.
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where the sign of the first term within round brackets corresponds to the sign of Xt. The presence of

power-enhanced terms in the heavy-gluino limit is a well-known consequence of the DR renormalization

of the parameters in the stop sector, as discussed in ref. [22] for the fixed-order calculation of the MSSM

Higgs masses and in ref. [67] for the EFT calculation. Those terms would be removed from the two-

loop part of c6 if we interpreted the soft SUSY-breaking stop masses mQ3 and mU3 and the stop

mixing Xt entering the one-loop part as “on-shell”-renormalized parameters.

Comparison with the fixed-order calculation of m2
h : We now discuss how the inclusion in

the EFT Lagrangian of the dimension-six operators shown in eq. (16) allows us to reproduce the

O(m2
t /M

2
S) terms in the O(αt) and O(αtαs) corrections to m2

h . Expanding the neutral component of

the Higgs doublet as H0 = v + (h + iG)/
√

2 , and exploiting the minimum condition of the scalar

potential to remove the mass parameter m2
H , we can write the Higgs-boson mass as

m2
h = 2λ v2 + 12 c6 v

4 + ∆m2
h , (33)

where ∆m2
h contains the radiative corrections to the tree-level prediction for the Higgs mass, as

computed in the EFT. To avoid the occurrence of large logarithms in these corrections, the couplings

λ and c6 in eq. (33) should be computed at a renormalization scale QEW of the order of the masses

of the particles running in the loops. Focusing on the one- and two-loop terms that account for the

desired O(αt) and O(αtαs) corrections, we find

∆m2
h =

Nc

(4π)2

[
−4 g4t v

2 ln
g2t v

2

Q2
EW

+ 8 gt ct v
2m2

t

(
1− 6 ln

m2
t

Q2
EW

)]

+
CFNc

(4π)4
8 g2t g

2
3m

2
t

(
3 ln2 m2

t

Q2
EW

+ ln
m2
t

Q2
EW

)
, (34)

where the first line is the contribution of one-loop diagrams involving top quarks, the second line is

the contribution of two-loop diagrams involving top quarks and gluons computed in the MS scheme

(the latter was given, e.g., in ref. [96]), and we can typically take QEW ≈ mt. Since for the purpose

of this calculation the coefficient ct is first generated at one loop, in the first line of eq. (34) we have

exploited the relation mt = gt v+ct v
3 and retained 11 only terms linear in ct (note that in those terms,

as well as in those of the second line, the difference between m2
t and g2t v

2 amounts to a higher-order

effect). Collecting all the terms in eq. (33) that involve the coefficients of dimension-six operators, we

thus find for the one- and two-loop O(m2
t /M

2
S) terms(

m2
h

)O(αt)
dim6

= 12 v4 c1`6 (Q) , (35)

11Before the expansion in ct the one-loop contribution to ∆m2
h involving top quarks reads, in our EFT,

(∆m2
h)1`, t =

Nc
(4π)2

[
2m2

t

(
gt + 3 ct v

2)2 (1− 3 ln
m2
t

Q2
EW

)
− 2

m3
t

v

(
gt − 3 ct v

2)(1− ln
m2
t

Q2
EW

)]
.
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(
m2
h

)O(αtαs)
dim6

= 12 v4

[
c2`6 (Q) +

dc6
d lnQ2

∣∣∣∣
g3t ct

ln
Q2

EW

Q2

]
+

Nc

(4π)2
8 gt ct v

2m2
t

(
1− 6 ln

m2
t

Q2
EW

)
,

(36)

where the one-loop beta function of c6 entering the squared brackets in eq. (36) accounts, at the

two-loop level, for the fact that in eq. (33) the coefficient c6 should be computed at the low scale QEW.

Isolating the relevant terms in the RGEs for the dimension-six operators given in refs. [97–100], we

have
dc6

d lnQ2
⊃ − 4Nc

g3t ct
(4π)2

,
dct

d lnQ2
⊃ − 3CF

g23 ct
(4π)2

. (37)

However, for the coefficient ct entering eq. (36) we can use directly the value obtained at the matching

scale, see eq. (21), because its scale dependence amounts to a three-loop effect in m2
h. We thus obtain

(
m2
h

)O(αtαs)
dim6

= 12 v4 c2`6 (Q) +
Nc

(4π)2
8 gt c

1`
t (Q) v2m2

t

(
1− 6 ln

m2
t

Q2

)
. (38)

Expanding in powers of m2
t the analytic results of ref. [22] for the O(αt) and O(αtαs) corrections

to m2
h in the MSSM, we checked that eqs. (35) and (38) do indeed reproduce the one- and two-loop

O(m2
t /M

2
S) terms of those corrections, respectively. To this purpose, it is necessary to take into account

that in ref. [22] the top mass and Yukawa coupling entering the one-loop part of the corrections to m2
h

are assumed to be MSSM parameters renormalized in the DR scheme, whereas, as discussed earlier, we

choose to express c1`6 (Q) in terms of the EFT coupling gt renormalized in the MS scheme. To perform

the comparison with the fixed-order calculation of m2
h we must therefore omit the term δcshift, t̃6 in our

formula for c2`6 (Q), see eqs. (28) and (30).

3.2 Impact of dimension-six operators on the Higgs mass prediction

In this section we illustrate the numerical impact of the dimension-six operators of eq. (16) on the

EFT prediction for the Higgs mass. We modified the code HSSUSY [72], implementing the matching

conditions for c6 and ct at the SUSY scale, their evolution down to the EW scale through the RGEs

of eq. (37)12, and their effects at the EW scale, both on the calculation of m2
h – see eqs. (33) and (34)

– and on the determination of the top Yukawa coupling. In particular, the latter becomes

gt(QEW) =
mt

v
− ct v

2 , (39)

where mt denotes the MS-renormalized top mass, extracted at the scale QEW from Mpole

t with SM

formulae, and we neglect the effects of dimension-six operators that do not contribute at O(g23). We

note that the ct-induced shift on the matching condition for the top Yukawa coupling, eq. (39) above,

affects all corrections controlled by gt to the quartic Higgs coupling – namely, the threshold corrections

12Note that we neglect additional terms in those RGEs, as well as the contributions of the dimension-six operators to

the RGEs of the SM couplings [98], because they do not contribute to the O(αt) and O(αtαs) corrections to m2
h.
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Figure 3: Effects of dimension-six operators on the EFT prediction for the Higgs mass, as a function

of a common stop mass scale MS, for Xt =
√

6MS. In the left plot we take mg̃ = MS, whereas in the

right plot we take mg̃ = 2MS. The meaning of the different curves and the values of the remaining

MSSM parameters are described in the text.

at the SUSY scale and the renormalization-group evolution down to the EW scale – as well as the

top-quark contributions to ∆m2
h given in eq. (34). This results in an “indirect” contribution of a

dimension-six operator to the EFT prediction for m2
h, which combines with the “direct” contributions

controlled by c6 and ct in eqs. (33) and (34).

In figure 3 we show the deviation induced in the EFT prediction for the Higgs mass by the presence

of the dimension-six operators of eq. (16). The SM parameters used as input for HSSUSY are the same

as those listed at the beginning of section 2.2. We consider a simplified MSSM scenario with tanβ = 20

and all soft SUSY-breaking masses of sfermions and EW gauginos, as well as the heavy Higgs-doublet

mass mA and the higgsino mass µ, set equal to a common SUSY scale MS ; the trilinear Higgs-stop

coupling At is fixed by the maximal mixing condition At − µ cotβ =
√

6MS , and Ab = Aτ = At;

finally, the gluino mass is set to mg̃ = MS in the left plot and to mg̃ = 2MS in the right plot. We

vary the common SUSY scale between MS = 500 GeV and MS = 1 TeV, and interpret the soft SUSY-

breaking stop masses and At as DR-renormalized parameters at the matching scale Q = MS . We

remark that, in the considered range of MS , the prediction of HSSUSY for mh (before the introduction

of the dimension-six operators) varies between 120.2 GeV and 123 GeV in the left plot and between

118.7 GeV and 121.9 GeV in the right plot, always several GeV below the value measured at the

LHC. Therefore, rather than depicting fully realistic scenarios, the figure is meant to illustrate the

relative importance of the different effects induced by dimension-six operators, and how those effects
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get suppressed by an increase in the SUSY scale.

The dashed blue lines in the plots of figure 3 represent the inclusion of the sole operator |H|6, with

the coefficient c6 computed at one loop and “frozen” at the matching scale Q = MS . This accounts

for the O(m2
t /M

2
S) part of the O(αt) corrections to the Higgs mass, as given in eq. (35). We see that,

in these scenarios, the corresponding shift in mh is negative and rather modest, decreasing from about

470 MeV for MS = 500 GeV to about 90 MeV for MS = 1 TeV.

The solid red lines in the plots of figure 3 represent instead the inclusion of both of the operators

of eq. (16), with coefficients c6 and ct computed at two loops and one loop, respectively, and evolved

between the scales MS and QEW with the RGEs of eq. (37). This accounts also for the O(m2
t /M

2
S)

part of the O(αtαs) corrections to the Higgs mass, as given in eq. (38). In the scenario shown in

the left plot, corresponding to mg̃ = MS , the two-loop O(m2
t /M

2
S) corrections appear to be rather

small, never reaching even ±100 MeV in the considered range of MS . However, we must take into

account that the difference between the dashed blue and solid red lines results from the combination

of several effects, namely: i) the ct-induced shift in the value of gt used in the whole calculation, see

eq. (39), whose “indirect” effects on mh we show for illustration as the dot-dashed green lines; ii) the

inclusion of the two-loop part of the matching condition for c6 at the SUSY scale; iii) the evolution of

c6 (and of ct) between the SUSY scale and the EW scale; iv) the terms controlled by ct in the radiative

corrections to the Higgs mass at the EW scale, see eq. (34). In the scenario of the left plot, the first

three of these effects shift mh by several hundred MeV each for MS = 500 GeV, but they undergo

significant cancellations, whereas the fourth effect is considerably less important. On the other hand,

in the scenario shown in the right plot, corresponding to mg̃ = 2MS , the “indirect” effects of the shift

in gt are reduced due to a smaller value of ct, and the two-loop contribution to the matching of c6

at the SUSY scale doubles in size and changes sign, with the result that the combined effects of the

two-loop O(m2
t /M

2
S) corrections are much more significant than in the left plot, further decreasing the

prediction for mh by about 600 MeV for MS = 500 GeV and about 130 MeV for MS = 1 TeV.

To assess the relevance of the O(m2
t /M

2
S) logarithmic effects beyond two loops, we removed from

the EFT prediction for the Higgs mass the higher-order terms that are picked up by solving numerically

the RGEs of the Wilson coefficients in eq. (37). In practice, we compared our results for mh with

those obtained by “freezing” ct at the SUSY scale and truncating the evolution of c6 to the first

order in the perturbative expansion – see the terms within square brackets in eq. (36). We found

that these higher-order logarithmic effects are very small in the considered scenarios: even in the one

with mg̃ = MS , characterized by a larger value of ct and hence a stronger scale dependence of both

ct and c6, the resulting shift in mh reaches a maximum of about 20 MeV for MS ≈ 600 GeV, then

decreases for larger MS as the suppression by a factor m2
t /M

2
S begins to prevail over the logarithmic

enhancement.

Finally, the dotted black lines in the plots of figure 3 represent a naive estimate of the overall size

of the O(v2/M2
S) corrections to the Higgs mass, corresponding to the “EFT uncertainty” implemented

in the code SusyHD. Following ref. [67], we obtain that estimate by multiplying the contribution to
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Figure 4: Effects of dimension-six operators on the EFT prediction for the Higgs mass, as a function

of the ratio Xt/MS, for a common stop mass scale MS = 1 TeV. In the left plot we take mg̃ = 1 TeV,

whereas in the right plot we take mg̃ = 2 TeV. The thin vertical lines in the two plots mark the

condition Xt/MS =
√

6 . The meaning of the different curves and the values of the remaining MSSM

parameters are the same as in figure 3, as described in the text.

∆λ1` from each SUSY particle with mass Mi by a factor 13 (1 ± 2 v2/M2
i ). It appears that, even in

the scenario of the right plot where the computed O(m2
t /M

2
S) corrections to the Higgs mass are more

significant, the SusyHD estimate of those effects is larger by about a factor of three. Therefore, even

if the one- and two-loop O(v2/M2
S) corrections to m2

h that are not included in our analysis – such

as, e.g., the two-loop corrections proportional to g4t m
4
t /M

2
S – were as large as the ones that we did

compute and had the same sign, the estimate of the “EFT uncertainty” implemented in SusyHD would

turn out to be sufficiently conservative in the considered scenarios.

It is legitimate to wonder whether the relatively small size of the O(m2
t /M

2
S) corrections found in

the scenarios of figure 3 is just an accident, perhaps related to the choice Xt =
√

6MS made to ensure

a near-maximal prediction for the Higgs mass. To answer this question, in figure 4 we show again

the deviation induced in the EFT prediction for the Higgs mass by the presence of the dimension-six

operators of eq. (16), this time as a function of the ratio Xt/MS . We set MS = 1 TeV, and take all of

the remaining MSSM parameters as in the two scenarios of figure 3. In particular, we take mg̃ = 1 TeV

in the left plot and mg̃ = 2 TeV in the right plot. The thin vertical lines in the two plots of figure 4

13To be conservative, we adjust the signs in the rescaling factors for scalars and EW-inos so that the resulting shifts

in ∆λ1` add up. The upper edge of the uncertainty band, not shown in the plots, can be obtained by reversing all signs.
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mark the condition Xt/MS =
√

6, i.e. they map the right edge of the corresponding plots in figure 3.

The meaning of all other lines is the same as in figure 3.

Figure 4 shows that, for a given value of MS , the impact of the O(m2
t /M

2
S) corrections to the

Higgs mass can indeed be larger than the one found when Xt/MS =
√

6 . This happens in particular

for Xt ≈ 0, or for values of |Xt/MS | larger than
√

6. The figure also shows that for Xt ≈ 0 the SusyHD

estimate of the “EFT uncertainty” falls short of the computed O(m2
t /M

2
S) corrections to the Higgs

mass. Indeed, the main contribution to the SusyHD estimate is the one from stops, which – being

proportional to the corresponding contribution to ∆λ1`, see eq. (2) – is maximized for |Xt/MS | =
√

6

and vanishes for Xt = 0 (the small non-zero value of the “EFT uncertainty” visible in the plots at

Xt = 0 is due to the contributions of EW gauginos and higgsinos). In contrast, eq. (27) shows that

the one-loop stop contribution to c6 does not vanish for Xt = 0, yielding a shift in mh of about

130 MeV. However, we must recall that moving away from the “maximal mixing” condition on Xt

results in a significant decrease in the EFT prediction for the Higgs mass, e.g. for Xt = 0 we would

find mh ≈ 110.8 GeV. In order to recover a prediction for mh within a few GeV from the observed

value, we would need to raise the SUSY scale MS to several TeV, strongly suppressing all effects of

dimension-six operators. Therefore, the SusyHD estimate of the “EFT uncertainty” happens to be

at its most conservative precisely in the region of the MSSM parameter space where the O(m2
t /M

2
S)

effects discussed in this section have a chance to be numerically relevant.

4 Conclusions

If the MSSM is realized in nature, both the measured value of the Higgs mass and the (so-far) negative

results of the searches for superparticles at the LHC suggest some degree of separation between the

SUSY scale MS and the EW scale. In this scenario the MSSM prediction for the Higgs mass is subject

to potentially large logarithmic corrections, which can be resummed to all orders in an EFT approach.

Over the past few years this has stimulated a considerable amount of activity, aimed, on one hand, at

refining the EFT calculation of the MSSM Higgs mass [65–67], and, on the other hand, at combining it

with the fixed-order calculations implemented in public codes for the determination of the MSSM mass

spectrum [64, 73, 75, 76]. Here we contributed to these efforts by providing a complete determination

of the two-loop threshold corrections to the quartic Higgs coupling in the limit of vanishing EW gauge

(and first-two-generation Yukawa) couplings, for generic values of all the relevant SUSY-breaking

parameters. We also studied a class of one- and two-loop corrections to the Higgs mass suppressed by

m2
t /M

2
S , extending the SM Lagrangian with appropriate dimension-six operators. All of our results

are available upon request in electronic form, and they were also implemented in modified versions of

the codes SusyHD [69] and HSSUSY [72].

The numerical impact of the various corrections computed in this paper turns out to be small,

typically below one GeV in regions of the MSSM parameter space where the prediction for the Higgs

mass is within a few GeV from the observed value. We stress that this is in fact a desirable feature of
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the EFT calculation of the Higgs mass: while the logarithmically enhanced corrections are accounted

for by the evolution of the parameters between the matching scale and the EW scale, and high-

precision calculations at the EW scale can be borrowed from the SM, the small impact of the two-

loop corrections computed at the matching scale suggests that the “SUSY uncertainty” associated to

uncomputed higher-order terms should be well under control. In principle, the advantages of an EFT

approach are less clear-cut when there is only a moderate separation between the SUSY scale and

the EW scale, so that the omission of O(v2/M2
S) effects in the calculation of the Higgs mass is not

warranted. However, our study of the dimension-six operators suggests that the naive estimate of the

theoretical uncertainty associated to missing O(v2/M2
S) effects (or “EFT uncertainty”) implemented

in the code SusyHD is indeed sufficiently conservative in the relevant regions of the MSSM parameter

space. The EFT approach also becomes more complicated when some of the new particles are much

lighter than the rest. For example, while our results for the two-loop corrections to the quartic Higgs

coupling can be directly applied to the standard split-SUSY scenario by taking the limit of vanishing

gluino and higgsino masses, scenarios in which both Higgs doublets are light require a dedicated

calculation, in which the effective theory valid below the SUSY scale is a THDM (see, e.g., ref. [71]).

Finally, we recall that the accuracy of the measurement of the Higgs mass at the LHC has already

reached the level of a few hundred MeV – i.e., comparable to the effects of the corrections discussed

in this paper – and will improve further when more data become available. If SUSY shows up at last,

the mass and the couplings of the SM-like Higgs boson will serve as precision observables to constrain

MSSM parameters that might not be directly accessible by experiment, especially in scenarios where

some of the superparticle masses are in the multi-TeV range. To this purpose, the accuracy of the

theoretical predictions will have to match the experimental one, making a full inclusion of two-loop

effects in the Higgs-mass calculation unavoidable. Our results should be regarded as necessary steps

in that direction.
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Appendix

We present here the one-loop scalar contributions to the matching condition for the quartic Higgs

coupling, including all terms controlled by third-family Yukawa couplings:

(4π)2 ∆λ1`, φ = Nc ĝ
2
t

[
ĝ2t +

1

2

(
g22 −

g21
5

)
cos 2β

]
ln
m2
Q3

Q2
+ Nc ĝ

2
t
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5
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3
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ln
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ĝ2τ −

3

5
g21 cos 2β

]
ln
m2
E3

Q2

+
cos2 2β

300

3∑
i=1

[
Nc

(
g41 + 25 g42

)
ln
m2
Qi

Q2
+ 8Nc g

4
1 ln

m2
Ui

Q2
+ 2Nc g

4
1 ln

m2
Di

Q2

+
(
9 g41 + 25 g42

)
ln
m2
Li

Q2
+ 18 g41 ln

m2
Ei

Q2

]

+
1

4800

[
261 g41 + 630 g21g

2
2 + 1325 g42 − 4 cos 4β

(
9 g41 + 90 g21g

2
2 + 175 g42

)
− 9 cos 8β

(
3 g21 + 5 g22

)2 ]
ln
m2
A

Q2
− 3

16

(
3

5
g21 + g22

)2

sin2 4β

+
∑

f=t,b,τ

ĝ2f N
f
c X̃f

{
2 ĝ2f

[
F̃1 (xf )−

X̃f

12
F̃2 (xf )

]

+
cos 2β

4

[
9

10
g21 Qf F̃3 (xf )

+

(
2 g22 T

3
fL

+
3

5
g21 (2T 3

fL
− 3

2
Qf )

)
F̃4 (xf )

]
− cos2 2β

12

(
3

5
g21 + g22

)
F̃5 (xf )

}
, (A1)

where the compact notation used in the sum over the sfermion species f = t, b, τ is described after

eq. (2), and all loop functions F̃i are defined in appendix A of ref. [66]. In addition, Qf is the electric

charge and T 3
fL

is the third component of the weak isospin of the “left” sfermion of each species. We

recall that eq. (A1) assumes that the tree-level part of the matching condition for λ , see eq. (1), be

expressed in terms of the EW gauge couplings of the SM and of an angle β defined as in section 2.2 of

ref. [66]. We also remark that the third-family Yukawa couplings ĝf entering eq. (A1) are the MSSM

ones. As discussed in section 2.1, our choice of using instead the top and tau Yukawa couplings of

the SM (denoted as gt and gτ ) in the one-loop part of the threshold correction to the quartic Higgs

coupling induces shifts in the two-loop part of the correction, see eq. (11). Finally, we note that

eq. (A1) differs from eq. (11) of ref. [67] by the presence of the terms in the second and third lines.
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[74] P. Athron, J.-h. Park, D. Stöckinger, and A. Voigt, FlexibleSUSY—A spectrum generator

generator for supersymmetric models. Comput. Phys. Commun. 190 (2015) 139–172,

arXiv:1406.2319 [hep-ph].

[75] F. Staub and W. Porod, Improved predictions for intermediate and heavy Supersymmetry in

the MSSM and beyond. arXiv:1703.03267 [hep-ph].

[76] H. Bahl and W. Hollik, Precise prediction for the light MSSM Higgs boson mass combining

effective field theory and fixed-order calculations. Eur. Phys. J. C76 (2016) no. 9, 499,

arXiv:1608.01880 [hep-ph].

[77] H. Bahl, T. Hahn, S. Heinemeyer, W. Hollik, S. Passehr, H. Rzehak, and G. Weiglein,

FeynHiggs 2.12.2, http://www.feynhiggs.de/.

[78] N. Bernal, A. Djouadi, and P. Slavich, The MSSM with heavy scalars. JHEP 07 (2007) 016,

arXiv:0705.1496 [hep-ph].

[79] G. F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass

Measurements. Nucl. Phys. B858 (2012) 63–83, arXiv:1108.6077 [hep-ph].

[80] R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections. Phys.

Rev. D49 (1994) 6168–6172.

[81] L. J. Hall, R. Rattazzi, and U. Sarid, The Top quark mass in supersymmetric SO(10)

unification. Phys. Rev. D50 (1994) 7048–7065, arXiv:hep-ph/9306309 [hep-ph].

[82] M. Carena, M. Olechowski, S. Pokorski, and C. E. M. Wagner, Electroweak symmetry breaking

and bottom - top Yukawa unification. Nucl. Phys. B426 (1994) 269–300,

arXiv:hep-ph/9402253 [hep-ph].

[83] M. Carena, D. Garcia, U. Nierste, and C. E. M. Wagner, Effective Lagrangian for the t̄bH+

interaction in the MSSM and charged Higgs phenomenology. Nucl. Phys. B577 (2000) 88–120,

arXiv:hep-ph/9912516 [hep-ph].

[84] Particle Data Group Collaboration, C. Patrignani et al., Review of Particle Physics. Chin.

Phys. C40 (2016) no. 10, 100001.

[85] S. Willenbrock and C. Zhang, Effective Field Theory Beyond the Standard Model. Ann. Rev.

Nucl. Part. Sci. 64 (2014) 83–100, arXiv:1401.0470 [hep-ph].

31

http://gabrlee.com/code/
http://dx.doi.org/10.1103/PhysRevD.92.075032
http://arxiv.org/abs/1508.00576
https://flexiblesusy.hepforge.org/
http://arxiv.org/abs/1609.00371
http://arxiv.org/abs/1609.00371
http://dx.doi.org/10.1016/j.cpc.2014.12.020
http://arxiv.org/abs/1406.2319
http://arxiv.org/abs/1703.03267
http://dx.doi.org/10.1140/epjc/s10052-016-4354-8
http://arxiv.org/abs/1608.01880
http://www.feynhiggs.de/
http://dx.doi.org/10.1088/1126-6708/2007/07/016
http://arxiv.org/abs/0705.1496
http://dx.doi.org/10.1016/j.nuclphysb.2012.01.001
http://arxiv.org/abs/1108.6077
http://dx.doi.org/10.1103/PhysRevD.49.6168
http://dx.doi.org/10.1103/PhysRevD.49.6168
http://dx.doi.org/10.1103/PhysRevD.50.7048
http://arxiv.org/abs/hep-ph/9306309
http://dx.doi.org/10.1016/0550-3213(94)90313-1
http://arxiv.org/abs/hep-ph/9402253
http://dx.doi.org/10.1016/S0550-3213(00)00146-2
http://arxiv.org/abs/hep-ph/9912516
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1146/annurev-nucl-102313-025623
http://dx.doi.org/10.1146/annurev-nucl-102313-025623
http://arxiv.org/abs/1401.0470


[86] E. Masso, An Effective Guide to Beyond the Standard Model Physics. JHEP 10 (2014) 128,

arXiv:1406.6376 [hep-ph].

[87] A. Pomarol, “Higgs Physics,” in Proceedings, 2014 European School of High-Energy Physics

(ESHEP 2014): Garderen, The Netherlands, June 18 - July 01 2014, pp. 59–77. 2016.

arXiv:1412.4410 [hep-ph].

[88] A. Falkowski, Effective field theory approach to LHC Higgs data. Pramana 87 (2016) no. 3, 39,

arXiv:1505.00046 [hep-ph].

[89] A. David and G. Passarino, Through precision straits to next standard model heights. Rev.

Phys. 1 (2016) 13–28, arXiv:1510.00414 [hep-ph].

[90] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, Dimension-Six Terms in the

Standard Model Lagrangian. JHEP 10 (2010) 085, arXiv:1008.4884 [hep-ph].

[91] R. Huo, Effective Field Theory of Integrating out Sfermions in the MSSM: Complete One-Loop

Analysis. arXiv:1509.05942 [hep-ph].

[92] A. Drozd, J. Ellis, J. Quevillon, and T. You, The Universal One-Loop Effective Action. JHEP

03 (2016) 180, arXiv:1512.03003 [hep-ph].

[93] M. K. Gaillard, The Effective One Loop Lagrangian With Derivative Couplings. Nucl. Phys.

B268 (1986) 669–692.

[94] O. Cheyette, Effective Action for the Standard Model With Large Higgs Mass. Nucl. Phys.

B297 (1988) 183–204.

[95] B. Henning, X. Lu, and H. Murayama, How to use the Standard Model effective field theory.

JHEP 01 (2016) 023, arXiv:1412.1837 [hep-ph].

[96] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, and

A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO. JHEP 08

(2012) 098, arXiv:1205.6497 [hep-ph].

[97] J. Elias-Miro, J. R. Espinosa, E. Masso, and A. Pomarol, Higgs windows to new physics

through d=6 operators: constraints and one-loop anomalous dimensions. JHEP 11 (2013) 066,

arXiv:1308.1879 [hep-ph].

[98] E. E. Jenkins, A. V. Manohar, and M. Trott, Renormalization Group Evolution of the

Standard Model Dimension Six Operators I: Formalism and lambda Dependence. JHEP 10

(2013) 087, arXiv:1308.2627 [hep-ph].

[99] E. E. Jenkins, A. V. Manohar, and M. Trott, Renormalization Group Evolution of the

Standard Model Dimension Six Operators II: Yukawa Dependence. JHEP 01 (2014) 035,

arXiv:1310.4838 [hep-ph].

[100] R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott, Renormalization Group Evolution of

the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and

Phenomenology. JHEP 04 (2014) 159, arXiv:1312.2014 [hep-ph].

32

http://dx.doi.org/10.1007/JHEP10(2014)128
http://arxiv.org/abs/1406.6376
http://arxiv.org/abs/1412.4410
http://dx.doi.org/10.1007/s12043-016-1251-5
http://arxiv.org/abs/1505.00046
http://dx.doi.org/10.1016/j.revip.2016.01.001
http://dx.doi.org/10.1016/j.revip.2016.01.001
http://arxiv.org/abs/1510.00414
http://dx.doi.org/10.1007/JHEP10(2010)085
http://arxiv.org/abs/1008.4884
http://arxiv.org/abs/1509.05942
http://dx.doi.org/10.1007/JHEP03(2016)180
http://dx.doi.org/10.1007/JHEP03(2016)180
http://arxiv.org/abs/1512.03003
http://dx.doi.org/10.1016/0550-3213(86)90264-6
http://dx.doi.org/10.1016/0550-3213(86)90264-6
http://dx.doi.org/10.1016/0550-3213(88)90205-2
http://dx.doi.org/10.1016/0550-3213(88)90205-2
http://dx.doi.org/10.1007/JHEP01(2016)023
http://arxiv.org/abs/1412.1837
http://dx.doi.org/10.1007/JHEP08(2012)098
http://dx.doi.org/10.1007/JHEP08(2012)098
http://arxiv.org/abs/1205.6497
http://dx.doi.org/10.1007/JHEP11(2013)066
http://arxiv.org/abs/1308.1879
http://dx.doi.org/10.1007/JHEP10(2013)087
http://dx.doi.org/10.1007/JHEP10(2013)087
http://arxiv.org/abs/1308.2627
http://dx.doi.org/10.1007/JHEP01(2014)035
http://arxiv.org/abs/1310.4838
http://dx.doi.org/10.1007/JHEP04(2014)159
http://arxiv.org/abs/1312.2014

	1 Introduction
	2 Two-loop matching of the quartic Higgs coupling
	2.1 Outline of the calculation
	2.2 Numerical examples

	3 On the effects of dimension-six operators
	3.1 Outline of the calculation
	3.2 Impact of dimension-six operators on the Higgs mass prediction

	4 Conclusions

