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We recover in QCD an amazingly simple relationship between the anomalous dimensions,
resummed through next-to-next-to-leading-logarithmic order, in the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi evolution equations for the first Mellin moments Dq,g(µ

2) of the quark and gluon
fragmentation functions, which correspond to the average hadron multiplicities in jets initiated by
quarks and gluons, respectively. This relationship, which is independent of the number of quark
flavors, dramatically improves previous treatments by allowing for an exact solution of the evolu-
tion equations. So far, such relationships have only been known from supersymmetric QCD, where
CF/CA = 1. This also allows us to extend our knowledge of the ratio D−

g (µ2)/D−

q (µ2) of the minus
components by one order in

√
αs. Exploiting available next-to-next-to-next-to-leading-order infor-

mation on the ratio D+
g (µ2)/D+

q (µ2) of the dominant plus components, we fit the world data of

Dq,g(µ
2) for charged hadrons measured in e+e− annihilation to obtain α

(5)
s (MZ) = 0.1205 +0.016

−0.0020
.

PACS numbers: 12.38.Cy,12.39.St,13.66.Bc,13.87.Fh

In the parton model of QCD [1], the inclusive production of single hadrons involves the notion of fragmentation
functionsDa(x, µ

2), where µ is the factorization scale. At leading order (LO), their values correspond to the probability

for a parton a = q, g produced at short distance ~c/
√

µ2 to produce a jet that contains a hadron carrying the fraction
x of the momentum of parton a. Owing to the factorization theorem, the Da(x, µ

2) functions are universal in the
sense that they do not depend on the process by which parton a is produced. By local parton-hadron duality [2], there
should be a local correspondence between parton and hadron distributions in hard-scattering processes. Yet, Da(x, µ

2)
are genuinely nonperturbative, which implies that their x dependences at some scale µ0 cannot be calculated from the
QCD Lagrangian using perturbation theory, but need to be determined by fitting experimental data. However, once
Da(x, µ

2
0) are assumed to be known, their µ2 dependences are governed by the timelike Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) evolution equations [3, 4]. The anomalous dimensions therein, the a → b splitting functions
Pba(x), are known at next-to-next-to-leading order [5]. The scaling violations, i.e., the µ2 dependences, of Da(x, µ

2)
may be exploited in global data fits to extract the strong-coupling constant αs = g2s/(4π), leading to very competitive
results [6] as for the world average [7].
The DGLAP equations are conveniently solved in Mellin space, where Da(N,µ2) =

∫

dxxN−1Da(x, µ
2) with

N = 1, 2, . . . and similarly for Pba(x), because convolutions are converted to products. We have

µ2d

dµ2

(

Ds(N,µ2)
Dg(N,µ2)

)

=

(

Pqq(N) Pgq(N)
Pqg(N) Pgg(N)

)(

Ds(N,µ2)
Dg(N,µ2)

)

, (1)

whereDs = (1/2nf)
∑nf

q=1(Dq+Dq̄), with nf being the number of active quark flavors, is the quark singlet component.
The quark non-singlet component, which is irrelevant for the following, obeys a decoupled DGLAP equation. After
solving the DGLAP equations in Mellin space, one returns to x space via the inverse Mellin transform, analytically
continuing N to complex values.
The first Mellin moment Da(µ

2) ≡ Da(1, µ
2) is of particular interest in its own right because, up to corrections of

orders beyond our consideration here, it corresponds to the average hadron multiplicity 〈nh〉a of jets initiated by parton
a. There exists a wealth of experimental data on 〈nh〉q, 〈nh〉g, and their ratio r = 〈nh〉g/〈nh〉q for charged hadrons h
taken in e+e− annihilation at various center-of-mass energies

√
s, ranging from 10 to 209 GeV (for a comprehensive

compilation of experimental publications, see Ref. [8]), which allows for a high-precision determination of αs [8, 9]. In
fact, besides αs and ignoring power corrections for the time being, there are just two more fit parameters, Dq(µ

2
0) and

Dg(µ
2
0) at some reference scale µ0, which have a very clear and simple physical interpretation, while no input from

external sources, e.g., parton density functions, is required. This provides a strong motivation for us to deepen our
theoretical understanding of Da within the QCD formalism as much as possible, which is actually limiting the error
in the value of αs thus extracted. The study of Da is a topic of old vintage; the LO value of r, C−1 = CA/CF with
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color factors CF = 4/3 and CA = 3, was found four decades ago [10]. Subsequent analyses [9, 11] were performed
using the generating-functional approach in the modified leading-logarithmic approximation (MLLA) [12].
The description of the µ2 dependences of Da at fixed order in perturbation theory are spoiled by the fact that

Pba ≡ Pba(1) are ill defined and require resummation, which was performed for the leading logarithms (LL) [13], the
next-to-leading logarithms (NLL) [14], and the next-to-next-to-leading logarithms (NNLL) [15]. In Ref. [8], Eq. (1)
is first diagonalized for arbitrary value of N at LO, and then the NNLL resummation is incorporated. Unfortunately,
this two-step procedure, which has been standard practice in the literature so far [16, 17], fails to fully exploit the
available knowledge on the higher-order corrections and yields an approximation, the uncertainty of which is difficult
to estimate reliably.
In this Letter, we expose a relationship between the NNLL-resummed expressions for Pba, which has gone unnoticed

so far. Its existence in QCD is quite remarkable and interesting in its own right, because a similar relationship is
familiar from supersymmetric (SUSY) QCD, where C = 1 [4, 12, 15, 18]. Owing to this new relationship, the DGLAP
equations may be solved exactly, which greatly consolidates the theoretical foundation for the determination of αs

and thus reduces its theoretical uncertainty.
Our starting point is Eq. (1) for N = 1 with NNLL resummation. We have [15]

Paa = γ0(δag +K(1)
a γ0 +K(2)

a γ2
0) + O(γ4

0) (a = q, g),

Pgq = C(Pgg +A) + O(γ4
0),

Pqg = C−1(Pqq +A) + O(γ4
0), (2)

where γ0 =
√
2CAas, with as = αs/(4π) being the couplant, δab is the Kronecker symbol, and

K(1)
q =

2

3
Cϕ, K(2)

q = −1

6
Cϕ[17 − 2ϕ(1− 2C)],

K(1)
g = − 1

12
[11 + 2ϕ(1 + 6C)], K(2)

g =
1193

288
− 2ζ(2)− 5ϕ

72
(7 − 38C) +

ϕ2

72
(1− 2C)(1 − 18C),

A = K(1)
q γ2

0 , ϕ =
2nfTR

CA
, TR =

1

2
. (3)

Eq. (2) is written in a form that allows us to glean a novel relationship:

C−1Pgq − Pgg = CPqg − Pqq, (4)

which is independent of nf . Eq. (4) generalizes the case of SUSY QCD [4, 12, 15, 18] from C = 1 to C = 9/4. The
corresponding relation in N = 1 SUSY [4] is known to be violated beyond LO [5]. It will be interesting to see if
Eq. (4) also holds beyond O(γ3

0).
We now solve Eq. (1) exactly by exploiting Eq. (4). To this end, we diagonalize the NNLL DGLAP evolution kernel

as

U−1

(

Pqq Pgq

Pqg Pgg

)

U =

(

P−− 0
0 P++

)

, (5)

by means of the matrices [16]

U =

(

1 −1
1−α
ε

α
ε

)

, U−1 =

(

α ε
α− 1 ε

)

, (6)

where

α =
Pqq − P++

P−− − P++
, ε =

Pgq

P−− − P++
, (7)

P±± =
1

2

[

Pqq + Pgg ±
√

(Pqq − Pgg)2 + 4PqgPgq

]

. (8)

Eq. (1) thus assumes the form

µ2d

dµ2

(

D−

D+

)

=

[(

P−− 0
0 P++

)

− U−1µ
2d

dµ2
U

](

D−

D+

)

, (9)
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where the second term contained within the square brackets stems from the commutator of µ2d/dµ2 and U , and

(

D−

D+

)

= U−1

(

Ds

Dg

)

=

(

(α− 1)Ds + εDg

αDs + εDg

)

. (10)

Owing to Eq. (4), the square root in Eq. (8) disappears, and we have

P−− = −A, P++ = Pqq + Pgg +A, (11)

α =
Pgg +A

Pqq + Pgg + 2A
, ε = −Cα . (12)

Inserting the second equality of Eq. (12) in Eq. (6), we have

U−1µ
2d

dµ2
U = − 1

α

µ2d

dµ2
α

(

1 0
1 0

)

. (13)

Using the QCD β function,

µ2d

dµ2
as = β(as) = −β0a

2
s − β1a

3
s + O(a4s), (14)

with one- and two-loop coefficients

β0 =
CA

3
(11− 2ϕ), β1 =

2C2
A

3
[17− ϕ(5 + 3C)], (15)

we may convert the differential operator as

µ2d

dµ2
=

CA

γ0
β

(

γ2
0

2CA

)

d

dγ0
. (16)

Inserting Eqs. (2) and (3) in the first equality of Eq. (12), we have α = 1− 4Cϕγ0/3 + O(γ2
0), so that

1

α

µ2d

dµ2
α =

Cϕβ0

3CA
γ3
0 + O(γ4

0). (17)

Inserting Eqs. (11), (13), and (17) in Eq. (9), we may cast Eq. (1) in its final form,

µ2d

dµ2

(

D−

D+

)

=

(

Cϕβ0

3CA
γ3
0 −A 0

Cϕβ0

3CA
γ3
0 Pgg + Pqq +A

)

(

D−

D+

)

. (18)

The initial conditions are given by Eq. (10) for µ = µ0 in terms of the three constants αs(µ
2
0), Ds(µ

2
0), and Dg(µ

2
0).

The solution of Eq. (18) is greatly facilitated by the fact that one entry of the matrix on its right-hand side is zero.
We may thus obtain D− as the general solution of a homogeneous differential equation,

D−(µ
2)

D−(µ2
0)

= exp

[

∫ µ2

µ2
0

dµ̄2

µ̄2

(

Cϕβ0

3CA
γ3
0 −A

)

]

=
T−(γ0(µ

2))

T−(γ0(µ2
0))

, (19)

where, with the help of Eq. (16),

T−(γ0) = exp

[

4Cϕ

3

∫

dγ0

(

2CA

β0γ0
− 1

)]

= γ
d
−

0 exp

(

−4

3
Cϕγ0

)

, (20)

with d− = 8CACϕ/(3β0). The small-x correction ∝ γ0 in Eq. (20) originates from the extra term in Eq. (9) and
represents a novel feature of our approach. In Ref. [8] and analogous analyses for parton distribution functions [19],
the minus components do not participate in the resummation.
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We are then left with an inhomogeneous differential equation for D+. The general solution D̃+ of its homogeneous
part reads

D̃+(µ
2)

D̃+(µ2
0)

= exp

[

∫ µ2

µ2
0

dµ̄2

µ̄2
γ0

(

1 +K
(1)
+ γ0 +K

(2)
+ γ2

0

)

]

=
T+(γ0(µ

2))

T+(γ0(µ2
0))

, (21)

where

K
(1)
+ = 2K(1)

q +K(1)
g = − 1

12
[11 + 2ϕ(1− 2C)],

K
(2)
+ = K(2)

q +K(2)
g =

1193

288
− 2ζ(2)− 7ϕ

72
(5 + 2C) +

ϕ2

72
(1− 2C)(1 + 6C),

T+(γ0) = exp

[

−4CA

β0

∫

dγ0
γ2
0

1 +K
(1)
+ γ0 +K

(2)
+ γ2

0

1 + b1γ2
0

]

= γ
d+

0 exp

[

4CA

β0γ0
− 4CA

β0

(

K
(2)
+ − b1

)

γ0

]

, (22)

with d+ = −4CAK
(1)
+ /β0 and b1 = β1/(2CAβ0). Adding to D̃+ a special solution of the inhomogeneous differential

equation for D+, we find its general solution to be

D+(µ
2) =

[

D+(µ
2
0)

T+(γ0(µ2
0))

− 4

3
Cϕ

D−(µ
2
0)

T−(γ0(µ2
0))

∫ γ0(µ
2)

γ0(µ2
0
)

dγ0
1 + b1γ2

0

T−(γ0)

T+(γ0)

]

T+(γ0(µ
2)). (23)

The final expressions for D− and D+ in Eqs. (19) and (23), respectively, are fully renormalization group improved
because all µ dependence resides in γ0.

The NLL approximation is recovered by omitting the exponential factor multiplying γ
d
−

0 in Eq. (20), putting

K
(2)
+ = b1 = 0 in Eq. (22), and omitting the second term within the square brackets in Eq. (23). The LL approximation

then emerges from the NLL one by also putting d− = d+ = 0 in Eqs. (20) and (22), respectively. Hence follows the
large-µ2 asymptotic behavior D−/D+ ∝ exp{−[(8CA/β0) ln(µ

2/Λ2)]1/2}, where Λ is the asymptotic scale parameter,
which implies a strong fading of D−.
Using Eqs. (6) and (10), we now return to the parton basis, where it is useful to decompose Da = D+

a +D−
a into

the large and small components D±
a proportional to D±, respectively. Defining r± = D±

g /D
±
s and using Eqs. (2), (3),

and (12), we then have D±
s = ∓D± and

r+ = −α

ǫ
=

1

C
+ O(γ2

0), (24)

r− =
1− α

ǫ
= −4

3
ϕγ0 +

ϕ

18
[29− 2ϕ(5 − 2C)]γ2

0 + O(γ3
0).

Recalling that 〈nh〉q = Ds and 〈nh〉g = Dg, we thus have

r =
r+ + r−D

−
s /D

+
s

1 +D−
s /D

+
s

. (25)

Eq. (24) differs from Eqs. (53) and (54) in Ref. [8],

r̄+ =
1

C

{

1− γ0
3
[1 + φ(1− 2C)] + O(γ2

0)
}

,

r̄− = −2

3
φγ0 + O(γ2

0). (26)

On the other hand, r̄+ in Eq. (26) agrees with the result for r obtained in Ref. [20] in the approximation of putting
D−

a = 0 and extended to through O(γ3
0) in Refs. [21, 22], which is in line with the reasoning in Chapter 7 of Ref. [12].
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By the same token, we may accommodate the higher-order corrections [21, 22] by including within the curly brackets
in Eq. (26) the terms c̄2γ

2
0 + c̄3γ

3
0 , where

c̄2 =
179

72
− 20

9
ζ(2)− 355

1944
nf +

43

26244
n2
f ,

c̄3 = −5213

1152
− 8

3
ζ(2) +

40

9
ζ(3) +

(

− 9761

31104
+

14

27
ζ(2)

)

nf +
15595

314928
n2
f − 4799

17006112
n3
f . (27)

For nf = 5,

r̄+ = 2.250− 0.889 γ0 − 4.593 γ2
0 + 0.740 γ3

0 + O(γ4
0). (28)

The difference between r± and r̄± is an artifact of the different diagonalization procedures adopted here and in Ref. [8].
In fact, taking the limit N → 1 in Da(N,µ2) and diagonalizing the DGLAP equations are noncommuting operations.

Consequently, our components Da differ from those in Ref. [8], Da with r̄± = D
±

g /D
±

s , by terms of O(γ0). Specifically,
we have

D±

a =
∑

b=s,g

MabD
±

b , (29)

where

Mss = 1− 4

3
Cϕγ0, Msg = −C

3
γ0[1 + ϕ(1 − 6C)],

Mgs = −2

3
ϕγ0, Mgg = 1+

2

3
Cϕγ0. (30)

In fact, this transformation converts r̄± into r± and, by exploiting Eq. (27), allows us to extend our result for r+
through O(γ3

0); the counterpart of Eq. (28) reads

r+ = 2.250− 4.505 γ2
0 − 0.586 γ3

0 + O(γ4
0). (31)

Note that our advanced procedure to solve Eq. (1) allows us to determine r− through O(γ2
0 ), while r̄− from Ref. [8] is

limited to O(γ0). We denote the approximation of using Eq. (31) on top of Eqs. (24) and (25) as NNNLOapprox+NNLL.
Power-like corrections were found to be indispensable for a realistic description of the experimental data of 〈nh〉q,

〈nh〉g, and r [22, 23]. Following Refs. [22, 23], we include them by multiplying r+ in Eq. (31) with the factor

1 + (1 +
nf

27
)
µcr

µ
γ0, (32)

where µcr is a critical scale parameter to be fitted. In the MLLA approach, µcr = KcrΛQCD usually serves as the
initial point of the evolution, which is implemented with the basic variables Y = ln(µ/µ0) and λ = lnKcr. The most
frequent choice, λ = 0, corresponds to the limiting-spectrum approximation [2]. Other recent choices include λ = 1.4
and λ = 2.0 [9]. Since logarithmic and powerlike corrections become comparable at small values of µ2, a judicious
choice of µ is important to prevent strong correlations. Motivated by Refs. [10, 24, 25], we choose µ2 = R2Q2+4M2

eff,
where R is the jet radius, Q2 =

√
s, and Meff is the effective gluon mass. We adopt R = 0.3 as a typical value from

Ref. [24] and Meff(Q
2) = m2/[1 + (Q2/M2)γ ] with m = 0.375 GeV, M = 0.557 GeV, and γ = 1.06 from Ref. [25].

We are now in a position to perform a global fit to the available measurements of 〈nh〉q and 〈nh〉g for changed
hadrons h in e+e− annihilation, which were carefully compiled in Ref. [8]. They include 58 and 35 data points,
respectively, and come from CLASSE CESR with

√
s = 10 GeV, SLAC PEP with 29 GeV, DESY PETRA with

12–47 GeV, KEK TRISTAN with 50–61 GeV, SLAC SLC with 91 GeV, CERN LEP1 with 91 GeV, and CERN
LEP2 with 130–209 GeV. The jet algorithms adopted in these experimental analyses are mutually compatible [26].
As in Ref. [8], we choose the reference scale to be Q0 = 50 GeV, which roughly corresponds to the geometric mean
of the smallest and largest of the occurring

√
s values, and put nf = 5 throughout our analysis. As may be seen

in Fig. 1, our NNNLOapprox + NNLL fit yields an excellent description of the experimental data included in it, with
a χ2 per degree of freedom of χ2

dof = 1.32. The fit parameters are determined to be 〈nh(Q
2
0)〉q = 16.38 ± 0.05,

〈nh(Q
2
0)〉g = 23.87± 0.07, Kcr = 7.09+1.71

−1.21 , and

α(5)
s (M2

Z) = 0.1205
+0.0016

−0.0020
, (33)
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FIG. 1: Comparison of the experimental data of 〈nh(µ
2)〉q (lower curves) and 〈nh(µ

2)〉g (upper curves) with the NNNLOapprox+
NNLL fit to them.

which nicely agrees with the present world average, α
(5)
s (M2

Z) = 0.1181 ± 0.0011 [7]. Our fit results turn out to be

very insensitive to the precise choice of Q0. The power corrections turn out to be sizeable, with λ = 1.96+0.21
−0.19 , in

agreement with Ref. [9].
In Fig. 2, we compare our NNNLOapprox +NNLL prediction for r with the experimental data compiled in Ref. [8],

which did not enter our fit. They were collected at CESR with
√
s = 10 GeV, DESY DORIS II with 10 GeV, PEP

with 29 GeV, PETRA with 22–35 GeV, LEP1 with 91 GeV, LEP2 with 130–209 GeV, and FNAL Tevatron with
1.8 TeV. The agreement is very satisfactory and reassures us of the validity of our analysis.
In summary, we unraveled an unexpected, SUSY-like relationship between the NNLL-resummed first Mellin mo-

ments of the timelike DGLAP splitting functions in real QCD, Eq. (4), which is nf independent, and exploited it to
find an exact solution of the DGLAP evolution equation, Eq. (1), bypassing the approximate two-step diagonalization
procedure used so far in the literature. This also allowed us push our knowledge of r− by one order of γ0. Also
incorporating the appropriately transformed O(γ2

0 ) and O(γ3
0) corrections to r+ as well as power-like corrections, we

performed a global fit to the world data of charged-hadron multiplicities in quark and gluon jets produced by e+e−

annihilation and so extracted the competitive new value of α
(5)
s (M2

Z) in Eq. (33), which nicely agrees with the present
world average. Our analysis only relies on first principles of QCD and avoids additional model assumptions, including
those inherent to the MLLA. On top of the physical advantages mentioned above, Eq. (4) renders the otherwise
complicated formalism aesthetically pleasing and prompts one to speculate if there is some unknown higher reason
for it.
We thank P. Bolzoni for collaboration at the initial stage of this research and O. L. Veretin for assistance in

the numerical analysis. This research was supported in part by the German Research Foundation under Grant No.
KN 365/5-3, by the National Science Foundation under Grant No. NSF PHY-1125915, by the Russian Foundation
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