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Abstract: We give a description of double parton scattering with measured transverse

momenta in the final state, extending the formalism for factorisation and resummation

developed by Collins, Soper and Sterman for the production of colourless particles. After a

detailed analysis of their colour structure, we derive and solve evolution equations in rapid-

ity and renormalisation scale for the relevant soft factors and double parton distributions.

We show how in the perturbative regime, transverse momentum dependent double parton

distributions can be expressed in terms of simpler nonperturbative quantities and compute

several of the corresponding perturbative kernels at one-loop accuracy. We then show how

the coherent sum of single and double parton scattering can be simplified for perturbatively

large transverse momenta, and we discuss to which order resummation can be performed

with presently available results. As an auxiliary result, we derive a simple form for the

square root factor in the Collins construction of transverse momentum dependent parton

distributions.
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1 Introduction

Proton-proton collisions at high energies are sensitive to regions of phase space where par-

tons have small momentum fractions. This implies high parton densities and thus increases

the importance of events in which two or more partons in each proton take part in a hard

interaction. The most frequent and best studied case of such multiple hard interactions

is double parton scattering (DPS). This mechanism can be especially prominent in cross

sections depending on transverse momenta in the final state. Its theoretical description

involves double parton distributions (DPDs), which quantify the joint distribution of two

partons inside a proton and contain a wealth of information on correlations between the

proton constituents.

Experimental measurements of double parton scattering contributions to different final

states dates back to experiments at the ISR [1] and SPS [2]. A wide range of DPS processes

has been investigated at the Tevatron [3–11] and in run I of the LHC [12–21]. An overview

of most of these measurements can be found in figure 14 of [19]. The importance of such

processes will be even more pronounced at the full LHC energy (first results from run II

are reported in [22]) and at future hadron colliders.
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Theoretical and phenomenological analyses of DPS have a long history; an overview

of early work can be found in [23]. Following the seminal papers [24] and [25], significant

effort has been invested in recent years to achieve a systematic theory description of DPS

[26–29], aiming at the same level of rigour as has been achieved for the familiar single

parton scattering (SPS) mechanism. A formalism for combining the single and double

parton scattering contributions to the physical cross section without double counting was

recently presented in [30] – a different scheme was proposed earlier [31]. However, there

remain several gaps in our understanding, and the present paper aims at closing some of

them.

A crucial aspect for understanding DPS are correlations between the two partons

that are probed in the reaction. Correlations in spin and in colour have been classified

systematically [27, 28, 32] and will play an important role in the present work. Their

size is poorly known, but can be limited by positivity bounds [33, 34], which have similar

theoretical status as positivity constraints on single parton distribution functions (PDFs).

Quark model calculations [35–42] typically yield strong correlations in the valence region,

but for the region of small momentum fractions x there is little guidance from models so far.

The decrease of spin correlations under evolution to higher scales has been studied in [43],

and their influence on final-state distributions has been investigated for several processes

[28, 44, 45]. The generation of parton correlations by the splitting of a single parton into

two has been investigated by several groups [27, 46–50]; a simplified implementation into

the event generator Pythia is described in [51, 52].

At the level of integrated cross sections, double parton scattering is suppressed by

Λ2/Q2 compared to single parton scattering, where Q denotes the scale of the hard scat-

tering and Λ the scale of nonperturbative interactions [26, 53]. However, there are situations

where DPS can nevertheless compete with SPS, for instance when the latter is suppressed

by higher powers in coupling constants. A prominent example is same sign W pair pro-

duction [54–56], which is an important search channel for physics beyond the Standard

Model. A generic mechanism enhancing DPS over SPS in processes involving small par-

ton momentum fractions x is the fact that with decreasing x the density of two partons

increases roughly like the square of the single parton density.

If the transverse momenta qT of the particles produced by a hard scattering are small

compared with Q, then DPS has the same power behaviour in 1/Q as SPS [26, 53]. If qT
is of order Λ, then one needs information about the nonperturbative “intrinsic” transverse

momentum of partons. However, in the region Λ ≪ qT ≪ Q one can reliably compute

the qT spectrum in perturbation theory, provided that one resums the large logarithms of

Q/qT that arise in this regime. This resummation is intricately related with evolution in the

rapidity of emitted gluons. For SPS processes producing colourless particles, like Drell-Yan

lepton pairs or a Higgs boson, a powerful theoretical formalism has long been established

[57, 58] and been pushed to high perturbative accuracy, see e.g. [59] and references therein.

Formulations using soft-collinear effective theory (SCET) have been given in [60–62]. A

precise theory for DPS at small measured qT is of obvious interest. In [51, 52] the DDT

formalism [63] has been extended to DPS processes. The analysis in [26, 27] was based

on transverse-momentum dependent (TMD) factorisation in the original formulation of
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Collins and Soper [64], which also underlies the CSS resummation formalism [57]. Since

then, an improved version of TMD factorisation for SPS processes has been formulated by

Collins [65]; a brief review is given in [66, 67] and the differences between the old and new

versions are described in [68].

The aim of the present paper is twofold. Firstly, we complete the formulation of DPS

in [26, 27] and adapt it to the new factorisation formalism of [65], providing a system-

atic analysis of soft-gluon effects, rapidity evolution and colour correlations. Secondly,

we show how the theory simplifies for intermediate transverse momenta Λ ≪ qT ≪ Q,

where transverse-momentum dependent DPDs can be matched on transverse-momentum

integrated distributions, with the transverse-momentum dependence being computed in

perturbation theory. This significantly increases the predictive power of the theoretical

framework. Some of our main results have been reported in [69, 70].

TMD factorisation in proton-proton collisions can be established to all orders in per-

turbation theory for the production of colourless particles such as a Higgs boson or elec-

troweak gauge bosons [65]. Because of serious complications from soft gluon exchange, it is

not known if and how the formalism could be extended to hard-scattering processes with

coloured particles in the final state, such as jets or heavy quarks [71]. We will therefore

limit our discussion of TMD factorisation in DPS to colourless final states as well. Impor-

tant channels are the production of two electroweak gauge bosons (often called the double

Drell-Yan process), of a Higgs boson and an electroweak gauge boson, or of a Higgs boson

pair. Instead of a heavy boson, one may also consider a photon pair of large invariant

mass.

This paper is organised as follows. In section 2 we recall some of the concepts and

results for TMD factorisation in single parton scattering. In section 3 we discuss properties

of collinear matrix elements and of the soft factor, which are the ingredients in the definition

of transverse-momentum dependent and transverse-momentum integrated DPDs, which

we will call DTMDs and DPDFs, respectively. Our definition generalises the combination

of collinear and soft factors in [65] to double parton distributions, and it provides an

alternative form of this construction for single parton TMDs. The colour structure of

DPS is significantly more complicated than the one of SPS, and we show in section 4

how this structure can be handled in a general and efficient way. We find significant

simplifications for transverse-momentum integrated quantities. In section 5 we present the

general factorisation formula for DPS at low qT , its combination with SPS, as well as the

evolution equations for DTMDs and DPDFs and their general solution. Section 6 is devoted

to the region Λ ≪ qT ≪ Q. We establish the matching of DTMDs onto different types of

transverse-momentum integrated distributions. The multi-scale nature of the problem leads

to different matching regimes, which we combine in a consistent way using a subtraction

formalism. In section 7 we give one-loop expressions for perturbative quantities that appear

in the DPS cross section, extending previous work in the literature and discussing several

technical aspects of the computation. We summarise our main results in section 8. A

variety of technical details and results are given in the appendices.
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2 Reminder: single TMD factorisation

To begin with, let us recall a few results from TMD factorisation, as laid out in [65].

The cross section depends on TMDs that describe the distribution of partons inside the

proton in both longitudinal and transverse momentum. Throughout this work, we consider

unpolarised protons. The factorisation formula for Drell-Yan production then reads

dσ

dx dx̄ d2q
=
∑

q

σ̂qq̄(Q,µ)

∫
d2z

(2π)2
e−iqzWqq̄(x, x̄,z;µ) + {q ↔ q̄} , (2.1)

where σ̂qq̄ is the cross section for qq̄ annihilation into an electroweak gauge boson and

Wqq̄(x, x̄,z;µ) = fq(x,z;µ, ζ) fq̄(x̄,z;µ, ζ̄) (2.2)

is the product of a quark and an antiquark TMD. The invariant mass of the boson is Q and

its transverse momentum is q. The TMDs depend on longitudinal momentum fractions

(x or x̄) that are fixed by final-state kinematics, and on a transverse distance z that is

Fourier conjugate to the transverse parton momentum (and often denoted by b in the

literature). They also depend on an ultraviolet renormalisation scale µ and on a rapidity

parameter (ζ or ζ̄) as we will review later. Notice that the rapidity parameter dependence

cancels in Wqq̄. The parton-level cross section σ̂qq̄ and the overall cross section may be

taken differential in additional variables if more than one particle is produced in the hard

scattering. An example is the angular distribution of the leptons into which the electroweak

gauge boson decays in Drell-Yan production. In this case one must include the TMDs for

transverse quark and antiquark polarisation in (2.2).

The dependence of a TMD on the renormalisation scale is given by [65, 66]

∂

∂ log µ
fa(x,z;µ, ζ) = γF,a(µ, ζ) fa(x,z;µ, ζ) , (2.3)

where a = q, q̄, g labels the parton type. The rapidity dependence of the anomalous di-

mension γF,a is given by

∂

∂ log ζ
γF,a(µ, ζ) = − 1

2
γK,a(µ) , (2.4)

where γK,a is called the cusp anomalous dimension. It depends on µ via αs(µ), i.e. γK,a(µ) =

γK,a

(
αs(µ)

)
. From (2.4) one readily finds

γF,a(µ, ζ) = γa(µ)− γK,a(µ) log

√
ζ

µ
(2.5)

with

γa(µ) = γF,a(µ, µ
2) . (2.6)

The evolution of TMDs with the rapidity scale ζ is governed by the Collins-Soper equation1

∂

∂ log ζ
fa(x,z;µ, ζ) =

1

2
Ka(z;µ) fa(x,z;µ, ζ) , (2.7)

1We generally follow the notation of [65, 68] in the present paper. We do however not use a tilde to

denote quantities in transverse position space, thus writing f and K instead of f̃ and K̃.
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whose kernel satisfies

∂

∂ log µ
Ka(z;µ) = − γK,a(µ) . (2.8)

If the transverse boson momentum q is large compared with the scale Λ of non-perturbative

interactions, one can use a short-distance expansion that connects a TMD fa(x,z) at small

z with a conventional collinear PDF fb(x) according to

fa(x,z;µ, ζ) =
∑

b

Cab(x
′,z;µ, ζ)⊗

x
fb(x

′;µ) , (2.9)

with the convolution product defined by

C(x′)⊗
x
f(x′) =

∫ 1

x

dx′

x′
C(x′) f

(
x

x′

)
. (2.10)

The expansion (2.9) has power corrections in the parameter Λ|z|. Combining it with the

solution of the evolution equations in µ and ζ, one obtains

fa(x,z;µ, ζ) = exp

{∫ µ

µ0

dµ′

µ′

[
γa(µ

′)− γK,a(µ
′) log

√
ζ

µ′

]
+Ka(z;µ0) log

√
ζ

µ0

}

×
∑

b

Cab(x
′,z;µ0, µ

2
0)⊗

x
fb(x

′;µ0) . (2.11)

The short-distance coefficient C and the Collins-Soper kernel K should be evaluated with

a scale choice that avoids large logarithms, so that they can be reliably calculated in fixed-

order perturbation theory. In the non-perturbative region of z one needs a model ansatz

for fa(x,z). The so-called b∗ prescription [57, 72] can be used to smoothly interpolate

between such an ansatz and the perturbative result (2.11).

In the following sections, we will show how these results can be extended to the case

of double parton scattering. There are several aspects that make this extension far from

trivial. One is the larger number of coloured particles involved in the process, which leads

to a non-trivial colour structure of DTMDs and DPDFs. As a consequence, even DPDFs

depend on the rapidity parameter ζ, unlike PDFs for a single parton [27, 28]. A second

aspect is that DPS involves several transverse distances, which makes the analogue of the

short-distance expansion (2.9) more complicated.

3 Defining double parton distributions

As reviewed in [29], factorisation of DPS processes involves separating the leading graphs

for the cross sections into subgraphs that are hard, soft, or collinear to one of the two in-

coming protons. The treatment of the soft subgraph is intimately related with the rapidity

parameter ζ mentioned in the previous subsection.

There are in fact different alternatives for such a treatment. The analysis of the double

Drell-Yan process in [27] followed the original procedure for TMD factorisation by Collins

and Soper [64] and did not work out all relevant aspects of the problem. In the present
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paper, we perform a systematic analysis of DPS in the factorisation framework of Collins

[65]. We explicitly show how the soft factors relevant for the cross section can be entirely

absorbed into DTMDs or DPDFs, and we derive the resulting evolution equations in ζ, as

well as the ones in µ. Other schemes to handle soft factors and rapidity dependence will

briefly be discussed in section 8.

The starting point of our discussion is an intermediate expression of the DPS cross

section, given in section 2.1 of [29]. The cross section for the production of two sets of

colourless particles involves a term

H1,qq̄H2,qq̄ F
T
us,q̄q̄(vR)S

−1
qq (vL, vR)Sqq(vL, vR)S

−1
qq (vL, vR)Fus,qq(vL) (3.1)

for the annihilation of two quarks in one proton with two antiquarks in the other proton,

and corresponding terms for the other parton combinations. For definiteness we have only

written down the DPDs for unpolarised partons; polarised terms have the same soft factor.

Hi,qq̄ denotes the squared hard-scattering amplitudes, with appropriate spin projections

(see section 2.2 in [27]) but with the colour structure removed as specified in (4.55) below.

Fus denotes unsubtracted collinear matrix elements, and S is a soft factor. The inverse

of this factor removes contributions of soft gluons from the unsubtracted collinear matrix

elements, so that S−1Fus receives only contributions from collinear gluons. For brevity

we have omitted momentum fraction and position space arguments in (3.1), as well as

renormalisation and factorisation scales and colour indices. Fus is a row vector in colour

space (with one index for each of the four parton legs), and S is a matrix with two times

four indices. The spacelike four-vectors vL and vR denote the directions of Wilson lines

and will be specified later. As discussed in [29, 65], vL and vR have to be chosen such that

the effects of so-called Glauber gluon exchange on the cross section can be subsumed into

the soft and collinear factors in (3.1).

The aim of the following sections is to combine soft factors and collinear matrix ele-

ments in such a way that the product (3.1) takes on a simple form. After introducing the

necessary notation, we derive a number of symmetry properties of soft factors in section

3.2 and then discuss our central hypothesis for their rapidity dependence, given in (3.24)

and (3.25). This leads us to the definition (3.29) of DPDs and to their rapidity evolution

equation (3.34) in section 3.3. We discuss renormalisation in section 3.4 and derive the ba-

sic evolution equations (3.43) and (3.44) relevant for DTMDs. Applying our construction

to TMDs for a single parton in section 3.5, we are led to the definition (3.49) and see that

it is equivalent to the definition of Collins [65] by virtue of the relation (3.48).

3.1 Collinear matrix elements

To begin with, let us recall the definitions of unsubtracted DTMDs and DPDFs in terms of

proton matrix elements. These will later be combined with soft factors in order to define

the double parton distributions that appear in the cross section formula.

For two partons a1 and a2, the unsubtracted DTMDs are defined in terms of matrix
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elements as [26, 27]

Fus,a1a2(x1, x2,z1,z2,y) = 2p+(x1p
+)−n1 (x2p

+)−n2

∫
dz−1
2π

dz−2
2π

dy− ei(x1z
−
1 +x2z

−
2 )p+

× 〈p | Oa1(y, z1)Oa2(0, z2) |p〉 , (3.2)

where ni = 1 if parton number i is a gluon and ni = 0 otherwise. We use light-cone

coordinates w± = (w0 ±w3)/
√
2 and the transverse component w = (w1, w2) for any four-

vector w. The definition (3.2) is natural for a proton moving to the right, i.e. for p3 > 0.

For a left moving proton, i.e. for p3 < 0, one would interchange the roles of plus and minus

coordinates. It is understood that p = 0 in both cases, and that the proton polarisation

is averaged over. Setting z1 = z2 = 0 in (3.2), one obtains DPDFs, which are relevant for

collinear factorisation. As we will discuss later, this changes the ultraviolet behaviour of

the operators.

The operators for quarks in a right moving proton read

Oa(y, z) = q̄
(
y − 1

2z
)
W †(y − 1

2z, vL
)
ΓaW

(
y + 1

2z, vL
)
q
(
y + 1

2z
)∣∣∣

z+=y+=0
(3.3)

with spin projections

Γq =
1
2γ

+ , Γ∆q =
1
2γ

+γ5 , Γj
δq =

1
2 iσ

j+γ5 (j = 1, 2) (3.4)

onto unpolarised quarks (q), longitudinally polarised quarks (∆q) and transversely po-

larised quarks (δq). We do not explicitly display the transverse index j of the operator Oδq

and of the corresponding DPDs, unless it is needed. The field with argument y + 1
2z in

Oq(y, z) is associated with a quark in the amplitude of a double scattering process and the

field with argument y− 1
2z with a quark in the complex conjugate amplitude. The Wilson

lines are defined as

W (ξ, v) = P exp

[
ig ta

∫ 0

−∞
ds vAa(ξ + sv)

]
, (3.5)

where P denotes path ordering, such that fields taAa(ξ+sv) with smaller s stand further to

the left in the expanded exponential. Our convention for the strong coupling g is specified

in appendix D. Throughout this work, we only consider the case v = 0. In the matrix

element (3.2) for a right-moving proton, one takes a direction vL with v−L ≫ −v+L > 0, and

in its analogue for a left-moving proton one has a direction vR with v+R ≫ −v−R > 0. In both

cases, the Wilson lines are past-pointing. Analogous operators are defined for antiquarks,

with some sign changes as specified in section 2.2 of [27]. For gluons, one has

Oa(y, z) = Πjj′

a G+j′
(
y − 1

2z
)
W †(y − 1

2z, vL
)
W
(
y + 1

2z, vL
)
G+j

(
y + 1

2z
)∣∣∣

z+=y+=0
(3.6)

with spin projections

Πjj′

g = δjj
′

, Πjj′

∆g = iǫjj
′

,
[
Πkk′

δg

]
jj′ = τ jj

′,kk′ (3.7)
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onto unpolarised gluons (g), longitudinally polarised gluons (∆g) and linearly polarised

gluons (δg). The indices j, j′, k, k′ = 1, 2 run over transverse components, ǫjj
′
is the

antisymmetric tensor with ǫ12 = 1, and τ jj
′,kk′ is defined as

τ jj
′,kk′ =

1

2

(
δjkδj

′k′ + δjk
′

δj
′k − δjj

′

δkk
′
)
. (3.8)

The Wilson lines in (3.6) are in the adjoint representation rather than in the fundamental

one (see section 3.2). Making the colour indices of the operators explicit, we have

Oq, jj′ = q̄k′ (W
†)k′j′ ΓWjk qk , Og, aa′ = ΠGb′ (W

†)b′a′ WabGb (3.9)

for quarks and gluons, respectively.

For the discussion of ultraviolet renormalisation and of the short-distance expansion, it

is useful to introduce operators that correspond to a definite light-cone momentum fraction

x of a parton:

Oa(x,y,z) = 2p+ (xp+)−n

∫
dz−

2π
dy− eixz

−p+ Oa(y, z) . (3.10)

Using translation invariance, one readily finds that unsubtracted single and double parton

TMDs are then given by matrix elements

2πδ(p+ − p′+) 2p+fus,a(x,z) = 〈p′|Oa(x,0,z) |p〉 ,
2πδ(p+ − p′+) 2p+Fus,a1a2(x1, x2,z1,z2,y) = 〈p′|Oa1(x1,y,z1)Oa2(x2,0,z2) |p〉 , (3.11)

where p′ = p = 0. The corresponding collinear distributions are obtained by setting z, z1

and z2 to zero.

We note that in the DPS cross section, there are also distributions describing the inter-

ference between different parton types in the process amplitude and its complex conjugate,

i.e. between quarks and antiquarks, between quarks and gluons, or between quarks of differ-

ent flavour [27, 28, 33, 34]. At low values of x1 and x2, such interference DPDs are expected

to be negligible, because they have no dynamic cross talk with gluon distributions, which

grow most strongly with decreasing x. Although we do not consider interference DPDs in

this work, they can be treated with the methods presented in the following.

Let us remark that an analysis of transverse-momentum dependent DPDs in the small-

x limit has recently been given in [73]. The quantities considered in that work are Fourier

transformed w.r.t. our variable zi and – more importantly – integrated over y. To make

contact with the DPS cross section, one would need to restore the dependence of these

distributions on y, or on the Fourier conjugated momentum.

3.2 Soft factors

Before constructing the final DPDs, we must take a closer look at the soft factor, which

is defined as the vacuum expectation value of Wilson lines. For reasons that will become

clear later, we define an “extended soft factor” with open colour indices of all Wilson lines

– 8 –



W
(y

+
12 z

1 , v
L )

W
( 12 z

2 , v
L )

W
† (−

1 2
z
2
, v

L
)

W
† (y

−
1 2
z
1
, v

L
)

i1 i2 i′2 i′1

j1 j2 j′2 j′1

W
(−

12 z
2 , v

R )

W
(y −

12 z
1 , v

R )
W

† (y
+

1 2
z
1
, v

R
)

W
† (

1 2
z
2
, v

R
)

k1 k2 k′2 k′1

l1 l2 l′2 l′1

Figure 1. Wilson lines and colour indices of the extended soft factor defined by (3.12) and (3.13).

Wilson lines with subscripts 1 are grouped into the operator OS,q(y, z1) and those with subscripts 2

into the operator OS,q(0, z2).

as

[
Sqq(z1,z2,y; vL, vR)

]i1i′1i2i′2,l1l′1l2l′2
j1j

′
1j2j

′
2,k1k

′
1k2k

′
2

=
〈
0
∣∣[OS,q(y,z1; vL, vR)

]i1i′1,l1l′1
j1j

′
1,k1k

′
1

[
OS,q(0,z2; vL, vR)

]i2i′2,l2l′2
j2j

′
2,k2k

′
2

∣∣ 0
〉
. (3.12)

This factor appears in the cross section with two qq̄ annihilation subprocesses, and the

subscripts q refer to the right-moving parton in each subprocess. The operator

[
OS,q(y,z; vL, vR)

]ii′,ll′
jj′,kk′

=Wij(y + 1
2z, vL)W

†
kl(y + 1

2z, vR)Wl′k′(y − 1
2z, vR)W

†
j′i′(y − 1

2z, vL) (3.13)

is a product of four Wilson lines, which are defined as in (3.5), but with ξ+ = ξ− = 0,

so that their position arguments are only in the transverse plane and hence written in

boldface. Primed and unprimed indices j and k in the Wilson lines of (3.13) correspond to

gluon fields A(ξ) at light-cone zero (ξ+ = ξ− = 0), whereas primed and unprimed indices i

and l correspond to gluon fields at light-cone infinity, A(ξ−∞v). A pictorial representation

of (3.12) is given in figure 1.

For right-moving antiquarks instead of quarks, one replaces Wij with W ∗
ij = W †

ji and

vice versa, which corresponds to replacing itaij with (itaij)
∗ = −itaji in the exponential (3.5).

For gluons, one takes adjoint Wilson lines Wbc, obtained by replacing itaij in (3.5) with

fabc. This reflects the fact that the generators T a of the colour group in the adjoint

representation are given by (T a)bc = −ifabc. We therefore have

Sqq = S∗
q̄q̄ , Sqq̄ = S∗

q̄q , Sqg = S∗
q̄g , Sgg = S∗

gg , (3.14)

where we have omitted colour indices for brevity. Note that, by construction, the Wilson

line operators for all representations are unitary, i.e. W (ξ, v)W †(ξ, v) = 1, where 1 is the

unit matrix in the relevant colour space.

– 9 –



In processes producing colourless particles, one needs (3.12) with all index pairs j, k

contracted, i.e.

[
Sqq(z1,z2,y; vL, vR)

]i1i′1i2i′2, l1l′1l2l′2

=
〈
0
∣∣[OS,q(y,z1; vL, vR)

]i1i′1,l1l′1 [OS,q(0,z2; vL, vR)
]i2i′2,l2l′2 ∣∣ 0

〉
(3.15)

with

[
OS,q(y,z; vL, vR)

]ii′,ll′

=
[
W (y + 1

2z, vL)W
†(y + 1

2z, vR)
]
il

[
W (y − 1

2z, vR)W
†(y − 1

2z, vL)
]
l′i′
. (3.16)

We simply call this the “soft factor” (without the specification “extended”). Regarding

this as a matrix in the index pairs (i1i
′
1i2i

′
2) and (l1l

′
1l2l

′
2), we define the transposed matrix

as

[
ST
qq(z1,z2,y; vL, vR)

]i1i′1i2i′2,l1l′1l2l′2 =
[
Sqq(z1,z2,y; vL, vR)

]l1l′1l2l′2,i1i′1i2i′2 (3.17)

and the Hermitian conjugate as S†
qq =

[
ST
qq

]∗
. Corresponding definitions hold for Sgg, Sgq,

Sq̄q̄ etc. There are a number of symmetry constraints on the soft factor:

1. With the restrictions on the directions of Wilson lines in S(vL, vR) specified below

(3.5), one can always perform a longitudinal boost such that vL = (α, β,0) and

vR = (β, α,0). A parity transformation interchanges plus- and minus components

and thus, combined with the boost, exchanges vL ↔ vR. Parity and boost invariance

therefore give

Sa1a2(z1,z2,y; vL, vR) = Sa1a2(−z1,−z2,−y; vR, vL)

= Sa1a2(z1,z2,y; vR, vL) , (3.18)

where a1, a2 denote the parton types, q, q̄, g. In the final step we used that the soft

factor depends on position arguments only via scalar products between z1,z2 and y.

This follows from rotational and parity invariance, combined with the fact that the

Wilson line directions vL and vR are purely longitudinal.

2. A combined parity and time reversal transformation reverses the vectors vL and vR,

as well as the position arguments. This gives

Sa1a2(z1,z2,y; vL, vR) = Sa1a2(−z1,−z2,−y;−vL,−vR)
= Sa1a2(z1,z2,y;−vL,−vR) , (3.19)

where in the last step we used the same symmetry argument as in (3.18).

3. Since the soft factor is constructed from products
[
W (z, vL)W

†(z, vR)
]
il
for quarks,[

W (z, vR)W
†(z, vL)

]
li
for antiquarks, and

[
W (z, vL)W

†(z, vR)
]
ad

for gluons, we have

Sa1a2(z1,z2,y; vL, vR) = S†
a1a2(z1,z2,y; vR, vL)

= S†
a1a2(z1,z2,y; vL, vR) , (3.20)
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where in the second step we have used (3.18). The soft matrix is thus Hermitian in

the groups of indices for the Wilson lines along the different directions vL and vR.

Combining this result with the relations (3.14), we find

Sqq = ST
q̄q̄ , Sqq̄ = ST

q̄q , Sqg = ST
q̄g , Sgg = ST

gg , (3.21)

where the matrices on the left and the right hand side have identical arguments. We

can thus identify the product F T
us,q̄q̄ S

−1
qq = (S−1

q̄q̄ Fus,q̄q̄)
T in the expression (3.1) as

the analogue of the product S−1
qq Fus,qq.

From now on we restrict ourselves to spacelike Wilson line directions in S(vL, vR) that

satisfy

v−L > 0 , v+R > 0 , YL ≪ YR , (3.22)

where the rapidity Yv of the spacelike vector v is defined as

Yv =
1

2
log

∣∣∣∣
v+

v−

∣∣∣∣ . (3.23)

Cases other than (3.22), such as v−L < 0, v+R < 0, can be realised using the symmetry

relations (3.18) and (3.19). Owing to boost invariance and the fact that the Wilson lines

W (ξ, v) are invariant under rescaling v → λv, the soft factor depends on vL and vR only via

the difference of the Wilson line rapidities. We can hence write S(vL, vR) = S(YR − YL).

At this point we make an assumption on the properties of the soft factor, which we

cannot fully prove (we specify below what can be proven at present).

For the soft factor S(YR − YL) with YR − YL ≫ 1 (for brevity we omit the indices a1,

a2 and arguments z1,z2,y), we assume that there exists a matrix function s(Y ) satisfying

the following three properties:

Property 1a: The rapidity dependence is given by

∂

∂Y
s(Y ) = s(Y )K (3.24)

with K = K† independent of Y .

Property 1b: s(Y ) is nonsingular. It is sufficient to establish this property at an arbitrary

value Y1; its validity at any other Y then follows from the solution of (3.24).

Property 1c: One has

S(Y ) = s(Y − Y0) s
†(Y0) for Y ≫ 1 and arbitrary Y0 . (3.25)

It is easy to see that s(Y ) is not unique, since properties 1a – 1c remain true if

one redefines s(Y ) → s(Y )U and K → U †KU with a Y independent unitary matrix U .

Conversely, if properties 1a – 1c hold for two matrix functions s(Y ) and s′(Y ), one can show

that s′(Y ) = s(Y )U(Y ) with a unitary matrix U (which is not necessarily Y independent).

In appendix A we will show that properties 1a – 1c are equivalent to the following two

properties:
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Property 2a: S satisfies the Collins-Soper equation

∂

∂Y
S(Y ) = K̂ S(Y ) for Y ≫ 1 . (3.26)

K̂ is not necessarily Hermitian, and its relation with K is specified in (A.12). Both

(3.25) and (3.26) are meant to be approximations for Y ≫ 1. We can define a

matrix Ŝ(Y ) that approximates S(Y ) for Y ≫ 1 whilst being an exact solution of

the differential equation (3.26) at all Y . This equation is then solved by

Ŝ(Y ) = eY K̂ Ŝ(0). (3.27)

Property 2b: There is a value Y1 for which Ŝ(Y1) is positive definite.

We show in appendix A that Ŝ(Y ) is then in fact positive definite for all Y . This guarantees

that the matrix S(Y ) at large Y has an inverse, which according to (3.1) is needed in the

cross section formula.

Evidence for the properties just discussed comes from perturbation theory, which can

be used to compute the soft factor when the distances z1, z2 and y are all small.

• Properties 2a and 2b are easily checked at one-loop order from our explicit calcula-

tions in all colour channels, which are reported in section 7. In this case one finds

Ŝ(0) = 1 and, taking U = 1 one has K = K̂ according to (A.12).

• Given property 2a, one can motivate property 2b using the perturbative expansions

S(Y ) = 1 +O(αs) and K̂ = O(αs). One may worry that the expansion of S(Y ) has

poor convergence, because higher orders in αs can come with higher powers of the

large rapidity Y . However, according to (3.27) we have Ŝ(0) = exp(−Y K̂)S(Y ) for

sufficiently large Y . If the perturbative expansions of S(Y ) and exp(−Y K̂) are valid

at least in a formal sense, we get an expansion Ŝ(0) = 1 +O(αs) that is free of any

large parameter. The eigenvalues of Ŝ(0) then have a perturbative expansion around

1, which supports property 2b with Y1 = 0, at least for sufficiently small αs.

• Sqq and Sqq̄ have been calculated at two-loop order in [74]. The validity of properties

1a and 1c can be explicitly verified from the results in sections 4.2 and 4.4 of that

work. This requires a translation between the rapidity regulator used there and the

one used here, which we discuss in appendix B. We note that [74] defines S = s†s,

whilst we choose the order S = ss† in (3.25).

Property 1b can then be motivated by the perturbative expansion of s(Y ), arguing

along the same lines as in the previous point.

• An all-order derivation of the rapidity evolution equation of the DPS soft factor has

recently been given in [75]. Our equation (3.26) can be obtained from equation (5.17)

in the arXiv version 2 of [75] using the relation (B.1) between the regulator variables

δ+, δ− and YL, YR. However, more work is needed to establish whether the derivation

in [75] holds if one uses either of the associated rapidity regulators.
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A few more comments are in order.

• While S(0) = 1 by construction (the Wilson line pairs at equal positions give unit

matrices, W †W = 1), one generally has Ŝ(0) 6= 1. This implies that the evolution

equation (3.26) holds for Y ≫ 1 but not when Y becomes small. We see this already

at one loop: as follows from sections 3.3.1 and 3.2.2 of [27], one has S−1 ∝ Y tanh(Y )

for the one-loop soft factor, whilst (3.26) truncated to O(αs) gives S − 1 ∝ Y .

• For the soft factor needed in collinear factorisation, i.e. for z1 = z2 = 0, we will see

in section 4.4 that S(Y ) is diagonal in the basis of colour representations for all Y .

As a consequence, K̂ is diagonal as well. In appendix A we show that one can then

also choose s(Y ) and K to be diagonal. For the soft factor in collinear factorisation,

all matrix multiplications in colour space thus become trivial.

• The matrix s replaces the square roots of soft factors in the construction of single

parton TMDs by Collins [65], as we will show in section 3.5.

3.3 Definition of DPDs

According to (3.1), the DPS cross section involves a product of soft matrices, which using

(3.25) can be rewritten as

S−1(vL, vR)S(vL, vR)S
−1(vL, vR) = s†−1(YR − YC) s

−1(YC − YL) , (3.28)

where YC is a central rapidity, YL ≪ YC ≪ YR. Restoring parton labels, we then define

DPDs by

Fa1a2(YC) = lim
YL→−∞

s−1
a1a2(YC − YL)Fus,a1a2(YL) ,

Fb1b2(YC) = lim
YR→∞

s−1
b1b2

(YR − YC)Fus,b1b2(YR) (3.29)

for the distributions in a right-moving and a left-moving proton, respectively. An analogous

definition in the δ regulator scheme was put forward in [74].

From the construction in appendix A it follows that the symmetry relations (3.14) for

Sa1a2 imply corresponding relations

sqq =s
∗
q̄q̄ , sqq̄ = s∗q̄q , sqg = s∗q̄g , sgg = s∗gg (3.30)

if the matrices Ua1a2 in (A.11) are chosen such that they satisfy the relations (A.14). In

the expression (3.1) for double Drell-Yan production we can thus rewrite

F T
us,q̄q̄(YR) s

†−1
qq (YR − YC) s

−1
qq (YC − YL)Fus,qq(YL) = F T

q̄q̄(YC)Fqq(YC) , (3.31)

where we have omitted the hard-scattering factors Hi,qq̄ for brevity. A corresponding

argument leads to the combination F T
q̄q(YC)Fqq̄(YC) in the same process. The production

of one Higgs and one electroweak gauge boson involves a term

F T
us,q̄g(YR) s

†−1
qg (YR − YC) s

−1
qg (YC − YL)Fus,qg(YL) = F T

q̄g(YC)Fqg(YC) (3.32)
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with mixed quark-gluon and antiquark-gluon DPDs, and likewise one obtains the product

F T
gg(YC)Fgg(YC) in double Higgs boson production.

In (3.29) we can take the limit of infinite Wilson line rapidities YL and YR in the

unsubtracted matrix elements. This means that the Wilson lines in the parton operators

Oa are along lightlike paths, which leads to important simplifications as discussed in chap-

ter 10.11 of [65]. Let us see that this limit is well behaved in (3.29). The rapidities YL
and YR in the cross section formula originate from Grammer-Yennie approximations (see

e.g. [29]), and one finds that their precise values in (3.31) and (3.32) do not matter as long

as |YL|, |YR| ≫ 1. One can thus take the limit of infinite YL and YR in these expressions,

and thus also in the individual factors in (3.29). By contrast, taking infinite Wilson line

rapidities in individual unsubtracted DPDs or in the soft factor would lead to rapidity

divergences.

The dependence of the DPDs on the central rapidity YC is easily obtained from (3.24),

which gives

∂

∂Y
s−1(Y ) = −Ks−1(Y ) (3.33)

and thus

∂

∂YC
F (YC) = −KF (YC) (3.34)

for DPDs in a right-moving proton, whilst for a left-moving proton one has the opposite

sign on the r.h.s. of (3.34).

The preceding construction can be performed for DTMDs and DPDFs alike. Important

differences between the two types of distributions arise at the level of ultraviolet renormal-

isation. In the next subsection, we discuss this for the case of DTMDs, postponing the

case of DPDFs to section 5.2.

3.4 Renormalisation of DTMDs

The ultraviolet (UV) renormalisation of TMDs arises from vertex and self energy cor-

rections associated with composite operators that contain fields at the same transverse

position. Interactions between fields at different transverse positions do not give rise

to UV divergences: the finite spacelike distance acts as an effective UV cutoff in the

corresponding graphs. Operators that require renormalisation are therefore [W (ξ) q(ξ)]i,

[W (ξ)G+i(ξ)]a and their Hermitian conjugates in the collinear matrix elements, as well as

[W (ξ, vL)W
†(ξ, vR)]ij , [W (ξ, vL)W

†(ξ, vR)]ab and their Hermitian conjugates in the soft

factor. Due to colour SU(3) invariance, the corresponding renormalisation factors are all

colour independent. We could in principle choose a different renormalisation scale for each

of the four parton operators in Fus and for each of the four corresponding Wilson line

products in the soft factor. We choose a slightly simpler variant, taking common renor-

malisation scales µ1 and µ2 for the operators associated with partons carrying momentum

fraction x1 and x2, respectively. Denoting bare quantities with a subscript B, we then have

Oa(x,y,z) = Zus,aOB,a(x,y,z), where Zus,a is the product of renormalisation factors for
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the composite operators at transverse positions y− 1
2z and y+ 1

2z. Likewise, for the oper-

ator defined in (3.16) we have OS,a(y,z) = ZS,aOBS,a(y,z), where ZS,a is the product of

renormalisation factors for the Wilson line pairs at equal transverse positions.2 Both Zus,a

and ZS,a are independent of spin and colour, but they differ for quarks and gluons (being

equal for quarks and antiquarks due to charge conjugation invariance). They depend on a

scale µ and on Wilson line rapidities, and Zus,a also depends on the plus-momentum xp+

of the relevant parton. We thus have

Fus,a1a2(xi;µi, YL) = Zus,a1(µ1, YL, x1p
+)Zus,a2(µ2, YL, x2p

+)FB,us,a1a2(xi;YL) ,

Sa1a2(µi, Y ) = ZS,a1(µ1, Y )ZS,a2(µ2, Y )SB,a1a2(Y ) (3.35)

with Y = YR−YL. Throughout this work we use the convention that a function with argu-

ments xi (µi) depends on both x1 and x2 (µ1 and µ2). In this and the next subsection, we

consider a right-moving proton for definiteness, and we omit transverse position arguments

for brevity.

We now derive the renormalisation properties of the matrix sa1a2(Y ). Assuming that

the Y dependence of SB(Y ) is given by (3.26) with a bare kernel K̂B and defining

Λa(Y ) =
∂

∂Y
logZS,a(Y ) , (3.36)

we readily get

∂

∂Y
Sa1a2(Y ) = K̂a1a2(Y )Sa1a2(Y ) (3.37)

with

K̂a1a2(Y ) = Λa1(Y )1 + Λa2(Y )1 + K̂B,a1a2 , (3.38)

where we have dropped the dependence on the renormalisation scales for brevity. The

renormalised soft factor hence satisfies (3.26) if Λa is independent of Y . This is easily

shown for the MS scheme. Expanding ZS in the renormalised coupling, we have ZS =

1 +
∑∞

n=1 α
n
sZ

(n)
S (ǫ) with coefficients Z

(n)
S being a finite sum of poles in ǫ for each n. The

corresponding coefficients in Λ =
∑∞

n=1 α
n
sΛ

(n)(ǫ) are hence pure pole terms as well. Since

S is finite for ǫ = 0, the same holds for K̂ according to (3.37), so that the ǫ poles of Λ must

cancel those of K̂B in (3.38). Since the latter are Y independent, the same holds for Λ. In

the MS scheme one can repeat the previous argument after rescaling αs in the expansion

of ZS by a factor Sǫ (see section 7.3.3 for further explanation).

With Λa being Y independent, the solution of (3.36) reads ZS,a(Y ) = ZS,a(0) e
Y Λa .

Using (A.11) and (A.12), one finds that

Ka1a2(µi) = Λa1(µ1)1 + Λa2(µ2)1 +KB,a1a2 ,

sa1a2(µi, Y ) = Zs,a1(µ1, Y )Zs,a2(µ2, Y ) sB,a1a2(Y ) (3.39)

2Our convention for renormalisation factors Z of composite operators corresponds to the one in [65, 76].

Other authors, such as the ones of [77], use Z−1 instead.
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with Zs,a(Y ) =
√
ZS,a(0) e

Y Λa, where we have restored the µ dependence of the factors.

We thus find that the renormalisation of s(Y ) is multiplicative and independent of the

colour channel, just as the one of S(Y ). With bare and renormalised DTMDs defined as

in (3.29), we then have

Fa1a2(xi;µi, YC) = ZF,a1(µ1, YC , x1p
+)ZF,a2(µ2, YC , x2p

+)FB,a1a2(xi;YC) (3.40)

with

ZF,a(µ, YC , xp
+) = lim

YL→−∞
Z−1
s,a(µ, YC − YL)Zus,a(µ, YL, xp

+) (3.41)

for a right-moving proton, and correspondingly for a left-moving one. Note that, as ex-

plained in chapter 10.11 of [65], one should first take the limit of infinite YL in the product

(3.41) and in FB(YC), and then let ǫ go to zero on the r.h.s. of (3.40).

We can now derive the µ dependence of the DTMDs and of their Collins-Soper kernel.

Defining

γF,a(µ, YC , xp
+) =

∂

∂ log µ
logZF,a(µ, YC , xp

+) , γK,a(µ) = − ∂

∂ log µ
Λa(µ) , (3.42)

we obtain for a right-moving proton

∂

∂ log µ1
Fa1a2(xi;µi, YC) = γF,a1(µ1, YC , x1p

+)Fa1a2(xi;µi, YC , ) ,

∂

∂ log µ1
Ka1a2(µi) = − γK,a1(µ1)1 , (3.43)

and analogous relations for the µ2 dependence, as well as the additional condition

∂

∂YC
γF,a(µ, YC , xp

+) = γK,a(µ) . (3.44)

We note that ZF,a and hence γF,a can depend on YC and xp+ only via the boost invariant

combination xp+e−YC . This will be used to introduce the rapidity parameter ζ later on

(see (3.50) and (5.8)).

It is easy to repeat the above arguments with four different renormalisation scales for

the four parton legs of F . One then obtains analogues of (3.43) for each scale, with γK,a

replaced by γK,a/2 and γF,a by γE,a or (γE,a)
∗, where γE,a+(γE,a)

∗ = γF,a. The anomalous

dimension γE,a has an imaginary part and is for a parton momentum leaving F , whereas

(γE,a)
∗ is for a parton momentum entering F . This can be seen in the study of the quark

form factor [68] (see section 10.12.2 of [65] for an explicit calculation at leading order).

3.5 Definition of single parton TMDs

It is instructive to revisit the definition of single parton TMDs in the framework we have

just laid out. The colour structure is considerably simplified in this case. The operator

Oa(x,0,z) in the matrix element for an unsubtracted TMD in (3.11) must carry colour

singlet quantum numbers, which is achieved by contracting the operators in (3.9) with
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δjj′ or δaa′ . Likewise, the soft factor for single hard scattering involves the colour singlet

projection of the operator OS,a(0,z) defined in (3.16). One can easily adapt the arguments

in the previous subsections to this case: the matrices S, Ŝ, s, K and K̂ then become single

real valued functions. One finds K = K̂, whilst the definition (A.11) simplifies to

s(Y ) = eY K Ŝ 1/2(0) , (3.45)

which is positive and satisfies (3.24). This gives

S(Y ) = Ŝ(Y ) = eY K Ŝ(0) = s(Y − Y0) s(Y0) (3.46)

for Y ≫ 1 and arbitrary Y0. The ambiguity in the choice of s, due to unitary transforma-

tions in the matrix case, is no longer present. Combining the two previous equations, we

deduce that

s(Y ) =
√
S(2Y ) . (3.47)

The square-root factor in the construction of single parton TMDs by Collins, given in

equation (13.106) of [65], can be rewritten as

√
S(YR − YC)

S(YR − YL)S(YC − YL)
= s−1(YC − YL) (3.48)

using (3.46) and (3.47). The final TMD is then given by

fa(YC) = lim
YL→−∞

s−1
a (YC − YL) fus,a(YL) , (3.49)

where we have restored the parton label a to denote quarks, antiquarks and gluons. This

form closely resembles the definition in [60, 78]; we will expand on this further in ap-

pendix B. A related discussion has been given in [79], but the separation into different

factors made there differs from ours.

The renormalisation of single parton TMDs is done with the same factors Zus,a, ZS,a

and ZF,a as in section 3.4, and hence involves the same anomalous dimensions. Coming

back to our remark after (3.44) and defining

ζ = 2(xp+)2 e−2YC (3.50)

for a right-moving proton, we recover the familiar evolution equations given in (2.3)

to (2.8).

4 Colour

An essential element in the description of DPS is the colour structure, which is much more

involved than in single hard scattering. To deal efficiently with matrices in colour space,

we introduce projection operators and make use of the fact that certain colour indices must

couple to an overall colour singlet. We derive the combination (4.24) of colour projected
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quantities that enters the DPS cross section in section 4.2 and establish a number of

symmetry relations in section 4.3. In sections 4.4 and 4.5 we consider the case of collinear

factorisation. Projector identities such as the one in figure 2 lead to dramatic simplifications

in this case, with soft matrices that are diagonal and depend on only three independent

functions as specified in (4.47) to (4.49). These simplifications also allow us to derive the

structure (4.53) of the DPS cross section for produced particles carrying colour. A reader

who is not interested in technical details may skip the following derivations and will find

the principal results in the equations just mentioned.

4.1 Projection operators

For the fundamental representation of the group SU(N), we introduce the operators

P ii′ jj′

1 =
1

N
δii′δjj′ ,

P ii′ jj′

8 = 2taii′t
a
jj′ , (4.1)

which project the index pairs ii′ and jj′ onto a colour singlet or a colour octet, respectively.3

In these and all following projection operators, the four indices are coupled to an overall

colour singlet. We take TF = 1/2 throughout this paper and do not distinguish between

upper and lower colour indices. We will make repeated use of the colour Fierz identity

2taii′t
a
jj′ = δij′δi′j −

1

N
δii′δjj′ . (4.2)

For the adjoint representation we use [32, 80, 81]

P aa′ bb′

1 =
1

N2 − 1
δaa

′

δbb
′

,

P aa′ bb′
A =

1

N
faa

′cf bb
′c ,

P aa′ bb′
S =

N

N2 − 4
daa

′cdbb
′c ,

P aa′ bb′
D =

1

2

(
δabδa

′b′ − δab
′

δa
′b
)
− P aa′ bb′

A ,

P aa′ bb′
27 =

1

2

(
δabδa

′b′ + δab
′

δa
′b
)
− P aa′ bb′

S − P aa′ bb′
1 . (4.3)

The subscript on P always denotes the colour representation onto which index pairs aa′

and bb′ are projected, with A denoting the antisymmetric and S the symmetric octet.4

Useful relations for calculating with the f and d tensors are given in [83].

The operator PD = P10 + P 10 projects on the sum of the decuplet and antidecuplet

representations. For any tensor Maa′bb′ that transforms as an overall colour singlet, the

projections on decuplet and antidecuplet are equal (and can hence be added without loss of

3We use the term “octet” to denote the adjoint representation, which of course has dimension 8 only

for SU(3).
4For N > 3 a further representation appears when decomposing the product of two octets (see table 9.4

in [82]). This representation is sometimes labelled as R = 0, since it has dimension 0 for N = 3. The

projector P27 in (4.3) corresponds to P27 + P0 in the case of general N [81].

– 18 –



information). Following appendix A of [34], one can show this by first decomposingMaa′bb′

on P ab a′b′
R with R = 1, A, S, 10, 10, 27 and then projecting on P aa′ bb′

R . This result can be

traced back to the fact that (P10)
aa′ bb′ − (P 10)

aa′ bb′ is odd but all P ab a′b′
R are even under

the simultaneous exchange (a↔ b, a′ ↔ b′).
We will further need projectors for mixed fundamental and adjoint indices:

P ii′ aa′
1 = P aa′ ii′

1 =
1√

N(N2 − 1)
δii′δ

aa′ ,

P ii′ aa′

A = P aa′ ii′

A =

√
2

N
tcii′ f

aa′c ,

P ii′ aa′

S = P aa′ ii′

S =

√
2N

N2 − 4
tcii′ d

aa′c . (4.4)

The normalisation factors are chosen such as to yield the simple symmetry and projection

properties to be discussed next.

To ease our notation, we introduce double indices i = (ii′), a = (aa′). Here and in the

following, i, j, k are in the fundamental representation, a, b, c are in the adjoint, whereas

r, s, t, u, v, w can belong to either representation. Repeated double indices are summed

over, so that for adjoint indices we have

M
r a
1 M

a s
2 =M

r aa′

1 M
aa′ s
2 . (4.5)

Some care is required for indices of the fundamental representation. In fundamental Wilson

lines W and in projection operators PR, the first index always transforms as a triplet and

the second index as an antitriplet. For such cases, we define matrix multiplication with a

transposition

M
r i
1 M

i s
2 =M

r ii′

1 M
i′i s
2 . (4.6)

In soft matrices S and in the matrix elements giving DPDs, the order of triplet and an-

titriplet indices depends on the parton channel (q or q̄) and in S also on the direction of the

Wilson lines (along vL or vR). Contraction of double indices should always be done such

that a triplet index is contracted with an antitriplet one. This ensures proper behaviour

of the result under gauge transformations.

With these definitions, the projection operators have the symmetry

P
r s
R = P

s r
R (4.7)

and the projection property

P
r s
R P

s t
R′ = δRR′ P

r t
R (4.8)

for any pair of projectors PR, PR′ with a common double index s in either the fundamental

or the adjoint representation. In the octet sector, it is understood that δ8A = δA8 = δ8S =

δS8 = 1 but δAS = δSA = 0 in (4.8). The normalisation is given by

P
r s
R P

r s
R′ = δRR′ m(R) , (4.9)
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where

m(R) = P
r r
R (4.10)

is the multiplicity of the representation, i.e. m(1) = 1, m(8) = m(A) = m(S) = 8,

m(D) = 20 and m(27) = 27 for SU(3). Since the projectors above form a basis of the

space of rank-four tensors M that transform as an SU(3) singlet, any such tensor M can

be decomposed as

M r s =
∑

R

1

m(R)
P

r s
R

(
P

t u
R M

t u)
, (4.11)

where the sum is over all representations R given in (4.1), (4.3) and (4.4), as applicable.

The contraction of two colour singlet tensors is then given by

M
r s
1 M

r s
2 =

∑

R

1

m(R)

(
P

r s
R M

r s
1

) (
P

t u
R M

t u
2

)
. (4.12)

For representation labels R, we will not use the summation convention, i.e. summation

over R will always be indicated explicitly.

4.2 Colour structure of the DPS cross section

The projection operators just introduced allow us to rewrite the DPS cross section in a com-

pact way. We start by defining DPDs that are projected on a definite colour representation

R. Using the general decomposition in (4.11), we can write

F
r1r2
a1a2 =

∑

R

1

εa1(R) εa2(R)

1

Na1Na2

1√
m(R)

RFa1a2 P
r1r2
R (4.13)

with

RFa1a2 = εa1(R) εa2(R) Na1Na2

1√
m(R)

P
s1s2
R F

s1s2
a1a2

. (4.14)

Note that the lower indices a1, a2 denote the parton species and polarisation, not colour.

The factors

εa(R) =

{
i if a is a gluon and R = A

1 otherwise
(4.15)

ensure that the collinear distributions AFqg(xi,y) and
AFq̄g(xi,y) and their polarised coun-

terparts are real valued (rather than imaginary), as are the collinear distributions in all

other channels. This is shown in the next subsection. The prefactors Na are given by

Nq = Nq̄ =
√
N , Ng =

√
N2 − 1 (4.16)

and likewise for polarised partons. They ensure that colour singlet distributions 1Fa1a2

involve a sum over the colours of the two partons. The definitions here coincide with the

ones in [27, 34], with the notational change

DFgg

∣∣
here

= 10+10Fgg

∣∣
Ref. [34]

=
1√
2

(
10Fgg +

10Fgg

)∣∣
Ref. [27]

(4.17)
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and its analogues for polarised gluons. For the discussion of renormalisation and the short-

distance expansion, it is useful to project the partonic operators (3.10) on definite colour

representations as well. Introducing

RO
r
a = εa(R) Na P

rs
R O

s
a (4.18)

and defining unsubtracted DPDs RFus,a1a2 in analogy to (4.14), we obtain

2πδ(p+ − p′+) 2p+ RFus,a1a2 =
1√
m(R)

〈
p′
∣∣ROr

a1
ROr

a2

∣∣p
〉

(4.19)

from (3.11) and the projection property (4.8).

The soft factor for DPS producing colour singlet particles in the hard interactions

carries two times four indices. Its projection on different representations is defined by

RR′

Sa1a2 =
εa1(R) εa2(R)

εa1(R
′) εa2(R′)

1√
m(R)m(R′)

P
r1r2
R S

r1r2,s1s2
a1a2

P
s1s2
R′ . (4.20)

R specifies the colour representation for the Wilson lines with positive rapidity, and R′

the one for the Wilson lines with negative rapidity. Notice that the ε factors cancel for

R = R′. In analogy to (4.20) we define projections RR′
s and RR′

K of the matrix s and

of the Collins-Soper kernel K, as well as projections RR′
(S−1) and RR′

(s−1) of the inverse

matrices S−1 and s−1 in colour space. Using the same argument as in (4.12), one can show

that
∑

R′

RR′

(S−1
a1a2)

R′R′′

Sa1a2 =
∑

R′

RR′

(s−1
a1a2)

R′R′′

sa1a2 = δRR′′ . (4.21)

We see that matrix multiplication in the space of four colour indices (r1r2) = (r1r
′
1r2r

′
2)

turns into matrix multiplication in the space of colour representations R. The matrix

decomposition (3.25) can thus be rewritten as

RR′′

Sa1a2(Y ) =
∑

R′

RR′

sa1a2(Y − Y0)
R′R′′(

s†a1a2(Y0)
)
, (4.22)

and the definition (3.29) of DPDs in a right-moving proton as

RFa1a2(YC) = lim
YL→−∞

∑

R′

RR′(
s−1
a1a2(YC − YL)

)
R′

Fus,a1a2(YL). (4.23)

According to (3.1) and (3.31), the cross section for the production of colour neutral

particles involves the product

X = Ha1b1 Ha2b2 F
r1r2
b1b2

F
r1r2
a1a2

=
Ha1b1

Na1Nb1

Ha2b2

Na2Nb2

∑

R

ηa1a2(R)
RFb1b2

RFa1a2 . (4.24)

Here we have combined the factors εa1(R) εb1(R) εa2(R) εb2(R) into

ηa1a2(R) =
1

ε2a1(R) ε
2
a2(R)

, (4.25)

using that the only channels that produce colourless particles are qq̄ and gg annihilation.

Multiplied with a flux factor, the combinations Hab/(NaNb) turn into the hard-scattering

cross sections in the final factorisation formula. The factor NaNb is N for qq̄ annihilation

and N2−1 for gg annihilation and ensures that one takes an average over the colour states

of the two colliding partons, as is appropriate for a parton-level cross section.
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4.3 Symmetry properties

As already remarked, multiplication of matrices and vectors, S and F , in the space of

colour indices (r1r2) turns into multiplication of matrices and vectors in the space of

representations R. For brevity, we refer to the former as “colour space” and to the latter

as “representation space”. Note that our representation space only corresponds to the part

of colour space in which the indices (r1r2) are coupled to an overall colour singlet. We now

derive some important properties of S and of the related matrices s andK in representation

space.

In (3.20) we have seen that the matrix Sa1a2 is Hermitian in colour space,

S
r1r2,s1s2
a1a2 =

(
S
s1s2,r1r2
a1a2

)∗
. (4.26)

Under Hermitian conjugation, an index pair i = (i, i′) in S changes its transformation

properties: if i transforms as an SU(3) triplet in S, it transforms as an antitriplet in S†

and vice versa. The colour projectors satisfy P ii′ jj′

R = (P i′i j′j
R )∗, P ii′ aa′

R = (P i′i aa′
R )∗ and

P aa′ bb′
R = (P aa′ bb′

R )∗, so that the rule for contraction with the colour projectors stated below

(4.6) is satisfied if S is contracted with PR and S† with P ∗
R. We thus find that

RR′

Sa1a2 =
(
R′RSa1a2

)∗
, (4.27)

i.e. S is also Hermitian in representation space. In analogy, the fact that the Collins-Soper

kernel Ka1a2 is Hermitian in colour space implies that it is Hermitian in representation

space as well.

We now turn to the relations between soft factors for quarks and antiquarks. The

relations (3.14) imply that

RR′

Sa1a2 =
ηa1a2(R

′)
ηa1a2(R)

(
RR′

Sā1ā2

)∗
=
ηa1a2(R

′)
ηa1a2(R)

R′RSā1ā2 , (4.28)

where ā denotes the antiparton of a (with the convention ḡ = g). The complex conjugation

of projection operators implicit in the first step corresponds to the fact that an index

i transforming as a triplet in Sa1a2 transforms as an antitriplet in Sā1ā2 and vice versa.

Complex conjugation of the ε factors in the definition (4.20) gives the factors η in (4.28).

In the second step we have simply used the property (4.27). We now recall that the

relations (3.14) for S translate into analogous relations (3.30) for s. By taking the rapidity

derivative, we find corresponding relations for K as well. In analogy to (4.28) we can thus

derive

RR′

Ka1a2 =
ηa1a2(R

′)
ηa1a2(R)

R′RKā1ā2 . (4.29)

We will use this in section 5.1 when making rapidity evolution explicit in the DPS cross

section. A different way to connect soft factors for quarks and antiquarks is to note that

the operator OS,q in (3.16) is related with its analogue OS,q̄ for antiquarks by

[
OS,q(y,z; vL, vR)

]ii′,ll′
=
[
OS,q̄(y,−z; vL, vR)

]i′i, l′l
. (4.30)
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Multiplying with colour projectors according to the rule stated below (4.6), one obtains

RR′

Sqq(z1,z2,y) =
RR′

Sqq̄(z1,−z2,y)

= RR′

Sq̄q(−z1,z2,y) =
RR′

Sq̄q̄(−z1,−z2,y) , (4.31)

where the arguments vL, vR are the same in all four expressions. Relations analogous to

(4.31) hold for RR′
Ka1a2 , provided that RR′

Ua1a2 satisfies the requirements (A.15).

Let us finally investigate the consequences of charge conjugation invariance. Charge

conjugation transforms taAµa(ξ) → −(ta)∗Aµa(ξ), which can be derived from the familiar

transformation properties of quark fields and charge conjugation invariance of the interac-

tion term −g q̄ taAµaγµq in the QCD Lagrangian. As a result, a fundamental Wilson line

transforms as

Wij →W ∗
ij . (4.32)

For soft factors RR′
S involving gluons, we rewrite all adjoint Wilson lines as [84]

W ab = 2 tr(taWtbW †) , (4.33)

where the Wilson lines on the r.h.s. are in the fundamental representation, express fabc

and dabc as traces of products of matrices ta, tb, tc and then eliminate all these matrices

by repeated use of the colour Fierz identity (4.2). After these steps, we have for all parton

combinations a1 and a2 a representation of RR′
Sa1a2 in terms of traces of fundamental

Wilson lines W and W †, where thanks to the ǫ factors in the definition (4.20) no explicit

factors of i appear. The transformation (4.32) then readily implies that RR′
Sa1a2 is real

valued, and with (4.27) we furthermore obtain that it is symmetric in representation space,

i.e. we have RR′
S = R′RS, where for brevity we omit the subscripts a1a2.

To show that RR′
s and RR′

K are also real valued, we translate the derivation starting

in (A.7) into representation space, projecting all relevant matrices as specified in (4.20).

It is then easy to see that RR′
Ŝ and RR′

K̂ are real valued. To establish that RR′
(Ŝ 1/2) is

real valued, we note that RR′
Ŝ has positive eigenvalues, which is readily seen by projecting

the eigenvalue equation Ŝv = λv from colour space to representation space and recalling

that in colour space Ŝ is a positive matrix. According to the discussion below (A.10), the

square root of a positive real matrix is real. Choosing the matrix U in (A.11) and (A.12)

such that RR′
U is real, we find that both RR′

s and RR′
K are real. Since RR′

K is Hermitian,

it is also symmetric: RR′
K = R′RK.

Combining the symmetry relations (4.28) and (4.31) with the fact that RR′
S is sym-

metric in R and R′, we obtain

RR′

Sqq(z1,z2,y) =
RR′

Sqq(−z1,−z2,y) . (4.34)

An analogous relation holds for RR′
Kqq.

The quark and gluon operators in (3.3) and (3.6) satisfy
[
Orr′

a

]†
(y, z) = Or′r

a (y,−z),
where the colour index r pertains to the fields at y+ 1

2z and r′ to the fields at y− 1
2z. For

colour projected unsubtracted DPDFs this yields the relation
[
RFus,a1a2(xi,y)

]∗
= RFus,a1a2(xi,y) . (4.35)
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P jj′,k′k
R

=

P ii′,j′j
R

W W †

j j′

k k′

W W †

i i′

j j′

Figure 2. Graphical representation of the relation (4.38). The Wilson lines are understood to be

interacting, i.e. any number of gluons may be attached to them in a Feynman graph.

Let us explicitly show this for AFus,qg. Using that εq(A)εg(A) = i and (P jj′ aa′

A )∗ = −P j′j a′a
A ,

we have

[
AFus,qg(xi,y)

]∗

= c

∫
dz−1 dz

−
2 dy

−
[
iP jj′ aa′

A ei(x1z
−
1 +x2z

−
2 )p+ 〈p| Ojj′

q (y, z1)Oaa′

g (0, z2) |p〉
]∗

= c

∫
dz−1 dz

−
2 dy

− iP j′j a′a
A e−i(x1z

−
1 +x2z

−
2 )p+ 〈p| Oj′j

q (y,−z1)Oa′a
g (0,−z2) |p〉

= AFus,qg(xi,y) , (4.36)

where in the last step we used that z1 = z2 = 0. Here c = c∗ is a product of kinematic

and numerical factors not essential for the argument. We see that the factor εg(A) = i

compensates the behaviour of P jj′ aa′

A under complex conjugation. One easily checks that[
εa1(R)εa2(R)P

rr′ ss′
R

]∗
= εa1(R)εa2(R)P

r′r s′s
R for all projectors, which ensures the general

validity of (4.35). Given that RR′
s is real valued, we finally find that

[
RFa1a2(xi,y)

]∗
= RFa1a2(xi,y) . (4.37)

In all colour channels and for all parton combinations, DPDFs are thus real valued.

4.4 Simplification of soft factors in collinear factorisation

In the soft factors relevant for collinear factorisation, one should set z1 = z2 = 0 in the

definitions (3.12) and (3.15). Corresponding Wilson lines in the scattering amplitude and

its complex conjugate are then at the same transverse position. This simplifies the colour

structure significantly, as we will now demonstrate. In the remainder of this subsection, it

is understood that all soft factors are taken at z1 = z2 = 0.

The projection operators on Wilson lines obey the relation

Wij P
jj′,k′k
R W †

j′i′ =Wjk P
ii′,j′j
R W †

k′j′ (4.38)
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for R = 1, 8, where it is understood that the Wilson lines W and W † are in the same

direction and at the same position. For R = 1 this is trivial, and for R = 8 it readily

follows from the colour Fierz identity (4.2). A graphical representation of (4.38) is shown

in figure 2. Remarkably, an analogous relation holds also for adjoint Wilson lines

Wab P
bb′,cc′

R W †
b′a′ =Wbc P

aa′,bb′

R W †
c′b′ (4.39)

and for the mixed case

Wab P
bb′,k′k
R W †

b′a′ =Wjk P
aa′,j′j
R W †

k′j′ (4.40)

in all relevant representations R. This can be shown by following the steps in and after

(4.33). For the extended soft factor, the relations (4.38), (4.39) and (4.40) imply

P
s t
R (Sa1a2)

··· r ···
··· s ··· = P

r s
R (Sa1a2)

··· s ···
··· t ··· , (4.41)

where we have displayed only one of the four double index pairs (ri, si) in (Sa1a2)
r1r2,r3r4
s1s2,s3s4

for better readability, the other three pairs remaining untouched. Instead of making a

colour projection for the fields at ξ+ = ξ− = 0, one can thus make the same projection for

the fields at infinity. This yields an important relation between a specific projection of the

extended soft factor in (3.12) and the basic one in (3.15). With (4.41) and the projection

property (4.8) we have

P
s1t1
R1

P
s2t2
R2

(Sa1a2)
r1r2,u1u2
s1s2,t1t2

= P
s1v1
R1

P
t1v1
R1

P
s2v2
R2

P
t2v2
R2

(Sa1a2)
r1r2,u1u2
s1s2,t1t2

= P
r1s1
R1

P
u1t1
R1

P
r2s2
R2

P
u2t2
R2

(Sa1a2)
s1s2,t1t2
v1v2,v1v2 , (4.42)

where r, s, . . . , v can each be in the fundamental or adjoint representation. Projecting this

on the remaining open indices, we obtain

P
r1r2
R P

u1u2
R′ P

s1t1
R1

P
s2t2
R2

(Sa1a2)
r1r2,u1u2
s1s2,t1t2

= δRR1
δRR2

δRR′ P
s1s2
R P

t1t2
R (Sa1a2)

s1s2,t1t2
v1v2,v1v2

= δRR1
δRR2

δRR′ m(R)RRSa1a2 , (4.43)

where in the last step we have used the definition (4.20). We furthermore have

RR′

Sa1a2
εa1(R

′) εa2(R
′)

εa1(R) εa2(R)

√
m(R)m(R′) = P

r1r2
R P

t1t2
R′ (Sa1a2)

r1r2,t1t2
s1s2,s1s2

= P
r2s2
R P

t2s2
R′ (Sa1a2)

r1r1,t1t1
s1r2,s1t2

= δRR′ P
r2t2
R (Sa1a2)

r1r1,t1t1
s1r2,s1t2

, (4.44)

which shows that at z1 = z2 = 0 the soft matrix is diagonal in the colour representations

R and R′. Note that this is not the case for nonzero z1,z2, as follows immediately from

the explicit one-loop expressions in section 7.2.

The soft factors discussed so far correspond to the same parton species entering a hard

scattering process in the amplitude and its conjugate. As already mentioned at the end of

section 3.1, there is also interference between q and q̄, between q and g, and between q̄ and
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g. The corresponding Wilson line products in the soft factor are then WijWi′j′ , WijWa′b′ ,

etc. The relevant projection operators for coupling colour indices in these cases are given

in equations (9) and (11) of [32]. Relations analogous to (4.38) can be easily derived for

these cases, where again the colour projections for the gluon fields at ξ+ = ξ− = 0 in the

Wilson lines can be traded for the colour projections of the fields at infinity. From this,

relations analogous to (4.43) and (4.44) can be derived for the soft factors associated with

interference between parton species in the hard scattering.

We now relate soft factors in the adjoint representation with those in the fundamental

one. For the mixed quark-gluon soft factor we have

m(R)RRSqg = P
i1a2
R P

k1c2
R (Sqg)

i1a2,k1c2
j
1
b2,j1b2

= P
i2b2
R P

k2b2
R (Sqq)

i1i1,k1k1
j
1
i2,j1k2

= P
i2j2
R P

k2j2
R (Sqq)

i1i1,k1k1
j
1
i2,j1k2

= P
i1i2
R P

k1k2
R (Sqq)

i1i2,k1k2
j
1
j
2
,j

1
j
2

= m(R)RRSqq (4.45)

if R is in the singlet or octet channels, where in the second and the forth step we have used

(4.41) for the indices associated with parton a2 in Sa1a2 . Writing

m(R)RRSgg = P
a1a2
R P

c1c2
R (Sgg)

a1a2,c1c2
b1b2,b1b2

= P
i1a1
R P

i1a2
R P

k1c1
R P

k1c2
R (Sgg)

a1a2,c1c2
b1b2,b1b2

(4.46)

for R = 1, A, S and using (4.41) for all index pairs, one can reduce Sgg to Sqq in the

colour singlet and octet channels as well. The only independent soft matrix elements for

collinear DPS factorisation (in channels with the same parton species in the amplitude and

its conjugate) are therefore

11S = 11Sqq =
11Sqg =

11Sgq =
11Sgg = 1 (4.47)

and

88S = 88Sqq =
AASqg =

SSSqg =
AASgq =

SSSgq =
AASgg =

SSSgg ,
DDS = DDSgg ,
27 27S = 27 27Sgg , (4.48)

where one can also replace one or both labels q with q̄ in the soft factors involving quarks.

We recall that each factor in (4.48) depends on y, on a rapidity difference, and on two

renormalisation scales µ1 and µ2. In the colour singlet channel the soft matrix elements

are unity because all Wilson lines are contracted pairwise to WW † =W †W = 1.

As noted in [74], there is a remarkable identity

88S(y) = Sg(y) , (4.49)

where Sg is the soft factor for single TMD factorisation with a gluon initiated hard scat-

tering such as gg → H [85]. Its definition reads

Sg(z) =
〈
0
∣∣P a b

1

[
OS,g(0,z)

]a,b ∣∣0
〉
, (4.50)
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Figure 3. Graphical representation of colour index contractions in the factorised double dijet cross

section. The indices in this figure correspond to the ones given in (4.51). The corresponding primed

indices in the complex conjugate part of the graph are not shown.

where OS,g is obtained from (3.16) by replacing the fundamental Wilson lines with adjoint

ones. One can easily prove (4.49) by applying the colour Fierz identity (4.2) to 88S in the

quark representation and to Sg after converting adjoint Wilson lines into fundamental ones

using (4.33). It is understood that the two renormalisation scales µ1, µ2 in 88S(y) must be

taken equal in (4.49).

4.5 Interlude: collinear factorisation for coloured particle production

In collinear factorisation, we may consider the production of coloured particles, a prominent

example for DPS being double dijet production. As pointed out in section 2.1 of [29], the

steps for showing factorisation in this case lead to the extended soft factor (3.12). Instead

of the product in (3.1), the cross section then involves products of the form

X = H
s1t1
a1b1

H
s2t2
a2b2

[
F T
us,b1b2(YR)S

−1(YR − YL)
]r1r2

×
[
S(YR − YL)

]r1r2,u1u2

s1s2,t1t2

[
S−1(YR − YL)Fus,a1a2(YL)

]u1u2 . (4.51)

A pictorial representation is given in figure 3. Colour indices s, t in the hard scattering

factor Hss′tt′ are for the incoming partons in the amplitude, whilst s′, t′ are for the incoming

partons in the conjugate amplitude. These indices are contracted with colour indices of

the extended soft factor. The inverse soft factors S−1 in (4.51) remove soft gluons from the

unsubtracted collinear factors Fus as usual; they are hence the soft factors with left and right

moving Wilson lines colour contracted as in (3.15). We have omitted their parton labels,

given that after colour projection they are independent of the parton species as shown in

the previous subsection. In the extended soft factor, the representation of each Wilson
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line must match the parton entering in the corresponding hard-scattering subprocess. This

includes combinations such as Wab(ξ, vL)W
†
kl(ξ, vR), which corresponds to a right-moving

quark scattering on a left-moving gluon. It is not difficult to generalise the relation (4.43)

between the extended and usual soft factors to such cases, so that we can omit parton

labels in the extended soft factor as well. Inserting projection operators as in (4.12), we

can thus rewrite (4.51) as

X =
∑

R,R′,R1,R2

P
s1t1
R1

H
s1t1
a1b1

P
s2t2
R2

H
s2t2
a2b2

m(R)m(R′)m(R1)m(R2)
P

r1r2
R

[
F T
us,b1b2(YR)S

−1(YR − YL)
]r1r2

× δRR1
δRR2

δRR′ m(R)RRS(YR − YL) P
u1u2
R′

[
S−1(YR − YL)Fus,a1a2(YL)

]u1u2

=
∑

R

P
s1t1
R H

s1t1
a1b1

P
s2t2
R H

s2t2
a2b2

m3(R)
P

r1r2
R F

r1r2
us,b1b2

(YR)
RRS−1(YR − YL)P

u1u2
R F

u1u2

us,a1a2
(YL) ,

(4.52)

where in the last step we used that RR′
S−1 is diagonal in R and R′. Splitting RRS as in

(4.22) and using that RRs is real valued, we obtain colour projected DTMDs from (4.23)

and the analogue of (4.14) for Fus. This yields the main result of this subsection:

X =
∑

R

1

εa1(R) εb1(R) εa2(R) εb2(R)

1

Na1Nb1Na2Nb2

P
s1t1
R H

s1t1
a1b1

P
s2t2
R H

s2t2
a2b2

m2(R)

× RFus,b1b2(YR)
RRs−1(YR − YC)

RRs−1(YC − YL)
RFus,a1a2(YL)

=
∑

R

RHa1b1
RHa2b2

RFb1b2
RFa1a2 . (4.53)

The colour structure of the collinear cross section is thus surprisingly simple: we have the

same DPDs in (4.53) as in the formula (4.24) for colour singlet production, and the only

new ingredients are the colour projected hard-scattering factors 5

RHab =
1

εa(R) εb(R)

1

NaNb

P
s t
R H

s t
ab

m(R)
. (4.54)

For the production of a colour singlet system, the hard scattering subprocess has the

structure

H
s t
ab = δst δs′t′ Hab . (4.55)

Using (4.10) we thus find

P
s t
R H

s t
ab = m(R)Hab , (4.56)

so that RHab reproduces Hab/(NaNb) divided by εa(R) εb(R), which is absorbed into the

sign factor ηa1a2(R) in (4.24).

5The factors RH in (4.54) differ from the ones in equation (2.11) of [29]. Here we project index pairs

in the t-channel (s, s′ etc.) onto a definite colour representation R, whereas in [29] this was done for index

pairs in the s-channel (s, t etc.).
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5 Factorisation at small transverse momenta

We are now in a situation to give the TMD factorisation formula for DPS processes. Let

us consider the production of two particles or groups of particles with transverse momenta

q1, q2 and invariant masses Q1, Q2. Both Q1 and Q2 are required to be large, and we denote

their generic size by Q for the purpose of power counting. Both transverse momenta, whose

generic size we denote by qT , are required to be small compared with Q. Up to power

corrections in Λ/Q and |qi|/Q, the DPS cross section with measured transverse momenta

reads

dσDPS

dx1 dx2 dx̄1 dx̄2 d2q1 d
2q2

=
1

C

∑

a1,a2,b1,b2

σ̂a1b1(Q1, µ1) σ̂a2b2(Q2, µ2)

×
∫

d2z1

(2π)2
d2z2

(2π)2
d2y e−iq1z1−iq2z2 Wa1a2b1b2(x̄i, xi,zi,y;µi, ν) , (5.1)

with

Wa1a2b1b2(x̄i, xi,zi,y;µi, ν) = Φ(νy+)Φ(νy−)

×
∑

R

ηa1a2(R)
RFb1b2(x̄i,zi,y;µi, ζ̄)

RFa1a2(xi,zi,y;µi, ζ) (5.2)

and

y± = y ± 1
2(z1 − z2) . (5.3)

We recall that we write arguments xi if a function depends on both x1, x2, and likewise

for all other variables. The combinatorial factor C is equal to 2 if the systems produced

by the two hard scatters are identical and equal to 1 otherwise. The factor ηa1a2(R) was

defined in (4.25); it is equal to −1 if R = A and exactly one of a1 and a2 is a gluon and

equal to 1 otherwise. The subprocess cross sections are given by

σ̂a1b1(Q
2
1, µ

2
1) =

1

2Q2
1

Ha1b1(Q
2
1, µ

2
1)

Na1Nb1

(5.4)

and likewise for index 2. Here, 1/(2Q2
1) is the standard flux factor, and 1/(Na1Nb1) imple-

ments colour averaging over the initial state as noted after (4.24). The sum over a1, a2, b1, b2
in (5.1) runs over both parton species and polarisations, following the notation specified in

section 3.1. Hard-scattering cross sections and DPDs carry transverse Lorentz indices for

transverse quark and linear gluon polarisation, which must be contracted appropriately.

For later discussion, it is useful to rewrite the integration measure in (5.1) as

d2y d2z1 d
2z2 e

−iq1z1−iq2z2 = d2Z d2y+ d
2y− e−i(q1+q2)Z−i(q1−q2)(y+−y−)/2 (5.5)

with

Z = 1
2(z1 + z2) . (5.6)
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The function Φ(νy±) in (5.2) regulates the ultraviolet region. It is intimately related

with the cross talk between double and single hard scattering and was introduced in the

recent work [30]. This is discussed in section 5.3, where we show how to combine the

contributions from DPS, SPS and their interference to obtain the physical cross section.

Apart from this function, the factorisation formula (5.1) is identical to the form that

emerged from the analysis of lowest-order graphs in section 2 of [27]. This is because our

DPD definition in section 3.3 absorbs all relevant effects of soft gluon exchange in the cross

section, leading to the crucial relations (3.31) and (3.32).

Of course, the scale and rapidity parameter dependence of the DTMDs in (5.1) does

not arise from lowest-order graphs but from the full analysis in section 3.4. In the next

section, we give the final forms (5.7) and (5.11) of the corresponding evolution equations,

as well as their explicit solutions (5.17) and (5.19) at the level of DPDs and of the cross

section, respectively. In section 5.2 we derive the evolution equations (5.22) to (5.25) of

DPDFs and give the explicit form (5.27) of their rapidity dependence.

When combining SPS and DPS in the physical cross section, one must take care of

interference effects and of double counting. A systematic framework for this has been

proposed in [30], and in section 5.3 of the present paper we characterise the individual

terms in the master formula (5.30) for the cross section with measured transverse momenta.

5.1 DTMD evolution: renormalisation scale and rapidity

Let us rewrite the evolution equations for the DTMDs using the projection operators

introduced in section 4. The renormalisation group equation (3.43) then reads

∂

∂ log µ1

RFa1a2(xi,zi,y;µi, ζ) = γF,a1(µ1, x1ζ/x2)
RFa1a2(xi,zi,y;µi, ζ) (5.7)

for the scale µ1, and in analogy for µ2. Here we have introduced the rapidity parameter

ζ = 2x1x2 (p
+)2 e−2YC , (5.8)

where p is the proton momentum.6 This extends the definition (3.50) for SPS to the case

of DPS in a way that is symmetric in the two momentum fractions x1, x2. As discussed

after (3.44), the correct rapidity argument of γF,a in (5.7) is x1ζ/x2 = 2(x1p
+)2e−2YC , since

the corresponding UV divergent subgraphs depend on the momentum of parton 1 (whose

plus-component is x1p
+), but not on the momentum of parton 2. For the DPD of the left

moving proton with momentum p̄ we define accordingly

ζ̄ = 2x̄1x̄2 (p̄
−)2 e2YC . (5.9)

Note that

ζ ζ̄ = x1x̄1x2 x̄2 (2p
+p̄−)2 = Q2

1Q
2
2 . (5.10)

6A different definition (going back to [86]) was used in [27], namely x1x2ζ
2|Ref. [27] = ζ|here .
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Rewriting the rapidity derivative as ∂/∂YC = −2∂/∂ log ζ = 2∂/∂ log ζ̄, one obtains from

(3.34) the Collins-Soper equation

∂

∂ log ζ
RFa1a2(xi,zi,y;µi, ζ) =

1

2

∑

R′

RR′

Ka1a2(zi,y;µi)
R′

Fa1a2(xi,zi,y;µi, ζ) (5.11)

for colour projected DTMDs in a right moving proton. The Collins-Soper equation for a

left moving proton has the same form, with ζ replaced by ζ̄. The scale dependence of the

Collins-Soper kernel in (3.43) now reads

∂

∂ log µ1
RR′

Ka1a2(zi,y;µi) = −γK,a1(µ1) δRR′ (5.12)

and correspondingly for µ2. It is thus only the diagonal elements of RR′
K that have UV di-

vergences and depend on the renormalisation scales µ1 and µ2. Let us recall that the kernel

Ka1a2 and the anomalous dimensions γF,a and γK,a depend on the colour representation of

the parton (quarks or antiquarks vs. gluons) but not on their flavour or polarisation.

It is easy to solve the rapidity and renormalisation scale evolution with general starting

scales µ01, µ02 for µ1, µ2 and ζ0 for ζ. Renormalisation scale evolution gives

RFa1a2(xi,zi,y;µi, ζ) =
RFa1a2(xi,zi,y;µ0i, ζ)

× exp

[∫ µ1

µ01

dµ

µ
γF,a1(µ, x1ζ/x2) +

∫ µ2

µ02

dµ

µ
γF,a2(µ, x2ζ/x1)

]
. (5.13)

Using the rapidity evolution in (5.11) we write

RFa1a2(xi,zi,y;µi, ζ) =
∑

R′

RR′

exp

[
Ka1a2(zi,y;µi) log

√
ζ√
ζ0

]
R′

Fa1a2(xi,zi,y;µi, ζ0) ,

(5.14)

where RR′
exp is to be understood as a matrix exponential, i.e.

RR′

exp(M) = δRR′ + RR′

M +
∞∑

n=2

∑

R2,...,Rn

RR2M · · · RnR′
M

n!
. (5.15)

We now split

RR′

Ka1a2(zi,y;µi) = δRR′

[
1Ka1(z1;µ1) +

1Ka2(z2;µ2)
]
+ RR′

Ma1a2(zi,y) , (5.16)

where 1Ka(z;µ) is the kernel in the Collins-Soper equation (2.7) for a single parton TMD.

The colour singlet label 1 on K is given for consistency with our later notation in sec-

tion 6.2.2. By virtue of (2.8) and (5.12), the matrix RR′
M is independent of µ1 and µ2.

Combining (5.13) and (5.14) with (5.16), we obtain the relation between the DTMD at
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initial and final scales in the form

RFa1a2(xi,zi,y;µi, ζ)

= exp

{∫ µ1

µ01

dµ

µ

[
γa1(µ)− γK,a1(µ) log

√
x1ζ/x2
µ

]
+ 1Ka1(z1;µ01) log

√
ζ√
ζ0

+

∫ µ2

µ02

dµ

µ

[
γa2(µ)− γK,a2(µ) log

√
x2ζ/x1
µ

]
+ 1Ka2(z2;µ02) log

√
ζ√
ζ0

}

×
∑

R′

RR′

exp

[
Ma1a2(zi,y) log

√
ζ√
ζ0

]
R′

Fa1a2(xi,zi,y;µ01, µ02, ζ0) , (5.17)

where we have used the explicit form (2.5) of γF,a. The exponential in the second and third

lines is just the generalisation to two partons of the evolution factor for a single parton

TMD, as is readily seen by solving the system of equations in (2.3) to (2.8). It resums

both double and single logarithms. The last line in (5.17) describes the mixing between

different colour representations R under rapidity evolution and involves a single logarithm.

The double logarithms in the evolution of RFa1a2(xi,zi,y;µi, ζ) are thus the same as those

for a product of two single TMDs with appropriate arguments.

The symmetry relation (4.29) for RR′
K translates into an analogous relation for RR′

M .

Using that bi is the antiparton of ai in the cross section formula (5.1) and that Ma1a2 does

not depend on parton spins, we can thus rewrite

ηa1a2(R)
RR′

exp

[
Mb1b2 log

√
ζ̄√
ζ0

]
R′

Fb1b2 = ηa1a2(R
′) R′

Fb1b2
R′Rexp

[
Ma1a2 log

√
ζ̄√
ζ0

]

(5.18)

when inserting the evolved form of RFb1b1 into the expression (5.2) of W . This allows us

to combine the matrix exponentials associated with the two DPDs. Further using that

one has equal anomalous dimensions γai = γbi and γK,ai = γK,bi and equal Collins-Soper

kernels 1Kai =
1Kbi , we obtain

Wa1a2b1b2 = exp

{∫ µ1

µ01

dµ

µ

[
γa1(µ)− γK,a1(µ) log

Q2
1

µ2

]
+ 1Ka1(z1;µ01) log

Q1Q2

ζ0

+

∫ µ2

µ02

dµ

µ

[
γa2(µ)− γK,a2(µ) log

Q2
2

µ2

]
+ 1Ka2(z2;µ02) log

Q1Q2

ζ0

}

× Φ(νy+)Φ(νy−)
∑

RR′

ηa1a2(R)
RFb1b2(x̄i,zi,y;µ01, µ02, ζ0)

× RR′

exp

[
Ma1a2(zi,y) log

Q1Q2

ζ0

]
R′

Fa1a2(xi,zi,y;µ01, µ02, ζ0) . (5.19)

We have used the relation (5.10) for combining the arguments of the logarithms and ex-

pressing them in terms of the physical scales Q1 and Q2. The variables ζ and ζ̄ have thus

completely disappeared from the physical cross section. This is not the case for the fac-

torisation scales µi in (5.19) and in the hard scattering cross sections σ̂. As is well known,

the dependence on these scales only cancels up to un-calculated higher orders in αs.
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5.2 DPDF evolution

We now turn to DPDFs, which appear not only in the factorisation formula for DPS with

integrated transverse momenta, but also in the short-distance expansion of DTMDs, as

we will see in section 6.2. We have derived in section 4.4 that the soft factor RR′
Sa1a2 at

z1 = z2 = 0 is diagonal in R and R′ and independent of the parton species. Following the

construction in appendix A, one finds that the matrix s in (3.25) is also diagonal in R and

R′ and satisfies the relation

RRs(Y ) =
√

RRS(2Y ) , (5.20)

which is the analogue of (3.47) for SPS. The definition of DPDFs from unsubtracted

collinear matrix elements in (3.29) thus turns into

RFa1a2(YC) = lim
YL→−∞

RRs−1(YC − YL)
RFus,a1a2(YL) (5.21)

for a right moving proton, and correspondingly for a left moving one. The kernel K = K̂

controlling the Y dependence of S(Y ) and s(Y ) is of course also diagonal in R and R′. We

denote it by RJ in order to avoid confusion with the evolution kernel for TMDs. In terms

of the variable ζ, the rapidity evolution of DPDFs is then given by

∂

∂ log ζ
RF (xi,y;µi, ζ) =

1

2
RJ(y;µi)

RF (xi,y;µi, ζ) , (5.22)

where we have explicitly given all arguments of the functions. Since in the colour singlet

channel 11S = 1, one has 1J = 0 for the corresponding evolution kernel, i.e. the collinear

colour singlet DPDFs are independent of the rapidity parameter ζ.

Let us now discuss renormalisation. Setting z1 = z2 = 0 in the soft factor S and in

the hadronic matrix elements Fus induces additional UV divergences compared to the case

where these distances are finite. The graphs requiring renormalisation are now not only

vertex corrections and self energies, but also involve the exchange of hard gluons between

partons or Wilson lines associated with the scattering amplitude and its complex conju-

gate. This is of course well known from the renormalisation of the twist-two operators

that define ordinary PDFs, which is not purely multiplicative but involves a convolution

in the momentum fraction x and mixing between quark and gluon operators. In the renor-

malisation group equations for PDFs, splitting kernels Pab take the role of the anomalous

dimensions γF,a in the TMD case.

In the case of DPDFs we must pay particular attention to colour. Taking the twist-two

operators (3.10) at z = 0 and projecting their colour indices on a definite representation

R as in (4.18), we obtain the colour projected matrix element RFus according to (4.19).

Due to gauge invariance, operators ROa belonging to different colour representations do

not mix under renormalisation. To obtain the soft factor RRS, we evaluate the Wilson

line products (3.16) at z = 0 and project them on definite colour channels R as P
r s
R O

r,s
S,a.

Again, operators with different R do not mix under renormalisation. The renormalisation

of the soft factor remains multiplicative, because it is identical for quarks and gluons and

because it does not depend on x.
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With this in mind, one can repeat the arguments we developed in section 3.4 for the

renormalisation of DTMDs and of their Collins-Soper kernels. One then obtains

∂

∂ log µ1
RJ(y;µi) = −RγJ(µ1) (5.23)

for the Collins-Soper kernel and

∂

∂ log µ1

RFa1a2(xi,y;µi, ζ) = 2
∑

b1

RPa1b1(x
′
1;µ1, x1ζ/x2) ⊗

x1

RFb1a2(x
′
1, x2,y;µi, ζ) (5.24)

for DPDFs, as well as analogous equations for the µ2 dependence.7 Let us emphasise that

the evolution equation (5.24) for DPDFs depending on y is homogeneous. As discussed in

[27, 30], an additional term for the splitting of one parton into two arises on the r.h.s. if

one integrates the distributions over y or Fourier transforms them w.r.t. that variable. The

resulting inhomogeneous equation has been extensively studied in the literature [87–91].

By construction, the kernels 1Pa1b1 for the colour singlet sector are the ordinary

DGLAP kernels for the evolution of PDFs. They are hence independent of ζ, which is not

the case in the other colour channels. Indeed, combining (5.22), (5.23), (5.24) and requir-

ing equality of the derivatives ∂/(∂ log µi) ∂/(∂ log ζ)
RF and ∂/(∂ log ζ) ∂/(∂ log µi)

RF , we

find

∂

∂ log ζ
RPab(x;µ, ζ) = −1

4
δab δ(1 − x)RγJ(µ) (5.25)

and thus

RPab(x;µ, ζ) = −1

2
δab δ(1 − x)RγJ(µ) log

√
ζ

µ
+ RPab(x;µ, µ

2) . (5.26)

These are the analogues of the relations (2.4) and (2.5) for the anomalous dimension

γF,a(µ, ζ) in TMD evolution.

We can make the ζ dependence of the DPDFs fully explicit in the form

RFa1a2(xi,y;µi, ζ) = exp

[
−
∫ µ1

µ0

dµ

µ
RγJ(µ) log

√
x1ζ/x2
µ

−
∫ µ2

µ0

dµ

µ
RγJ(µ) log

√
x2ζ/x1
µ

+ RJ(y;µ0, µ0) log

√
ζ√
ζ0

]
RF̂a1a2, µ0,ζ0(xi,y;µi) , (5.27)

where F̂ is defined by the differential equation

∂

∂ log µ1

RF̂a1a2, µ0,ζ0(xi,y;µ1, µ2)

= 2
∑

b1

RPa1b1(x
′
1;µ1, µ

2
1) ⊗

x1

RF̂b1a2, µ0,ζ0(x
′
1, x2,y;µ1, µ2) (5.28)

7Regarding factors of 2, our convention for splitting kernels follows [65], so that 2P takes the place of

the anomalous dimension γF,a in TMD evolution. The kernel RP in (5.24) should not be confused with the

colour projector PR.
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and its analogue for µ2, with the initial condition

RF̂a1a2, µ0,ζ0(xi,y;µ0, µ0) =
RFa1a2(xi,y;µ0, µ0, ζ0) . (5.29)

Unlike F , the distribution F̂ evolves with ζ independent kernels. The correct scale depen-

dence of (5.27) can be verified by inserting (5.25) into (5.24), and its ζ dependence can be

verified by using (5.22) and (5.23).

The integrals over µ in (5.27) give rise to double logarithms, which have been exponen-

tiated to a Sudakov factor in the solution of the evolution equation. Since the anomalous

dimensions RγJ are positive for all R 6= 1 (see section 7.2.1), the contribution of all colour

non-singlet DPDs to the cross section is Sudakov suppressed for sufficiently large hard

scales. This was recognised long ago in [92] and confirmed in [28], where a simple nu-

merical estimate was also given. In [28], scale and rapidity evolution was discussed for

collinear DPS factorisation, keeping unsubtracted DPDs and an explicit soft factor in the

cross section. The individual evolution equations hence differ between their approach and

ours, but must of course give the same effects at the cross section level.

5.3 Combining DPS with SPS

The DPS cross section given in (5.1) is not a physical observable, because the same final

state can also be produced by SPS. Dimensional analysis readily shows that DPS and SPS

contribute to the TMD cross section at the same power in 1/Q. The distinction between

the two mechanisms is in fact nontrivial, since there are Feynman graphs that contribute to

both of them. These are graphs in which one parton splits into two, as shown in figure 4a.

The kinematic region where the qq̄ pairs are nearly collinear with their parent gluon is

naturally described as DPS, with the splitting being included in the DPDs. By contrast,

the region where the quarks and antiquarks have large transverse momenta (and hence

large virtualities) is adequately described as a loop correction to SPS, with gluon TMDs

describing the initial state of the hard scattering.

The interference between SPS and DPS has the same power behaviour in 1/Q as SPS

and DPS and hence should also be included in the cross section. Again, there is a double

counting problem, since graphs like the one in figure 4b contribute to either the interference

term or to DPS, depending on whether the splitting takes place in the collinear or in the

hard momentum region. Note that not all graphs are affected by double counting. The

graphs in figure 5 for instance have no overlap with DPS, whereas there is overlap between

SPS and the SPS/DPS interference in figure 5b.

A systematic formalism for separating the different contributions and for adding them

in the cross section without double counting has been presented in [30]. In the following,

we briefly recapitulate the essentials of this scheme for TMD factorisation, referring to

that work for details. DTMDs and other hadronic matrix elements are used in the trans-

verse position (rather than transverse momentum) representation. This is very convenient

for treating Collins-Soper evolution, which is then multiplicative (rather than involving

convolution integrals). The distinction between collinear and hard parton splitting then

corresponds to the transverse distance between the partons being large or small, respec-

tively.
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(a) (b) (c)

Figure 4. Graphs that contribute to several terms in the cross section (5.30). The rectangular

boxes and oval blobs indicate the relevant hadronic matrix elements, depending on whether the

g → qq̄ splittings are collinear or hard.

(a) (b)

Figure 5. (a) A graph for the SPS/DPS interference that does not have overlap with DPS. (b) An

SPS graph that has no overlap with DPS but with the SPS/DPS interference.

y + 1
2z1

1
2z2 −1

2z2 y − 1
2z1

(a)

y + 1
2z1

1
2z2

1
2(y −Z)

(b)

Figure 6. Transverse positions of the parton fields in parton splitting contributions to (a) the

quark-antiquark DTMD and (b) the twist-three TMD Dqq̄|g. Due to translation invariance, the

latter depends only on y+ and Z. The positions in (b) correspond to equation (3.9) in [30].

As can be seen in figure 6a, the relative distance between the two partons with mo-

mentum fractions x1 and x2 in a DTMD is y+ for the partons in the amplitude and y−
for those in the conjugate amplitude, with the distances defined in (5.3). The contribution

from small distances to the DPS cross section σDPS is removed by the factors Φ(νy+) and

Φ(νy−) in (5.2), which we discuss further at the end of this section. Corresponding factors

are inserted in the interference σDPS/SPS+σSPS/DPS between SPS and DPS. The SPS cross
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section σSPS is not modified in this scheme and computed as usual from TMDs and hard

scattering cross sections, as described for instance in [65]. The master formula for the

overall cross section then reads

σ = σDPS +
[
σDPS/SPS − σDPS, y−→0 + σSPS/DPS − σDPS, y+→0

]

+
[
σSPS − σDPS/SPS, y+→0 − σSPS/DPS, y−→0 + σDPS, y±→0

]
, (5.30)

where all terms should be taken differential in dx1 dx2 dx̄1 dx̄2 d
2q1 d

2q2. In this formula,

the double counting problem between different contributions is solved by subtraction terms,

which we will discuss shortly.

Let us start with the interference between DPS and SPS. As the colour and polarisation

of the partons are not the main focus of the present section, we will not display these

quantum numbers explicitly. The following equations hold for specific colour and helicity

of each parton on the l.h.s. and with appropriate sums on the r.h.s. The indices αi, βi will

just denote the parton species. Up to kinematic and numeric factors, the interference cross

section is given by

dσDPS/SPS

dx1 dx2 dx̄1 dx̄2 d2q1 d
2q2

∝
∑

α1,α2,α0

β1,β2,β0

Hα1β1
Hα2β2

H∗
α0β0

∫
d2Z d2y+ e−i(q1+q2)Z

× e−i(q1−q2)y+/2 Φ(νy+)Dβ1β2|β0
(x̄i,y+,Z)Dα1α2|α0

(xi,y+,Z) (5.31)

for DPS in the amplitude, and by

dσSPS/DPS

dx1 dx2 dx̄1 dx̄2 d2q1 d
2q2

∝
∑

α0,α1,α2
β0,β1,β2

Hα0β0
H∗

α1β1
H∗

α2β2

∫
d2Z d2y− e−i(q1+q2)Z

× ei(q1−q2)y−/2 Φ(νy−)Dβ0|β1β2
(x̄i,y−,Z)Dα0|α1α2

(xi,y−,Z) (5.32)

for DPS in the complex conjugate amplitude. Here Dα1α2|α0
is a twist-three TMD with

two partons α1α2 in the amplitude and one parton α0 in the conjugate amplitude. Its

definition is similar to the one of DTMDs, with three instead of four parton operators in

the hadronic matrix element. The transverse positions of the partons are as indicated in

figure 6b. In Dα0|α1α2
, the roles of amplitude and conjugate amplitude are interchanged.

Hα1β1 and Hα2β2 are the hard scattering amplitudes for the DPS processes, whilst Hα0α0

is the amplitude for the hard SPS interaction.

σDPS/SPS receives a contribution from the graph in figure 4b without the rectangular

boxes. The quark loop in the conjugate amplitude includes an integration over the full phase

space, including the region where the g → qq̄ splittings become collinear. By a Fourier

transform, one can rewrite the transverse part of the loop integration as an integral over

y−, after which the region of collinear splitting corresponds to large y−. This contribution
is already included in σDPS, so that a subtraction term is necessary to prevent double
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counting. It reads

dσDPS,y−→0

dx1 dx2 dx̄1 dx̄2 d2q1 d
2q2

∝
∑

α1,α2

β1,β2

Hα1β1
Hα2β2

H∗
α1β1

H∗
α2β2

×
∫
d2Z d2y+ d

2y− e−i(q1+q2)Z−i(q1−q2)(y+−y−)/2 Φ(νy+)Φ(νy−)

× Fβ1β2,y−→0(x̄i,y±,Z)Fα1α2,y−→0(xi,y±,Z) . (5.33)

Compared with the DPS cross section given by (5.1) and (5.2), we have traded the ar-

guments zi, y of the DTMDs for y±, Z and correspondingly changed the integration

according to (5.5). For simplicity we write y− → 0 instead of y− → 0 in subscripts. The

DTMDs in (5.33) correspond to the rectangular boxes in figure 4b and are given by

Fα1α2, y−→0(xi,y±,Z) =
yl′
−

y2
−

[
U l′
α0→α1α2

(xi)
]∗
Dα1α2|α0

(xi,y+,Z) +O(α3/2
s ) . (5.34)

This notation reflects that in the limit y− → 0 the DTMD is dominated by the contribution

where the two partons α1 and α2 in the conjugate amplitude originate from the splitting

of a single parton α0. The lowest order perturbative splitting kernel U includes a factor of√
αs. For given α1 and α2, the parton species α0 is fixed at this order, but its helicity must

be summed over. As shown in [30], the combination σDPS+σDPS/SPS−σDPS,y−→0 correctly

treats the contribution of graph 4b to the cross section, for small and for large y−, and
without double counting. We will see in more detail how this happens in section 6.5. The

other subtraction term in the first line of (5.30) is given by expressions analogous to (5.33)

and (5.34), with y− replaced by y+ and the roles of amplitude and conjugate amplitude

being interchanged.

The subtraction terms σDPS/SPS,y+→0 and σSPS/DPS,y−→0 in the second line of (5.30)

are obtained from (5.31) and (5.32) by replacing all distributions D with their perturbative

splitting approximation. For the case shown in figure 6b, this is given by

Dα1α2|α0, y+→0(xi,y+,Z) =
yl
+

y2
+

U l
α0→α1α2

(xi) fα0
(x1 + x2,Z) +O(α3/2

s ) , (5.35)

where on the r.h.s. we have a single parton TMD and the same splitting kernel U as in

(5.34). An analogous expression holds for the limit y− → 0 of Dα0|α1α2
. The combination

σDPS/SPS + σSPS − σDPS/SPS,y+→0 correctly represents graph 4c in the region where the

quark loop in the conjugate amplitude is hard.

Finally, the term σDPS,y±→0 in (5.30) ensures the correct treatment of the case when

both quark loops in graph 4a are in the collinear region. This term is given by the DPS

cross section with each DTMD approximated for the regime where both parton pairs are

produced by perturbative splitting:

Fα1α2, y±→0(xi,y±,Z) =
yl
+

y2
+

yl′
−

y2
−
U l
α0→α1α2

(xi)
[
U l′
α0→α1α2

(xi)
]∗
fα0

(x1 + x2,Z) +O(α2
s) .

(5.36)
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This is illustrated in figure 6a and can be obtained by inserting the expression (5.35) into

(5.34). Notice that σDPS,y±→0 appears with a plus rather than a minus sign in (5.30). This

is a consequence of the recursive nature of double counting subtractions, as explained in

section 4.2 of [30].

To make contact with our notation in section 6.3.1, we rewrite (5.36) in terms of a

single splitting kernel as8

RFa1a2, y±→0(xi,zi,y) =
yl
+yl′

−
y2
+y2

−

∑

a0

αs

2π2
RT ll′

a0→a1a2

(
x1

x1 + x2

)
fa0(x1 + x2,Z)

x1 + x2
+O(α2

s) ,

(5.37)

where we have restored the dependence on the colour representation and the notation with

labels ai that specify parton species and polarisation. For transverse quark or linear gluon

polarisation, the parton distributions and the kernel Ta0→a1a2 carry additional transverse

indices, which are not displayed here (see section 7.4). The sum over a0 reflects the fact

that there are TMDs for these polarisation states, even if the proton is unpolarised.

We can now discuss the role of the function Φ introduced earlier. The short-distance

behaviour of the DTMDs and twist-three distributions, given in (5.34) and (5.35), results

in an integral

∫

|y+|≪1/Λ

d2y+

y2
+

e−i(q1−q2)y+/2 Φ(νy+) (5.38)

and its analogue for y− in the cross section formulae for DPS and for the SPS/DPS inter-

ference. The function Φ must satisfy Φ(u) → 0 for u → 0 to ensure that these integrals

converge at small distances (rather than having a logarithmic divergence). In order to

keep the regions of large y+ and y− unaffected, one should furthermore have Φ(u) → 1 for

|u| ≫ 1. A simple choice for Φ(u) is a step function in |u|, which corresponds to a hard

cutoff on the y± integrals.

The integral (5.38) goes like log(ν/qT ) and thus depends on the artificial parameter

ν that controls which distances y± are included in what we define to be DPS rather

than SPS. The ν dependence of the different terms in the cross section (5.30) cancels

to the perturbative order of the calculation, in close analogy with the familiar case of

renormalisation and factorisation scale dependence. As discussed in [30], a suitable choice

for ν is the lowest hard scale, min(Q1, Q2). With this choice, σDPS contains a squared

logarithm log2(Q/qT ), where we recall that Q denotes the generic size of Q1 and Q2. After

the subtractions in the first line of (5.30), the SPS/DPS interference contains only a single

log(Q/qT ) and the subtracted SPS term in the second line has no such logarithm at the

corresponding order in αs. This has an important consequence. If one is satisfied with

leading logarithmic accuracy, then the terms in square brackets in (5.30) can be neglected

at the order in αs where they have overlap with DPS, because at that order it is σDPS that

has the highest power of log(Q/qT ).

8The convention for T jj′ here is the same as in [30] (arXiv version 2) and differs from the one in [27] as

specified in section 7.4.
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We should note that the structure of the higher-order terms in (5.34), (5.35) and (5.36)

is currently unknown. In particular, it cannot be excluded that singularities will appear

at points other than y+ = 0 and y− = 0. The treatment of ultraviolet divergences and of

the associated double counting issues may thus be more involved beyond the leading order

discussed here.

To conclude this section, we briefly discuss the scale evolution of the twist-three

TMDs D. As already noted, they are defined in terms of hadronic matrix elements, with

three parton fields and the corresponding Wilson lines instead of the four fields we have

in the unsubtracted DTMDs in (3.2). The three parton fields are at different transverse

positions (if all three positions are equal, one has collinear twist-three distributions). It

is easy to see that the analysis of factorisation for the SPS/DPS interference will yield a

soft factor, with three products of Wilson lines associated with the three parton fields in

the hadronic matrix elements (rather than four products of Wilson lines as in figure 1).

One can readily adapt the discussion in sections 3.2 to 3.4 to this case and absorb the soft

factor into the twist-three distributions. The colour algebra is much simpler than in the

DPS case, with a single colour representation in the qq̄g channel, and two for the channel

with three gluons (one constructed with fabc and the other with dabc). The rapidity de-

pendence of Dα1α2|α0
is finally given by a Collins-Soper equation as in (5.11) with a kernel

Kα1α2|α0
. If one takes different renormalisation scales µ1, µ2 and µ0 for the three parton

legs, then the dependence of D and K on these scales is given by the analogues of (5.7) and

(5.12), with γK,a replaced by γK,a/2 and γF,a by γE,a or (γE,a)
∗ as discussed at the end of

section 3.4. The rapidity parameter ζ is defined by (5.8) and must be properly rescaled in

the argument of γF,a, namely by x1ζ/x2, x2ζ/x1 and (x1 + x2)
2ζ/(x1x2) for the partons

with momentum fractions x1, x2 and x1 + x2, respectively.

6 Matching for small but perturbative transverse momenta

In the multi-scale regime Λ ≪ qT ≪ Q, where the transverse momenta |qi| are small

compared with Qi but large compared with the scale Λ of nonperturbative physics, the

DPS cross section, as well as its combination with SPS can be considerably simplified.

The reason is that the additional scale qT allows for more perturbative calculations, which

greatly enhances the predictive power of the theory.

We start our analysis by discussing the different transverse distance regions in the DPS

factorisation formula and find that two distinct regions of y are relevant. The corresponding

short-distance expansions of DTMDs are derived in sections 6.2 and 6.3, respectively. In

section 6.4 we discuss the master formula (6.51) for combining the two types of expansion in

the cross section, where care must be taken to avoid double counting. After this, we revisit

the combination between DPS and SPS just discussed in section 5.3. In section 6.6 we go

through the perturbative ingredients that are necessary for a given resummation order as

specified in table 3; their availability determines the perturbative accuracy of cross section

computations.
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6.1 Regions of transverse momenta and distances

In the DPS cross section (5.1), contributions from distances |zi| ≫ 1/|qi| are suppressed

by oscillations of the Fourier exponent e−iq1z1−iq2z2 . If q1 and q2 are sufficiently large,

this keeps z1 and z2 in the region where perturbation theory has predictive power for the

dependence on these variables.

Care is required if q1 and q2 are perturbatively large but |q1 + q2| is of order Λ.

According to (5.5) the sum |z1 + z2| can then reach large values of order 1/Λ, as long as

|z1 − z2| remains small. The individual oscillations of e−iq1z1 and e−iq2z2 cancel in that

case. Likewise, |z1−z2| can become as large as 1/Λ if q1 and q2 are perturbatively large but

|q1 − q2| is of order Λ. The perturbative splitting form (5.37) of DTMDs has a factorised

dependence on the variables z1 + z2 and z1 − z2, and the short-distance expansion (6.38)

we will derive from it requires both distances to be small. We therefore do not consider the

particular phase space regions just mentioned and require |q1| and |q2| as well as |q1 + q2|
and |q1 − q2| to be much larger than Λ. The dominant contribution to the z1 and z2

integrals in the cross section formula (5.1) is then in the perturbative region. Even with

this requirement, one could still consider a region where |q1+q2| is much smaller than |q1|
and |q2|. This multi-scale regime has been discussed in section 5.2.1 of [27] and in [47, 48].

We shall not investigate it in the present work.

Other observables in which sensitivity to large z1 and z2 can be avoided are obtained

by integrating the cross section over one or both of q1 and q2 up to qmax,1 and qmax,2

respectively. In

∫
d2q θ

(
q2max − q2

) ∫ d2z

(2π)2
e−iqzW (z, . . .) = qmax

∫
d2z

2π|z| J1
(
qmax|z|

)
W (z, . . .) (6.1)

the region of |z| ≫ 1/qmax is damped by oscillations, as it is by the exponential factors in

the differential cross section. To avoid that the product of the two Bessel functions has a

non-oscillating component for |z1| ≈ |z2|, one must take qmax,1 6= qmax,2.

We henceforth assume that both |z1| and |z2| are small, namely of order 1/qT . Since y

is integrated over without any Fourier exponent in (5.1) we must still consider the two cases

|y| ∼ 1/Λ and |y| ∼ 1/qT , which are referred to as large y and small y in the following.

For even smaller |y| ≪ 1/qT , the approximations for DPS are not valid and the subtraction

formalism sketched in section 5.3 comes into play. The short-distance expansion of DPDs

in the two DPS regions just mentioned is quite different and will now be discussed in turn.

6.2 The large-y region

For small z1, z2 and large y, the DTMD F (xi,zi,y) can be computed in terms of DPDFs

F (xi,y), in close analogy to the case of single parton distributions. This is commonly

referred to as “matching”. For DTMDs there are complications from colour, but our

results from section 4.4 lead to considerable simplifications. Generalising the relations

(2.9) and (2.11) between TMDs and PDFs, we can derive the general matching equation

(6.11) and the explicit solution (6.22) of the evolution equations for DTMDs. This solution

is promoted to the cross section level in (6.24). We emphasise that the simple structure of
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(6.22) and (6.24) is due to the additive form (6.16) of the Collins-Soper matrix kernel in

the short-distance limit considered here.

6.2.1 Short-distance expansion

We now derive the approximation of DTMDs in the region |z1|, |z2| ≪ 1/Λ, with y kept

fixed at a value such that |z1|, |z2| ≪ |y|. Corrections to this approximation are suppressed

by powers of |zi|Λ and of |zi|/|y|. To make the analogy between DTMDs and single parton

TMDs transparent, we formulate the matching in terms of operator product expansions

around zi = 0.

Let us start with the expansion of the soft factor. We need the small-z limit of the

operators OS,a(y,z) defined in (3.16), which contain two Wilson line pairs separated by a

transverse distance z. The colour structure of the short-distance expansion can be deduced

from the corresponding Feynman graphs. To minimise the number of eikonal propagators

that carry large momentum, interactions at the hard scale 1/|z| must take place closest

to the points where the left- and right-moving Wilson lines meet, as shown in figure 7. In

terms of the operators in (3.13) and (3.16), we thus find the structure
[
OS,a(y,z)

]r,u
= C

s t
S,a(z)

[
OS,a(y)

]r,u
s,t

(6.2)

with a short-distance coefficient CS,a that can be computed in perturbation theory. Here

and in the following, the absence of the argument z in operators or functions means that one

has set z = 0. The analogue of this convention will be used for arguments zi. Introducing

colour projected coefficients RCS,a = P
s t
R C

s t
S,a

/
m(R) and using (4.11), we obtain

[
OS,a(y,z)

]r,u
=
∑

R

RCS,a(z)P
s t
R

[
OS,a(y)

]r,u
s,t

=
∑

R

RCS,a(z)P
r s
R P

u t
R

[
OS,a(y)

]s,t
v,v
, (6.3)

where the second step is completely analogous to the derivation of the relation (4.42)

between the extended soft factor and the usual one. Taking the vacuum expectation value

of OS,a1(y,z1)OS,a2(0,z2) with appropriate colour projections, we obtain

RR′

Sa1a2(zi,y) =
RCS,a1(z1)

RCS,a2(z2)
RRS(y) δRR′ . (6.4)

For computing the short-distance coefficients, it will be convenient to contract (6.3) with

P
r u
R′ , which gives

P
r u
R

[
OS,a(y,z)

]r,u
= RCS,a(z)P

r u
R

[
OS,a(y)

]r,u
. (6.5)

For approximating the unsubtracted collinear matrix element Fus, we need the small-z

limit of the parton operators in (3.10). We use their projections (4.18) on definite colour

representations, which cannot mix with each other due to gauge invariance. The short-

distance expansion involves a convolution integral over momentum fractions and reads9

ROr
a(x,y,z) =

∑

b

RCus,ab(x
′,z) ⊗

x

RO
r
b (x

′,y) . (6.6)

9The lower limit of the convolution in (6.6) is x′ = 0. When matrix elements between hadrons with plus

momentum p+ are taken, the lower limit becomes x′ = x, as in (2.10).
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Figure 7. Interactions of Wilson lines in the operator OS,a(y, z) in the limit of small z. Short-

distance interactions are located in the box at the centre, whereas gluons outside the box indicate

possible interactions with other Wilson lines at distances much larger than z. In the soft factor

Sa1a2
(zi,y) these distances are of order y for small z1 and z2.

If a or b refer to transverse quark or linear gluon polarisation, then the associated operators

carry additional transverse indices, and the same holds of course for Cus,ab. Taking matrix

elements as in (4.19), we obtain an approximation

RFus,a1a2(xi,zi,y) =
∑

b1,b2

RCus,a1b1(x
′
1,z1) ⊗

x1

RCus,a2b2(x
′
2,z2) ⊗

x2

RFus,b1b2(x
′
i,y) (6.7)

of unsubtracted DTMDs in terms of unsubtracted DPDFs and perturbative coefficients

Cus,ab(x,z).

We now combine the soft factor with the unsubtracted DTMD. Using the relation

(5.20) between s and S, we obtain

RR′

sa1a2(zi,y;µi, Y ) =
√

RCS,a1(z1;µ1, 2Y )
√

RCS,a2(z2;µ2, 2Y ) RRs(y;µi, Y ) δRR′ (6.8)

from (6.4), where we have restored the dependence on renormalisation scales and rapidities.

Combining this with (6.7) and using the definition (4.23) of DPDs, we get

RFa1a2(xi,zi,y;µi, YC) =
∑

b1,b2

RCa1b1(x1
′,z1;µ1, YC) ⊗

x1

RCa2b2(x2
′,z2;µ2, YC)

⊗
x2

lim
YL→−∞

RFus,b1b2(xi
′,y;µi, YL)

/
RRs(y;µi, YC − YL) (6.9)

for a DPD in a right moving proton, where the short-distance coefficients are defined as

RCab(x,z;µ, YC) = lim
YL→−∞

RCus,ab(x,z;µ, YL)√
RCS,a(z;µ, 2YC − 2YL)

. (6.10)
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Switching variables from YC to ζ and again using the definition (4.23) of DPDs, we obtain

the final form of the matching equation:

RFa1a2(xi,zi,y;µi, ζ) =
∑

b1,b2

RCa1b1(x1
′,z1;µ1, x1ζ/x2)

⊗
x1

RCa2b2(x2
′,z2;µ2, x2ζ/x1) ⊗

x2

RFb1b2(xi
′,y;µi, ζ) . (6.11)

The rescaling factors x1/x2 or x2/x1 of ζ in the short-distance coefficients arise for the same

reason as discussed after (5.8). Note that they involve the parton momentum fractions x1
or x2 and not the integration variables x′1 or x′2 of the convolution (2.10).

Let us emphasise that (6.11) involves mixing between quark and gluon distributions.

Therefore, the combination of RRs(y) and RFus,b1b2(xi,y) into a DPDF works only because
RRS(y) is the same for quarks and gluons (for representations R accessible to quarks).

Let us finally set R = 1 and show that in the colour singlet channel, the coefficient
1Cab(x,z) in (6.11) is identical to the coefficient Cab(x,z) in the small-z expansion (2.9)

of a single parton TMD. The corresponding identity for the coefficient 1Cus,ab(x,z) readily

follows from taking the matrix element of the operator relation (6.6) between two proton

states, which is related to the unsubtracted TMD fus,a via the first relation in (3.11). For
1CS,a(z) the identity is obtained by taking the vacuum expectation value of (6.5), which

gives the soft factor Sa(z) relevant for constructing the TMD fa(x,z) via (3.47) and (3.49).

The short-distance coefficient for fa(x,z) is then obtained as in (6.10).

Notice that the vacuum expectation value of the colour projected operator on the r.h.s.

of (6.5) gives unity for R = 1, because the Wilson lines along both vL and vR appear in the

combination WW † = 1. This reflects the fact that no soft factor appears in the definition

of ordinary PDFs. We thus find

Sa(z;µ, Y ) = 1CS,a(z;µ, Y ) (6.12)

for small z, i.e. the soft factor for single TMD factorisation is purely perturbative at small

distances.

6.2.2 Evolution equations and their solution

Let us now establish the consequences of the short-distance expansion (6.11) for scale and

rapidity evolution. From (6.8) we deduce that

∂

∂Y
log
√

RCS,a1(z1;µ1, 2Y ) +
∂

∂Y
log
√

RCS,a2(z2;µ2, 2Y )

=
∂

∂Y
log RRsa1a2(zi,y;µi, Y )− ∂

∂Y
log RRs(y;µi, Y )

= RRKa1a2(zi,y;µi)− RJ(y;µi) (6.13)

with the kernels RRKa1a2 and RJ from (3.24) and (5.22). The rapidity derivative of
RCS,a(z;µ, 2Y ) must thus be independent of Y . Defining

RKa(z;µ) =
∂

∂Y
log RCS,a(z;µ, Y ) , (6.14)
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we obtain

∂

∂ log ζ
RCab(x,z;µ, ζ) =

1

2
RKa(z;µ)

RCab(x,z;µ, ζ) (6.15)

for the coefficients in (6.10). Inserting this into (6.11), we find

RR′

Ka1a2(zi,y;µi) = δRR′

[
RKa1(z1;µ1) +

RKa2(z2;µ2) +
RJ(y;µi)

]
. (6.16)

This represents a significant simplification of the Collins-Soper equation for DTMDs in the

small zi limit, both in the colour structure and in the separation of the three distance

variables.

Taking the derivative ∂/∂ log µ1 of (6.16) and using the renormalisation group equa-

tions (5.12) and (5.23) for RR′
Ka1a2 and RJ , we deduce that

γK,a(µ) =
RγK,a(µ) +

RγJ(µ) (6.17)

for all R, where we have introduced the anomalous dimension of the kernel RKa,

∂

∂ log µ
RKa(z;µ) = − RγK,a(µ) . (6.18)

In the colour singlet sector, we have 1J = 0 and hence 1γJ = 0, which implies 1γK,a = γK,a.

Indeed, 1Ka(z;µ) is identical to the ordinary Collins-Soper kernel Ka(z;µ) in (2.7), which

is readily shown by taking the rapidity derivative of (6.12).

Taking the µ1 derivative of the short-distance expansion (6.11) and using the evolution

equations (5.7) and (5.24) for DTMDs and DPDFs, we obtain

∂

∂ log µ
RCac(x,z;µ, ζ)

=
∑

b

RCab(x
′,z;µ, ζ)⊗

x

[
δbc δ(1− x′) γF,c(µ, ζ)− 2RPbc(x

′;µ, ζ)
]
. (6.19)

Having computed the short-distance kernel RCab at a certain order in αs, we can use this

relation to reconstruct the evolution kernel RPab at the same order. We will do this in

section 7.3.5.

With the short-distance limit (6.16) of the Collins-Soper kernel, the general solution

(5.17) of the evolution equations for DTMDs takes the form

RFa1a2(xi,zi,y;µi, ζ)

= exp

{∫ µ1

µ01

dµ

µ

[
γa1(µ)− γK,a1(µ) log

√
x1ζ/x2
µ

]

+

∫ µ2

µ02

dµ

µ

[
γa2(µ)− γK,a2(µ) log

√
x2ζ/x1
µ

]

+
[
RKa1(z1;µ01) +

RKa2(z2;µ02) +
RJ(y;µ0i)

]
log

√
ζ√
ζ0

}
RFa1a2(xi,zi,y;µ0i, ζ0) ,

(6.20)
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where different colour channels no longer mix with each other. Using (6.15), we can rewrite

the rapidity dependence of the short-distance kernels as

RCa1b1(x
′
1,z1;µ01, x1ζ0/x2) = exp

[
RKa1(z1;µ01) log

√
x1ζ0/x2
µ01

]
RCa1b1(x

′
1,z1;µ01, µ

2
01)

(6.21)

and likewise for the index 2, which reduces the number of independent scales in Cab.

Using the short-distance matching (6.11) for RFa1a2(xi,zi,y;µ0i, ζ0) in (6.20), we obtain

our master formula for DTMDs at small zi and large y:

RFa1a2(xi,zi,y;µi, ζ)

= exp

{∫ µ1

µ01

dµ

µ

[
γa1(µ)− γK,a1(µ) log

√
x1ζ/x2
µ

]
+ RKa1(z1;µ01) log

√
x1ζ/x2
µ01

+

∫ µ2

µ02

dµ

µ

[
γa2(µ)− γK,a2(µ) log

√
x2ζ/x1
µ

]
+ RKa2(z2;µ02) log

√
x2ζ/x1
µ02

+ RJ(y;µ0i) log

√
ζ√
ζ0

}

×
∑

b1,b2

RCa1b1(x
′
1,z1;µ01, µ

2
01) ⊗

x1

RCa2b2(x
′
2,z2;µ02, µ

2
02) ⊗

x2

RFb1b2(x
′
i,y;µ0i, ζ0). (6.22)

In the colour singlet channel, the result (6.22) is a simple copy of its analogue (2.11) for a

single-parton TMD, with separate short-distance coefficients Cab and Sudakov exponentials

for each parton. For colour non-singlet channels, the Collins-Soper kernels RKa(z) acquire

a colour dependence, and there is an additional term RJ(y) in the exponent. The latter is

also present in collinear DPS factorisation: in fact one simply has

exp

[
RJ(y;µ0i) log

√
ζ√
ζ0

]
RFb1b2(x

′
i,y;µ0i, ζ0) =

RFb1b2(x
′
i,y;µ0i, ζ) (6.23)

according to (5.22). In this sense, the value of ζ0 in (6.22) is irrelevant (contrary to the

choice of µ0i, which appears in quantities that are computed using fixed-order perturbation

theory). The choice of ζ0 does matter when this is the scale at which one formulates an

ansatz or model for the DPDFs (which is of course inevitable for concrete calculations).

After inserting (6.22) and its counterpart for the left moving proton into the defini-

tion (5.2) of W , we can combine the logarithms of ζ and ζ̄ in the exponentials, as we did

in the generic expression (5.19). We thus obtain

Wlarge y =
∑

R

ηa1a2(R)

× exp

{∫ µ1

µ01

dµ

µ

[
γa1(µ)− γK,a1(µ) log

Q2
1

µ2

]
+ RKa1(z1;µ01) log

Q2
1

µ201

+

∫ µ2

µ02

dµ

µ

[
γa2(µ)− γK,a2(µ) log

Q2
2

µ2

]
+ RKa2(z2;µ02) log

Q2
2

µ202

}
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×
∑

c1,c2,d1,d2

RCb1d1(x̄
′
1,z1;µ01, µ

2
01) ⊗̄

x1

RCb2d2(x̄
′
2,z2;µ02, µ

2
02)

⊗̄
x2

RCa1c1(x
′
1,z1;µ01, µ

2
01) ⊗

x1

RCa2c2(x
′
2,z2;µ02, µ

2
02)

⊗
x2

[
Φ(νy)

]2
exp

[
RJ(y;µ0i) log

Q1Q2

ζ0

]
RFd1d2(x̄

′
i,y;µ0i, ζ0)

RFc1c2(x
′
i,y;µ0i, ζ0) ,

(6.24)

which is the main result of this section. The product of regulator functions Φ(νy+)Φ(νy−)
has been approximated as appropriate for |z1|, |z2| ≪ |y|. Note that the dependence on y,

z1 and z2 is completely factorised in (6.24). The y integral can hence be performed sepa-

rately. For unpolarised or longitudinally polarised partons, the short-distance coefficients

C are independent of the direction of z1,z2 by rotation invariance. The angular part of the

zi integrations can then readily be performed and turns the Fourier exponentials e−iqizi

into Bessel functions. The situation for transverse quark or linear gluon polarisation, where

C (as well as F and σ̂) carries transverse indices, can be discussed along similar lines.

Each of the two partonic cross sections σ̂i in (5.1) and the four short-distance kernels
RC in (6.24) has an αs expansion starting at order α0

s. It is natural (although not manda-

tory) to truncate their product to the highest order in αs at which the individual factors

are computed.

To evaluate the kernels RK and RC in (6.24) in fixed-order perturbation theory, one

should choose the scales µ0i such that no large logarithms appear at higher orders. A

standard choice for single hard scattering is to take µ20i = b20/z
2
i , which makes the one-loop

expression of RK(zi;µ0i) vanish. Here

b0 = 2e−γE (6.25)

with γE being the Euler constant. While the cross section (5.1) is dominated by |zi| ∼ 1/|qi|
due to the Fourier exponentials e−iqizi , one still must integrate over the full range of these

distances. To avoid evaluating the DPDs at unreasonably small factorisation scales µ0i,

one may modify the above scale choice and take instead µ0i = µzi , where for any transverse

distance vector b we define

µ2b =
b20
b∗2

, with b∗(b) −−−→
b→0

b and |b∗(b)| −−−−→
|b|→∞

bmax , (6.26)

where bmax is chosen such that b∗ remains in the region where one trusts perturbative

theory even when b becomes large. A possible choice for b∗ is

b∗ =
b√

1 + b2/b2max

,

which was proposed long ago [57, 72] and is extensively used in TMD phenomenology, but

other functional forms have also been explored [93]. We note that it is not mandatory to

take factorisation scales proportional to inverse distances, referring to [61, 94] and [85, 95]

for examples of scale setting in momentum space and to section 7.1.2 of [96] for a brief
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synopsis. Most results in our paper do not depend on choosing scales as in (6.26). An

exception is the discussion of scale setting in section 6.4 and appendix C, which needs to

be adapted if a different choice is made.

In the colour nonsinglet sector, the DPDs RF in (6.24) still involve the different scales

µ0i and ζ0. To disentangle this dependence further, one may use (5.27) and (6.23) to rewrite
RF in terms of the distribution RF̂ , whose DGLAP evolution does not involve a separate

rapidity scale, and which is therefore better suited to make the separation of scales explicit.

At the cross section level, one can then replace the last line of (6.24) by

[
Φ(νy)

]2
exp

[
−
∫ µ01

µ0

dµ

µ
RγJ(µ) log

Q2
1

µ2
−
∫ µ02

µ0

dµ

µ
RγJ(µ) log

Q2
2

µ2

+ RJ(y;µ0, µ0) log
Q1Q2

ζ0

]
RF̂d1d2, µ0,ζ0(x̄

′
i,y;µ0i)

RF̂c1c2, µ0,ζ0(x
′
i,y;µ0i) , (6.27)

where we have explicitly indicated that the two renormalisation scales in RJ are taken

equal. It is natural to take the starting scale of evolution as µ0 =
√
ζ0. A particular choice

is µ0 = µy, which for large y saturates at a hadronic scale µ0 = b0/bmax. This choice

ensures that the initial conditions for DPD evolution do not involve widely different scales

as y becomes small.

The factor RJ(y;µ0i) in (6.24) is a nonperturbative function in the large-y region, but

we can ensure that it has the correct perturbative small-y behaviour by copying part of

the so-called b∗ trick formulated for ordinary TMDs in [57, 72]. We thus write

RJ(y;µ01, µ02) = −RgJ(y) +
RJ(y∗;µy, µy)−

∫ µ01

µy

dµ

µ
RγJ(µ)−

∫ µ02

µy

dµ

µ
RγJ(µ) , (6.28)

where the nonperturbative information is contained in

RgJ (y) =
RJ(y∗;µi)− RJ(y;µi) . (6.29)

Because of (5.23), the dependence on the renormalisation scales drops out in RgJ , which

satisfies RgJ (0) = 0 by construction. The term RJ(y∗;µy, µy) in (6.28) can be evaluated

in fixed-order perturbation theory; according to the results in section 7.2 it is zero up to

terms of O(α2
s). Of course, the form (6.28) with µ0i replaced by µ0 can be used in (6.27).

In the colour octet sector, the relation (4.49) implies that

8J(y;µ, µ) = Kg(y;µ) , (6.30)

where Kg is the Collins Soper kernel for single gluon TMDs. While little is known about

this kernel for nonperturbative distances y, one may construct a model by connecting it

with its counterpart Kq in the quark-antiquark channel, for which there is a considerable

body of phenomenology from single Drell-Yan production and from semi-inclusive DIS, see

e.g. [97, 98] and references therein. A simple possibility would be to assume Casimir scaling,

Kg/CA = Kq/CF . This scaling holds perturbatively up to O(α3
s), as can for instance be

seen in appendix D of [99].10

10Just recently it has been found [100] that Casimir scaling for the cusp anomalous dimension, γK,g/CA =

γK,q/CF , is broken at O(α4
s). Equation (2.8) implies the breaking of Casimir scaling for Ka at the same

order. For a related calculation see [101].
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6.2.3 Extrapolation to large z1 and z2

If q1 and q2 are not sufficiently large to ensure dominance of small zi in the TMD cross

section, then a more realistic description of the integrand for large zi is necessary. Of

course, a corresponding statement holds already for single hard scattering. A widely used

procedure in that case is the b∗ trick of [57, 72]. Let us briefly show how it can be adapted

to DPS. We recall the solution (5.14) of the rapidity evolution equation,

RFa1a2(xi,zi,y;µi, ζ) =
∑

R′

RR′

exp

[
Ka1a2(zi,y;µi) log

√
ζ√
ζ0

]
R′

Fa1a2(xi,zi,y;µi, ζ0)

and introduce

RgF,a1a2(xi,zi,y; ζ) = log
RFa1a2(xi,z

∗
i ,y;µi, ζ)

RFa1a2(xi,zi,y;µi, ζ)
,

RR′

gK,a1a2(zi,y) =
RR′

Ka1a2(z
∗
i ,y;µi)− RR′

Ka1a2(zi,y;µi) (6.31)

with z∗ defined by (6.26). Both gF and gK are independent of µi according to (5.7) and

(5.12), and both functions depend on the parameter bmax via z∗
i . By construction, both

functions vanish at the point z1 = z2 = 0. We can then write

RFa1a2(xi,zi,y;µi, ζ) =
∑

R′

RR′

exp

[
− gK,a1a2(zi,y) log

√
ζ√
ζ0

+Ka1a2(z
∗
i ,y;µi) log

√
ζ√
ζ0

]

× exp
[
− R′

gF,a1a2(xi,zi,y; ζ0)
]
R′

Fa1a2(xi,z
∗
i ,y;µi, ζ0) . (6.32)

In this expression, RR′
Ka1a2 and

R′
Fa1a2 can be evaluated using the short-distance expansion

discussed in the previous subsection, provided that |z∗
1|, |z∗

2| ≪ |y|. As a consequence,
RR′

Ka1a2 is diagonal in R and R′. By contrast, the functions RR′
gK,a1a2 and RgF,a1a2 are

entirely nonperturbative and need to be modelled. This is a daunting task, because they

depend on several transverse variables, there are many functions in the different colour

channels and there is less guidance from data. Using the b∗ trick for computing DPS

processes with q1 and q2 in the nonperturbative region would therefore require additional

theory input, or strong simplifying assumptions.

The b∗ trick is not the only way to handle the region of large transverse distances,

and for TMD factorisation in SPS a variety of other methods have been employed [61, 85,

94, 95, 102–107]. It would be interesting to study if and how they could be adapted to

DPS. This is however beyond the scope of the present work, where we focus on transverse

momenta in the perturbative region.

6.3 The small-y region

We now consider the region where |y| is of the same order as |z1| and |z2|, with all distances

being small compared with 1/Λ. Again, we will derive double parton analogues of the

relations (2.9) and (2.11) between TMDs and PDFs. They are given in (6.38), (6.39) and

(6.44) and involve collinear PDFs and twist-four distributions as nonperturbative input,

which also appear in the expansion (6.42) of DPDFs at small y. At the cross section level,
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we then obtain the expression (6.47) in which all large logarithms are explicitly resummed.

An important finding is that the different combinations of collinear PDFs and twist-four

distributions have different power behaviour in the cross section, specified in (6.40) and

compared with the contribution from large y in (6.41).

6.3.1 Short-distance expansion

Let us first establish that the soft factor, and hence the Collins-Soper kernel RR′
Ka1a2 ,

can be fully computed in perturbation theory when all transverse distances become small.

Repeating the arguments that lead to (6.2), we obtain

(Sa1a2)
r1r2,u1u2(zi,y) = C

s1s2,t1t2
S,a1a2

(zi,y) (Sa1a2)
r1r2,u1u2
s1s2,t1t2

(0) , (6.33)

which involves the extended soft factor (3.12) with all distance arguments set to zero and a

short-distance coefficient CS,a1a2 describing interactions between all Wilson lines. Inserting

colour projectors as in (4.12), we get

(Sa1a2)
r1r2,u1u2(zi,y) =

∑

RR′

P
v1v2
R P

w1w2
R′ C

v1v2,w1w2

S,a1a2
(zi,y)

P
s1s2
R P

t1t2
R′ (Sa1a2)

r1r2,u1u2
s1s2,t1t2

(0)

m(R)m(R′)

=
∑

RR′

P
v1v2
R P

w1w2
R′ C

v1v2,w1w2

S,a1a2
(zi,y)

P
r1s1
R P

u1t1
R′ (Sa1a2)

s1r2,t1u2
s2s2,t2t2

(0)

m(R)m(R′)
,

(6.34)

where in the second step the identity (4.41) has been used for the indices associated with

parton a1 in Sa1a2 . The sum over s2 on the r.h.s. now ties together pairs of conjugate

Wilson lines along the same direction and at the same transverse position, which results

in unit matrices according to W (ξ, v)W †(ξ, v) = 1. For Sqq this is represented pictorially

in figure 8. The same holds for the sum over t2. The extended soft factor thus collapses to

a product of unit matrices, and we have

(Sa1a2)
r1r2,u1u2(zi,y) =

∑

RR′

P
v1v2
R P

w1w2
R′ C

v1v2,w1w2

S,a1a2
(zi,y)

P
r1r2
R P

u1u2
R′

m(R)m(R′)
. (6.35)

Projecting this on definite representations for (r1r2) and for (u1u2), we simply obtain

RR′

Sa1a2(zi,y;µi, Y ) = RR′

CS,a1a2(zi,y;µi, Y ) , (6.36)

where the projection RR′
C is defined in analogy to (4.20) and where we have restored all

arguments. In analogy to the case (6.12) for SPS, we thus find that when all transverse

distances become small, the soft factor for DPS is equal to its matching coefficient and

thus can be entirely computed in perturbation theory. The same then holds for the Collins-

Soper kernel RR′
K and for the matrix RR′

s, which can be constructed from RR′
S as shown

in appendix A. An explicit check of this result is the fact that the one-loop expression for
RR′

K in section 7.2 is free of infrared divergences, as is the two-loop soft factor for DPS

computed in [74].
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P jj′, k′k
R

=

P ii′, j′j
R

i i′

j j ′k′ k

l l′ j j ′

k k′k′ k

l l′

= P ii′, ll′
R

Figure 8. Simplification in the extended soft factor Sqq with all Wilson lines at the same transverse

position, using the identity in figure 2 and the unitarity of Wilson lines. Analogous relations hold

for indices in the adjoint colour representation.

We now turn to the short-distance limit of the collinear matrix elements, which can be

discussed in close analogy to the small-y limit of collinear DPDs in section 3.3 of [30]. In

the limit of small zi and y, the unsubtracted distributions R′
Fus are given by short-distance

coefficients times proton matrix elements of operators with all fields at transverse position 0.

The latter are given by collinear parton distributions of different twist. Multiplying with

the perturbative expression of RR′
s, one obtains the expansion of RF . Adapting the notation

in [30], we write11

RF = RFspl +
RFtw3 +

RFint , (6.37)

where the short-distance expansion of the terms on the r.h.s. involves proton matrix ele-

ments of operators with twist two, twist three and twist four, respectively. Following the

discussion in section 2.1 of [30], we neglect the contribution with collinear twist-three dis-

tributions, which for unpolarised protons are chiral odd. They have no dynamic cross talk

with gluon distributions and are therefore expected to be small compared with twist-two

and twist-four distributions at small x.

The splitting contribution Fspl describes the case where a single parton splits into

partons a1 and a2, as shown in figure 6a at lowest order in αs. It can be obtained from (5.37)

by taking the limit of small Z. For the O(αs) term, this simply corresponds to replacing

the TMD fa0(x1 + x2,Z) by the PDF fa0(x1 + x2). Since the proton is unpolarised, the

parton a0 in the PDF is unpolarised as well. We thus obtain

RFa1a2, spl(xi,zi,y;µ, µ, ζ) =
yl
+yl′

−
y2
+y2

−

αs(µ)

2π2
RT ll′

a0→a1a2

(
x1

x1 + x2

)
fa0(x1 + x2;µ)

x1 + x2
+O(α2

s) ,

(6.38)

where we have restored the dependence on the UV renormalisation scale, taken equal for

the partons with momentum fraction x1 and x2. A ζ dependence appears only at order α2
s.

11The distributions on the r.h.s. of (6.37) are respectively denoted by Fspl,pt, Fint,pt and Ftw3,pt in [30].

For brevity we omit the specification “pt” here.

– 51 –



To avoid large logarithms of the higher-order terms in the region of small |z1| ∼ |z2| ∼ |y|,
any choice where 1/µ and 1/

√
ζ are of the order of these distances will do. A particular

choice is given in (6.45) below.

The term Fint in (6.37) is referred to as the “intrinsic” contribution to the DPD and

may be thought of as describing parton pairs a1, a2 in the “intrinsic” proton wave function.

It is the only contribution starting at order α0
s and reads

RFa1a2, int(xi,zi,y;µ, µ, ζ) =
RGa1a2(x1, x2, x2, x1;µ) +O(αs) , (6.39)

where RG denotes a collinear twist-four distribution. The lowest-order term is simply

obtained by setting zi = y = 0 in the matrix element (3.2) (this must be done before

renormalisation and hence in D = 4 − 2ǫ dimensions). The O(αs) term involves short-

distance interactions and is briefly discussed in section 3.3 of [30].

Inserting (6.37) with (6.38) and (6.39) into the cross section formula (5.1), we can

derive the power behaviour of the contribution from the region |z1| ∼ |z2| ∼ |y| ∼ 1/qT ,

using that the twist-four distribution scales like G ∼ Λ2. For the scaled DPS cross section

we obtain

Q4 dσDPS

d2q1 d
2q2

∣∣∣∣
small y

∼





α2
s/q

2
T from Fspl × Fspl (1v1)

αsΛ
2/q4T from Fspl × Fint (2v1)

Λ4/q6T from Fint × Fint (2v2)

(6.40)

where we have also indicated the lowest order in αs for each contribution. For the contri-

bution from large |y| ∼ 1/Λ discussed in section 6.2, we have

Q4 dσDPS

d2q1 d
2q2

∣∣∣∣
large y

∼ Λ2/q4T , (6.41)

as follows from the small-distance expansion (6.11) and the power behaviour F ∼ Λ2 of

a DPDF at large y. We note that (6.40) and (6.41) do not hold in the kinematic region

|q1 + q2| ∼ Λ, which we have excluded from our considerations, and which has a different

power counting as seen from table 1 in [27]. Notice also that some parton combinations,

such as (a1a2) = (dū), cannot be obtained by parton splitting at O(αs). In this case, Fspl

starts at O(α2
s) and the powers of αs in (6.40) must be adjusted accordingly.

The three contributions in (6.40) are referred to as 1v1, 2v1 and 2v2 terms as indicated.

The 1v1 (read “one versus one”) term is associated with graphs as in figure 4a, where one

parton in each proton initiates a sequence of short-distance interactions (a splitting at scale

qT followed by hard scattering at scale Q). The 2v2 term corresponds to graphs where

two “intrinsic” partons in each proton directly enter the hard subprocesses, as shown in

figure 9a. In the 2v1 term one starts with two “intrinsic” partons in one proton, whereas

in the other proton one starts with one parton that splits into two at scale qT . This is

shown in figure 9b. It is natural to associate the term in (6.41) with 2v2 as well, since at

large y one cannot identify any perturbative splitting contribution.

Among the terms in (6.40) and (6.41), only the term with Fspl × Fspl is leading as

far as powers of Λ2/q2T are concerned. However, the other terms involve fewer powers in
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(a) (b)

Figure 9. Counterparts to the 1v1 graph in figure 4a. In the 2v2 graph (a) there is no perturbative

splitting, and in the 2v1 graph (b) one has a perturbative splitting in one of the two protons. The

box encloses the DTMD of the upper proton and indicates that the splittings take place at transverse

distances of order 1/qT .

αs, and they rise more strongly as the momentum fractions x become small, because one

roughly expects the intrinsic part of the DPDF to grow like the square of a single PDF

in that limit. From this perspective, one may still discard the term Fint × Fint, which is

power suppressed compared with the large-y contribution but has the same power in αs

and a similar small x behaviour. However, the inclusion of this term in the cross section

will in general not require much additional effort, and it renders the combination of the

contributions from small and large y more straightforward (see section 6.4).

The expansion of the DPDFs F (xi,y) for small y proceeds in exactly the same manner.

It can be obtained from (6.38) and (6.39) by setting z1 = z2 = 0 before performing UV

renormalisation and setting D = 4. This gives

RFa1a2, spl(xi,y;µ, µ, ζ) =
ylyl′

y4

αs(µ)

2π2
RT ll′

a0→a1a2

(
x1

x1 + x2

)
fa0(x1 + x2;µ)

x1 + x2
+O(α2

s) ,

RFa1a2, int(xi,y;µ, µ, ζ) =
RGa1a2(x1, x2, x2, x1;µ) +O(αs) , (6.42)

where for Fint the difference between (6.39) and (6.42) only appears at O(αs). We note that

only the symmetric part of T ll′
a0→a1a2 survives the contraction with ylyl′ . As a consequence,

combinations of a1, a2 with exactly one longitudinal polarisation give zero, since one then

has T ll′ ∝ ǫll
′
(see section 7.4).

Little is known in phenomenology about twist-four distributions. The computation

using models of light-cone wave functions in [108] can give guidance at large but not at

small x. If one has a model for Fint(xi,y) and is content with leading-order accuracy in

αs, one may combine (6.39) and (6.42) to approximate

RFint, a1a2(xi,zi,y;µ, µ, ζ) =
RFint, a1a2(xi,y;µ, µ, ζ) +O(αs) (6.43)

and use the intrinsic part of the DPDF on the r.h.s. in the small-y contribution to the

cross section, without further approximation. The scales µ and ζ should of course be

chosen appropriately.
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6.3.2 Evolved DPDs and cross section

Inserting the decomposition (6.37) of the DTMDs into (5.17) and neglecting twist-three

distributions, we obtain

RFa1a2(xi,zi,y;µi, ζ)

= exp

{∫ µ1

µ0

dµ

µ

[
γa1(µ)− γK,a1(µ) log

√
x1ζ/x2
µ

]
+ 1Ka1(z1;µ0) log

√
ζ√
ζ0

+

∫ µ2

µ0

dµ

µ

[
γa2(µ)− γK,a2(µ) log

√
x2ζ/x1
µ

]
+ 1Ka2(z2;µ0) log

√
ζ√
ζ0

}

×
∑

R′

RR′

exp

[
Ma1a2(zi,y) log

√
ζ√
ζ0

]

×
[
R′

Fa1a2, spl(xi,zi,y;µ0, µ0, ζ0) +
R′

Fa1a2, int(xi,zi,y;µ0, µ0, ζ0)
]

(6.44)

as our master formula for DTMDs at small zi and small y. For the scales in the DTMDs

we take

µ0 = µZ , ζ0 = µ2Z (6.45)

with µZ defined as in (6.26). We can then use the short-distance approximations (6.38)

and (6.39) for Fspl and Fint. The choice (6.45) will turn out to be well suited for combining

the different contributions to the overall cross section. In contrast to (6.22), we have taken

the two renormalisation scales µ01 and µ02 equal in (6.44), given that we do not have an

optimised short-distance expansion of F for different scales. One can however optimise the

resummation of logarithms in the exponent by writing

1Ka1(z1;µ0) =
1Ka1(z1;µ01) +

∫ µ01

µ0

dµ

µ
γK,a1(µ) (6.46)

and likewise for 1Ka2 . A natural choice for the additional scales is µ0i = µzi , as already

suggested for (6.22). Inserting the evolved DTMDs into (5.19), we have

Wsmall y = exp

{∫ µ1

µ0

dµ

µ

[
γa1(µ)− γK,a1(µ) log

Q2
1

µ2

]
+ 1Ka1(z1, µ0) log

Q1Q2

ζ0

+

∫ µ2

µ0

dµ

µ

[
γa2(µ)− γK,a2(µ) log

Q2
2

µ2

]
+ 1Ka2(z2, µ0) log

Q1Q2

ζ0

}

×
∑

RR′

[
RFb1b2, spl(x̄i,zi,y;µ0, µ0, ζ0) +

RFb1b2, int(x̄i,zi,y;µ0, µ0, ζ0)
]

× Φ(νy+)Φ(νy−) ηa1a2(R)
RR′

exp

[
Ma1a2(zi,y) log

Q1Q2

ζ0

]

×
[
R′

Fa1a2, spl(xi,zi,y;µ0, µ0, ζ0) +
R′

Fa1a2, int(xi,zi,y;µ0, µ0, ζ0)
]

(6.47)

at the cross section level.

At present, one can only use the leading order (LO) expressions (6.38) and (6.39)

of the DTMD expansions, because the next-to-leading order (NLO) terms have not been
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computed for either case. The leading O(αs) term of Fspl depends on y± but not on Z,

and the leading O(α0
s) expression for Fint is independent of any transverse distance. A

Z dependence via µ0 and ζ0 cancels in Wsmall y, up to orders in αs beyond the accuracy

of the calculation. However, Wsmall y acquires a dependence on Z through the z1 and

z2 dependence of the Collins-Soper kernels 1Ka1(z1;µ0),
1Ka2(z2;µ0) and Ma1a2(zi,y).

Since these kernels start at O(αs), the corresponding Z dependence comes with a large

logarithm log(Q1Q2/ζ0) for each power of αs and is thus enhanced compared to the αs

corrections in Fspl and Fint, so that it is consistent to keep the former while neglecting

the latter. In this way, rapidity evolution provides a nontrivial Z dependence and thus a

nontrivial dependence on the conjugate momentum q1+q2 in the cross section, even if one

uses the short-distance expansions (6.38) and (6.39) at leading order. In physical terms,

this is because the exponential in (6.47) resums graphs for the soft factor that have a real

gluon emission enhanced by large rapidity logarithms, even though the graphs giving the

leading-order expansions of Fspl and Fint have no real gluon emission into the final state.

6.4 Combining large and small y

As we have seen in the previous subsections, the different regions of z1,z2 and y contribut-

ing to the cross section involve different approximations, whose results are given in (6.24)

and (6.47). An important point is that the approximated expressions give leading-power

contributions not only in the regions for which they are designed, but also outside these

regions. With the short-distance behaviour F (xi,y) ∼ 1/y2 following from (6.42) we see

for instance that the integral ofWlarge y over y extends down to the smallest values allowed

by the cutoff function Φ(νy), where the approximations used to obtain the expression are

clearly invalid.

To deal with this problem we adapt the subtraction formalism discussed in chapter 10

of [65], which we briefly sketch now. The formalism is formulated for a given Feynman

graph Γ in momentum space. It starts with the smallest regions of loop momenta and

works its way towards increasingly larger regions. In this context, a region r′ is called

smaller than r (i.e. r′ < r) if hard momenta in r are collinear or soft in r′, or if collinear

momenta in r′ are soft in r. A more general definition of the relation r′ < r is discussed

in chapters 5.4.1 and 10.1.3 of [65]. For each region r that gives a leading contribution to

the cross section, a set of approximations Tr is applied to the graph. In each approximated

term TrΓ one still integrates over all loop momenta, thus avoiding momentum cutoffs.

This leads to double counting of contributions from the overlap between different regions,

which are recursively removed by subtraction terms. The full graph is then approximated

by

Γ ≈
∑

r

CrΓ with CrΓ = TrΓ−
∑

r′<r

TrCr′Γ . (6.48)

CrΓ provides a valid approximation of Γ in the region r and in all smaller regions r′ < r,

thanks to the subtraction terms TrCr′Γ, which are obtained by applying the approxima-

tions for both r and the smaller regions. In the case where one has only two regions r′ < r,

the subtraction term is simply TrTr′Γ. In [65] it was shown that if the approximation Tr
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region power counting approximations

DPS, large y |y|, |y+|, |y−| ∼ 1/Λ |zi| ≪ |y|, 1/Λ
DPS, small y |y|, |y+|, |y−| ∼ 1/qT |zi|, |y| ≪ 1/Λ

SPS |y+|, |y−| ∼ 1/Q |y+|, |y−| ≪ |zi| ≪ 1/Λ

Table 1. Regions of y discussed in the text. For power counting, |zi| ∼ 1/qT is always assumed.

is good up to power corrections in Λ/Q in its design region r, then
∑

r CrΓ is good with

the same accuracy for the full graph.

In [30], this formalism was applied to the double counting problem between single and

double parton scattering, leading to the formulation we already presented in section 5.3. At

variance to the original formulation in [65], momentum regions in (6.48) were replaced by

regions of the transverse distances y+ and y−, starting from the region of large distances

and going towards small ones in the recursive construction of subtraction terms.

We now use the same procedure to remove the double counting between the regions

of “large” and “small” y as characterised in table 1. The treatment of the regions where

|y+| or |y−| are of order 1/Q is postponed to the next subsection. It is always understood

that |z1| and |z2| are in the perturbative region, of order 1/qT , as discussed in section 6.1.

According to the general construction, the subtraction term for large y in the small-y

term is obtained by applying the approximations in the first and second row of table 1,

i.e. by using both |zi| ≪ |y| and |y| ≪ 1/Λ. For a given Feynman graph (and thus

for any finite sum over graphs) the order in which these approximations are made does

not matter. This suggests that we can start from either Wlarge y or Wsmall y and then

apply the approximation for the other region. At this point, we must however note that

the expressions of W are not for fixed-order graphs but contain logarithms resummed to

all orders in the strong coupling. This is reflected in the scale dependence of αs and of

the nonperturbative functions. We must therefore make sure that the choice of scales in

the different terms is compatible with the way in which the subtraction formalism works.

In Wsmall y, this concerns the scales µ0 and ζ0 at which one evaluates the short-distance

expansions (6.38) and (6.39) of DTMDs at fixed order in αs.

We now define the double counting subtraction term as

Wsub =Wsmall y

∣∣
approx. for |zi|≪|y| (6.49)

with the small-y expression for W given in (6.47). We should take the limit |z1|, |z2| ≪ |y|
in all parts of that expression. In particular, this means replacing y± with y in Φ and in the

leading-order term of the short-distance expansion (6.38) of Fspl, and replacing RR′
Ma1a2

with δRR′

[
RKa1 +

RKa2 − 1Ka1 − 1Ka2 +
RJ
]
according to (5.16) and (6.16).

We note at this point that the integral of (6.47) over y is actually divergent at large y.

Up to logarithmic corrections, the 2v2 term Fint×Fint is constant and the 2v1 term Fspl×Fint

goes like 1/y2 in that limit, and for R = R′ = 1 there is no large-y suppression from the

exponential since 1J = 0. The construction (6.49) ensures that the region |y| ≫ 1/qT
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cancels in Wsmall y −Wsub. When evaluating the cross section numerically, one may want

to use an upper cutoff of order 1/Λ on the integral over |y|, thus avoiding to evaluate terms

in a region where they cancel anyway.

For the subtraction formalism to work, we need that

Wsub ≈Wlarge y for |y| ∼ |z1|, |z2| (6.50)

up to terms in αs that are beyond the accuracy of the calculation. In the specified region of

y, we can use the short-distance limit of J(y) and of the DPDFs in (6.24), the latter being

obtained by adding Fspl and Fint from (6.42). If one retains only the leading-order terms

for Fspl + Fint on both sides of (6.50), one finds manifest equality of the two expressions

up to differences due to scale dependence, which we will discuss shortly.

The full DPS cross section is then obtained from

WDPS(ν) =Wlarge y(ν
′)−Wsub(ν

′) +Wsmall y(ν) , (6.51)

where we make explicit the choice of cutoff parameters for the y integration, taking ν ′ ∼ qT
and ν ∼ Q. In the region |y| ≫ |z1|, |z2| the last two terms cancel by virtue of (6.49),

and one is left with the first term, which is designed to give a correct approximation of

the cross section there. For |y| ∼ |z1|, |z2|, the first and second terms cancel according to

(6.50), and the third term gives a correct approximation of the cross section. In this way,

WDPS leads to a correct approximation of the cross section for |y| of order 1/qT and larger.

We can take a more restrictive cutoff parameter ν ′ ∼ qT in the first two terms, because

according to (6.50) the sum of these terms is already suppressed for |y| ∼ 1/qT , and the

dependence on the exact value of ν ′ is thus beyond the accuracy of the calculation. Taking

ν ′ lower than Q is also more economical for numerical calculations since it excludes a y

region that is not needed. By contrast, ν in the last term should be of order Q (see the

next subsection).

Returning to the issue of scale dependence, we should first specify what is to be used for

the nonperturbative quantities in the expression (6.24) of Wlarge y. For the Collins-Soper

kernel we take the form in (6.28) with J(y∗;µy, µy) and γJ evaluated at fixed perturbative

order; this ensures the correct small-y limit. Using the DGLAP equations, the DPDFs are

to be evolved from µ0i to µ0 =
√
ζ0 = µy, and it is at that scale that one makes an ansatz

which at small y tends to the fixed-order form specified by (6.42).12 As usual, this scale

choice ensures that higher-order corrections are not accompanied by large logarithms.

We now recall that in Wsmall y, and hence by construction also in Wsub, we take µ0 =√
ζ0 = µZ for the scales at which we perform the short-distance expansion of the DTMDs.

The difference between the two sides in (6.50) is thus due to different scales of the short-

distance matching and to the different scales at which the DPDs and the Collins-Soper

kernels are evaluated in (6.24) and (6.47). However, all these scales, µy, µzi and µZ are

of the same order in the region |y| ∼ |zi| where we need (6.50). Using the same methods

as in section 6.2 of [30], one can show that the approximation (6.50) holds up to higher-

order terms in αs. These terms are not accompanied by large logarithms and beyond the

accuracy of the calculation.

12An explicit example for such an ansatz in the colour singlet sector can be found in section 9.2 of [30].
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partial cross section approximations

σDPS/SPS |y+| ≪ 1/Λ

σDPS/SPS, y+→0 |y+| ≪ 1/qT

σDPS, y−→0 |y−| ≪ 1/qT , |y+| ≪ 1/Λ

σDPS, y±→0 |y−|, |y+| ≪ 1/qT

Table 2. Conditions on y± for different terms in the overall cross section (5.30) if qT ≫ Λ.

Analogous relations hold for σSPS/DPS and the associated subtraction terms. In all cases one has

|Z| ≪ 1/Λ.

6.5 Combining DPS with SPS at short distances

In section 5.3 we recalled how to combine DPS, SPS and their interference in TMD factori-

sation at generic values of qT . We now derive the form of the double counting subtraction

terms for the case where qT ≫ Λ. We restrict ourselves to the lowest order of αs in the

perturbative short-distance coefficients. An extension to higher orders is beyond the scope

of the present work.

Let us start by discussing the relevant transverse distance scales and the approxima-

tions they imply. We recall that the DPS cross section for qT ≫ Λ is dominated by distances

|z1|, |z2| ≪ 1/Λ thanks to the Fourier exponentials in (5.1). In full analogy, the Fourier

exponentials in (5.31) and (5.32) ensure that σDPS/SPS is dominated by |Z|, |y+| ≪ 1/Λ

and σSPS/DPS by |Z|, |y−| ≪ 1/Λ. Likewise, σSPS is dominated by |Z| ≪ 1/Λ, where in

the following we use the variable Z instead of z in the SPS formula (2.1). According to

the formalism recalled in the previous subsection, the subtraction terms for the overlap

between double and single parton scattering are obtained by applying the approximations

appropriate for the SPS region to the DPS term in the cross section. A corresponding

prescription holds for the SPS/DPS interference. The limits y+ → 0, y− → 0 or y± → 0

in the subtraction terms hence imply that these distances are taken to be much smaller

than 1/qT , because qT is set to zero when one computes the hard scattering process for

SPS. We thus obtain the approximations given in table 2. The constraint on y+ in the

third row results from y+ = y− + (z1 − z2) and the constraints on y−, z1 and z2. We

thus find that all terms in the overall cross section (5.30) are dominated by distances in

the perturbative region, except for σDPS.

In all terms that are dominated by short distances, we can use the perturbative splitting

expressions (5.35) and (5.36) of the twist-three TMDs and the DTMDs. Notice that the

LO terms in these expressions have a factorised dependence on y+, y− and Z, so that they

do not depend on the relative size of these distances (this will no longer hold at NLO).

Moreover, we can take the short-distance limit of the TMDs fa(x,Z;µ, ζ). At LO accuracy

we can simply replace them with collinear PDFs fa(x;µ), provided that µ2 ∼ ζ ∼ 1/Z2.

Collinear PDFs are then the only nonperturbative input necessary to compute the cross

section, apart of course from the DPDs and Collins-Soper kernels J in σDPS. In a complete

treatment, one would also have collinear twist-three distributions, but we neglect these as
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explained in section 5.3.

From the dependence on y± of the splitting expressions (5.35) and (5.36) and from the

cross section formulae (2.1), (5.31) and (5.32) we deduce that the SPS cross section, the

SPS/DPS interference and all associated subtraction terms have the same power behaviour

as the 1v1 term of the DPS cross section in (6.40), namely Q4 dσ/(d2q1 d
2q2) ∼ 1/q2T .

We must now take a closer look at the scale dependence of the distributions. Let us

denote by µh the hard scale chosen in the computation of the SPS amplitude, and by µ1
and µ2 the scales for the two DPS amplitudes. To simplify the presentation, we first assume

that all hard scales are equal, µ = µh = µ1 = µ2. The adaptation to the case of different

hard scales is discussed in appendix C. As we have explicitly shown for single and double

parton TMDs, the evolution in µ and ζ of these distributions is multiplicative:

fa(x,z;µ, ζ) = E2;a(z;µ, ζ;µ0, ζ0) fa(x,z;µ0, ζ0) ,

Fa1a2(xi,zi,y;µ, ζ) = E4;a1a2(xi,zi,y;µ, ζ;µ0, ζ0)Fa1a2(xi,zi,y;µ0, ζ0) , (6.52)

where it is understood that F is a vector and the evolution factor E4 a matrix in the space

of colour representations R. From the discussion at the end of section 5.3 if follows that

for the twist-three TMDs, we have

Dα1α2|α0
(xi,y+,Z;µ, ζ) = E3;α1α2|α0

(xi,y+,Z;µ, ζ;µ0, ζ0)Dα1α2|α0
(xi,y+,Z;µ0, ζ0)

(6.53)

and an analogous equation for Dα0|α1α2
.

Let us now specify the evolution and scale dependence of the distributions appearing

in σSPS, the interference terms and σDPS in the region where all transverse distances are

small compared with 1/Λ. In a schematic notation, we have

σSPS : f(x1 + x2,Z;µ) ∼ E2(µ;µZ) f(µZ) ,

σDPS/SPS : D(xi,y+,Z;µ) ∼ E3(µ;µZ)U(µZ) f(µZ) ,

σSPS/DPS : D(xi,y−,Z;µ) ∼ E3(µ;µZ)U
∗(µZ) f(µZ) ,

σDPS : F (xi,zi,y;µ) ∼ E4(µ;µZ)U(µZ)U
∗(µZ) f(µZ) + Fint(µ) , (6.54)

where f(µZ) on the r.h.s. is a collinear PDF. We have specified only the splitting part Fspl

of F , because the detailed form of Fint will not be needed. For brevity we have omitted

parton labels, as well as momentum fraction and transverse position arguments on the

r.h.s. The factors yl
+/y

2
+ and yl′

−/y
2
− which accompany the splitting kernels U(µZ) and

U∗(µZ) have been omitted as well. For brevity, we display neither the rapidity parameter

ζ in the evolved distributions nor the starting value ζ0. For the latter, we follow (6.45)

and take ζ0 = µ2Z . Since ζ is defined by (5.8), it must be rescaled by (x1 + x2)
2 ζ/(x1x2)

when used in f(x1 + x2,Z) and in E2. The same forms as in (6.54) are to be taken for the

distributions in the left-moving proton, with xi replaced by x̄i and ζ by ζ̄.
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The subtraction terms should be such that, up to higher orders in αs and up to power

corrections, the overall cross section (5.30) is given by

dσDPS for |y+| ∼ |y−| ≫ 1/ν ,

dσSPS for |y+| ∼ |y−| ∼ 1/ν ,

dσDPS/SPS for |y+| ≫ |y−| ∼ 1/ν ,

dσSPS/DPS for |y−| ≫ |y+| ∼ 1/ν , (6.55)

where it is understood that ν ∼ Q. In the subtraction terms, renormalisation and rapidity

scales should be chosen such that the cancellations required to avoid double counting are

not spoiled by large logarithms at higher orders.

To achieve this, we take so-called profile scales, which vary smoothly between µZ and

µ as a function of the appropriate transverse distance. We therefore introduce a profile

function p that satisfies

p(u;µa, µb) ≈ µa for u ∼ 1,

p(u;µa, µb) ≈ µb for u≫ 1; (6.56)

a concrete example is given below. For the subtraction terms between DPS and the

SPS/DPS interference, we now take

σDPS/SPS,y+→0 : D ∼ E3(µ; µ̂)U(µ̂)E2(µ̂;µZ) f(µZ) with µ̂ = p
(
ν |y+|;µZ , µ

)
,

σSPS/DPS,y−→0 : D ∼ E3(µ; µ̂)U
∗(µ̂)E2(µ̂;µZ) f(µZ) with µ̂ = p

(
ν |y−|;µZ , µ

)
. (6.57)

This corresponds to a two-step matching: at the scale µZ a twist-two TMD is matched onto

a PDF. The twist-two TMD is then evolved up to the scale µ̂, where a twist-three TMD is

matched onto the twist-two TMD using the lowest order term in (5.35). The twist-three

TMD is then evolved up to the final scale µ. It is understood that at the intermediate

scale µ̂ the rapidity parameter is taken equal to

ζ̂ = p(u;µ2Z , ζ) , (6.58)

where the first argument u is the same as the first argument in µ̂. We thus find that

σDPS/SPS,y+→0 ≈
{
σDPS/SPS for |y+| ∼ 1/ν

σSPS for |y+| ≫ 1/ν
(6.59)

where we have used that for distances |y+| ≫ 1/Q the hard scattering amplitude for SPS

can be written as

Hα0β0

∣∣
y+≫1/Q

=
yk
+

y2
+

yl
+

y2
+

Uk
α0→α1α2

U l
β0→β1β2

Hα1β1
Hα2β2

(6.60)

at leading order in αs. To make this relation explicit, one needs to Fourier transform the

appropriate transverse momentum in the SPS graph to position space. For diagrams that

have kinematic overlap between SPS and the SPS/DPS interference, but not with DPS,
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such as the one in figure 5b, the behaviour in (6.59) and in its analogue for σSPS/DPS,y−→0

solve the double counting problem completely. If there is also overlap with the DPS region,

as in the three graphs of figure 4, then we need the DPS subtraction terms, where we

choose scales as follows:

σDPS,y−→0 : F ∼ E4(µ; µ̂)U
∗(µ̂)E3(µ̂;µZ)U(µZ) f(µZ) ,

σDPS,y+→0 : F ∼ E4(µ; µ̂)U(µ̂)E3(µ̂;µZ)U
∗(µZ) f(µZ) ,

σDPS,y±→0 : F ∼ E4(µ; µ̂)U(µ̂) U∗(µ̂)E2(µ̂;µZ) f(µZ) (6.61)

with

µ̂ = p
(
νmin{|y+|, |y−|};µZ , µ

)
. (6.62)

In all three terms we have a two-step matching, with a twist-three TMD at the intermediate

stage in the first two cases and with a twist-two TMD in the third case. If both |y+| and
|y−| are large compared with 1/ν, we thus have

σDPS,y−→0 ≈ σDPS/SPS , σDPS,y+→0 ≈ σSPS/DPS , σDPS,y±→0 ≈ σSPS (6.63)

so that the sum in (5.30) leaves only σDPS, as it should. It remains to discuss the regions

where one or both of |y+| and |y−| is of order 1/ν. In each of these regions, σDPS can

be obtained from Wsmall y, because |y| ≪ 1/Λ. Furthermore, the integral over Wsmall y

in these regions is dominated by the 1v1 term, with the 2v1 and 2v2 terms being power

suppressed by at least a relative factor Λ2/(νqT ). This follows from the dependence of Fspl

and Fint on y+ and y−. Finally, one finds that all three terms in (6.61) are approximately

equal to the 1v1 term in σDPS, which is thus cancelled in the combination (5.30). This

leaves us with σSPS, σDPS/SPS or σSPS/DPS as appropriate. Overall we thus have achieved

a correct description of the cross section in all relevant regions of y+ and y−.
Profile scales have been used in other contexts, see e.g. [109, 110]. For our purpose

here, a suitable profile p for µ̂ is given in equation (6.33) of [30]. An alternative choice is

p(u;µa, µb) =





µa for u ≤ ua[
1− 1

2(1− cos u′π)
]
µa +

1
2(1− cos u′π)µb for ua < u < ub

µb for u ≥ ub

(6.64)

with

u′ =
u− ua
ub − ua

. (6.65)

The transition points for the u dependence should be such that ua ∼ 1 and ub ≫ 1. A

natural choice is ua = ν/µ and ub = ν/µZ .

6.6 Perturbative accuracy

Equations (2.11), (6.22) and (6.44) express TMDs in terms of collinear distributions and

perturbative quantities, and they permit the resummation of large logarithms in the cross
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section. In the following, we give a brief overview of the order in αs at which the different

quantities are available. We also take a closer look at the type of logarithms that are

resummed at all orders. To this end, we count all large scales µi, ζ, ν as orderQ. Logarithms

of |zi| turn into logarithms of |qi| after Fourier transformation, and we count µi0 ∼ 1/|zi| ∼
qT .

An important point in this context is that a variety of schemes for TMD factorisation

and for the associated resummation are used in the literature. Some care is needed when

converting perturbative expressions from one scheme to another. A systematic discussion

of this issue is given in [68], along with a comprehensive list of higher-order results for the

quark channel in the scheme we use here (referred to as CSS2 in that paper).

SPS

The SPS cross section can be calculated within the single TMD formalism outlined in

section 2. To compute the spectrum in q1 and q2, one needs the relevant parton-level

cross sections, e.g. for gauge boson pair production, as a function of the relative transverse

momentum q1 − q2. Logarithms of the net transverse momentum q1 + q2 are resummed

by the exponential in (2.11).

Perturbative ingredients in the cross section are the anomalous dimensions γK , γa,

the Collins-Soper kernel 1K, the short-distance (or matching) coefficients 1C, and finally

the coefficient C2
H of the hard-scattering cross section, defined as σ̂ divided by its tree-

level value.13 In table 3 we specify different levels of accuracy, following the scheme of

[110, 111]. After expanding αs(µ
′) in γa(µ′) and γK(µ′) around αs(µ), the integral over µ′

in (2.11) gives powers of log(µ/µ0). We thus find that γK goes with double logarithms

αs(Q) log2(Q/qT ), whilst γa and 1K go with single logarithms αs(Q) log(Q/qT ). One there-

fore requires one order higher for γK than for γa and 1K (see table 3). Likewise, one finds

that one needs the same perturbative order for the β function as for γK . At accuracy

NkLO one then has control over all terms from αn
s log

n+1 to αn+k
s logn+1 in the exponent.

γK , γa and 1K all start at O(αs) and are known up to O(α3
s), both in the quark and in

the gluon channel. A compilation of these results can for instance be found in appendix D

of [99]. The notation in that work is related to the one we are using by

γK,a = 2Γa
cusp , γa = − γaV , γF,a(µ, ζ) = γa(µ, ζ) (6.66)

and

1Ka(z, µ) = −2Da(µ, bT ) with z = bT , (6.67)

where a = q, g and it is understood that the strong coupling is taken at scale µ. Results for

the quark channel are also given in [68], where the same notation as here is used (except

that the Collins-Soper kernel is denoted by K̃ instead of K).

At lowest order one has 1Cab = δab δ(1 − x) and C2
H = 1. These coefficients are not

associated with the resummation of large logarithms, and conventionally one requires them

13For definiteness we include the colour-singlet labels on K and C here, although this is the only colour

channel that appears in SPS.
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γK γa
RK, RR′

M RC, RR′
Cint C2

H
RP

LL αs − − α0
s α0

s αs

NLL α2
s αs αs α0

s α0
s αs

NLL′ α2
s αs αs αs αs α2

s

NNLL α3
s α2

s α2
s αs αs α2

s

NNLL′ α3
s α2

s α2
s α2

s α2
s α3

s

Table 3. Different levels of accuracy and the associated orders of αs for the perturbative ingredients

in the SPS cross section. The order required for the β function is the same as for γK .

at one order in αs lower than γa. This corresponds to counting log(Q/qT ) as order 1/αs.

Taking them at the same order as γa is indicated by a prime in the table. For unpolarised

quarks or gluons, 1C has been computed up to O(α2
s) in [99] and [112]. With unpolarised

protons this is sufficient for qq̄ annihilation processes, whereas for gg initiated processes

one also requires the coefficient 1Cδgg for linear gluon polarisation in the TMDs. This is

well known from the process gg → H (see e.g. [85] and references therein).

To the best of our knowledge, the hard-scattering coefficient C2
H has not been given

in the literature for final states relevant in our context, such as W+W−, ZH, HH, etc. It

should however be possible to extract it from the virtual corrections to the relevant ampli-

tudes, which are known up to O(α2
s) in some channels (for gauge boson pair production see

e.g. [113, 114] and references therein). Without this additional effort, the SPS contribution

to the cross section can currently be evaluated at NLL accuracy.

There is one more type of large logarithms hidden in (2.11), namely the logarithms of

qT /Λ that are resummed by DGLAP evolution of the PDFs on the r.h.s., from a typical

starting scale of order Λ up to µ0 ∼ 1/|z|. A customary choice is to take the DGLAP

kernels 1P at one power in αs higher than the matching coefficients 1C, as shown in the

table. This amounts to using LO evolution together with LO matching coefficients, etc.

The perturbative accuracy of 1C is then retained even if log(qT /Λ) is as large as 1/αs. For

unpolarised PDFs, the DGLAP kernels are known up to O(α3
s) [115, 116].

Interference between SPS and DPS

The perturbative ingredients required for computing the SPS/DPS interference term, as

laid out in section 6.5, are the Collins-Soper kernels Kα1α2|α0
for twist-three TMDs, the

splitting kernels U appearing in their short-distance approximation, and the interference

between SPS and DPS hard-scattering amplitudes for the process under investigation. None

of these have been calculated so far. It is easy to compute theO(αs) expressions ofKα1α2|α0

and U by adapting the corresponding calculations for DPDs in [27]. Combining the known

hard-scattering amplitudes for the relevant SPS and DPS processes is a straightforward

exercise (but can be tedious, especially for heavy gauge bosons due to their three helicities).

DPS: small-y contribution

Let us now discuss the perturbative ingredients in the small-y expression (6.47) for DPS.

γK , γa and 1K are the same as in the SPS formula, and in addition one needs the matrix
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RR′
M , which starts at O(αs) and goes with single logarithms log(Q/qT ). The expression

for the matching RFspl on PDFs involves a coefficient RCspl, and the matching of RFint on

twist-four distributions involves a coefficient RR′
Cint. The lowest order of Cspl and Cint is

O(αs) and O(α0
s), respectively — their explicit definitions are not needed here. The hard-

scattering subprocesses for DPS are simpler than for SPS with the same final state. For

Drell-Yan and for Higgs boson production the hard-scattering coefficients C2
H are known

up to O(α3
s). They can for instance be found in [68] for Drell-Yan production and in [117]

for both channels.

The evolution kernel RR′
M is known at O(α2

s) in the two-quark channel [74]; its O(αs)

expressions for all channels are given in section 7.2. The matching coefficients RCspl have

been calculated at O(αs) in [27], and the related kernels RT are compiled in section 7.4 here.

For RR′
Cint, only the trivial order α0

s is currently known, which corresponds to matching

Fint = G. The kernels for the DGLAP evolution of the distributions G are known at O(αs)

and given in [118]; for a more general discussion of twist-four evolution we refer to [119].

At a given level of accuracy, their order should be the same as the one of RP in table 3.

When denoting the level of perturbative accuracy, one might think of combining equal

orders in αs for Cspl and Cint. On the other hand, Cspl starts one order higher in αs than

Cint, and moreover the different combinations of Fspl and Fint in the cross section have

different power behaviour in Λ2/q2T according to (6.40). We thus find it more natural to

take one power in αs more for Cspl than for Cint. With this naming convention, the small-y

expression of DPS can currently be evaluated to NLL accuracy. Missing ingredients for

achieving NNLL in pure quark channels or NLL′ in channels with gluons are the matching

coefficients Cspl and Cint for DTMDs, as well as the two-loop DGLAP kernels for twist-four

evolution.

DPS: large-y contribution

We now turn our attention to the large-y expression (6.24) of DPS. The quantities γK ,

γa and C2
H are the same as in the small-y expressions of DPS. The resummation of single

logarithms log(Q/qT ) requires the Collins-Soper kernels
RK in the different colour channels,

which can be obtained from the perturbative expression of RR′
M(zi,y) by taking the limit

|zi| ≪ |y| and using that in this limit one has the structure (6.16). In the two-quark

channel one can thus obtain the O(α2
s) expression for RK from the results of [74]; in

all other channels one has the one-loop expressions, which we list in section 7.2. For the

matching coefficients RC we will derive O(αs) results in all colour and polarisation channels

in the next section; most of them have been given in the literature before. One can thus

evaluate gauge boson pair production with NNLL accuracy, whereas for DPS processes

with one or two Higgs bosons in the final state, NLL′ accuracy is currently achievable.

Let us finally take a closer look at the evolution of the DPDFs, which generates log-

arithms involving a hadronic starting scale Λ. The situation is now more involved than

the one discussed for SPS above. In analogy to usual DGLAP evolution, there are single

logarithms log(qT /Λ), whose resummation requires the ζ independent part of the evolution

kernels RP . We will give O(αs) expressions for these kernels in all polarisation channels

in section 7.3.5. The ζ dependence of the DPDFs, which has no counterpart for ordinary
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parton distributions, is made explicit in (6.27). Expanding αs(µ) in the anomalous dimen-

sion RγJ(µ) around a fixed scale, we can perform the integral and obtain double logarithms

log2(Q/Λ) − log2(Q/qT ) = log(ΛqT /Q
2) log(Λ/qT ) in the exponential. If both log(Q/qT )

and log(qT /Λ) are counted as order 1/αs, one therefore needs RγJ at the same order as

the cusp anomalous dimension γK . For smaller values of log(qT /Λ) one may instead be

content with RγJ at the same order as γa and RK. From the two-loop results in [74] one

can extract the O(α2
s) term of 8γJ , whereas for higher colour representations we currently

only know the O(αs) results given in section 7.2. We note that in (6.27) there are also

single logarithms log(Q/qT ) multiplied with RJ(y), which at large y is beyond the control

of perturbation theory.

7 One-loop results

In this section, we present the perturbative ingredients necessary for evaluating DPS at

NLL accuracy (see table 3). Some of the expressions are quoted from the literature to make

the presentation self-contained, whereas for evolution kernels and matching coefficients we

verify previous and derive new results.

In section 7.1 we discuss the hard-scattering cross sections for Drell-Yan and for Higgs

production via gluon fusion, and in section 7.2 we give the one-loop expressions of the

Collins-Soper kernels RR′
Ka1a2 for all parton and colour channels. Section 7.3 is devoted to

the O(αs) matching coefficients RCab of DTMDs in the large-y region. After explaining a

number of computational details, we present results for all polarisation and colour combi-

nations in sections 7.3.4 and 7.3.5. As a corollary we obtain the one-loop DGLAP kernels

(7.91) for colour non-singlet DPDFs. In section 7.4 we list the O(αs) splitting kernels
RTa0→a1a2 of DTMDs in the small-y region, adapting the results of [27] to the notation

used here.

7.1 TMD hard-scattering cross sections

We define the coefficients C2
H of the hard-scattering cross section as

σ̂(Q2, µ2) = σ̂0(Q
2)C2

H(Q2, µ2) (7.1)

for a given partonic channel, where σ̂0 is the cross section at lowest order in αs. The

expressions for σ̂0 can be found in many places, for instance in [44] for the production of

an electroweak gauge boson V and its subsequent decay into a lepton pair, and in [85]

for Higgs production via gg fusion in the limit of large top mass. The hard-scattering

coefficients read

C2
H, qq̄→V (Q

2, µ2) = 1 +
αs(µ)

2π
CF

[
− ln2

Q2

µ2
+ 3 ln

Q2

µ2
− 8 +

7π2

6

]
,

C2
H, gg→H(Q2, µ2) =

(
1 +

αs(µ)

2π
CA

[
− ln2

Q2

µ2
+

7π2

6

])(
1 +

αs(µ)

2π

[
5CA − 3CF

])

(7.2)
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and are known up to O(α3
s), see for instance appendix A of [117]. The colour factors are

CF = (N2 − 1)/(2N) and CA = N as usual. The first factor in C2
H, gg→H is for two-gluon

fusion via the local current FµνaF a
µν and the second factor for the coupling of this current

to the Higgs boson via a top quark loop. Throughout this section we drop the explicit

indication of higher-order corrections in equations, omitting a term + O(α2
s) in the first

line of (7.2) and so forth.

An important property of the coefficients C2
H for Drell-Yan and Higgs production is

their independence of the incoming parton polarisations. This holds at all orders in αs.

For gg → H it follows from the fact that angular momentum conservation only allows for

two non-vanishing helicity amplitudes, which are related by parity invariance. Therefore,

all αs corrections can be expressed by a single hard-scattering coefficient. The argument

holds for the production of any scalar or pseudoscalar boson via gg fusion.

For qq̄ annihilation into a boson via the vector current, one additionally needs the

conservation of quark chirality, which together with angular momentum and parity con-

servation leaves a single independent helicity amplitude. To appeal to quark chirality

conservation in a calculation using dimensional regularisation, one can adapt the argument

given in [120]. As long as one works in D = 4 − 2ǫ dimensions, one can avoid specifying

the polarisation of the incoming partons and instead compute the hard scattering as a ma-

trix in Dirac space. Chirality conservation then technically means that the hard-scattering

amplitude contains an odd number of γµ matrices at any perturbative order. The same

holds for the terms that must be subtracted to remove ultraviolet and infrared divergences.

After these subtractions have been done, one can take D = 4 and use the relation between

quark helicity and chirality.

The extension of this argument to qq̄ annihilation via the axial vector current is simple

in D = 4 dimensions: anticommuting the γ5 matrix from the current, one finds Aµ = Vµγ5
for the Dirac matrix of the hard-scattering amplitudes of the two currents (with their

divergences subtracted). Their independent helicity amplitudes are hence the same (or

opposite in sign). To complete the argument, one needs to discuss the implementation of

the electroweak axial current in dimensional regularisation, which we shall not do here.

7.2 Collins-Soper kernels and anomalous dimensions

In the limit of small z1, z1 and y, the soft matrix for DPS can be directly computed in

perturbation theory, as we derived in (6.36). Setting U = 1 in (A.12), we simply have

K = K̂ = dS/dY at O(αs). The one-loop calculation of S in the qq channel is presented in

detail in section 3.3.2 of [27]. We can rewrite the results there in such a way that we have

a separate dependence on the two scales µ1 and µ2. Splitting off a diagonal part according

to (5.16), we get

Kqq = CF

[
K(z1;µ1) +K(z2;µ2)

]
(
1 0

0 1

)
+Mqq (7.3)
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with

Mqq =

(
0

√
N2−1
2N Kd

√
N2−1
2N Kd − N

2 Ky − 1
N Kd

)
, (7.4)

where the matrices are in colour representation space, with R = (1, 8). We recall that Mqq

is renormalisation scale independent. The scale independent combinations of kernels read

Ky(zi,y) = K(z1;µ) +K(z2;µ)−K
(
y + 1

2(z1 + z2);µ
)
−K

(
y − 1

2 (z1 + z2);µ
)
,

Kd(zi,y) = K
(
y + 1

2 (z1 + z2);µ
)
+K

(
y − 1

2(z1 + z2);µ
)

−K
(
y + 1

2(z1 − z2);µ
)
−K

(
y − 1

2 (z1 − z2);µ
)
, (7.5)

where

K(z;µ) = −αs(µ)

π
log

z2µ2

b20
(7.6)

is the one-loop Collins-Soper kernel for single parton TMDs, with the colour factor removed.

We recall that b0 = 2e−γE . We note that the two-loop result in section 4 of [74] has the form

given by (7.3), (7.4) and (7.5) if one replaces CFK(z;µ) with the two-loop Collins-Soper

kernel for a single quark TMD.

In the solution (5.17) of the evolution equations, one needs the matrix exponential of

Mqq times L = log
√
ζ/ζ0, which reads (see section 3.4.2 of [27])

exp[LMqq ] =
1

d+ − d−

(
d+e

Ld− − d−eLd+
√
N2−1
2N Kd

(
eLd+ − eLd−

)
√
N2−1
2N Kd

(
eLd+ − eLd−

)
d+e

Ld+ − d−eLd−

)
(7.7)

with

d± =
1

2N

[
−N

2

2
Ky −Kd ±

√(
N2

2
Ky +Kd

)2

+ (N2 − 1)K2
d

]
. (7.8)

An interesting situation arises if |Kd| ≪
√
N2 − 1 |Ky|, which holds for instance in the

large-N limit. As shown in section 3.4.2 of [27], one then finds that 8F (ζ) is suppressed

compared with 1F (ζ) for ζ ≫ ζ0. Note that the above condition always holds in the limit

z1 = z2 = 0, where Kd tends to zero.

It is easy to extend the above results to other parton channels, because the one-loop

graphs remain the same up to colour factors. For the quark-gluon channels, we obtain

Kqg(zi,y;µi) =
[
CFK(z1;µ1) + CAK(z2;µ2)

]
1 +Mqg (7.9)

with

Mqg =




0 1√
2
Kd 0

1√
2
Kd −N

2 (Ky +
1
2Kd)

√
N2−4
4 Kd

0
√
N2−4
4 Kd −N

2 (Ky +
1
2Kd)


 . (7.10)
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Here the space of colour representations is R = (1, A, S), corresponding to the projectors in

(4.4), and 1 is the unit matrix in that space. For the two-gluon channel we get the kernel

Kgg(zi,y;µi) = CA

[
K(z1;µ1) +K(z2;µ2)

]
1 +Mgg (7.11)

with

Mgg =




0 N√
N2−1

Kd 0 0 0

N√
N2−1

Kd −N
2 (Ky +

1
2Kd)

N
4 Kd 0

√
3
8Kd

0 N
4 Kd −N

2 (Ky +
1
2Kd) − 3√

10
Kd 0

0 0 − 3√
10
Kd −3(Ky +

1
2Kd) −

√
3
5Kd

0
√

3
8Kd 0 −

√
3
5Kd −4(Ky +

1
2Kd)




(7.12)

in the space of colour representations R = (1, A, S,D, 27), corresponding to the projectors

in (4.3). In the rows and columns for D and 27, we have given the numerical coefficients

for N = 3. The Collins-Soper kernels in channels with antiquarks can be obtained from

the above expressions by using the relation (4.29) and the analogue of (4.31) for Ka1a2 .

The matrices Mqg and Mgg are non-singular for generic values of the functions Ky and

Kd. The eigenvalues of Mqg can be calculated analytically, but the expressions are rather

lengthy and we refrain from giving them here. For N = 3, the eigenvalues of Mgg read

−3
(
Ky +

1
2Kd

)
, −3

2Ky , −3
2(Ky +Kd) , −(2Ky +Kd)±

√
(2Ky +Kd)2 + 3K2

d .

(7.13)

7.2.1 Limit of small z1 and z2

We now consider the limit where |z1|, |z2| ≪ |y|. Expanding (7.3), (7.9) and (7.11) in

powers of |z1|/|y| and |z2|/|y| and comparing the leading terms with the structure in

(6.16), where the full kernel RR′
Ka1a2(zi,y;µi) is split into three separate contributions,

we can deduce the LO expressions of the kernels RKa and RJ . We obtain

1Kq(z;µ) = CFK(z;µ) , 8Kq(z;µ) = − 1

2N
K(z;µ) ,

1Kg(z;µ) = CAK(z;µ) , AKg(z;µ) =
SKg(z;µ) =

N

2
K(z;µ) (7.14)

and

1J = 0 , 8J(y;µi) =
N

2

[
K(y;µ1) +K(y;µ2)

]
(7.15)

with K(z;µ) defined in (7.6). For the higher gluon representations we find

DKg(z;µ) = 0 , 27Kg(z;µ) = −K(z;µ) (7.16)
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and

DJ(z;µi) = 3
[
K(y;µ1) +K(y;µ2)

]
, 27J(z;µi) = 4

[
K(y;µ1) +K(y;µ2)

]
, (7.17)

where again we have set N = 3. The expressions for J are of course only valid at pertur-

batively small y.

Using the explicit form of K(z;µ), we obtain anomalous dimensions

1γK,q = 2CF
αs

π
, 8γK,q = − 1

N

αs

π
,

1γJ = 0 , 8γJ = N
αs

π
. (7.18)

The expressions for other colour representations are readily obtained from (7.14) and (7.15).

We note that 8γK,q and 27γK,g are negative. Furthermore, we find that RγJ > 0 for all

R 6= 1.

For completeness we also give the anomalous dimensions γa, which can be taken from

the literature for single TMDs, e.g. from [99] (see our equation (6.66) for notation). The

one-loop expressions are

γq =
3

2
CF

αs

π
, γg =

β0
2

αs

π
(7.19)

with β0 =
11
3 CA − 2

3 nF . Finally, one has

γK,q = 2CF
αs

π
+
CF

2

(
67− 3π2

9
CA − 10

9
nF

)(
αs

π

)2

,

γK,g =
CA

CF
γK,q (7.20)

for the cusp anomalous dimension at two-loop accuracy. Using the all-order relation

8γJ =
1

2
γK,g , (7.21)

which follows from (6.30), we readily get the two-loop expression of 8γJ as well.

7.3 Matching coefficients for DTMDs

We now turn to the short-distance coefficients for matching DTMDs on DPDFs in the

large-y regime. In the colour singlet channel, they are equal to the coefficients for matching

TMDs on PDFs, which for most polarisation combinations have been computed by several

groups [65, 66, 85, 121, 122]. In addition to extending these results to colour non-singlet

channels, we have computed the colour singlet coefficients for all polarisation channels.

In the following two subsections, we describe in detail our method, which allows us to

compute the one-loop matching coefficients from real emission graphs alone and to handle

gluon polarisation without using the Levi-Civita tensor inD = 4−2ǫ dimensions. Subtleties

of renormalisation in both the quark and gluon sector are discussed in section 7.3.3. We

give our final results for the colour singlet coefficients in section 7.3.4 and explain their

extension to other colour channels in section 7.3.5.
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7.3.1 General procedure

To compute the matching coefficients, we take matrix elements of the operator relations in

(6.5) and (6.6), using either the vacuum or a single parton as external states. We define

2πδ(p+ − p′+) 2p+ RMab(x,z) =
1

Nb

1

m(R)

〈
b, p′, r′

∣∣ROr
a(x,y,z)

∣∣b, p, r
〉

= εa(R)
Na

Nb

P
r s
R

m(R)

〈
b, p′, r′

∣∣Os
a(x,y,z)

∣∣b, p, r
〉
,

RMS,a(z) =
P

r s
R

m(R)

〈
0
∣∣Or,s

S,a(y,z)
∣∣0
〉
, (7.22)

where |b, p, r〉 is a parton state b with momentum p and colour index r, and the colour

projected operator RO
r
a was introduced in (4.18). We recall that r = (r, r′) and that

repeated colour indices are summed over. We gloss over the issue of parton polarisation for

the time being. In the colour singlet sector, one has εa(1)/m(1) = 1 and the contraction

with P
r s
1 Na/Nb in 1Mab implies a sum over the colour indices of the operator and an

average over the colour of the parton state. Thus, 1Mab(x,z) is the unsubtracted TMD

for parton a in target b according to (3.11). Likewise, 1MS,a(z) is the soft factor for

single TMDs. In analogy to (7.22) we define matrix elements RMab(x) and
RMS,a without

argument z from the operators with z = 0; thus 1Mab(x) is the PDF for parton a in target

b. It is understood that all operators are renormalised, and we recall that the operators at

z = 0 require additional renormalisation compared with those at finite z.

According to the operator matching equations (6.6) and (6.5), we thus have

RMac(x,z) =
∑

b

RCus,ab(x
′,z) ⊗

x

RMbc(x
′) ,

RMS,a(z) =
RCS,a(z)

RMS,a . (7.23)

We now expand the quantities in these relations up to O(αs), denoting the zeroth and

first orders with superscripts (0) and (1), respectively. At tree level, the matrix elements

〈b, p′, r′ |Os
a |b, p, r〉 and 〈0|Or,s

S,a |0〉 have the colour structure δrs δr′s′ , which gives

RM(0)
ab (x,z) =

RM(0)
ab (x) = δab δ(1 − x) , RM(0)

S,a(z) =
RM(0)

S,a = 1 (7.24)

for the matrix elements on both sides of (7.23), which results in zeroth-order matching

coefficients

RC
(0)
us,ab(x,z) = δab δ(1 − x) , RC

(0)
S,a(z) = 1 . (7.25)

Inserting this into the O(αs) terms of (7.23), we obtain

RC
(1)
us,ab(x,z) =

RM(1)
ab (x,z)− RM(1)

ab (x) ,

RC
(1)
S,a(z) =

RM(1)
S,a(z)− RM(1)

S,a . (7.26)

The one-loop matching coefficients are thus given as the difference of O(αs) matrix elements

at finite and at zero z. Virtual graphs cancel in this difference, because they do not depend

on z, so we can limit our calculation to real graphs.
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To obtain the matching coefficient RCab of the TMD, we need the square root of RCS,a

according to (6.10). At O(αs), we have

√
RC

(1)
S,a(z; 2Y ) = 1 +

1

2
RC

(1)
S,a(z; 2Y ) = 1 + RC

(1)
S,a(z;Y ) . (7.27)

In the second step, we have used that RC
(1)
S,a(z;Y ) is linear in Y , which readily follows from

its evolution equation (6.14) and the fact that RKa = O(αs). Inserting this into (6.10), we

thus obtain at O(αs)

RCab(x,z; ζ) = δab δ(1 − x)

+ lim
YL→−∞

[
RC

(1)
us,ab(x,z;YL)− δab δ(1 − x)RC

(1)
S,a(z;YC − YL)

]
, (7.28)

where in the present section we use the definition (3.50) of ζ, which refers to a single parton

with plus-momentum xp+. We have omitted the argument µ in all functions for brevity.

7.3.2 Calculation of gluon-gluon matching coefficients

We now describe in detail our procedure to compute the one-loop matching coefficients in

the pure gluon channel. Throughout this subsection, we consider the colour singlet sector,

R = 1, and drop the corresponding index. In turn, we now make gluon polarisation explicit.

We take gluon operators Ojj′
g (x,y,z) with open polarisation indices, obtained from (3.10)

and (3.6) by dropping the projection operator Πjj′
a in the latter equation. We also take

open polarisation indices i, i′ for the gluons in the corresponding matrix element (7.22),

which thus carries four Lorentz indices, Mjj′,ii′
gg . All of them are restricted to be in the

D−2 transverse dimensions. The subscripts g refer of course only to the parton type here,

and not to its polarisation. For the gluon matrix elements, we thus have

Mjj′,ll′
gg (x,z) = Cjj′,ii′

us,gg (x
′,z) ⊗

x
Mii′,ll′

gg (x′) + {quark-gluon mixing terms} (7.29)

and

M(0) jj′,ii
gg (x,z) = M(0) jj′,ii′

gg (x) = C(0) jj′,ii
gg (x,z) = δij δi

′j′δ(1 − x) , (7.30)

which is combined with the matching of the soft factor into

C(1) jj′,ii
gg (x,z; ζ) = lim

YL→−∞

[
C(1) jj′,ii
us,gg (x,z;YL)− δij δi

′j′δ(1 − x)C
(1)
S,a(z;YC − YL)

]
. (7.31)

The virtual graphs contributing to the one-loop matrix elements are shown in figure 10.

They are independent of z (the Fourier conjugated distance to the transverse momentum

carried by partons or eikonal lines) and hence cancel in the matching coefficient. Therefore

we only compute the real graphs in figure 11. We omit so-called Wilson line self interactions,

where a gluon is exchanged between eikonal lines along the same direction v, referring to

chapter 13.7 of [65] for further discussion.
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(a) (b) (c)

Figure 10. Virtual graphs contributing to the matrix elements M(1) jj′,ii
gg (a and b) and M(1)

S,g (c).

Not shown are complex conjugate graphs and the analogue of (a) with a quark instead of a gluon

loop. All eikonal lines are in the adjoint representation.

p− kp

k

i

j

i′

j′

(a)

p− k

k

p

(b)

ℓ

(c)

Figure 11. Real graphs contributing to the matrix elements M(1) jj′,ii
gg (a and b) and M(1)

S,g (c).

Not shown are the complex conjugates of graphs (b) and (c).

We work in Feynman gauge and compute cut graphs (where the emitted gluon is

explicitly put on shell), using the Feynman rules given in appendix D. For graph 11b, we

then obtain

C(1) jj′, ii′
us,gg (x,z;YL → −∞)

∣∣
fig. 11b

=
1

xp+

∫
d4−2ǫk

(2π)4−2ǫ

(
eikz − 1

)
2πδ
(
(p− k)2

)
δ(k+ − xp+)

× δaa′δde′

N2 − 1

(
gµǫnνfdbc

) (
−gνν′ δbb′

) iδc′d′ gρ′τ ′
k2 − i0

iδce
(p− k)n− i0

×
(
gµǫfa

′b′c′
[
(p − 2k)i

′

gν
′ρ′ + (k + p)ν

′

gi
′ρ′ + (k − 2p)ρ

′

gi
′ν′
])

×
(
−i
[
kn gij − pjni

]
δae

)(
i
[
kn gτ

′j′ − kj
′

nτ
′]
δd′e′

)
+ Cus,ǫ

∣∣
fig. 11b

, (7.32)

where n is the four-vector with n− = 1, n+ = 0 and n = 0. The assignment of polarisation

indices is shown in figure 11a. All primed indices refer to the right of the final-state cut,

and a, b, . . . , e are colour octet indices. The factor eikz−1 represents the difference between

the matrix element for nonzero and zero z. In accordance with our choice of light-cone

coordinates, the components p− and p of the target momentum are zero. The factor

(xp+)−1 comes from the definition (3.10) of the operator Og. The ultraviolet counterterm

Cus,ǫ will be discussed below.

In (7.32), we have taken the limit YL → −∞ by setting vL = n in the eikonal prop-

agator. (Only then can we use the Feynman rule given in figure 14). This gives a factor
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p+ − k+ = p+(1− x) in the denominator. The resulting rapidity divergences in the convo-

lution of Cus,gg with a PDF or a DPDF are cancelled by corresponding divergences in the

soft factor, as we shall see shortly. In this sense, one should understand the limit YL → −∞
in Cus,gg as being taken in the combination (7.31).

Adding the complex conjugate of (7.32) and the expression for graph 11a, we get

C(1) jj′,ii′

us,gg (x,z;YL → −∞) =
αsCA

π2
(2πµ)2ǫ

∫
d2−2ǫk

k2

(
eikz − 1

)

×
{[

x

1− x
+

(1− x)(1 + x2)

x

]
1

2(1 − ǫ)
δii

′

δjj
′

+

[
x

1− x
+

2(1− x)

1− ǫ

]
1

2

(
δijδi

′j′ − δij
′

δi
′j
)

+
x

1− x

1

2

(
δijδi

′j′ + δij
′

δi
′j − 1

1− ǫ
δii

′

δjj
′

)

+ x(1− x)
kii

′

k2 δ
jj′ +

1− x

x
δii

′ kjj
′

k2

+ (1− x)

(
δij
ki

′j′

k2 + δi
′j′ k

ij

k2 − δij
′ ki

′j

k2 − δi
′j k

ij′

k2

)}
+ Cus,ǫ , (7.33)

where we define the symmetric and traceless tensor

vij = vivj − v2

2(1− ǫ)
δij (7.34)

for a given vector v in 2(1 − ǫ) transverse dimensions. Using the integral relations in

appendix E, we perform the transverse integration and obtain

C(1) jj′,ii′
us,gg (x,z;−∞) = −αsCA

π
(2πµ)2ǫ Γ(1− ǫ)

(
z2

4π

)ǫ

×
{

1

ǫ

[
x

1− x
+

(1− x)(1 + x2)

x

]
1

2(1 − ǫ)
δii

′

δjj
′

+
1

ǫ

[
x

1− x
+

2(1− x)

1− ǫ

]
1

2

(
δijδi

′j′ − δij
′

δi
′j
)

+
1

ǫ

x

1− x

1

2

(
δijδi

′j′ + δij
′

δi
′j − 1

1− ǫ
δii

′

δjj
′

)

+ x(1− x)
zii

′

z2
δjj

′

+
1− x

x
δii

′ zjj
′

z2

+ (1− x)

(
δij

zi
′j′

z2
+ δi

′j′ z
ij

z2
− δij

′ zi
′j

z2
− δi

′j z
ij′

z2

)}
+ Cus,ǫ . (7.35)

In (7.33) and (7.35) we have organised the tensor structure into terms that are diagonal or

antisymmetric or symmetric and traceless in the index pair jj′, for reasons that will become

clear in section 7.3.3. We note that the tensor in parentheses in the last line of (7.35) is

nonzero in a generic number 2 − 2ǫ of transverse dimensions but vanishes for ǫ = 0. This
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is easily seen by contracting this tensor with itself, which gives an expression proportional

to ǫ.

We see that (7.35) has poles in 1/ǫ. They correspond to ultraviolet divergences of the

matrix element at z = 0 and are removed by the counterterm Cus,ǫ. If one splits the k

integration in (7.33) into the parts going with eikz and −1, then the 1/ǫ poles arise as

infrared divergences of the term with eikz, which is ultraviolet finite. The term with −1

involves scaleless integrals, in which the ultraviolet and infrared divergences add up to zero

in dimensional regularisation. In the sum of terms, the infrared divergences cancel and the

ultraviolet ones remain. The MS counterterm reads

Cus,ǫ =
αsCA

π

Sǫ
ǫ

{[
x

1− x
+

(1− x)(1 + x2)

x

]
1

2(1 − ǫ)
δii

′

δjj
′

+

[
x

1− x
+ 2(1 − x)

]
1

2

(
δijδi

′j′ − δij
′

δi
′j
)

+
x

1− x

1

2

(
δijδi

′j′ + δij
′

δi
′j − 1

1− ǫ
δii

′

δjj
′

)}
, (7.36)

where

Sǫ =
(
4πe−γE

)ǫ
. (7.37)

The origin of the factor 1/(1− ǫ) multiplying δii
′
δjj

′
is explained in section 7.3.3; note that

the naive implementation of MS counterterms as “the residue of 1/ǫ times Sǫ” would lead

to an incorrect result.

We now turn to the matching coefficient of the soft factor, which comes from the graph

in figure 11c and its complex conjugate. Taking again the limit YL → −∞, we obtain

C
(1)
S,g(z;YC +∞) =

∫
d4−2ǫℓ

(2π)4−2ǫ

(
e−iℓz − 1

)
2πδ
(
ℓ2
)
θ
(
ℓ+
) δaa′δcc′
N2 − 1

× i

ℓvC + i0

(
−gµǫvν′C fa

′b′c′
) (

−gνν′ δbb′
) (
gµǫnνf cba

) i

ℓn− i0
+ c.c. + CS,ǫ

=
αsCA

4π2
(2πµ)2ǫ

∫
d2−2ǫℓ

(
e−iℓz − 1

)
[ ∫ ∞

0

dℓ+

ℓ+
2v+C

2(ℓ+)2 v−C + ℓ2 v+C − i0

− 2

ℓ2

∫ xp+

0

dℓ+

ℓ+
+

2

ℓ2

∫ xp+

0

dℓ+

ℓ+

]
+ c.c. + CS,ǫ

= −αsCA

2π2
(2πµ)2ǫ

∫
d2−2ǫℓ

ℓ2

(
e−iℓz − 1

)
[
log

2(xp+)2 e−2YC

ℓ2
− 2

∫ xp+

0

dℓ+

ℓ+

]
+ CS,ǫ ,

(7.38)

where CS,ǫ is the ultraviolet counterterm and “c.c.” denotes the complex conjugate term

(which results in an extra factor of 2 in the last line). The eikonal propagator depending

on n gives rise to the divergent integral over 1/ℓ+ in the third line. To combine this

efficiently with the divergence from Cus,gg, we have subtracted and added a divergent
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integral in the fourth line. The first two terms in square brackets then combine to a finite

integral, which gives the logarithm in the last line. Having rewritten v−C/v
+
C = −e−2YC , we

recognise the variable ζ from (3.50) appearing in this logarithm.

In the remaining divergent integral, we now change variables as ℓ+ = p+(1 − x′),
motivated by the corresponding form of the gluon plus-momentum p+ − k+ = p+(1 − x)

crossing the cut in figure 11b. Performing the Fourier transform using (E.1) and (E.2), we

then obtain

C
(1)
S,g(z;YC +∞) = −αsCA

2π
(4π)ǫ

(
µ2z2

4

)ǫ Γ(1− ǫ)

ǫ

×
[
log

4

ζz2
− γE + ψ(−ǫ) + 2

∫ 1

1−x

dx′

1− x′

]
+ CS,ǫ , (7.39)

where ψ(z) = d
dz log Γ(z) is the digamma function. Its expansion around ǫ = 0 gives

ψ(−ǫ) = 1/ǫ + . . . , so that overall we obtain a double pole in ǫ. We recall that for a

one-loop quantity that has the form

R−2

ǫ2
+
R−1

ǫ
+O(ǫ0) , (7.40)

the MS-counterterm is given by

−Sǫ
(
R−2

ǫ2
+
R−1 − S1R−2

ǫ

)
(7.41)

times the tree-level term C
(0)
S,g = 1, where the coefficient S1 comes from the Taylor ex-

pansion Sǫ = (4π exp(−γE))ǫ = 1 + S1 ǫ+O(ǫ2). The additional contribution SǫS1R−2/ǫ

compensates the 1/ǫ term that arises from Taylor expanding SǫR−2/ǫ
2. Implementing this

prescription, we obtain the final form for the soft matching coefficient:

C
(1)
S,g(z;YC +∞) = −αsCA

2π

[
− 1

2
L2 + L log

µ2

ζ
− π2

12
+ 2L

∫ 1

1−x

dx′

1− x′

]
(7.42)

with

L = log
µ2z2

b20
, (7.43)

where b0 is given in (6.25). We note in passing that CS,q is given by the same expression,

with the colour factor CA replaced by CF . Defining

SL = −1

2
L2 + L log

µ2

ζ
− π2

12
(7.44)
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and combining Cus,gg with CS,g according to (7.31), we obtain the full matching coefficient

in tensor form:

C(1) jj′,ii′
gg (x,z;µ, ζ)

=
αsCA

2π

{
−2L

[
x

(1− x)+
+

(1− x)(1 + x2)

x

]
+ SL δ(1 − x)

}
1

2
δii

′

δjj
′

+
αsCA

2π

{
−2L

[
x

(1− x)+
+ 2(1 − x)

]
− 4(1− x) + SL δ(1 − x)

}
1

2

(
δijδi

′j′ − δij
′

δi
′j
)

+
αsCA

2π

{
−2L

x

(1− x)+
+ SL δ(1− x)

}
1

2

(
δijδi

′j′ + δij
′

δi
′j − δii

′

δjj
′
)

− αsCA

2π
2x(1− x)

zii
′

z2
δjj

′ − αsCA

2π

2(1− x)

x
δii

′ zjj
′

z2
. (7.45)

The rapidity divergences in the Cus,gg and CS,g have been combined into the plus-distribution

1

(1− x)+
=

1

1− x
− δ(1 − x)

∫ 1

0

dx′

1− x′
, (7.46)

which gives a finite result in convolution integrals. The lower integration limit of the x′

integral has changed from 1 − x in (7.42) to 0 in (7.46) because CS,g is multiplied with

δ(1 − x) in the combination formula (7.31).

Note that the method we have used avoids introducing the antisymmetric tensor ǫλµνρ
in D = 4 − 2ǫ dimensions. With the final result (7.45) in the D = 4 physical dimensions,

it is straightforward to perform a projection onto unpolarised or longitudinally polarised

gluons. On the operator side, one uses the spin projectors δjj
′
or iǫjj

′
from (3.7), and for

the gluon states in the matrix element, one contracts with δii
′
/2 or −iǫii′/2, which gives

the average or half the difference of the two helicity states, respectively.14 For linear gluon

polarisation, we see that τ jj
′,kk′ in (3.7) projects on the symmetric and traceless part in the

indices jj′, with the result depending on two transverse indices kk′. Matching coefficients

involving linear gluon polarisation thus carry indices, as already remarked earlier.

We will give the results of projecting (7.45) onto definite gluon polarisations after

discussing in more detail the renormalisation counterterms we have used in our calculations.

7.3.3 Subtleties of renormalisation

As explained earlier, the renormalisation of TMDs involves only virtual graphs, which drop

out in the calculation of the one-loop matching coefficients. It thus remains to discuss the

renormalisation of the matrix elements Mjj′,ll′

ab (x) and MS,a, which are respectively related

with PDFs and with the soft factor at z = 0.

Gluon polarisation. We begin with renormalisation of gluon PDFs, which gives the

counterterm (7.36) for the real graphs in figure 11. We recall that the renormalisation of

14The sign difference for longitudinal polarisation reflects that one has polarisation vectors ε for incoming

gluons and ε∗ for outgoing ones.
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a scalar PDF operator (e.g. the one for unpolarised gluons) reads

O(x) = Z(x′)⊗
x
OB(x

′) (7.47)

and gives

M(1)(x) = Z(0)(x′)⊗
x
M(1)

B (x′) + Z(1)(x′)⊗
x
M(0)

B (x′) , (7.48)

where Z(0)(x) = δ(1− x) and the first-order term Z(1)(x) is given by the MS prescription.

Bare quantities are denoted with a subscript B, and we ignore mixing with quark operators

for the time being. For the gluon operators Ojj′(x) with open indices, which we are now

interested in, the renormalisation factor Z in (7.47) turns into a tensor with four indices. As

explained in section 6.5 of [76], renormalisation is significantly simplified by first splitting

the tensor operator into its antisymmetric, traceless symmetric diagonal terms, which in

2− 2ǫ transverse dimensions reads

Ojj′ =
1

2

(
Ojj′ −Oj′j

)
+

1

2

(
Ojj′ +Oj′j +

1

1− ǫ
δjj

′

Okk

)
− 1

2(1− ǫ)
δjj

′

Okk . (7.49)

The three terms of this decomposition correspond to different irreducible representations

of the rotation group. Therefore, each of them is renormalised by a scalar renormalisation

factor, and there is no mixing between them. To implement (7.47) in the tensor case, we

project all tensors in jj′ in the same way, which in particular gives

δijδi
′j′ =

1

2

(
δijδi

′j′ − δij
′

δi
′j
)
+

1

2

(
δijδi

′j′ + δij
′

δi
′j − 1

1− ǫ
δii

′

δjj
′

)
+

1

2(1 − ǫ)
δii

′

δjj
′

(7.50)

for the tree-level tensors in (7.30). This explains the appearance of the factors 1/(1 − ǫ)

in the counterterm (7.36). We note that the coefficients of the diagonal, antisymmetric

and traceless symmetric tensors in that term are proportional to the well-known DGLAP

kernels for the associated gluon polarisation (apart from the δ(1 − x) terms from virtual

graphs), which confirms the consistency of the procedure. Contracting the last term in

(7.50) with the projector δjj
′
for unpolarised gluons and taking the average over incoming

gluon polarisations by contracting with δii
′/(

2(1−ǫ)
)
, one obtains unity, which corresponds

to the correct normalisation of the tree-level matrix element.

Notice also that the three terms in (7.50) have the same symmetry properties in the

index pairs jj′ and ii′, which reflects that there are no transitions between states corre-

sponding to different representations of the rotation group.

Quark polarisation. We now turn our attention to quark distributions and their renor-

malisation. The graphs to be computed for the matching coefficients are as in figure 11,

with appropriate replacements of gluons by quarks and with eikonal lines in the fundamen-

tal representation. The spinor indices at the top of the graphs are to be contracted with

the Dirac matrix of the relevant operator Oq, O∆q or Oδq, and corresponding contractions

are done for the Dirac indices of the quark states in the matrix element.
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As is well known, the treatment of quark polarisation in this context requires a

consistent definition of γ5 and of the ǫ tensor in dimensional regularisation. We use

the scheme of ’t Hooft, Veltman and Breitenlohner, Maison (HVBM) [123, 124], where

γ5 = i
4! ǫλµνργ

λγµγνγρ. Here ǫλµνρ is the usual antisymmetric tensor if all indices are in

the four physical dimensions (with ǫ0123 = +1) and zero otherwise. We also introduce its

counterpart ǫij = ǫ+−ij, where i, j take values in the D − 2 transverse dimensions, as well

as the tensor δ̄ij , which equals δij if i, j = 1, 2 and is zero for one or both of i, j in the

unphysical dimensions.

For transverse quark polarisation, we avoid the use of γ5 by taking the Dirac matrix

Γj
δq in the operator Oδ as

Γj
δq =

1

2
ǫjj

′

σj
′+ =

i

2
ǫjj

′

γj
′

γ+ , (7.51)

which is equal to the form i
2 σ

j+γ5 in (3.4) in the physical dimensions, j = 1, 2, whereas it

differs for values of j in the unphysical sector. The fermion trace in the matching coefficient

Cδqδq then contains two matrices σj+ and σi−. This gives exactly the same result as one

would obtain for the trace with σj+γ5 and σi−γ5 using the “naive dimensional regulari-

sation” prescription, where one assumes that γ5 has square 1 and anticommutes with all

γµ. That prescription is often used in the context of transverse quark polarisation, but we

prefer the formulation with (7.51). Note that with “naive dimensional regularisation” one

cannot treat all polarised matching coefficients on an equal footing, since it can only be

used to compute traces with an even number of γ5 matrices. The matrix σi+ has also been

used to define quark transversity in the recent work [122], where the matching coefficients

for polarised TMDs were revisited in a systematic way.

For longitudinal quark polarisation, the matrix γ5 is unavoidable. In the HVBM

scheme, one can rewrite the Dirac matrix in the operator Γ∆q as

Γ∆q =
1

2
γ+γ5 = − i

4
ǫjj

′

γ[j
′

γj]γ+ , (7.52)

where we define γ[iγj] = 1
2

(
γiγj − γjγi

)
. A corresponding replacement can be made for

the matrix γ−γ5 that appears in the fermion trace for matrix elements with incoming lon-

gitudinally polarised quarks. Postponing the contraction with the ǫ tensor to the end of

the calculation, one can hence represent longitudinally polarised quarks by an operator

Ojj′

∆q = −1
4 q̄ γ

[j′γj]γ+q with two transverse indices. This makes it easy to see that one has

mixing under renormalisation with longitudinally polarised gluons, represented by the op-

erator Ojj′

∆g = G+[j′G+j] that has the same transformation behaviour under rotations. For

all matching coefficients with longitudinal polarisation, ∆q∆q, ∆g∆q, ∆q∆g and ∆g∆g,

one then has a tensor matching coefficient Cjj′,ii′

ab that is antisymmetric in jj′. As the only
terms with ultraviolet divergences in a matching coefficient arise from the matrix elements

at z = 0, they must be independent of z. This leaves δijδi
′j′ − δij

′
δi

′j as the only possible

tensor structure of the UV divergent part of the matching coefficient. This is also the ten-

sor structure of the tree-level matrix element, which multiplies the one-loop counterterm
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according to (7.48). For the renormalised matching coefficient one thus has

C(1)jj′,ii′ =
1

2

(
δijδi

′j′ − δij
′

δi
′j
)
B(1)(x, ǫ)− 1

2

(
δijδi

′j′ − δij
′

δi
′j
)
Z(1)(x, ǫ)

+ {terms finite for ǫ→ 0} , (7.53)

where B(1) contains all ultraviolet divergent parts of the bare matrix element and Z(1) is

the relevant one-loop renormalisation factor. The MS prescription fixes the latter to be Sǫ
times the pole part of B(1). The outcome of this discussion is that one obtains the same

counterterm (and hence the same renormalised result) when using the tensor form (7.53)

or when contracting it with

1

2
ǫjj

′

ǫii
′

=
1

2

(
δ̄ij δ̄i

′j′ − δ̄ij
′

δ̄i
′j
)

(7.54)

and working with scalar matching coefficients, which corresponds to using the conventional

operators 1
2 q̄ γ

+γ5q and iǫjj
′
G+j′G+j in the HVBM scheme. Working with (7.53) has

the advantage that one does not need to distinguish between physical and unphysical

dimensions during the computation.

In the computations of [85] and [122], the tensor δ̄ on the r.h.s. of (7.54) was replaced

by the full transverse metric δ in D − 2 dimensions, as a modification of the proposal

by Larin [125], where ǫλµνρǫλ
′µ′ν′ρ′ was replaced by products of D dimensional instead of

4 dimensional metric tensors (cf. [126] for a recent discussion). We see that one obtains

the same result when one contracts (7.53) with 1
2

(
δijδi

′j′ − δij
′
δi

′j
)
instead of (7.54) and

imposes MS subtraction. The essential point for this is that B(1) and Z(1) have the same ǫ

dependent prefactor in this case. Since poles in 1/ǫ cancel in B(1) − Z(1) by construction,

only the ǫ→ 0 limit of their prefactor enters in the renormalised matching coefficient. The

preceding argument readily generalises to order αn
s , where one should replace B(1) − Z(1)

with
∑

mB
(n−m) ⊗ Z(m), where B(0) = Z(0) = δ(1 − x). If, however, the divergent part

of a quantity involves different tensor structures, then the procedure just described is no

longer guaranteed to work correctly.

We note that (7.52) is a special case of the identity

1

2

(
γλγ5 − γ5γλ

)
=

i

3!
ǫλµνρ γ

[µγνγρ] (7.55)

in D dimensions, which has been used for a long time when discussing the axial current

in the HVBM scheme [76, 125]. The explicit antisymmetrisation on the l.h.s. of (7.55),

necessary to make the current Hermitian, can be omitted in (7.52) because {γ+, γ5} = 0.

As shown in [76, 125], the divergence of the flavour nonsinglet axial current is nonzero if one

uses MS renormalisation and the HVBM scheme, but a zero divergence can be achieved by

an additional finite renormalisation. The resulting nonsinglet current has zero anomalous

dimension. At order αs, the same finite renormalisation achieves that the divergence of

the flavour singlet axial current is given by the Adler-Bell-Jackiw anomaly, as shown in

[125] (at higher orders, the required renormalisation factors differ for the flavour singlet

and nonsinglet currents). In [127, 128] this finite renormalisation was extended to the
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nonlocal axial current O∆q that defines longitudinally polarised quark distributions, see

also [129, 130]. The finite renormalisation can be written as

ONS
∆q = ZNS

5 ⊗ONS
∆q,MS

, OS
∆q = ZS

5 ⊗OS
∆q,MS

, O∆g = O∆g,MS (7.56)

for the flavour singlet and nonsinglet operators in x space, where the currents on the r.h.s.

are renormalised by the standard MS prescription. At order αs one has

ZNS
5 (x) = ZS

5 (x) = 1− αs

2π
4CF (1− x) ; (7.57)

higher orders can be found in [131].15 This finite renormalisation achieves in particular

that the DGLAP kernels Pqq and P∆q∆q agree up to order α2
s [127, 128]. It also achieves

that the hard-scattering coefficients of the Drell-Yan process in collinear factorisation sat-

isfy W∆q∆q̄ = −Wqq̄ at order αs [129, 132], where W∆q∆q̄ is for the incoming quark and

antiquark both being longitudinally polarised and Wqq̄ for both being unpolarised. In

the results for the matching kernels given in the next subsection, we have included the

finite renormalisation (7.56). At the order we are working at, this only affects the coeffi-

cient C∆q∆q.

MS variants. All results given in this paper so far refer to the prescription that a

renormalisation factor Z has the form

Z =

∞∑

n=0

(Sǫαs)
n Z(n) , (7.58)

where αs is the renormalised coupling and Z(n) for n ≥ 1 is a finite sum of poles in ǫ, fixed

uniquely by the requirement that the renormalised quantity be finite at ǫ = 0. Equivalently,

one may express all quantities in terms of the rescaled coupling ᾱs = Sǫαs and use minimal

subtraction, where all counterterms are sums of poles. The factor Sǫ is given in (7.37) and

was introduced in [133] to simplify the finite terms left after renormalisation.

A variant of the scheme has been proposed in chapter 3.2.6 of [65], where instead of

Sǫ in (7.37) one uses

SJCC
ǫ =

(4π)ǫ

Γ(1− ǫ)
. (7.59)

The difference between the two versions is

Sǫ − SJCC
ǫ =

π2

12
ǫ2 +O(ǫ3) . (7.60)

For one-loop quantities with only a single pole in ǫ, this is of no consequence, but it does

matter for quantities with a double pole. From (7.41) we see that the counterterm is

shifted by π2/12 times the coefficient of the double pole if one uses SJCC
ǫ instead of Sǫ. For

15Note that Z5, called Z in [131], is different from Z5 given in [128]. In that work, the renormalisation

of the bare current is written in terms of the product Z−1Z5 of two renormalisation factors (or matrices in

the singlet sector), where Z−1 does not correspond to the MS prescription.
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the one-loop matching coefficients, this scheme change affects the soft factor and simply

removes the term −π2/12 in the quantity SL defined in (7.44).

Like any choice of renormalisation prescription, the choice of Sǫ must drop out in

physical quantities such as the overall cross section. At O(αs) this choice affects the

matching coefficients RCab, the hard-scattering coefficients C2
H (with squared logarithms

in (7.2) indicating the presence of double poles 1/ǫ2 before renormalisation), as well as

DPDFs in colour non-singlet channels and DTMDs in any colour channel (via one-loop

renormalisation of the soft factors in their definitions). Collins-Soper and DGLAP kernels,

as well as anomalous dimensions, are not affected by the choice of Sǫ at O(αs).

7.3.4 Matching coefficients for DTMDs on DPDFs

We now give our final results for the matching coefficients for DTMDs at large y in the

colour singlet sector, which are equal to the matching coefficients for single parton TMDs.

We have computed them not only with the rapidity regulator used in this paper, but also

with the so-called δ regulator specified in [60], and we find complete agreement between

the two versions.

In the gluon sector, we start from the tensor form (7.45) and project onto unpolarised

or longitudinally polarised gluons, which gives

Cgg(x,z) = δ(1− x)− L

[
Pgg(x)−

1

2
δ(1 − x) γg

]
+
αs

2π
CASL δ(1− x) , (7.61)

C∆g∆g(x,z) = δ(1− x)− L

[
P∆g∆g(x)−

1

2
δ(1 − x) γg

]
+
αs

2π
CASL δ(1 − x)

− αs

2π
4CA (1− x) , (7.62)

where we recall that

L = log
µ2z2

b20
, SL = −1

2
L2 + L log

µ2

ζ
− σ

π2

12

with σ = 1 if one takes Sǫ from (7.37) for the MS counterterms, whereas σ = 0 if one

takes SJCC
ǫ from (7.59). The DGLAP splitting kernels Pgg(x) and P∆g∆g(x) include a

term proportional to the anomalous dimension γg = β0αs/(2π), which comes from virtual

graphs (see figure 10). This term is subtracted again in the above matching coefficients,

which only receive contributions from real graphs as explained earlier. We list all kernels

Pab at the end of this subsection.

Matching coefficients involving linear gluon polarisation carry tensor indices, and we

extract from (7.45) the forms

Cjj′,ii′

δgδg = τ jj
′,ii′Cδgδg , (7.63)

Cjj′

δgg =

(
zjzj′

z2
− 1

2
δjj

′

)
Cδgg , (7.64)

Cii′

gδg =

(
2zizi′

z2
− δii

′

)
Cgδg , (7.65)
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where τ jj
′,ii′ is defined in (3.8) and the scalar coefficient functions read

Cδgδg(x,z) = δ(1 − x)− L

[
Pδgδg(x)−

1

2
δ(1 − x) γg

]
+
αs

2π
CASL δ(1 − x) , (7.66)

Cδgg(x,z) = −αs

2π
2CA

1− x

x
, (7.67)

Cgδg(x,z) = −αs

2π
2CA x(1− x) . (7.68)

The prefactor in (7.64) has been chosen such that Cδgg coincides with the corresponding

matching coefficient defined for single gluon TMDs in [85, 122].

In the quark sector, we obtain

Cqq(x,z) = δ(1 − x)− L

[
Pqq(x)−

1

2
δ(1 − x) γq

]
+
αs

2π
CF SL δ(1 − x)

+
αs

2π
CF (1− x) , (7.69)

C∆q∆q(x,z) = Cqq(x,z) , (7.70)

with γq = 3CF αs/(2π). For transverse quark polarisation, one has again a tensor valued

coefficient

Cj,i
δqδq = δjiCδqδq (7.71)

with

Cδqδq(x,z) = δ(1 − x)− L

[
Pδqδq(x)−

1

2
δ(1 − x) γq

]
+
αs

2π
CF SL δ(1− x) . (7.72)

We note that the tensor structure zjzi would be allowed in (7.71) but does not appear at

O(αs). For transitions between quarks and gluons, we obtain

Cqg(x,z) = −LPqg(x) +
αs

2π
2TF x(1− x) , (7.73)

C∆q∆g(x,z) = −LP∆q∆g(x) +
αs

2π
2TF (1− x) (7.74)

and

Cgq(x,z) = −LPgq(x) +
αs

2π
CF x , (7.75)

C∆g∆q(x,z) = −LP∆g∆q(x)−
αs

2π
2CF (1− x) , (7.76)

where we have re-introduced the normalisation factor TF = 1/2. The analogues of (7.67)

and (7.68) for quark-gluon transitions are

Cδgq(x,z) = −αs

2π
2CF

1− x

x
, (7.77)

Cqδg(x,z) =
αs

2π
2TF x(1− x) , (7.78)

– 82 –



where the scalar coefficients are defined as in (7.64) and (7.65) with the subscript g replaced

by q for the unpolarised parton.

DPDs associated with linear gluon or transverse quark polarisation are tensor valued

and can be decomposed into basis tensors that multiply scalar (or pseudoscalar) distri-

butions. We give these decompositions in appendix F and list the resulting matching

equations between DTMDs and DPDFs in appendix G.

Matching coefficients Cab with exactly one longitudinal polarisation (∆g or ∆q) are

zero due to parity invariance. Coefficients with exactly one transverse quark polarisation

δq vanish because the relevant graphs involve the trace of an odd number of γ matrices.

Due to charge conjugation invariance, the coefficients Cab remain the same if one replaces

all quark indices by antiquark ones. These symmetry relations hold at all orders in αs. At

one-loop level, there are no transitions between quarks and antiquarks or between quarks

of different flavours. These appear starting at O(α2
s).

Most of the above coefficients have been calculated in the literature before. The coeffi-

cients in (7.61), (7.62), (7.67) and (7.75) to (7.77) were calculated in [85], using SCET and

the δ regulator in the version of [60]. We find agreement between our results and those in

the arXiv version 5 of [85]. Our results in (7.69) to (7.74) agree with [66] (which contains

unpolarised results only) and with [121]. The results in (7.61), (7.64), (7.75) and (7.77)

agree with [59] and [61]. Apart from Cδgδg , Cgδg and Cqδg, all matching coefficients were

recently calculated in [122], using the δ regulator briefly described in our appendix B. We

agree with the results in the arXiv version 2 of [122].

To the best of our knowledge, Cδgδg , Cgδg and Cqδg in (7.66), (7.68) and (7.78) have

not been given in the literature before. They are not relevant for single parton TMDs in a

nucleon, since the PDF for a linearly polarised gluon vanishes in that case. This is because

linear gluon polarisation corresponds to the interference between gluons with helicity +1

and −1 in the amplitude and its conjugate.

Let us finally list the leading-order DGLAP splitting functions, which were first derived

in [134, 135]. They are given by

Pqq(x) =
αs

2π
CF

1 + x2

(1− x)+
+

1

2
δ(1 − x) γq , (7.79)

P∆q∆q(x) = Pqq(x), (7.80)

Pδqδq(x) =
αs

2π
CF

2x

(1− x)+
+

1

2
δ(1 − x) γq (7.81)

for quark-quark transitions and by

Pgg(x) =
αs

2π
2CA

[
x

(1− x)+
+

(1− x)(1 + x2)

x

]
+

1

2
δ(1 − x) γg , (7.82)

P∆g∆g(x) =
αs

2π
2CA

[
x

(1− x)+
+ 2(1 − x)

]
+

1

2
δ(1 − x) γg , (7.83)

Pδgδg(x) =
αs

2π
2CA

x

(1− x)+
+

1

2
δ(1− x) γg (7.84)
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for gluons. The splitting functions mixing quarks and gluons are

Pqg(x) =
αs

2π
TF

[
x2 + (1− x)2

]
, Pgq(x) =

αs

2π
CF

1 + (1− x)2

x
, (7.85)

P∆q∆g(x) =
αs

2π
TF

[
x2 − (1− x)2

]
, P∆g∆q(x) =

αs

2π
CF

1− (1− x)2

x
. (7.86)

The symmetry properties of the matching coefficients Cab detailed below (7.78) also hold

for the splitting functions Pab. In addition, Pgδg = Pδgg = 0 because the collinear opera-

tors Og(x) and Ojj′

δg (x) transform differently under rotations and hence cannot mix under

renormalisation.

7.3.5 Colour non-singlet channels

It is easy to derive the matching coefficients in colour non-singlet channels from the results

we have just presented. All real graphs in figure 11 have the same colour factor, so that

the colour projections in (7.22) affect all graphs in the same way. The same holds for the

graphs for quark-quark transitions and for transitions between quarks and gluons (in the

latter case, the soft factor does not contribute to the one-loop matching coefficients and

one only needs the analogues of graphs 11a and b). We can therefore write

RC
(1)
ab (x,z;µ, ζ) = cab(R)

1C
(1)
ab (x,z;µ, ζ) . (7.87)

The ratios cab(R) of colour factors between the representation R and the singlet channel

can be determined from the basic ladder graphs, which have the topology of figure 11a.

They are readily obtained from the evolution kernels given in section 5.1.3 in [27] and read

cqq(8) = − 1

N2 − 1
, cgq(A) = cqg(A) =

√
N2

2(N2 − 1)
,

cgg(A) = cgg(S) =
1

2
, cgq(S) = cqg(S) =

√
N2 − 4

2(N2 − 1)
(7.88)

and for N = 3

cgg(D) = 0 , cgg(27) = −1/3 . (7.89)

For transitions involving antiquarks one has cq̄q̄(8) = cqq(8), cgq̄(S) = cq̄g(S) = cqg(S) and

cgq̄(A) = cq̄g(A) = −cqg(A). The minus sign in the last case reflects the fact that two

gluons coupled to an antisymmetric octet have negative charge parity.

We can now derive the explicit form of the LO DGLAP kernels in a general colour

representation R. For this, we use the evolution equation (6.19) for the matching coefficients
RCab. At order αs, we can replace RCab on the r.h.s. by its lowest-order value δab δ(1− x′)
and thus obtain

RPac(x;µ, ζ) =
1

2
δac δ(1 − x) γF,c(µ, ζ)−

1

2

∂

∂ log µ
RCac(x,z;µ, ζ) . (7.90)
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Combining this with (7.87), we readily find that the leading-order DGLAP evolution kernels

of collinear DPDs in colour non-singlet channels are given by

RPab(x;µ, ζ) =
1

2
δab δ(1 − x) γF,a(µ, ζ)−

cab(R)

2

∂

∂ log µ
1Cab(x,z;µ, ζ)

=
1− caa(R)

2
δab δ(1 − x) γF,a(µ, ζ) + cab(R)

1Pab(x;µ)

= −1

2
δab δ(1 − x)RγJ(µ) log

√
ζ

µ

+
1− caa(R)

2
δab δ(1 − x) γa(µ) + cab(R)

1Pab(x;µ) . (7.91)

They are hence easily recovered from their counterparts in the colour singlet channel. In the

last step we have brought the kernel into the form (5.26), using the explicit ζ dependence

(2.5) of γF,a, the general relation (6.17) between anomalous dimensions, and the one-loop

relation RγK,a = caa(R)
1γK,a, which follows from (7.87). We recall that the colour singlet

kernels 1Paa(x;µ) contain a contribution δ(1 − x) γa/2 from virtual graphs, see (7.79) to

(7.84). The last line of (7.91) simply reflects that these graphs have the same colour factor

for all channels R.

Using (7.91), one can rewrite the ζ independent distributions F̂ introduced in (5.27)

as

RF̂a1a2, µ0,ζ0(xi,y;µi) = exp

[(
1− ca1a1(R)

) ∫ µ1

µ0

dµ

µ
γa1(µ)

+
(
1− ca2a2(R)

) ∫ µ2

µ0

dµ

µ
γa2(µ)

]
RF̃a1a2, µ0,ζ0(xi,y;µi) , (7.92)

where F̃ satisfies the evolution equation (5.28) with kernels ca1b1(R)
1Pa1b1(x

′
1;µ1, µ

2
1) in-

stead of RPa1b1(x
′
1;µ1, µ

2
1). One can thus use numerical code for the one-loop evolution of

colour singlet DPDs by rescaling the evolution kernels.

7.4 Splitting kernels for DPDs

Both DTMDs and DPDFs can be matched on single-parton distributions at small y as

specified in (5.37), (6.38) and (6.42). At O(αs), all three matching equations involve the

same kernels RT ll′
a0→a1a2 , which were computed in section 5.2.2 of [27]. We list them here

in the notation of [30] (arXiv version 2), where compared to [27] the kernels T have the

opposite order of indices and include a colour factor. Thus one has for instance

1T ll′
g→qq̄

∣∣
here

= TF T
l′l
g→qq̄

∣∣
Ref. [27]

, 1T ll′
q→g∆q

∣∣
here

= CF T
l′l
q→g∆q

∣∣
Ref. [27]

. (7.93)

The new assignment of indices is such that l refers to the amplitude and l′ to its complex

conjugate. We must note a mistake in equation (5.62) of [27], where the correct order of

indices in the kernels T and U is l′l and not ll′.
We only give the kernels for the splitting of an unpolarised parton a0 here. In the

matching equation (5.37) for DTMDs on TMDs, one can also have transverse quark or
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linear gluon polarisation for a0, but this possibility is absent if one matches on collinear

PDFs in an unpolarised proton.

We start with the kernels for DPDs in the colour singlet channel. For a gluon splitting

into a quark and an antiquark, one has

1T ll′
g→qq̄(u) = − 1T ll′

g→∆q∆q̄(u) = TF (u2 + ū2) δll
′

,

1T ll′

g→∆q q̄(u) = − 1T ll′

g→q∆q̄(u) = −iTF (u− ū) ǫll
′

,
[
1T ll′

g→δqδq̄(u)
]jj′

= −2TF uū δ
ll′δjj

′

, (7.94)

where ū = 1− u. For a quark splitting into a gluon and a quark, the kernels are given by

1T ll′
q→gq(u) = CF

1 + ū2

u
δll

′

, 1T ll′
q→∆gq(u) = iCF

1 + ū2

u
ǫll

′

,

1T ll′
q→∆g∆q(u) = CF (1 + ū) δll

′

, 1T ll′
q→g∆q(u) = iCF (1 + ū) ǫll

′

,

[
1T ll′

q→δgq(u)
]jj′

= 2CF
ū

u
τ ll

′,jj′ (7.95)

with τ ll
′,jj′ defined in (3.8). The kernels for an antiquark splitting into a gluon and an-

tiquark have the same form due to charge conjugation invariance. Finally, for a gluon

splitting into two gluons one has

1T ll′
g→gg(u) = 2CA

(u
ū
+
ū

u
+ uū

)
δll

′

,

1T ll′

g→∆g∆g(u) = 2CA(2− uū) δll
′

, 1T ll′

g→g∆g(u) = 2iCA

(
2ū+

u

ū

)
ǫll

′

,

[
1T ll′

g→δgδg(u)
]jj′,kk′

= CAuū δ
ll′τ jj

′,kk′ ,
[
1T ll′

g→gδg(u)
]kk′

= 2CA
u

ū
τ ll

′,kk′ . (7.96)

All other kernels that cannot be obtained from those above by interchanging a1 and a2 or

by changing quarks into antiquarks in (7.95) are zero. In appendix H we give the matching

equations that follow from these results for the scalar and pseudoscalar DTMDs or DPDFs

defined in appendix F.

Each of the above kernels corresponds to exactly one Feynman graph, so that the

results for other colour channels can be obtained by changing the overall factor as

RTa0→a1a2 = ca0→a1a2(R)
1Ta0→a1a2 (7.97)

with

cq→gq(A) = − N√
2
, cq→gq(S) =

√
N2 − 4

2
, cg→qq̄(8) = − 1√

N2 − 1
,

cg→gg(A) = −
√
N2 − 1

2
, cg→gg(S) = −cg→gg(A) ,

cg→gg(D) = 0 , cg→gg(27) = −
√
3 . (7.98)

For the colour representations D and 27, we have given the results for N = 3. Notice that

in all cases except cg→qq̄(8) and cg→gg(D), the colour non-singlet channel is enhanced over

the singlet one for SU(3).
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8 Summary

We have performed a systematic analysis of double parton scattering for measured trans-

verse momenta, extending the framework for factorisation and resummation formulated

in [65] for single parton scattering with colourless particles in the final state. A major

challenge is the description of soft gluon exchange and the associated rapidity evolution,

which has a much richer colour structure in DPS than in SPS. We handle this structure

by projecting suitable pairs of partons onto definite colour representations.

Based on perturbative results up to two loops [74], we have proposed equation (3.26)

for the rapidity dependence of the soft factor in DPS, which is a Collins-Soper equation for

matrices in colour space. Assuming the validity of that equation, we have given a concise

definition of DPDs in (3.29) and derived their general properties. Applied to SPS, our

construction provides an alternative form for the square root factor in the definition of

single-parton TMDs by Collins [65]. Transverse momentum dependent DPDs (DTMDs)

follow the evolution equations (5.7) and (5.11), which can be solved in closed analytic form

as given in (5.17). The rapidity evolution of DTMDs mixes different colour channels, and

its solution involves a matrix exponential in the space of colour representations. One-loop

expressions of the evolution kernels and anomalous dimensions are given in section 7.2 for

all parton combinations and colour channels.

In collinear factorisation, i.e. when the transverse momenta of the final-state particles

are integrated over, the soft factor for DPS simplifies considerably: it becomes diagonal

in colour representation space and independent of the parton type. This can be shown

using only colour algebra and the fact that pairs of Wilson lines associated with initial

and final state partons cancel as WW † = 1. Important consequences of this result are the

simple structure (4.53) of the cross section for DPS processes producing coloured particles,

as well as the fact that evolution in rapidity does not mix different colour channels for

collinear DPDs (called DPDFs here). The corresponding evolution equations can be found

in (5.23) and (5.24), and an analytic expression that makes the rapidity dependence explicit

is provided in (5.27). At one-loop accuracy, the evolution kernels in colour non-singlet

channels are related in a simple way to the usual DGLAP kernels, as specified in (7.91).

If the size qT of the measured transverse momenta in a DPS process is large compared

with nonperturbative scales Λ (but still small compared with the scale Q of the hard-

scattering processes), one can use TMD factorisation with DTMDs expressed in terms of

perturbative kernels and simpler hadronic matrix elements. There are two regimes for

this short-distance matching, depending on the relative size of the transverse distance y

between the two partons and the distances z1 and z2 that are conjugate to the measured

transverse momenta in the cross section formula.

In the first regime, when y is much larger than z1 and z2, the matching is very similar

to the familiar matching of single parton TMDs onto single parton PDFs. The resulting

expressions are given in (6.22) and (6.24). Apart from a suppression factor for colour

non-singlet DPDFs, which is controlled by their rapidity evolution kernel RJ(y), we obtain

a product of Sudakov exponentials and of matching kernels (one for each parton) with

DPDFs. At one-loop order, the matching kernels RC(x,z) are due to ladder-type graphs
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and coincide with the ones for single-parton TMDs in the colour singlet channel R = 1.

Most of these kernels have been given in the literature before, but we have recomputed

them in section 7.3 and extended the calculation to provide results for all combinations

of parton type, polarisation and colour needed for DPS. We use the HVBM scheme for

defining γ5 and the ǫ tensor in dimensional regularisation, but point out a way to avoid

these quantities before taking the number of dimensions to D = 4.

In the second regime, when y is of the same size as z1 and z2, one can match the

DTMDs onto collinear distributions of twist two (i.e. usual PDFs), twist three or twist

four. We neglect collinear twist-three distributions since in an unpolarised proton they are

chiral-odd and hence expected to play a minor role in the regime of small parton momentum

fractions typical of DPS processes. The matching onto twist-four distributions is presently

only known at lowest order, where it is trivial and given in (6.39). The contribution that

matches onto ordinary PDFs corresponds to the splitting of one parton into two. At leading

order it has the form (6.38) with splitting kernels given in section 7.4. An important point

is that in the DPS cross section, terms matching onto collinear distributions of different

twist come with different powers of Λ/qT and of αs as specified in (6.40).

To combine the expressions for matching at large or small y, we adapt the subtraction

formalism of [65]. In this formalism, double counting is avoided by a subtraction term in the

cross section. This term can be easily obtained from the small-y or the large-y expression

without further computation, but it requires some care when choosing scales as discussed

in section 6.4. The same subtraction formalism is used to combine the cross sections for

DPS, SPS and their interference as specified in sections 5.3 and 6.5. In the regime where

Λ ≪ qT ≪ Q one needs a limited set of nonperturbative quantities for computing the

cross section: the DPDFs RF (xi,y) and their rapidity evolution kernel RJ(y), collinear

twist-four distributions (which arise from DPDs in the short-distance limit) and ordinary

single-parton PDFs. The colour octet kernel 8J(y) turns out to be equal to the Collins-

Soper kernel for single-gluon TMDs, providing a surprising connection between two rather

different areas of factorisation.

In the multi-scale regime Λ ≪ qT ≪ Q we thus have a significantly increased pre-

dictive power of the theory. Rather than a huge set of transverse-momentum dependent

distributions, the TMD cross section involves the same nonperturbative functions as the

cross section integrated over qT . All other ingredients in the factorisation formula are

of perturbative nature. In most (although not all) cases they are known at least to the

first nontrivial order in αs. The results presented in this work provide a starting point

for phenomenological investigations, for instance of electroweak diboson production with

measured transverse boson momenta. An important task will be to assess which types

of correlations and which regions of y are important in a given process and kinematical

setting.

Before concluding, we wish to discuss the question of scheme dependence in the treat-

ment of large gluon rapidities. Matrix elements of Wilson lines along lightlike directions

typically have rapidity divergences, which originate from regions of gluon momenta with

infinite rapidity. In the present paper, we follow the approach of Collins [65] and use Wil-

son line directions away from the light cone to regulate these divergences. The regulated
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Wilson lines then depend on rapidity variables. In the DPD construction laid out in sec-

tion 3.3, the parameter ζ is defined in terms of a central rapidity YC that specifies the range

of gluon rapidities effectively included in the DPD. Several other schemes for regulating

rapidity divergences have been proposed and used in the literature, see [60, 78, 99, 136–138]

and [139]. Quantities that depend on a regulator variable will in general differ between

schemes. By contrast, quantities that enter a cross section formula in the same way in two

schemes must be equal. This holds in particular for TMDs, and hence also for the associ-

ated Collins-Soper kernels and matching coefficients onto PDFs. Discussions of equivalence

between specific schemes can be found in [68, 79, 140].

It follows that our results in sections 4 to 7 are independent of the rapidity regulator

scheme.16 Of course, this only holds if one defines the variables ζ and ζ̄ in a consistent

way across different schemes, see for instance appendix B here and section 6.1 in [75]. We

have checked by explicit calculation that the one-loop matching coefficients presented in

section 7.3 remain the same when one uses the δ regulator specified in [60]. By contrast,

our arguments in section 3 are specifically formulated for Wilson lines with finite rapidities

and would need to be adapted to other schemes, using an appropriate translation between

the regulator variables as given in appendix B for a particular case.

As already noted, we absorb the soft factor into the DPDs, corresponding to what is

done for SPS in several TMD factorisation approaches [60, 65]. A different route was taken

in [28], where the soft factor explicitly appears in the final DPS cross section formula. Such

an approach is often taken in the SCET literature in situations when the soft factor can

be computed in perturbation theory (e.g. for single Drell-Yan production at large qT ). In

DPS, however, one needs the soft factor at large distances y. Including it into the DPDs

therefore limits the number of nonperturbative functions required to compute the cross

section.

Given the results of the present paper and the arguments regarding Glauber gluon

exchange in [29], we consider that TMD factorisation for DPS is now established at the

same level of rigour as for single hard scattering, apart from the following issues. (i): As

already mentioned, there is no complete all-order proof of the properties we assumed for

the soft factor in section 3.2, but significant process in this direction has been made in [75].

(ii): There is no all-order proof of the nonabelian Ward identities required for factorising

soft gluon exchange between left and right moving partons into the soft matrix. (iii): As

noted below (7.31), we have omitted Wilson line self interactions in our calculation, fol-

lowing the logic discussed for SPS in chapter 13.7 of [65]. A more thorough understanding

of this issue, in particular for DPS, has not yet been achieved. Progress on any of these

three points will constitute a further step towards a rigorous treatment of double parton

scattering in QCD.

16A few equations in these sections are obviously specific to the regulator we use, such as the definition

(5.8) of ζ in terms of YC .
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Daal, Miguel G. Echevarŕıa, Jonathan Gaunt, Zhongbo Kang, Piet Mulders, Riccardo Na-

gar, Alexei Prokudin, Ted Rogers, Maximilian Stahlhofen, Iain Stewart, Frank Tackmann,

Alexey Vladimirov, Werner Vogelsang and Wouter Waalewijn. TK is supported by the Eu-

ropean Community under the “Ideas” program QWORK (contract 320389). He acknowl-

edges the hospitality of the Munich Institute for Astro- and Particle Physics (MIAPP) of

the DFG cluster of excellence “Origin and Structure of the Universe”.

All figures were made using JaxoDraw [141, 142]. For calculations we have used the

FeynCalc package [143, 144], the ColorMath package [145] and FORM [146, 147].

A Matrix manipulations for the soft factor

Referring to section 3.2, we now show that the set of properties 1a – 1c for the soft factor

is equivalent with properties 2a – 2b. As a corollary, we find that the soft matrix S(Y ) is

positive definite for arbitrary large Y if these properties hold.

Properties 2a – 2b follow from properties 1a – 1c. The matrix s(0) is nonsingular

by assumption (property 1b), so that one can define a matrix K̂ by

K̂s(0) = s(0)K . (A.1)

The differential equation (3.24) (property 1a) is thus solved by

s(Y ) = s(0)eY K = eY K̂ s(0) (A.2)

for all Y . We now define

Ŝ(Y ) = s(Y/2) s†(Y/2) . (A.3)

Using (3.25) (property 1c) for Y0 = Y/2, we see that Ŝ(Y ) approximates S(Y ) for Y ≫ 1.

For any complex vector a one has

a† Ŝ(Y )a = b†b , (A.4)

with b = s†(Y/2) a. The expression in (A.4) is obviously positive or zero, and since s†(Y/2)
is nonsingular by assumption (property 1b), it is zero only for a = 0. Therefore Ŝ(Y )

is positive definite for all Y . This implies property 2b, and it also implies that S(Y ) is

positive for all Y where it can be approximated by Ŝ(Y ).

Multiplying (A.1) with s†(0) on the right, and using that K is Hermitian, we obtain

K̂Ŝ(0) = Ŝ(0)K̂† . (A.5)

We thus finally have

Ŝ(Y ) = eY K̂/2 Ŝ(0)eY K̂†/2 = eY K̂ Ŝ(0) , (A.6)

where we used (A.2) and (A.3) in the first step and (A.5) in the second one. This implies

property 2a for Y ≫ 1, where Ŝ(Y ) approximates S(Y ).
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Properties 1a – 1c follow from properties 2a – 2b. We start by defining the matrix

Ŝ(Y ) for all Y by

Ŝ(Y ) = lim
Y0→∞

e(Y−Y0)K̂S(Y0) . (A.7)

This obviously satisfies

∂

∂Y
Ŝ(Y ) = K̂ Ŝ(Y ) (A.8)

exactly. For Y, Y0 ≫ 1 one has S(Y ) = e(Y−Y0)K̂S(Y0) by virtue of (3.26) (property 2a),

which implies Ŝ(Y ) = S(Y ) for Y ≫ 1.

Because S(Y ) is Hermitian according to (3.20), it follows from (3.26) that K̂S(Y ) =

S(Y )K̂† for Y ≫ 1. Using this, one deduces from (A.7) that Ŝ(Y ) is Hermitian as well.

With (A.8) we then have

K̂Ŝ(Y ) = Ŝ(Y )K̂† (A.9)

for all Y . The solution of (A.8) can thus be written as

Ŝ(Y ) = e(Y −Y1)K̂ Ŝ(Y1) = e(Y −Y1−Y0)K̂ Ŝ(Y1)e
Y0K̂†

(A.10)

for arbitrary Y0 and Y1.

We now recall the definition of the square root M1/2 of a positive definite matrix

M . One can write M = V †DV , where V is unitary and D is diagonal with positive

entries dii. One defines D1/2 as the diagonal matrix with entries
√
dii, and furthermore√

M = V †D1/2V . If M is real then V can be taken as an orthogonal matrix, so that M1/2

is real as well. Since Ŝ(Y1) is positive definite for some Y1 (property 2b), one can use (A.10)

with Y0 = (Y − Y1)/2 and write Ŝ(Y ) = t(Y ) t†(Y ), where t(Y ) = e(Y−Y1)K̂/2
[
Ŝ(Y1)

]
1/2 is

a nonsingular matrix. With the same argument as given below (A.3), it then follows that

Ŝ(Y ) is positive for all Y .

We can now define

s(Y ) = eY K̂
[
Ŝ(0)

]
1/2U , (A.11)

where U is a unitary matrix. s(Y ) is nonsingular (property 1b) and satisfies the decompo-

sition (3.25) (property 1c) by virtue of (A.10) with Y1 = 0. Defining

K = U † [Ŝ(0)
]−1/2K̂

[
Ŝ(0)

]
1/2U , (A.12)

one readily finds that K† = K and

s(Y ) =
[
Ŝ(0)

]
1/2U eY K , (A.13)

which implies (3.24) (property 1a). The definitions (A.11) and (A.12) are consistent with

(A.1) above. We note that a more general definition of s(Y ) and K is obtained by replacing

Ŝ(0) → Ŝ(Y1) in (A.11) to (A.13), as well as Y → (Y − Y1/2) in the exponentials there.
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Restrictions on U . In principle, the matrix U can be chosen freely as a smooth function

of z1, z2 and y, but independent of Y and of the renormalisation scale µ. We restrict

ourselves to choices such that U = 1 for y = 0. Since S(Y ) is diagonal in that case (see

section 4.4), the same then holds for Ŝ(Y ), s(Y ) and for K = K̂.

We furthermore impose a number of restrictions on U in different partonic channels.

We thus demand that

Uqq =U
∗
q̄q̄ , Uqq̄ = U∗

q̄q , Uqg = U∗
q̄g , Ugg = U∗

gg , (A.14)

which is necessary to obtain the corresponding relations (3.30) for sa1a2 from those for

Sa1a2 . As discussed in section 4.3, we also require that RR′
U , defined in analogy to (4.20),

is a real valued matrix in representation space and satisfies

RR′

Uqq(z1,z2,y) =
RR′

Uqq̄(z1,−z2,y)

= RR′

Uq̄q(−z1,z2,y) =
RR′

Uq̄q̄(−z1,−z2,y) . (A.15)

We note that the trivial choice Ua1a2 = 1 satisfies all requirements just listed and gives
RR′

Ua1a2 = δRR′ .

B Comparison with the δ regulator scheme

As emphasised in section 8, our treatment of soft and collinear factors uses Wilson line

directions away from the light cone to regulate rapidity divergences, as was done by Collins

in [65]. The regulated Wilson lines then depend on large but finite rapidities.

The two-loop calculation of the DPS soft factor in [74] was performed using the δ reg-

ulator scheme specified in [78, 99]. Given the particular relevance of this calculation for

our assumptions on the soft factor in section 3.2, we now compare the variables in that

scheme with the ones in the scheme of Collins. For simplicity we perform the comparison

for the SPS soft factor. It is easy to extend the following arguments to DPS, including the

appropriate rescaling of ζ, see (3.50) and (5.8). We note that there are two earlier variants

of the δ regulator, described in [60] and [140], and compared with the Collins scheme in

[79] and [140], respectively.

In the δ regulator scheme of [78, 99], Wilson lines are taken along lightlike paths but

modified by an exponential damping at large distances z− (z+). This damping is controlled

by a parameter δ+ (δ−), which transforms like the plus (minus) component of a vector under

longitudinal boosts. One has a correspondence of variables

YR ↔ log
µ

δ−
, YL ↔ log

δ+

µ
. (B.1)

Due to boost invariance, the soft factor S only depends on YR − YL ↔ − log(δ+δ−/µ2).
The correspondence indicated by ↔ is valid when taking derivatives, so that µ in (B.1)

could be replaced by another quantity that has dimension of mass and is boost invariant.

In our formalism, the soft factor can be split into

S(YR − YL) =
√
S(2YR − 2YC)

√
S(2YC − 2YL) , (B.2)
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and the same splitting is performed with the δ regulator, with the following correspondence

of variables:

2(YR − YC) ↔ log
µ2

(δ−)2
2(k̄−)2

ζ̄
, 2(YC − YL) ↔ log

µ2

(δ+)2
2(k+)2

ζ
. (B.3)

Here the momentum components k+ and k̄− correspond to the two partons initiating

a hard scattering, and we have normalised the rapidity parameters as ζζ̄ = (2k+k̄−)2,
in accordance to the convention (3.50) used in the present paper.17 On both sides of

(B.3), the two expressions add up to twice the argument of the original soft factor in the

relevant formalism. After the square roots of the soft factor are combined with unsubtracted

collinear matrix elements (see (3.49)), one removes the rapidity regulator in either scheme,

taking δ− → 0 and δ+ → 0 or YR → ∞ and YL → −∞. The resulting distributions depend

on the rapidity variable ζ or ζ̄.

C Combining SPS and DPS for different hard scales

In this appendix, we discuss the generalisation of the scale setting discussed in section 6.5 to

the case where the scales of the two DPS processes (µ1 and µ2) and of the SPS process (µh)

are different. In the four contributions (6.54) to the cross section, we now take

σSPS : f(x1 + x2,Z) ∼ E2(µh;µZ) f(µZ) ,

σDPS/SPS : D(xi,y+,Z) ∼ E3(µ1, µ2|µh;µZ)U(µZ) f(µZ) ,

σSPS/DPS : D(xi,y−,Z) ∼ E3(µh|µ1, µ2;µZ)U∗(µZ) f(µZ) ,

σDPS : F (xi,zi,y) ∼ E4(µ1, µ2|µ1, µ2;µZ)U(µZ)U
∗(µZ) f(µZ) + Fint(µ1, µ2) .

(C.1)

In E3 and E4, we now allow different scales for all three or four parton legs (see the

remarks at the ends of sections 3.4 and 5.3). Scale arguments in the amplitude and in its

complex conjugate are separated by a vertical bar “|”. If only a single scale is given, such

as µZ in (C.1), then all scales are taken equal. In the subtraction terms for the SPS/DPS

interference, we now take

σDPS/SPS,y+→0 : D ∼ E3(µ̄1, µ̄2|µh; µ̂h)U(µ̂h)E2(µ̂h;µZ) f(µZ)

with µ̂h = p(ν |y+|;µZ , µh) and µ̄i = p(ν |y+|;µi, µh) ,
σSPS/DPS,y−→0 : D ∼ E3(µh|µ̄1, µ̄2; µ̂h)U∗(µ̂h)E2(µ̂h;µZ) f(µZ)

with µ̂h = p(ν |y−|;µZ , µh) and µ̄i = p(ν |y−|;µi, µh) (C.2)

instead of (6.57). The profile scales µ̂ are the same as in the single-scale case of section 6.5,

whilst µ̄ interpolates between the different hard scales. The relation (6.60) between the

hard-scattering amplitudes for SPS and DPS holds for equal scales of αs in all its terms.

In all subtraction terms, the scale of αs in the DPS amplitudes Hα1β1 and Hα2β2 should be

17The normalisation of ζ and ζ̄ is not relevant for the Collins Soper equation, but it does matter for the

argument of the anomalous dimensions γF,a.
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taken as µ̄i. This is for instance relevant for gg → H, which involves the strong coupling

already at leading order. With the choices just specified, one finds that the limiting relation

(6.59) for the subtraction term still holds.

Generalising (6.61), the subtraction terms for DPS can be taken as follows:

σDPS,y−→0 : F ∼ E4(µ̄1, µ̄2|µ1, µ2; µ̂1, µ̂2|µ̂h, µ̂h)U∗(µ̂h)E3(µ̂1, µ̂2|µ̂h;µZ)U(µZ) f(µZ) ,

σDPS,y+→0 : F ∼ E4(µ1, µ2|µ̄1, µ̄2; µ̂h, µ̂h|µ̂1, µ̂2)U(µ̂h)E3(µ̂h|µ̂1, µ̂2;µZ)U∗(µZ) f(µZ) ,

σDPS,y±→0 : F ∼ E4(µ̄1, µ̄2|µ̄1, µ̄2; µ̂h)U(µ̂h) U
∗(µ̂h)E2(µ̂h;µZ) f(µZ) (C.3)

with

µ̂ = p
(
νmin{|y+|, |y−|};µZ , µh

)
and µ̄i = p

(
νmin{|y+|, |y−|};µi, µh

)
. (C.4)

For |y+| ≫ 1/ν and |y−| ≫ 1/ν one finds the limiting behaviour in (6.63), whereas all

three terms in (C.3) tend to the 1v1 contribution to DPS if one or both of the transverse

distances is of order 1/ν. Overall, we thus find that the subtraction formalism can be

adapted to work in the multi-scale case.

D Feynman rules

In this appendix we give the Feynman rules used in our calculation of the matching coef-

ficients in section 7.3. We compute cut graphs and thus need in particular the rules for

propagators and vertices to the right of the cut (corresponding to the complex conjugate

amplitude). This requires special care for the three-gluon vertex. A derivation of these rules

can for instance be found in [148] for the QCD Lagrangian (but not for eikonal lines). The

rules given here correspond to the conventions in the chapters 3 and 7 of [65]. In particular,

the coupling constant is defined such that the covariant derivative reads Dµ = ∂µ+igA
a
µ t

a.

The Feynman rules for the propagators and vertices arising from the QCD Lagrangian

in Feynman gauge can be found in figure 12, where we use the notation

V µνρ(p, q, r) = (p− q)ρgµν + (q − r)µgνρ + (r − p)νgρµ . (D.1)

The four-gluon vertex is not given here since it does not appear in our calculations.

The Feynman rules for the propagators and couplings involving eikonal lines are given

in figure 13. They arise from the expansion of Wilson line operators, given by (3.5) and

its analogue for the adjoint representation. We use there the notation of [27], where open

and closed circles at the ends of eikonal lines (in addition to arrows on and above them)

were introduced as a way to make the correspondence between graphs and mathematical

expressions unique. Let us briefly explain this.

First of all, the full circle indicates the (relative) past and the open circle the (relative)

future time direction when considering the path of the Wilson line in space-time. This

determines the sign of i0 in the eikonal propagators. Secondly, the arrow above the eikonal

line propagator corresponds to the momentum flow, just as for quark and gluon propaga-

tors, and is necessary because the eikonal propagator is linear in the momentum carried
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p
i/pβα

p2 + i0
δkj

−gµǫfabc V
µνρ(p, q, r)

p
−igµν

p2 + i0
δba

p
−i/pβα

p2 − i0
δkj

gµǫfabc V
µνρ(p, q, r)

p
igµν

p2 − i0
δba

q, ν, b

p, µ, a r, ρ, c

q, ν, b

p, µ, a r, ρ, c

α, j β, k α, j β, k

µ, a ν, b µ, a ν, b

−igµǫ (ta)kj (γ
µ)βα igµǫ (ta)kj (γ

µ)βα

µ, a µ, a

α, j β, k α, j β, k

p

µ, a ν, b

2πδ(p2) θ(p+) /pβα δkj

p

β, k α, j

2πδ(p2) θ(p+) /pβα δkj

p

α, j β, k

−2πδ(p2) θ(p+) gµν δba

Figure 12. Feynman rules for propagators and vertices in cut graphs. We use Feynman gauge and

set the quark mass to zero. V µνρ(p, q, r) is defined in (D.1). With these rules for cut quark and

antiquark lines, there is no minus sign for a closed fermion loop going across the cut.

by the line. Finally, the arrow on the eikonal line fixes the overall sign of the propagator

and determines the order of contraction of colour indices, with matrix multiplication going

against the direction of the arrow. This is the same convention as for Dirac indices on

fermion lines. For eikonal lines in the fundamental colour representation, this arrow indi-

cates the canonical order of multiplication, with expressions involving Gell-Mann matrices
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−igµǫvµ (ta)kj

−iδrs
ℓv + i0

ℓ−iδsr
ℓv − i0

igµǫvµ (ta)kj

ℓiδrs
ℓv − i0

µ, a

j k j k

µ, a

µ, a

gµǫvµfcab −gµǫvµfcab

µ, a

b cb c

ℓ

ℓ

iδsr
ℓv + i0

r rs s

r s r s

Figure 13. Feynman rules involving eikonal lines along the direction v. The colour indices r and

s refer to either the fundamental or the adjoint representation, whereas j and k are colour triplet

and a, b and c are colour octet indices.

−i
(
qn gjµ − pjnµ

)
δba i

(
qn gjµ − pjnµ

)
δab

µ, a µ, a

b b

p p

q qj j

Figure 14. Feynman rule corresponding to the operator in a gluon distribution when an eikonal line

along n is attached to the gluon. The Lorentz index j is transverse w.r.t. the lightlike direction n.

The rule for the graph without the eikonal line is obtained by setting p = q.

ta rather than their transpose (ta)
T . For adjoint eikonal lines, the order in which the indices

are arranged can be chosen freely (writing e.g. fabc or −facb).
The vertices for a gluon coupling to a fundamental or an adjoint eikonal line are

given in the third and fourth line of figure 13, respectively. In the last row, the relative

sign between the vertices to the left and the right of the cut can be understood from the

relation fcab = −i(T a)cb, where T
a acts as a generator of the colour group. The arrow

on the line is required to distinguish the role of the indices c and b, given that fcab is
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antisymmetric in its indices.18

In figure 14 we give the Feynman rule for the operator in a gluon distribution when

an eikonal line is attached to the gluon. This rule was derived in section 7.6 of [65], see

also [149, 150]. It can be obtained by expanding the operator nµF
µj(z)W (z, n) in g. The

Lorentz index j in the gluon field strength is restricted to be transverse to the lightlike

vector n. Note that this rule corresponds to the gluon operator (3.6) only if the Wilson

line is along vL = n.

E Useful integrals

In this appendix, we give a number of Fourier integrals that are useful for the calculations

in section 7.3. We start with

∫
d2−2ǫk(
k2
)α eikz =

(
z2

4π

)ǫ+α−1
παΓ(1− ǫ− α)

Γ(α)
, (E.1)

∫
d2−2ǫk(
k2
)α eikz log(k2) =

(
z2

4π

)ǫ+α−1
παΓ(1− ǫ− α)

Γ(α)

×
[
log

4

z2
+ ψ(α) + ψ(1 − α− ǫ)

]
, (E.2)

where ψ(x) = d
dz log Γ(z) is the digamma function. One can obtain (E.2) by differentiation

of (E.1) with respect to α. A useful relation for integrals involving tensors is given by

∫
d2−2ǫk(
k2
)α eikz kjkj′ = −π

α−1 Γ(3− α− ǫ)

Γ(α)

(
z2

4π

)ǫ+α−2 [
zjzj′

z2
+

δjj
′

2(ǫ+ α− 2)

]
. (E.3)

We obtain (E.3) by rewriting kjkj′ as −∂2/(∂zj∂zj′) on the l.h.s. of (E.3) and then per-

forming these derivatives on the r.h.s. of (E.1). From the above equations, it follows that

∫
d2−2ǫk

k2 eikz
[
kjj

′

k2 + f(ǫ) δjj
′

]
= −πΓ(1− ǫ)

(
z2

4π

)ǫ [
zjj

′

z2
+
f(ǫ)

ǫ
δjj

′

]
, (E.4)

where the traceless symmetric tensors kjj
′
and zjj

′
are defined by (7.34) and f(ǫ) is an

arbitrary function. The integral over kjj
′
/k4 is thus finite, whereas the one over f(ǫ)/k2

has an ultraviolet pole if f(ǫ) is finite at ǫ = 0.

F Tensor decomposition of DPDs

In this appendix, we give the tensor decompositions of DTMDs and DPDFs in terms of

scalar and pseudoscalar functions. We emphasise that these decompositions are only meant

to be complete in the 2 physical transverse dimensions. In calculations that have to be

done in 2− 2ǫ transverse dimensions, one must either avoid the decompositions below (as

we do) or extend them appropriately.

18We note that in figure 7.10 of [65] a minus sign is missing in the coupling of a gluon to an adjoint

eikonal line on the right of the cut. Otherwise, we agree with the Feynman rules given there.
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DTMDs depend on the three transverse vectors y, z1 and z2, but one can construct

the tensors necessary for their decomposition from y and

ỹj = ǫjj
′

yj′ (F.1)

together with the invariants δjj
′
and ǫjj

′
. This is because in 2 dimensions there are only

two linearly independent vectors. The choice of the above two vectors results in the most

straightforward correspondence between the DTMDs and the DPDFs, where only the vec-

tors y and ỹ can be used. The decomposition of the double quark distributions [27] reads

Fqq(xi,zi,y) = fqq(xi,zi,y) ,

F∆q∆q = f∆q∆q ,

F∆qq = g∆qq ,

Fq∆q = gq∆q ,

F j
δqq = ỹjMfδqq + yjMgδqq ,

F j
qδq = ỹjMfqδq + yjMgqδq ,

F jj′

δqδq = δjj
′

fδqδq + 2τ jj
′,yyM2f tδqδq

+ 2τ jj
′,yỹM2gsδqδq + (yjỹj′ − ỹjyj′)M2gaδqδq , (F.2)

where M is the proton mass and the tensor τ jj
′,kk′ is defined in (3.8). Note that one has

τ jj
′,kk′τkk

′,ll′ = τ jj
′,ll′. We employ a shorthand notation where vectors y or ỹ appearing

as an index of τ denote contraction, i.e. τ jj
′,yy = τ jj

′,kk′ ykyk′ etc. f and g denote scalar

and pseudo-scalar functions respectively. The pseudoscalar functions are absent in the

decomposition of DPDFs because one cannot construct a pseudoscalar from y alone. De-

compositions analogous to (F.2) hold for quark-antiquark distributions and for distributions

of two antiquarks.

For quark-gluon distributions we write

Fqg(xi,zi,y) = fqg(xi,zi,y) ,

F∆q∆g = f∆q∆g ,

F∆qg = g∆qg ,

Fq∆g = gq∆g ,

F j
δqg = ỹjMfδqg + yjMgδqg ,

F jj′

qδg = τ jj
′,yyM2fqδg + τ jj

′,yỹM2gqδg ,

F j,kk′

δqδg = −τ ỹj,kk′Mfδqδg − (ỹjτkk
′,yy + yjτkk

′,yỹ)M3f tδqδg

− τyj,kk
′

Mgδqδg − (yjτkk
′,yy − ỹjτkk

′,yỹ)M3gtδqδg . (F.3)

Analogous decompositions hold when the quark is replaced by an antiquark. Two-gluon
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distributions are decomposed as

Fgg(xi,zi,y) = fgg(xi,zi,y) ,

F∆g∆g = f∆g∆g ,

F∆gg = g∆gg ,

Fg∆g = gg∆g ,

F jj′

δgg = τ jj
′,yyM2fδgg + τ jj

′,yỹM2gδgg ,

F jj′

gδg = τ jj
′,yyM2fgδg + τ jj

′,yỹM2ggδg ,

F jj′,kk′

δgδg = τ jj
′,kk′fδgδg/2 + (τ jj

′,yỹτkk
′,yỹ − τ jj

′,yyτkk
′,yy)M4f tδgδg

+ (τ jj
′,yỹτkk

′,yy + τ jj
′,yyτkk

′,yỹ)M4gsδgδg

+ (τ jj
′,yỹτkk

′,yy − τ jj
′,yyτkk

′,yỹ)M4gaδgδg . (F.4)

We note that in the decomposition of each DTMD, the tensors multiplying different terms

are orthogonal to each other.

The decompositions for the nonzero DPDFs in terms of real-valued scalar functions

have already been given in [27, 33]. They can be directly obtained from the DTMD

decompositions above by setting all pseudo-scalar functions (i.e. all g’s) equal to zero (and

removing the arguments zi in F and f).

G Matching coefficients for (pseudo)scalar DPDs

Using the decompositions in the previous subsection and the results for the one-loop match-

ing coefficients given in section 7.3.4, we can perform the necessary tensor contractions and

obtain a full set of matching equations at the level of scalar and pseudoscalar distributions.

We emphasise that this is done in the two physical space-time dimensions, since all interme-

diate calculations requiring dimensional regularisation have been completed at this point.

For definiteness, let us recall that the tensor-valued coefficients in section 7.3.4 appear in

the matching relations as

RF jj′,kk′

δgδg (xi,zi,y; ζ) =
RCjj′,ll′

δgδg (x
′
1,z1;x1ζ/x2) ⊗

x1

RCkk′,mm′

δgδg (x′2,z2;x2 ζ/x1)

⊗
x2

RF ll′,mm′

δgδg (x′i,y; ζ) + {quark-gluon mixing terms} (G.1)

for the distribution Fδgδg and in an analogous manner in other relations involving DPDs

that carry polarisation indices. In an expansion up to O(αs), one keeps the one-loop terms

only in one of the two matching coefficients.

In the following we give the terms with matching coefficients for the parton with

momentum fraction x1; the terms for the parton with momentum fraction x2 are fully

analogous. We omit colour labels R for brevity. With the tensor structure of the kernels
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in section 7.3.4 we then obtain for two-quark distributions

fqq = Cqq ⊗
x1

fqq + Cqg ⊗
x1

fgq − y2M2ω1Cqδg ⊗
x1

fδgq ,

f∆q∆q = C∆q∆q ⊗
x1

f∆q∆q + C∆q∆g ⊗
x1

f∆g∆q ,

g∆qq = gq∆q = 0 ,

|y|Mfδqq = |y|MCδqδq ⊗
x1

fδqq ,

|y|Mgδqq = 0 ,

|y|Mfqδq = |y|MCqq ⊗
x1

fqδq + |y|MCqg ⊗
x1

fgδq + |y|Mω1Cqδg ⊗
x1

(fδgδq + y2M2f tδgδq) ,

|y|Mgqδq = −|y|Mω̃1Cqδg ⊗
x1

(fδgδq − y2M2f tδgδq) ,

fδqδq = Cδqδq ⊗
x1

fδqδq ,

y2M2f tδqδq = y2M2Cδqδq ⊗
x1

f tδqδq ,

gsδqδq = gaδqδq = 0 , (G.2)

where we have defined

ω1 = −2τyy,z1z1

y2z2
1

= − cos(2ϕ1) ,

ω̃1 = −2τyỹ,z1z1

y2z2
1

= sin(2ϕ1) (G.3)

with ỹ given in (F.1). Here ϕ1 is the angle between y and z1 in the transverse plane,

oriented such that ǫjj
′

y
j
z
j′

1 = |y| |z1| sinϕ1. For mixed quark and gluon distributions the

matching reads

fgq = Cgg ⊗
x1

fgq − y2M2ω1Cgδg ⊗
x1

fδgq + Cgq ⊗
x1

fqq ,

f∆g∆q = C∆g∆g ⊗
x1

f∆g∆q +C∆g∆q ⊗
x1

f∆q∆q ,

g∆gq = gg∆q = 0 ,

y2M2fδgq = y2M2Cδgδg ⊗
x1

fδgq − ω1Cδgg ⊗
x1

fgq − ω1Cδgq ⊗
x1

fqq ,

y2M2gδgq = −ω̃1Cδgg ⊗
x1

fgq − ω̃1Cδgq ⊗
x1

fqq ,

|y|Mfgδq = |y|MCgg ⊗
x1

fgδq + |y|Mω1Cgδg ⊗
x1

(fδgδq + y2M2f tδgδq) + |y|MCgq ⊗
x1

fqδq ,

|y|Mggδq = −|y|Mω̃1Cgδg ⊗
x1

(fδgδq − y2M2f tδgδq) ,

2|y|Mfδgδq = 2|y|MCδgδg ⊗
x1

fδgδq + |y|Mω1Cδgg ⊗
x1

fgδq + |y|Mω1Cδgq ⊗
x1

fqδq ,

2|y|3M3f tδgδq = 2|y|3M3Cδgδg ⊗
x1

f tδgδq + |y|Mω1Cδgg ⊗
x1

fgδq + |y|Mω1Cδgq ⊗
x1

fqδq ,

2|y|Mgδgδq = −|y|Mω̃1(Cδgg ⊗
x1

fgδq + Cδgq ⊗
x1

fqδq) ,
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2|y|3M3gtδgδq = −|y|Mω̃1(Cδgg ⊗
x1

fgδq + Cδgq ⊗
x1

fqδq) (G.4)

and

fqg = Cqq ⊗
x1

fqg + Cqg ⊗
x1

fgg − y2M2ω1Cqδg ⊗
x1

fδgg ,

f∆q∆g = C∆q∆q ⊗
x1

f∆q∆g + C∆q∆g ⊗
x1

f∆g∆g ,

g∆qg = gq∆g = 0 ,

|y|Mfδqg = |y|MCδqδq ⊗
x1

fδqg ,

|y|Mgδqg = 0 ,

y2M2fqδg = y2M2Cqq ⊗
x1

fqδg + y2M2Cqg ⊗
x1

fgδg − ω1Cqδg ⊗
x1

(fδgδg − y4M4f tδgδg) ,

y2M2gqδg = −ω̃1Cqδg ⊗
x1

(fδgδg + y4M4f tδgδg) ,

|y|Mfδqδg = |y|MCδqδq ⊗
x1

fδqδg ,

|y3|M3f tδqδg = |y|3M3Cδqδq ⊗
x1

f tδqδg ,

gδqδg = gtδqδg = 0 . (G.5)

For two-gluon distributions we have

fgg = Cgg ⊗
x1

fgg − y2M2ω1Cgδg ⊗
x1

fδgg + Cgq ⊗
x1

fqg ,

f∆g∆g = C∆g∆g ⊗
x1

f∆g∆g + C∆g∆q ⊗
x1

f∆q∆g ,

g∆gg = gg∆g = 0 ,

y2M2fδgg = y2M2Cδgδg ⊗
x1

fδgg − ω1Cδgg ⊗
x1

fgg − ω1Cδgq ⊗
x1

fqg ,

y2M2gδgg = −ω̃1Cδgg ⊗
x1

fgg − ω̃1Cδgq ⊗
x1

fqg ,

y2M2fgδg = y2M2Cgg ⊗
x1

fgδg − ω1Cgδg ⊗
x1

(fδgδg − y4M4f tδgδg) ,

y2M2ggδg = −ω̃1Cgδg ⊗
x1

(fδgδg + y4M4f tδgδg) ,

2fδgδg = 2Cδgδg ⊗
x1

fδgδg − y2M2ω1Cδgg ⊗
x1

fgδg − y2M2ω1Cδgq ⊗
x1

fqδg ,

2y4M4f tδgδg = 2y4M4Cδgδg ⊗
x1

f tδgδg + y2M2ω1Cδgg ⊗
x1

fgδg + y2M2ω1Cδgq ⊗
x1

fqδg ,

2y4M4gsδgδg = −y2M2ω̃1Cδgg ⊗
x1

fgδg − y2M2ω̃1Cδgq ⊗
x1

fqδg ,

gaδgδg = gsδgδg . (G.6)

Further relations are obtained by replacing quark by antiquark labels.

Let us comment on the y dependent factors in the above relations. The factors of

|yM |n are such that they can be completely absorbed into the distributions (such rescaled

distributions were denoted by h in [33]). The factors ω1 and ω̃1 appear in the matching
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between DTMDs and DPDFs carrying different polarisations; the azimuthal dependence

they provide is required by the conservation of angular momentum along the z axis. The

factor ω̃1 appears in the matching between pseudoscalar and scalar functions and ensures

that the r.h.s. of the matching equations is odd under parity.

H Splitting kernels for (pseudo)scalar DPDs

In this appendix, we give the matching of scalar and pseudoscalar DTMDs onto PDFs in

the region of small y and zi. The following results readily follow from the splitting kernels

given in section 7.4 and the tensor decompositions in appendix F. The scalar matching

kernels RTa0→a1a2 used in the following are obtained from those in section 7.4 by removing

all tensors δ, ǫ and τ , so that one has 1Tg→qq̄ = TF (u2 + ū2), 1Tg→∆q q̄ = −iTF (u − ū),
1Tg→δqδq̄ = −2TF uū,

1Tq→δgq = 2CF ū/u, etc. The only exception to this rule is that

we define 1Tg→δgδg = 2CAuū. Then the coefficients 1Ta0→a1a2 used here agree with the

coefficients Ta0→a1a2 in appendix B of [43] for all channels. The kernels for other colour

representations are obtained from (7.97).

The matching between (pseudo)scalar DTMDs and PDFs then reads

Rfspl, qq̄(xi,zi,y) =
y+y−
y2
+y2

−

αs

2π2
RTg→qq̄

fg(x1 + x2)

x1 + x2
,

Rfspl,∆q∆q̄(xi,zi,y) =
y+y−
y2
+y2

−

αs

2π2
RTg→∆q∆q̄

fg(x1 + x2)

x1 + x2
,

Rgspl,∆q q̄(xi,zi,y) =
ỹ(z1 − z2)

y2
+y2

−

αs

2π2
RTg→∆q q̄

fg(x1 + x2)

x1 + x2
,

Rgspl, q∆q̄(xi,zi,y) =
ỹ(z1 − z2)

y2
+y2

−

αs

2π2
RTg→q∆q̄

fg(x1 + x2)

x1 + x2
,

Rfspl, δqδq̄(xi,zi,y) =
y+y−
y2
+y2

−

αs

2π2
RTg→δqδq̄

fg(x1 + x2)

x1 + x2
(H.1)

for quark-antiquark DTMDs. For splitting into gluon-quark distributions we have

Rfspl, gq(xi,zi,y) =
y+y−
y2
+y2

−

αs

2π2
RTq→gq

fq(x1 + x2)

x1 + x2
,

Rfspl,∆g∆q(xi,zi,y) =
y+y−
y2
+y2

−

αs

2π2
RTq→∆g∆q

fq(x1 + x2)

x1 + x2
,

Rgspl,∆gq(xi,zi,y) =
ỹ(z1 − z2)

y2
+y2

−

αs

2π2
RTq→∆gq

fq(x1 + x2)

x1 + x2
,

Rgspl, g∆q(xi,zi,y) =
ỹ(z1 − z2)

y2
+y2

−

αs

2π2
RTq→g∆q

fq(x1 + x2)

x1 + x2
,

(y2M2)Rfspl, δgq(xi,zi,y) =
2(y+y)(y−y)− y2(y+y−)

y2
+y2

−

1

y2

αs

2π2
RTq→δgq

fq(x1 + x2)

x1 + x2
,

(y2M2)Rgspl, δgq(xi,zi,y) =
(y+y)(y−ỹ) + (y−y)(y+ỹ)

y2
+y2

−

1

y2

αs

2π2
RTq→δgq

fq(x1 + x2)

x1 + x2
(H.2)
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and for two-gluon DTMDs

Rfspl, gg(xi,zi,y) =
y+y−
y2
+y2

−

αs

2π2
RTg→gg

fg(x1 + x2)

x1 + x2
,

Rfspl,∆g∆g(xi,zi,y) =
y+y−
y2
+y2

−

αs

2π2
RTg→∆g∆g

fg(x1 + x2)

x1 + x2
,

Rgspl, g∆g(xi,zi,y) =
ỹ(z1 − z2)

y2
+y2

−

αs

2π2
RTg→g∆g

fg(x1 + x2)

x1 + x2
,

(y2M2)Rfspl, gδg(xi,zi,y) =
2(y+y)(y−y)− y2(y+y−)

y2
+y2

−

1

y2

αs

2π2
RTg→gδg

fg(x1 + x2)

x1 + x2
,

(y2M2)Rgspl, gδg(xi,zi,y) =
(y+y)(y−ỹ) + (y−y)(y+ỹ)

y2
+y2

−

1

y2

αs

2π2
RTg→gδg

fg(x1 + x2)

x1 + x2
,

Rfspl, δgδg(xi,zi,y) =
y+y−
y2
+y2

−

αs

2π2
RTg→δgδg

fg(x1 + x2)

x1 + x2
. (H.3)
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[82] P. Cvitanović, Group Theory: Birdtracks, Lie’s, and Exceptional Groups. Princeton Univ.

Press (2008), http://birdtracks.eu.

[83] A. J. Macfarlane, A. Sudbery and P. H. Weisz, On Gell-Mann’s λ-Matrices, d- and

f -Tensors, Octets, and Parametrizations of SU(3), Commun. Math. Phys. 11 (1968) 77–90.

[84] C. J. Bomhof, P. J. Mulders and F. Pijlman, The construction of gauge-links in arbitrary

hard processes, Eur. Phys. J. C 47 (2006) 147–162, [hep-ph/0601171].

[85] M. G. Echevarria, T. Kasemets, P. J. Mulders and C. Pisano, QCD evolution of

(un)polarized gluon TMDPDFs and the Higgs qT -distribution, JHEP 07 (2015) 158,

[1502.05354].

[86] X. Ji, J.-P. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering

at low transverse momentum, Phys. Rev. D 71 (2005) 034005, [hep-ph/0404183].

[87] R. Kirschner, Generalized Lipatov-Altarelli-Parisi equations and jet calculus rules,

Phys. Lett. B 84 (1979) 266–270.

– 107 –

https://doi.org/10.1103/PhysRevD.96.054011
https://arxiv.org/abs/1705.07167
https://doi.org/10.3204/PUBDB-2017-00887
https://arxiv.org/abs/1611.00178
https://arxiv.org/abs/1707.00894
https://doi.org/10.1103/PhysRevD.81.094006
https://arxiv.org/abs/1001.2977
https://doi.org/10.1016/0550-3213(82)90453-9
https://doi.org/10.1103/PhysRevD.95.034033
https://arxiv.org/abs/1611.02033
https://doi.org/10.1007/JHEP12(2016)038
https://arxiv.org/abs/1608.04920
https://arxiv.org/abs/1707.07606
https://doi.org/10.1103/PhysRevD.93.054004
https://arxiv.org/abs/1511.05590
https://doi.org/10.1103/PhysRevD.87.034018
https://arxiv.org/abs/1210.2100
https://doi.org/10.1007/BF01560045
https://doi.org/10.1007/JHEP09(2012)124
https://arxiv.org/abs/1207.0609
https://doi.org/10.1007/BF01654302
https://doi.org/10.1140/epjc/s2006-02554-2
https://arxiv.org/abs/hep-ph/0601171
https://doi.org/10.1007/JHEP07(2015)158
https://arxiv.org/abs/1502.05354
https://doi.org/10.1103/PhysRevD.71.034005
https://arxiv.org/abs/hep-ph/0404183
https://doi.org/10.1016/0370-2693(79)90300-9


[88] V. P. Shelest, A. M. Snigirev and G. M. Zinovev, Gazing into the multiparton distribution

equations in QCD, Phys. Lett. B 113 (1982) 325.

[89] A. M. Snigirev, QCD status of factorization ansatz for double parton distributions,

Phys. Rev. D 68 (2003) 114012, [hep-ph/0304172].

[90] J. R. Gaunt and W. J. Stirling, Double parton distributions incorporating perturbative QCD

evolution and momentum and quark number sum rules, JHEP 03 (2010) 005, [0910.4347].

[91] F. A. Ceccopieri, An update on the evolution of double parton distributions,

Phys. Lett. B 697 (2011) 482–487, [1011.6586].

[92] M. Mekhfi and X. Artru, Sudakov suppression of color correlations in multiparton

scattering, Phys. Rev. D 37 (1988) 2618–2622.

[93] A. Bacchetta, M. G. Echevarria, P. J. G. Mulders, M. Radici and A. Signori, Effects of

TMD evolution and partonic flavor on e+e− annihilation into hadrons,

JHEP 11 (2015) 076, [1508.00402].

[94] T. Becher, M. Neubert and D. Wilhelm, Electroweak gauge-boson production at small qT :

Infrared safety from the collinear anomaly, JHEP 02 (2012) 124, [1109.6027].

[95] U. D’Alesio, M. G. Echevarria, S. Melis and I. Scimemi, Non-perturbative QCD effects in qT
spectra of Drell-Yan and Z-boson production, JHEP 11 (2014) 098, [1407.3311].

[96] M. A. Ebert and F. J. Tackmann, Resummation of transverse momentum distributions in

distribution space, JHEP 02 (2017) 110, [1611.08610].

[97] C. A. Aidala, B. Field, L. P. Gamberg and T. C. Rogers, Limits on transverse momentum

dependent evolution from semi-inclusive deep inelastic scattering at moderate Q,

Phys. Rev. D 89 (2014) 094002, [1401.2654].

[98] J. Collins and T. Rogers, Understanding the large-distance behavior of

transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel,

Phys. Rev. D 91 (2015) 074020, [1412.3820].

[99] M. G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized transverse momentum

dependent parton distribution and fragmentation functions at next-to-next-to-leading order,

JHEP 09 (2016) 004, [1604.07869].

[100] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, Four-loop non-singlet

splitting functions in the planar limit and beyond, JHEP 10 (2017) 041, [1707.08315].

[101] A. Grozin, J. Henn and M. Stahlhofen, On the Casimir scaling violation in the cusp

anomalous dimension at small angle, JHEP 10 (2017) 052, [1708.01221].

[102] E. Laenen, G. F. Sterman and W. Vogelsang, Higher-Order QCD Corrections in Prompt

Photon Production, Phys. Rev. Lett. 84 (2000) 4296–4299, [hep-ph/0002078].

[103] A. Kulesza, G. F. Sterman and W. Vogelsang, Joint resummation in electroweak boson

production, Phys. Rev. D 66 (2002) 014011, [hep-ph/0202251].

[104] G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation

and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73–120,

[hep-ph/0508068].

[105] J. Qiu and X. Zhang, Role of the nonperturbative input in QCD resummed Drell-Yan QT

distributions, Phys. Rev. D 63 (2001) 114011, [hep-ph/0012348].

– 108 –

https://doi.org/10.1016/0370-2693(82)90049-1
https://doi.org/10.1103/PhysRevD.68.114012
https://arxiv.org/abs/hep-ph/0304172
https://doi.org/10.1007/JHEP03(2010)005
https://arxiv.org/abs/0910.4347
https://doi.org/10.1016/j.physletb.2011.02.047
https://arxiv.org/abs/1011.6586
https://doi.org/10.1103/PhysRevD.37.2618
https://doi.org/10.1007/JHEP11(2015)076
https://arxiv.org/abs/1508.00402
https://doi.org/10.1007/JHEP02(2012)124
https://arxiv.org/abs/1109.6027
https://doi.org/10.1007/JHEP11(2014)098
https://arxiv.org/abs/1407.3311
https://doi.org/10.1007/JHEP02(2017)110
https://arxiv.org/abs/1611.08610
https://doi.org/10.1103/PhysRevD.89.094002
https://arxiv.org/abs/1401.2654
https://doi.org/10.1103/PhysRevD.91.074020
https://arxiv.org/abs/1412.3820
https://doi.org/10.1007/JHEP09(2016)004
https://arxiv.org/abs/1604.07869
https://doi.org/10.1007/JHEP10(2017)041
https://arxiv.org/abs/1707.08315
https://doi.org/10.1007/JHEP10(2017)052
https://arxiv.org/abs/1708.01221
https://doi.org/10.1103/PhysRevLett.84.4296
https://arxiv.org/abs/hep-ph/0002078
https://doi.org/10.1103/PhysRevD.66.014011
https://arxiv.org/abs/hep-ph/0202251
https://doi.org/10.1016/j.nuclphysb.2005.12.022
https://arxiv.org/abs/hep-ph/0508068
https://doi.org/10.1103/PhysRevD.63.114011
https://arxiv.org/abs/hep-ph/0012348


[106] I. Scimemi and A. Vladimirov, Power corrections and renormalons in Transverse

Momentum Distributions, JHEP 03 (2017) 002, [1609.06047].

[107] I. Scimemi and A. Vladimirov, Analysis of vector boson production within TMD

factorization, 1706.01473.

[108] V. M. Braun, T. Lautenschlager, A. N. Manashov and B. Pirnay, Higher twist parton

distributions from light-cone wave functions, Phys. Rev. D 83 (2011) 094023, [1103.1269].

[109] Z. Ligeti, I. W. Stewart and F. J. Tackmann, Treating the b quark distribution function with

reliable uncertainties, Phys. Rev. D 78 (2008) 114014, [0807.1926].

[110] R. Abbate, M. Fickinger, A. H. Hoang, V. Mateu and I. W. Stewart, Thrust at N3LL with

power corrections and a precision global fit for αs(mZ), Phys. Rev. D 83 (2011) 074021,

[1006.3080].

[111] C. F. Berger, C. Marcantonini, I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, Higgs

production with a central jet veto at NNLL+NNLO, JHEP 04 (2011) 092, [1012.4480].
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