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Abstract

In this work we consider the Coach Trip with Shuttle Service Problem
(CTSSP), which is a routing problem where passengers have to be trans-
ported from bus stops to a central hub with a fleet of coaches and shuttles.
The capacity of each vehicle must not be exceeded and for each group of
passengers waiting at a bus stop there is a maximal travel time that must
not be exceeded while travelling to the hub. Shuttles can use bus stops as
transfer points to drop their passengers from which they have to be picked
up by a coach. Coaches must end their trip at the hub while shuttles can
stop at any bus stop. The goal is to minimize costs. The costs consist
of travelling costs of the used vehicles plus fixed costs for the usage of
the shuttles. We prove the computational complexity of the problem and
present a novel mathematical model for the CTSSP. This model is imple-
mented in CPLEX and the optimal solution of the “example” instance of
the VeRoLog Solver Challenge 2015 is shown.

Keywords: Coach Trip with Shuttle Service Problem, Transfers, Routing,
CTSSP, VeRoLog Solver Challenge 2015, Computational Complexity, CPLEX

1 Introduction

The Coach Trip with Shuttle Service Problem (CTSSP) is a routing problem
where, in preparation for a long distance journey, passengers have to be trans-
ported to a central hub. A huge variety of routing and transportation problems
exists in the literature. For an overview we refer to [2], [6] and [7]. The CTSSP
was presented by the EURO Working Group on Vehicle Routing and Logistics
Optimization (VeRoLog) for the VeRoLog Solver Challenge 2015 [3]. To our
knowledge, it is a new optimization problem in the field of routing and trans-
portation problems. From the existing problems, the School Bus Routing and
Scheduling Problem with Transfers [1] is the problem with the most similarities
to the CTSSP. It deals with the transportation of pupils from home to their
school. It has a set of bus stops and a set of schools. Each pupil has walking
and waiting times. The CTSSP differs with its unique hub instead of the set of
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schools as well as with its maximum travel times compared to the minimum and
maximum waiting times before school begins. The VeRoLog Solver Challenge
2015 inspired to research the problem. In particular the work of Geiger [5],
who won the VeRoLog Solver Challenge 2015 with his approach, is worthwhile
to mention. He used a heuristic approach (Variable Neighborhood Search as
well as Iterated Local Search) to solve the problem.

This paper contributes to this research domain by presenting a novel math-
ematical model for the CTSSP. We prove the computational complexity of the
problem and implement the model in CPLEX.

This paper is structured as follows. First, a description of the problem
is given in Section 2. Then, the computational complexity of the problem is
proven (Section 3) and the mathematical model is presented (Section 4). In
Section 5, the computational results of the CPLEX implementation are reported
and conclusions are formulated in Section 6.

2 Problem Description

The Coach Trip with Shuttle Service Problem is a transportation problem, where
passengers have to be transported to a central hub. The objective is minimizing
the overall transportation costs. Each vehicle k in the fleet belongs either to
the set of coaches C or the set of shuttles S. Every coach k starts at a specific
location and has a fixed capacity. A coach trip can only visit a certain number
of bus stops Sk

max
(not counting the hub) and it must always end at the hub.

Once a coach reaches the hub it stays there. Each group of passengers starts at
a bus stop bi and has a travel time limitation Di that restricts the acceptable
travel time of the group on its way to the hub. Additionally to coaches we can
also rent shuttles to transport passengers either directly to the hub or to transfer
points. A transfer point can be a bus stop with other passengers waiting or an
empty bus stop. After a shuttle has dropped off its passengers at a transfer
point the shuttle trip ends there and the passengers need to be picked up by
exactly one coach. Passenger groups cannot be split.

The coach costs consist only of variable costs per distance travelled while for
the shuttles there are additional fixed usage costs as they are booked extra. The
vehicles categories “coach” and “shuttle” differ in speed and costs per travelled
distance unit.

An instance of the Coach Trip with Shuttle Service Problem is given by a
finite set of locations V that has the following disjoint subsets:

• The set B+ of bus stops that need to be visited.

• The set B0 of empty bus stops. These do not have passengers and can,
but do not need to be visited.

• The set C of coaches.

• The set S of shuttles.
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• The location H as the terminal hub.

For each bus stop bi ∈ B+, there is a number of waiting passengers qi ∈ Z
+.

Every bus stop bi ∈ B+ ∪ B0 has a maximal travel time Di ∈ Z
+ to the hub

(which is chosen sufficiently large for the empty ones). The coaches k ∈ C start
at their given location sk with maximal capacity capk ∈ Z

+, maximal number of
stops sk

max
∈ Z

+ and cost per travelled distance unit varcostk ∈ R
+. Similarly,

for the shuttles k′ ∈ S the starting points are sk′ . Each shuttle has a capacity
capk′ ∈ Z

+, cost per travelled distance unit varcostk′ ∈ R
+ and usage cost

fixedcostk′ ∈ R
+. For every pair of locations i, j ∈ V the travel distances from

i to j for shuttles (and coaches) are given by dsi,j ∈ Z
+(dci,j ∈ Z

+) and the travel
times from i to j for shuttles (and coaches) are given by tsi,j ∈ Z

+(tci,j ∈ Z
+).

The problem is to find a cost minimal routing of the coaches and shuttles
such that the following conditions hold:

• All passengers are transported from locations in B+ to the hub H .

• All coaches must travel to the hub H and cannot exceed stop limitations.

• Shuttles can drop off their passengers at any stop, but those must be
picked up by a coach afterwards.

• The time limit of each passenger group must not be exceeded.

• Passenger groups cannot be split.

• Shuttles must not return to their start location.

• Shuttles can do at most one trip.

• The vehicle capacities must not be exceeded.

For each bus stop bi ∈ B+, there is a number of waiting passengers qi ∈ Z
+.

Every bus stop bi ∈ B+ ∪ B0 has a maximal travel time Di ∈ Z
+ to the hub

(which is chosen sufficiently large for the empty ones). The coaches k ∈ C start
at their given location sk with maximal capacity capk ∈ Z

+, maximal number of
stops sk

max
∈ Z

+ and cost per travelled distance unit varcostk ∈ R
+. Similarly,

for the shuttles k′ ∈ S the starting points are sk′ . Each shuttle has a capacity
capk′ ∈ Z

+, cost per travelled distance unit varcostk′ ∈ R
+ and usage cost

fixedcostk′ ∈ R
+. For every pair of locations i, j ∈ V the travel distances from

i to j for shuttles (and coaches) are given by dsi,j ∈ Z
+(dci,j ∈ Z

+) and the travel
times from i to j for shuttles (and coaches) are given by tsi,j ∈ Z

+(tci,j ∈ Z
+).

The objective is to find a feasible routing with minimal costs. The trans-
portation costs consists of variable costs and of fixed costs. The variable costs de-
pend on the distance travelled by the vehicles times the factor of their varcostk.
The fixed costs are usage costs per shuttle, if shuttles are used in the routing.

During the VeRoLog Solver Challenge 2015 several instances were intro-
duced. One of them is called “example” instance. To illustrate the problem,
the “example” instance of the VeRoLog Solver Challenge 2015 [3] is displayed
in Figure 1.
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B2

12

B1 5 S1 3

C1 20 C2 25

Figure 1: “Example” instance

The coaches are marked with C1, C2 and C3, the shuttles got the labels
S1, S2, . . . , S6. The distances in the figure do not correspond to the actual ones
for illustration purpose (for example, coach 1 and coach 2 start at the same
location). The labels next to the vehicle locations show their capacity while
those next to the bus stops B0, B1, . . . , B11 display the quantity of waiting
passengers at the location. The terminal hub is labelled with H .

Several optimal solutions for this problem can be found by using the math-
ematical model explained in Section 4 and presented in Section 5.

3 Computational Complexity

In this section a proof of the computational complexity of the CTSSP is given.
Therefore, we introduce the decision variant CTSSP-D of the CTSSP. Here, for
a given instance of CTSSP and a bound b ∈ Z

+ it is to decide whether a solution
with costs lower or equal than b exists or not.

Definition 3.1. (CTSSP-D) Coach Trip with Shuttle Service Problem Decision
variant :
Instance: A CTSSP instance and bound b ∈ Z

+.
Question: Does a feasible routing of the coaches and shuttles for the CTSSP
instance exist such that the total costs cannot exceed b?

For the complexity proof we use the well known Directed Hamiltonian Path
Problem with specific Start and End point (DHPSE) which is defined as follows.
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Definition 3.2. (DHPSE) Directed Hamiltonian Path with specific Start and
End point :
Instance: A graph G = (V,A), start point u ∈ V , end point v ∈ V .
Question: Does G contain a directed Hamiltonian path from u to v, i.e., a
directed path from u to v in G visiting all vertices in V exactly once?

Lemma 3.1. CTSSP-D is strongly NP-complete, even given unary notation of
the parameters.
Proof: For a given solution of CTSSP-D it is trivial to check all constraints in
polynomial time, so, CTSSP-D is in NP.

We will show that CTSSP-D is NP-complete with a reduction from DHPSE
which is a NP-complete problem [4].

So, given an instance of DHPSE, i.e., a graph G = (V,A) and two vertices
u, v ∈ V we construct an instance of CTSSP-D where all numerical parameters
are bound by a polynomial of the input size |V | = n in the following way: We
set V ′ := V \ {u, v} and for every vi ∈ V ′ we add a bus stop bi ∈ B+ with
qi = 1 and Di = 1. The set C of coach stops will contain only one stop c1
corresponding to the vertex u with capacity cap1 = n − 2, maximal number
of stops s1

max
= n − 2 and cost per travelled distance unit varcost1 = 1. The

terminal hub H corresponds to the vertex v of the original graph. The set of
empty bus stops B0 and the set of shuttle start locations S are empty and,
therefore, we set the travel times and distances of shuttles between locations
to be 0. For the coaches the travel times between locations are also 0 and we
define the distances between locations i and j with vi, vj ∈ V corresponding to
i, j, respectively, as follows:

dci,j =

{

1, if (vi, vj) ∈ A

2, else

We set b = n − 1. It is easy to see that this transformation can be done in
polynomial time.

Now, we prove that there exists a Hamiltonian u − v path in the original
graph G if and only if there is a feasible routing of the coach with costs no more
than b.

Assume that there exists a Hamiltonian u − v path P = (u, v1, . . . , vn−2, v)
in G. We will construct a feasible coach trip that solves the CTSSP-D instance.
Since P is a Hamiltonian path, it visits all vertices in V exactly once. We
can route the coach according to the ordering of the path P and visit all bus
stops. At each of the n − 2 stops in B+ the coach picks up one passenger and
satisfies the capacity constraint. In total, it stops at n−2 bus stops and the stop
limitations are fulfilled. The time constraint for each bus stop is not violated
since all travel times are set to 0 and each bus stop has a maximal travel time
limit of 1. When the coach travels from location i to location j, it follows the
ordering on the path P and, therefore, there exists an arc in G between the
vertices corresponding to i and j. Hence, the total distance travelled by the
coach is n − 1 and the total costs do not exceed b. The solution solves the
CTSSP-D instance.
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Conversely, assume that no Hamiltonian u − v path exists for the given
DHPSE instance. We show that every routing of the coach visiting all bus stops
has costs greater than b. Each coach routing visiting all bus stops has to use
at least one connection from a location i ∈ B+ to a location j ∈ B+ such that
there is no arc between the corresponding vertices in G. If the arc would exist
in G for all connections used on the routing, we could construct a Hamiltonian
u − v path in G which is a contradiction. So, the costs of each coach trip has
to be at least 2+ n− 2 = n > b and, therefore, we cannot find a solution to the
CTSSP-D instance.

This proves our claim. Since the parameters in the constructed instance are
all bounded by n, CTSSP-D is NP-complete in the strong sense, even if we use
unary notation to represent the parameters. ✷

4 Mathematical Model

In this section we formulate a mathematical model for the CTSSP. We add two
dummy locations H ′ and TP

′ to the set of locations V . When a vehicle k uses
less than the maximum number of its stops Sk

max
it is allowed to circle in these

dummy locations for the remaining stops. H ′ is a dummy hub and has a travel
time and travel distance of 0 from and to the hub H . It is not reachable from
any other location and cannot be left once entered. TP

′ is a dummy location
needed for the transfer points and has a travel time and travel distance of 0 from
all bus stops. Again, it is not reachable from any other location and cannot be
left. We use the following variables:

x
k,l
i,j ∈ {0, 1} ∀i, j ∈ V, ∀k ∈ C ∪ S, l = 1, . . . , Sk

max
(1)

yk ∈ {0, 1} ∀k ∈ S (2)

qk ∈ Z
+ ∀k ∈ C ∪ S (3)

tkl ∈ Z
+ ∀k ∈ C ∪ S, l = 1, . . . , Sk

max
(4)

z
k,k′

i,l ∈ {0, 1} ∀i ∈ B+ ∪B0, ∀k ∈ C, ∀k′ ∈ S, l = 1, . . . , Sk
max

(5)

q̃k,k
′

∈ Z
+ ∀k ∈ C, ∀k′ ∈ S (6)

t̃k
′,k ∈ Z

+ ∀k′ ∈ S, ∀k ∈ C (7)

The variable x
k,l
i,j in (1) is set to 1 if and only if vehicle k enters location j as

the l-th stop on its trip after visiting location i before. The variable yk in (2)
indicates for each shuttle k if it is used in the routing or not. Variable qk in (3)
is set to the number of passengers transported by vehicle k. Each variable tkl in
(4) is set to the time needed from the l-th stop on the trip of vehicle k to the

last stop. The variable z
k,k′

i,l in (5) is equal to 1 if and only if there is a transfer
point at location i for shuttle k′ and coach k and the coach enters location i at
the l-th position of its trip. Here, the position l of the transfer point location
on the coach trip is needed for the t̃ variables in (7). Variable q̃k,k

′

in (6) is set
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to 0 if shuttle k′ and coach k do not share a transfer point and are set to the
number of passengers transported by shuttle k′ if they do. Finally, variable t̃k

′,k

in (7) is set to 0 if shuttle k′ and coach k do not share a transfer point and are
set to the travel time from the transfer point to the hub of the coach if they do.

Hence, we use the following objective function to minimize the sum of vari-
able costs and the sum of fixed costs for renting shuttles:

min
∑

k∈C∪S

varcostk ·





Sk

max
∑

l=1

∑

i,j∈V

x
k,l
i,j · d

k
i,j



+
∑

k∈S

yk · fixedcostk (8)

The set B = B+ ∪B0 ∪ {H,H ′,TP ′} contains all bus stops, the hub H and
the dummy locations H ′ and TP

′. We begin by introducing the constraints that
ensure that trips start at the right locations and that they are connected. For
every vehicle k ∈ C ∪ S, we denote with sk the start location of vehicle k.

∑

j∈B

x
k,1
sk,j

= 1 ∀k ∈ C (9)

∑

j∈V

x
k,1
i,j = 0 ∀k ∈ S, ∀i ∈ V \ {sk} (10)

∑

j∈V \B

x
k,l
i,j = 0 ∀k ∈ C ∪ S, l = 1, . . . , Sk

max
, ∀i ∈ V (11)

∑

i,j∈V

x
k,1
i,j ≤ yk ∀k ∈ S (12)

∑

i,j∈V

x
k,l
i,j ≤ 1 ∀k ∈ C ∪ S, l = 1, . . . , Sk

max
(13)

∑

j∈V

x
k,l
j,i =

∑

j∈V

x
k,l+1

i,j ∀k ∈ C ∪ S, l = 1, . . . , Sk
max

− 1, ∀i ∈ V (14)

∑

k∈C∪S

Sk

max
∑

l=1

∑

j∈V

j 6=H′,TP
′

x
k,l
i,j ≤ 1 ∀i ∈ V (15)

Constraints (9) ensure that all coaches start from their start location and
visit a bus stop location at their first stop. By (10) it is prohibited that a
shuttle can use any other location than its start location for a start. With the
constraints in (11) no vehicle can visit the start locations of other vehicles (these
are the locations in V \B). Constraints (12) force the variable yk to 1 if shuttle
k is used. With constraints (13) it is ensured that each vehicle k can only go
at most from one location to one other location at each position l of its trip.
Constraints (14) ensure that the trip of each vehicle is connected. If the vehicle
enters a location i at the l-th position of its trip, it has to leave this location i

when going to the (l + 1)-th position of its trip. In (15), for every location i at
most one vehicle can leave this location to another location j except for the two
dummy locations. Note that it is possible for multiple vehicles to leave location
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i if they visit the transfer point dummy location TP
′ or the dummy hub H ′ as

next location. This is necessary since in case of a transfer point between a coach
and a shuttle both have to visit the same location but only the coach carries
on its trip to the hub H whereas the shuttle goes to the transfer point dummy
location TP

′ afterwards. Also, in case of the hub H there may be more than
one vehicle leaving it to the dummy hub location.

Next, we present some constraints necessary for the dummy locations.

∑

k∈C∪S

Sk

max
∑

l=1

∑

j∈V \{H′}

x
k,l
H,j = 0 (16)

∑

k∈C∪S

Sk

max
∑

l=1

∑

j∈V \{H,H′}

x
k,l
j,H′ = 0 (17)

∑

k∈C∪S

Sk

max
∑

l=1

∑

j∈V \{H′}

x
k,l
H′,j = 0 (18)

∑

k∈S

Sk

max
∑

l=1

∑

j∈V \{TP ′}

x
k,l
TP ′,j = 0 (19)

By constraint (16) no vehicle can travel from the hub location H to any other
location except the dummy hub location H ′. It is prohibited by constraint (17)
that the dummy hub location H ′ can be reached by any other location than
the actual hub location H or the dummy hub location itself. Constraint (18)
ensures that from the dummy hub location H ′ vehicles can only travel to the
dummy hub location, i.e., they are forced to cycle there once they reached it.
Similarly, constraint (19) forces shuttles that enter the transfer point dummy
location to cycle there and prohibits them to travel to another location.

The following constraints ensure that each trip ends in a feasible way and
all bus stops with customers are visited by a vehicle.

Sk

max
∑

l=1

∑

i∈V

x
k,l
i,H = 1 ∀k ∈ C (20)

Sk

max
∑

l=1

∑

i∈V

x
k,l
i,H +

∑

k′∈C

Sk
′

max
∑

l′=1

∑

j∈B+∪B0

z
k′,k
j,l′ = yk ∀k ∈ S (21)

∑

k∈C∪S

Sk

max
∑

l=1

∑

j∈V \{TP ′}

x
k,l
i,j = 1 ∀i ∈ B+ (22)

Constraints (20) force every coach k to visit the hub location H on its trip.
Note that it does not need to be the last stop of its trip since the coach can
travel to the dummy hub location H ′ afterwards. If a shuttle k is used, the right
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hand side of (21) is equal to 1 and forces the left hand side of the equation to
be 1 as well: Either the shuttle travels to the hub at some point of its trip (left
hand sum) or the shuttle shares a transfer point with some coach k′ (right hand
sum). By constraints (22) it is ensured that for each bus stop i with customers
waiting there is exactly one vehicle leaving the bus stop to another location
differing from the transfer point dummy location.

Next, the constraints necessary for the transfer point variable z are intro-
duced.

∑

j∈V

x
k,l
j,i ≥ z

k,k′

i,l

∀k∈C,∀k′
∈S,

∀i∈B+∪B0,l=1,...,Sk

max

(23)

Sk
′

max∑

l′=1

∑

j∈V

x
k′,l′

j,i ≥ z
k,k′

i,l

∀k∈C,∀k′
∈S,

∀i∈B+∪B0,l=1,...,Sk

max

(24)

∑

j∈V

x
k,l
j,i +

Sk
′

max∑

l′=1

∑

j′∈V

x
k′,l′

j′,i
− 1 ≤ z

k,k′

i,l

∀k∈C,∀k′
∈S,

∀i∈B+∪B0,l=1,...,Sk

max

(25)

Constraints (23) force zk,k
′

i,l to be equal to 0 if coach k does not enter location i

as its l-th stop of the trip. Similarly, if shuttle k′ does not enter location i at any

position of its trip, constraints (24) force z
k,k′

i,l to be equal to 0. In constraints
(25), if both shuttle k′ and coach k visit location i, then it is used as a transfer

point and the corresponding z
k,k′

i,l variable is forced to be equal to 1. The
constraints are always fulfilled if only one of the vehicles enters the location.

To ensure the maximum travel time for each customer, the following con-
straints are introduced (where T is an integer number greater than the maximum
travel time for any vehicle).

Sk

max
∑

l′=l+1

∑

i,j∈B

x
k,l
i,j · t

c
i,j = tkl ∀k ∈ C, l = 1, . . . , Sk

max
(26)

Sk

max
∑

l′=l+1

∑

i,j∈B

x
k,l
i,j · t

s
i,j = tkl ∀k ∈ S, l = 1, . . . , Sk

max
(27)

tkl ≤
∑

i∈V

∑

j∈B+∪B0

x
k,l
i,j ·Dj ∀k ∈ C ∪ S, l = 1, . . . , Sk

max
(28)

t̃k
′,k ≤ T ·

Sk

max
∑

l=1

∑

i∈B+∪B0

z
k,k′

i,l ∀k ∈ C, ∀k′ ∈ S (29)

t̃k
′,k − tkl ≤ (1−

∑

i∈B+∪B0

z
k,k′

i,l ) · T ∀k ∈ C, ∀k′ ∈ S, l = 1, . . . , Sk
max

(30)
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t̃k
′,k − tkl ≥ (1−

∑

i∈B+∪B0

z
k,k′

i,l ) · (−T ) ∀k ∈ C, ∀k′ ∈ S, l = 1, . . . , Sk
max

(31)

tk
′

l +
∑

k∈C

t̃k
′,k ≤

∑

i∈V

∑

j∈B+∪B0

x
k′,l
i,j ·Dj ∀k′ ∈ S, l = 1, . . . , Sk′

max
(32)

Constraints (26) set the value of tkl to the travel time needed from the l-th
stop on the trip of coach k to the last stop. Similarly, in (27), the travel times
for shuttles from their l-th stop to the last stop are set. Constraints (28) ensure
that for each bus stop j with customers waiting on the trip of vehicle k the
maximum travel time Dj is not exceeded. Constraints (29) – (31) are used to
set the t̃ variables to the correct value. In (29), the t̃ variable is forced to be
0 if there is no transfer point for coach k and shuttle k′. If there is a transfer
point at location i at the l-th stop of coach k and shuttle k′, the Inequalities
(30) and (31) enforce t̃k

′,k = tkl , i.e., the t̃ variable is set to the travel time from
the transfer point to the last stop of the coach. Finally, in (32) it is ensured
that, if a transfer point is used, the combined travel time of shuttle and coach
does not exceed the maximum travel time for each bus stop j with customers
waiting on the trip of a shuttle. If no transfer points are used on the shuttle
trip, all t̃ variables are 0 and the constraint is the same as in (28).

The following terms ensure that vehicle capacities are not violated.

Sk

max
∑

l=1

∑

i∈B+

∑

j∈V \{TP ′}

x
k,l
i,j · qi = qk ∀k ∈ C ∪ S (33)

qk ≤ capk ∀k ∈ C ∪ S (34)

q̃k,k
′

≤ capk′ ·

Sk

max
∑

l=1

∑

i∈B+∪B0

z
k,k′

i,l ∀k ∈ C, ∀k′ ∈ S (35)

q̃k,k
′

− qk
′

≤ (1 −

Sk

max
∑

l=1

∑

i∈B+∪B0

z
k,k′

i,l ) · capk′ ∀k ∈ C, ∀k′ ∈ S (36)

q̃k,k
′

− qk
′

≥ (1 −

Sk

max
∑

l=1

∑

i∈B+∪B0

z
k,k′

i,l ) · (−capk′) ∀k ∈ C, ∀k′ ∈ S (37)

q̃k,k
′

≤ qk
′

∀k ∈ C, ∀k′ ∈ S (38)

qk +
∑

k′∈S

q̃k,k
′

≤ capk ∀k ∈ C (39)

In Constraints (33), the variable qk is set to the amount of passengers waiting
at locations that are visited by vehicle k. Note, that only the connections that do
not end in the dummy transfer point location TP

′ are counted. This is sufficient
since for shuttles that use a bus stop as a transfer point the passengers there
do not need to fit in the shuttle because they are picked up by the coach. By
(34) it is ensured that the capacity of the vehicles is not exceeded. Constraints
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(35) – (38) set the value of q̃ correctly. If coach k and shuttle k′ do not share
a transfer point, by (35) the variable q̃k,k

′

is forced to be 0. However, if they
use a transfer point (i.e., the corresponding z variable is 1 for some location i

and some position l), we enforce q̃k,k
′

= qk
′

by (36) and (37), i.e., the q̃ variable
is set to the amount of passengers on the shuttle. Constraints (38) ensure that
the value of the variable q̃k,k

′

can not exceed the value of the variable qk
′

for
a shuttle k′. With constraints (39) for all coaches also the total number of
passengers must not violate the capacity of the coach (if no transfer point is
used the constraint is the same as in (34)).

In total, there are |V |2 · (|C| + |S|) · Smax
max + |S| + |V |2 · |C| · |S| · Smax

max

binary decision variables and |C|+ |S|+ (|C|+ |S|) · Smax
max + 2 · |C| · |S| integer

valued decision variables (where Smax
max is the maximum number of stops over all

vehicles). The number of constraints is bounded by (|C|+ |S|)2 · |V | · Smax
max .

5 Computational Experiments

The implementation of the model was made with CPLEX 12.6.3. Three datasets
were presented during the competition phase of the VeRoLog Solver Challenge
2015. The first instance was the “example” instance with 3 coaches, 6 shut-
tles and 13 bus stops (including the hub). Another two instances called “pub-
lic_preselection_1” and “public_preselection_2” had 6 coaches, 333 shuttles
and 144 bus stops each. They differ in terms of the properties of the bus stops.
During the competition phase three additional datasets were released. A de-
tailed overview of the properties of all datasets is given by Geiger [5].

H

B114

B0 0

B10

5

B8 3

B6 10

S6 8

S5 8

S4 4

S3 4

B3 10

C3 30

B9 3

S2 3

B7 1

B4 2B5 8

B2

12

B1 5 S1 3

C1 20 C2 25

Figure 2: First optimal solution for the “example” instance
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S3 4

B3 10

C3 30

B9 3

S2 3

B7 1

B4 2B5 8

B2

12

B1 5 S1 3

C1 20 C2 25

Figure 3: Second optimal solution for the “example” instance

The “example” instance was solved within a few seconds. For the other
two benchmark instances, CPLEX was not able to find a solution at all due
to memory limitations. The optimal solution of the “example” instance has an
objective value 417. According to CPLEX, at least two optimal solutions with
the value of 417 exist.

They are displayed in Figure 2 and Figure 3 and are quite similar. They only
differ in the routing of coach C1 and coach C3, as well as in the routing of shuttle
S1. The route of C1 in the first solution is B8 → B10 → H , while the route of C1

in solution 2 is B3 → B8 → H . While coach C3 visits B3 → B6 → B11 → H in
solution 1, it approaches B6 → B10 → B11 → H in solution 2. The shuttle once
takes the direct way from B7 to the hub (solution 1) and once the empty bus
stop B0 in between before going to the hub. Both trips of shuttle S1 have equal
length. This example shows that the triangle inequalities do not necessarily
hold for the data sets. Obviously, at least two more optimal solutions exist –
shuttle 1 could be routed over bus stop B0 in the first optimal solution and vice
versa in the second one.

6 Conclusions

We presented a mathematical model for this novel vehicle routing problem and
analyzed its computational complexity. For some preliminary computational
experiments this mathematical formulation was implemented in CPLEX. For
rather small instances CPLEX was able to find optimal solutions quickly. How-
ever, for a growing number of bus stops and vehicles the solver was not able to
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find optimal solutions due to memory limitations.
An alternative way to find good and feasible solutions for this problem is

the application of heuristics (see the approach of Geiger [5]). Another possible
approach is the use of a matheuristic. Based on a feasible start solution suitable
subproblems can be identified and solved to optimality using the presented
mathematical model. This should be investigated in future research.
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