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Abstract

Decision making in operational planning is increasingly affected by conflicting

interests of different stakeholders such as subcontractors, customers, or strategic

partners. Addressing this, automated negotiation is a well-suited mechanism to

mediate between stakeholders and search for jointly beneficial agreements. How-

ever, the outcome of a negotiation is strongly dependent on the applied negotiation

protocol defining the rules of encounter. Although protocol design is well discussed

in literature, the question on which protocol should be selected for a given scenario

is little regarded so far. Since negotiation problems and protocols are very diverse,

the protocol choice itself is a challenging task. In this study, we propose a deci-

sion support system for negotiation protocol selection (DSS-NPS) that is based on

a machine learning approach – an artificial neural network (ANN). Besides pre-

senting and discussing the system, we, furthermore, evaluate the design artifact in

elaborate computational experiments that take place in an intercompany machine

scheduling environment. Our findings indicate that the proposed decision support

system is able to improve the outcome of negotiations by finding adequate protocols

dynamically on the basis of the underlying negotiation problem characteristics.

Keywords: Automated negotiation, DSS, Machine learning, Predictive analytics.
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1 Introduction

Negotiation is an important coordination mechanism for problems that involve

several stakeholders. The interests of these stakeholders are commonly conflicting,

e.g., in resource allocation scenarios or price negotiations (distributive negotia-

tion). Nevertheless, there exist also win-win scenarios – especially in the case

of complex contracts. Complex contracts are characterized by multiple contract

items that are interdependent. This leads to an enormous contract space with a

multitude of local optima which makes the exploration of this space hard (Fink

2006; Klein et al. 2003). As conceding strategies become infeasible because of

the complexity, the negotiation parties seek for Pareto gains jointly, e.g., in inter-

company production scheduling (integrative negotiation) (Benyoucef et al. 2001;

Kersten 2001; Raiffa 1982; Vetschera 2013). Since there are reoccurring opera-

tional coordination problems of both types, the automation of negotiations has

been a much-noticed research field (Chalamish and Kraus 2012; Jennings et al.

2001; Kraus 2001). Computerized negotiations are a highly interdisciplinary do-

main. On the one hand, economists, lawyers, and social scientists are concerned

with negotiation procedures, i.e., strategies, tactics, and techniques. On the other

hand, computer scientists and information systems researchers deal with negoti-

ation media systems; at this, the central objects of research from an information

systems perspective are decision support systems as well as group and negotiation

support systems (Bichler et al. 2003).

In automated negotiations, decisions are delegated to software agents that de-

cide on the behalf of their principals. The absence of human negotiators makes

the negotiation protocol, which defines the rules of encounter (see Rosenschein

and Zlotkin 1994), a very important element of the negotiation system. Whereas

protocol design has been gaining a lot of attention, the choice of protocols is lit-

tle regarded so far (Marsa-Maestre et al. 2013). For the decision which protocol

should be used, the decision makers are interested in the performance an existing

protocol would yield. For this purpose, predictive analytics methods are appropri-

ate as they are focused on predicting the outcomes for new out-of-sample instances

such as a new negotiation scenario (Shmueli and Koppius 2011). In contrast to

that, explanatory models serve the verification of causal hypotheses which can sup-
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port the design of new protocols. Prediction is an important scientific challenge;

nevertheless, although many information systems papers state their goals serve a

prediction purpose, most works draw on explanatory methods instead of predic-

tive analytics ones such as support vector machines or artificial neural networks

(Shmueli and Koppius 2011).

The purpose of this paper is to develop a decision support system for nego-

tiation protocol selection (DSS-NPS). Consequently, the study follows a design

science approach which is a central research area of information systems research

(see Hevner et al. 2004; March and Smith 1995). We contribute by showing the

relevance of the protocol selection problem. As a further contribution, we propose

a DSS-NPS based on machine learning. Specifically, we use an artificial neural

network for making predictions on the performance of a negotiation protocol for a

given scenario. Finally, the system’s efficacy is evaluated by computational exper-

iments. Concluding, the study tries to answer the research question if an artificial

neural network can improve the welfare generated by negotiations by supporting

the protocol choice.

The remainder of this study is structured as follows: After this introduction

(section 1), we give an introduction into automated negotiation research as well

as protocol design and selection (section 2), before, in section 3, an overview on

related work is presented. In section 4, we describe our proposed decision support

concept and its technical design. Afterwards, the setup for the computational ex-

periments is introduced and the results of those experiments are presented (section

5). Finally, a discussion on the study’s findings and assumptions (section 6) as

well as a summary and outlook (section 7) conclude the paper.

2 Theoretical Background

In this section, we give an introduction into the general field of research. Firstly,

the issue of automated negotiation and its relevance is presented. Secondly, we

discuss the impact of negotiation protocol design and the corresponding protocol

choice problem.
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2.1 (Automated) Negotiation

A negotiation is a dialogue between two or more parties (set of agents J =

{1, . . . , j, . . . , J} with J ≥ 2) in which they intend to find an agreement on a

single or several negotiation issues (I = {1, . . . , i, . . . , I}). The negotiation issues

are governed by a contract c ∈ C (Lang and Klein 2013). During a negotiation, the

negotiators either try to find a consensus by making conceding offers (distributive)

or they look for joint gains that are (weakly) Pareto dominant for all of them (in-

tegrative) (Benyoucef et al. 2001; Kersten 2001; Raiffa 1982; Vetschera 2013). The

latter shows the similarities between optimisation and negotiation problems: in an

optimisation problem, the objective is to find a solution x ∈ X that optimises a

given function f : X → R, whilst, in a negotiation problem, the stakeholders search

for a contract c that somehow optimises their individual objectives Oj : C → R
(Jennings et al. 2001; Lang and Klein 2013).

The increasing connectedness between organizational entities leads to an in-

creased need for making arrangements between (semi-)autonomous parties on an

operational level. For instance, in many modern production processes, a company

is not able anymore to plan the production solely on its own anymore: it also has

to consider, inter alia, the availability, demand, response time, or quality require-

ments of the subcontractors or customers, respectively (Dudek and Stadtler 2005;

Stadtler 2007; Thomas and Griffin 1996). Thus, those “second parties” should

be – or even have to be – integrated in the planning process. Nevertheless, every

stakeholder is concerned with his or her private goals and objectives. Therefore,

he or she might not want to reveal private information due to privacy reasons or

because it could be used against him or her (Fujita et al. 2010a; Hurwicz 1973;

Lang and Fink 2013; Sandholm 1999). Even worse, a negotiator could lie strategi-

cally by making unnecessary false announcements (cheap talk) (Farrell and Rabin

1996) or misstating his or her preferences (Gibbard 1973; Myerson 1979, 1983; Sat-

terthwaite 1975). Hence, central planning is neither desirable nor feasible because,

on the one hand, information is withheld and, on the other hand, revealed infor-

mation might be false and, hence, poisoned. For multi-party problems, one not

only has to take multiple objectives into account (given by the private interests),

but also one has to cope with strategic considerations of the agents (Binmore and
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Vulkan 1999; Faratin 2000). Regarding this, a negotiation can mediate between

individual interests as a coordination mechanism which ordinarily does not require

centralized information.

Typically, operational planning problems are frequently reoccurring and can

suffer from a high complexity; that is why automated negotiation has been gaining

a lot of interest (Lang and Fink 2012; Yang et al. 2009). In automated negotiation

applications, the actions within the negotiation process are delegated to software

agents that decide on the behalf of their (human) principals (Bichler et al. 2010;

Braun et al. 2006). Key advantages are that software agents are capable to nego-

tiate, e.g., millions of rounds (Vulkan 1999), or that they can be duplicated such

that they can handle situations in parallel. Recent information systems research

addressed the issues of modelling and adequateness of preference representation in

negotiation agents (Lang et al. 2011, 2012); however, since operational planning

tasks are usually associated with direct, measurable costs, this issue rarely arises.

Examples for joint operational planning by negotiations are port terminal

scheduling by several ship owners (Douma et al. 2007), supply chain coordina-

tion between different stages of the value chain (Fink 2006), lot-sizing in supply

chains (Homberger 2010, 2011), multi-project scheduling with shared resources

(Homberger 2012), or distributed vehicle routing between different enterprises

(Sandholm and Lesser 1997). Consequently, negotiation is an important method

for the coordination of interests in intercompany applications – especially in the

research field of supply chain management and logistics (Fink 2006; Rief and van

Dinther 2010).

2.2 Protocol Design and Selection

Every negotiation needs rules that govern the types, states, events, and (in-

ter)actions of the negotiation (Jennings et al. 2001). Those “rules of encounter”

(Rosenschein and Zlotkin 1994) are called negotiation protocol. The major objec-

tive of a protocol is to lead to a socially beneficial outcome that is favourable for all

participating parties while fulfilling a variety of further properties such as, among

others, leading to a guaranteed success, incentive compatibility, behavioural sta-

bility, or simplicity of optimal strategies (see Jennings et al. 2001; Lang and Fink
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2014; Sandholm 1999). By applying a sophisticated protocol like, e.g., a second-

best price auction (Vickrey auction (Vickrey 1961)), agents’ malicious strategic

actions can be prevented and they are incentivized to reveal information truth-

fully which can be used to find good solutions. Nevertheless, it also has to be

considered that agents might not want to reveal certain information and should

not be forced to do so (Lang and Fink 2014; Rothkopf et al. 1990). Concluding,

protocols have to meet a lot of requirements simultaneously which is not a trivial

task.

The result of a negotiation is centrally determined by the applied protocol.

Therefore, protocol design is one of two key problems of automated negotiation

research1 (Jennings et al. 2001). The design task is generally addressed by mech-

anism design theory (also known as economic engineering). In mechanism design,

the challenge is to find a mechanism to a certain scenario that leads to a desired

social goal (Maskin 2008; Myerson 1988). For this, the scenario has to be analysed

with regard to potential strategies and equilibriums. Commonly, this is done by

means of game theory. Nevertheless, a lot of scenarios are too complex to be rep-

resented analytically in proper form and, consequently, researches have to draw on

heuristic approaches and simulations for developing successful protocols (Jennings

et al. 2001; Kraus 1997; Pasquier et al. 2010).

There has been a lot of effort in developing successful protocols for specific

scenarios. This effort results in a variety of potential protocols (Marsa-Maestre

et al. 2013). However, the research on which protocol should be selected for a

given scenario is very little regarded until now. Negotiation problems can differ

widely from each other (Büttner 2006; Ströbel and Weinhardt 2003): there are

bilateral vs. multilateral settings, single vs. multiple issues, time limited vs. un-

restricted processes, or monetary vs. non-monetary criteria – to name just a few

dimensions. Furthermore, negotiation protocol design approaches are also very

heterogeneous: for instance, there are auction-based, argumentation-based, inte-

grative, or distributive approaches (Bichler et al. 2003; Ströbel 2000; Vetschera

2013). Consequently, on the one hand, it is unlikely that one protocol can solve

all kinds of problems, and, on the other hand, the possibility space of negotiation

problems is far too large to create individually designed protocols exhaustively.

1The other one is software agent strategy design.
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Concluding, the choice of protocol as well as its configuration and parame-

terization is a relevant problem that can influence the outcome of a negotiation

substantially. Since information is decentralized and agents have to come to an

agreement, we postulate that there is a need for decision support systems that

facilitate finding a suitable protocol.

3 Related Work

In the following, we present a survey on related work that also deals with selection

and configuration of negotiation mechanisms. Sandholm (2003) as well as Conitzer

and Sandholm (2004) present an automated mechanism design approach. At this,

the design of a mechanism becomes a computational problem for the designer. The

designer only takes his or her very own preferences into account during decision

making regardless of the preferences of the agents. Nevertheless, in this scenario,

the designer needs detailed information about the outcomes of the interactions (in

game theory: payoffs of the game).

Marsa-Maestre et al. (2011) developed a set of tools, the so-called Negowiki,

that is supposed to support researchers in comparing and evaluating their negoti-

ation protocols. First of all, Negowiki provides test instances for specific problems

and protocol developers are encouraged to upload their negotiation results for

these. After the upload, Negowiki automatically computes different metrics con-

cerning Pareto efficiency, social welfare, or fairness. Like the name suggests, the

data is openly accessible. Nevertheless, since the project requires full knowledge

about the preferences of the agents, it is rather an environment for researchers

than practitioners.

Based on the Negowiki project, Marsa-Maestre et al. (2013) designed a negoti-

ation handbook which is an infrastructure consisting of different components. In

the proposed process, negotiation scenarios are uploaded according to a defined

mark-up language or generated with a provided scenario generator, before an inte-

grated solver computes the metrics of the scenario. This scenario and its metrics

is stored in the Negowiki project where either researchers can upload their experi-

ment results or a simulation testbed (GENIUS, see Lin et al. (2012)) can be used.

Again, the platform is primarily designed for research purposes.
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Another approach is the work of Lang and Klein (2013) which proposes an

architecture that supports agents in high-level negotiations (metanegotiations) on

the protocols for an actual low-level negotiations. The metanegotiation support

system provides different tools for decision and negotiation support. However, up

to today, the architecture is still just a proposal and has not been realized as a

prototype so far.

The survey on related work shows that the problem is not much regarded yet.

As the related work is either based on just theoretical concepts or first and foremost

targets researchers and not practitioners, the existing solution approaches do not

provide satisfying decision support for protocol selection.

4 A Decision Support System for Protocol

Selection

After having demonstrated the need for facilitating protocol choice, we present

the design of our decision support system for negotiation protocol selection (DSS-

NPS) that is going to be evaluated in computational experiments later on (see

section 5).

4.1 Concept

The core idea of the proposed DSS-NPS is to take advantage of the frequent

reoccurrence of operational planning negotiations. For instance, computerized

applications, such as negotiations on the scheduling of cloud computing resources,

can take place thousands of times each day (An et al. 2010). As a result of this,

a DSS-NPS can gather a huge amount of data which can be used for aiding the

decision making. In this study, we propose a supervised learning approach by

means of an artificial neural network (ANN). The ANN makes use of historic data

and provides predictive analytics for the success of potential protocol candidates.

The general setup is shown in Figure 1.

First of all, a negotiation takes place using an arbitrary protocol. After the

negotiation, relevant information is stored in a repository. Such relevant informa-

tion is certainly the evaluation of the protocol by the agents but also structural
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Figure 1: Setup of the decision support system for negotiation protocol selection
(DSS-NPS)

information about the negotiation such as number of agents, agent types, or other

problem parameters. However, the evaluation of a negotiation outcome is an in-

tricate problem because agents might not want to share specific values such as

realized costs with a third party. Although a lot of works regard third parties

like a mediator as trustworthy (see, e.g., Fujita et al. 2010b; Myerson 1983), it

is definitely not an axiomatic self-evidence and there are strong doubts about it

(see Bosse et al. 2004; Hurwicz 2008; Klemperer 2002). Nevertheless, it may be

reasonable to use proxies such as an indicator for a level of satisfaction instead of

actual preference figures as the negotiation parties may be willing to reveal such

information.

In the second step, there is an ANN that is supposed to learn patterns from

the historic data from the repository. Since an ANN may need large amounts

of training data to perform satisfactorily (see Yegnanarayana 2004, Appendix D)

there is an initialization phase that consists of logging only. After sufficient data

sets are gathered, the ANN learns this training data by adjusting weights between

its neurons (we present more technical details in section 4.2 and a discussion on

ANN in section 6).

After learning, the ANN should be capable to make a prediction for an ex
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ante data set, i.e., for a negotiation that is not started yet. The prediction is

based on the learned patterns and depends on the adjusted weighted connections

within the neural net. The protocol selection can be supported by this prediction,

as it represents a belief about the expected performance of a protocol. In other

words, the protocol with the best predicted performance should be used. After the

negotiation, the data is fed into the repository again and the ANN can be updated

with regard to this new information.

4.2 Artificial Neural Network

In the following, we introduce the design of an ANN for the proposed DSS-NPS

which we use and evaluate in computational experiments (see section 5). Later

on, in section 6, we will discuss the advantages and disadvantages of the method.

4.2.1 Architecture

We use a multi-layered feedforward neural network2 with two hidden layers. Feed-

forward networks, which are characterized by no circles in the directed graph, are

a classical architecture for continuous input and output variables (Hudson and

Postma 1995). The usage of two hidden layers can increase the performance of

an ANN compared to a single layered setup (Kenyon and Paugam-Moisy 1997;

Kůrková and Sanguineti 2013); however, adding more than two hidden layers

complicates the learning process and may have unfavourable effects (Bengio and

LeCun 2007)3. Figure 2 depicts the ANN’s topology and the related notation.

Let the set Ll denote the lth of the L = 4 layers. The first layer is the input

layer which consists of K input units: K − 1 input variables plus one constant

(L1 = {in1, . . . , inK}). The second and third layer constitute the hidden layers,

also referred to as the black box component of the network. Those layers comprises

M and N , respectively, artificial neurons (L2 = {n2
1, . . . , n

2
M};L3 = {n3

1, . . . , n
3
N}).

Finally, the last layer is the output layer with a single artificial neuron in our case

(L4 = {n4}).
2Not to be confused with a multi-layered perceptron.
3However, there have been recent improvements in the field of deep learning by utilising

parallel computing on graphic processing units (GPUs) and computer clusters (see Le et al.
2011).
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Figure 2: Topology of the neural network

Each node in the network is connected to each node of the subsequent layer,

i.e., the network has (K ∗ M) + (M ∗ N) + (N ∗ 1) edges. Each connection is

assigned with an adaptive weight wn1,n2 (where n1 ∈ Ll and n2 ∈ Ll+1).

The neurons are modeled after the McCulloch-Pitt model (McCulloch and

Pitts 1943); the output oη of a neuron η is determined by a transfer function ς:

ς(
∑|Ll−1|

Ω=1 wΩ,η oΩ+θη) where nη ∈ Ll, and θη is a constant factor for neuron nη. We

use the popular sigmoid function ς(x) = 1/1+e−x as transfer function. Its advantages

are that it squashes all values to the interval (0, 1) and that it is continuous and

differentiable: ∂ς(x)
∂x

= ς(x) ∗ [1− ς(x)]. The latter is important for learning which

we will see next.
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4.2.2 Learning Algorithm: Backpropagation

For learning, we use the established backpropagation algorithm (Rumelhart et al.

1986) which is a multi-layer generalization of the Delta learning rule. The name

of the algorithm refers to the propagation of errors from the output back to the

input. The precedent delta rule (Widrow and Hoff 1960) is based on the derivation

of the error with respect to the weight. A weight is decreased depending on its

impact on the error and a predetermined learning rate α: ∆weight = −α∗ ∂error
∂weight

.

Therefore, the sigmoid function and its derivative are useful, since it is well-

shaped and inexpensive to calculate. Generally, backpropagation is a special case

of the gradient descent method for minimizing the mean squared error (Rumelhart

et al. 1986). However, as an implication of this, the finding of a global optimum

cannot be guaranteed in the presence of local optima.

We implemented the backpropagation algorithm as described below (for a

derivation of the algorithm, see Henseler (1995) or Buscema (2013)):

For every training data set δτ , do the following:

1. An output y(= oη; η ∈ L4) is computed by feedforwarding.

2. An error term Eη for the output node is computed by comparing the output

with the intended result t from the training data:

Eη = y(1− y)(y − t) with η ∈ L4

3. An error term Eη, for every node η in the two hidden layers, is computed:

Eη = oη(1− oη)
∑|Ll+1|

Ω=1 wη,Ω ∗ EΩ ∀ η ∈ L2

⋃
L3

4. In every iteration τ , each weight is updated based on the previous data set

δτ−1 according to the following formula:

∆wη,Ω(δτ ) = −α ∗ EΩ ∗ oη + β ∗∆wη,Ω(δτ−1)

wη,Ω ← wη,Ω + ∆wη,Ω(δτ )

∀Ω ∈ Ll; ∀ η ∈ Ll−1 with 1 < l ≤ 4

The parameter α (> 0) represents the learning rate. The learning rate indicates

the degree of the backpropagation of errors (degree of descent). As mentioned

above, the backpropagation algorithm can get stuck in local optima which can be
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exacerbated, but not prevented, by adding a momentum parameter β (≥ 0). The

momentum incorporates the movement of the descent in the iteration before the

current one: ∆wη,Ω(τ −1). This can enable leaving of a local optimum and finding

better solutions (Buscema 2013; Henseler 1995).

5 Computational Experiments

In this section, we briefly describe the setup of the simulation and, afterwards,

show the results of the computational experiments.

5.1 Test Instances and Simulation

Firstly, we simulated millions of negotiations with different problems and protocols.

Afterwards, we trained the neural network to prepare our DSS-NPS. Finally, we

evaluated the DSS-NPS with regard to two dimensions: on the one hand, the

ability to predict the performance of a protocol to a given problem, and, on the

other hand, the performance in negotiations in which the DSS-NPS was deployed.

In total, we generated more than 10 million negotiation simulations.

The negotiation problems involve single and multiple homogenous machine

scheduling scenarios. In these scenarios, every agent owns a set of jobs and wants to

minimise either their individual total weighted completion time (see Abdul-Razaq

et al. 1990; Cheng et al. 2013) or the individual maximum lateness (see Agnetis

et al. 2007; Cheng and Sin 1990). The reduced forms (with only one agent, i.e.,

a central planner) of those problems are NP-hard (Lenstra et al. 1977). For the

former, we need a job-specific weight (∼ U [1, 10] ∈ N, U : uniform distribution).

For the latter, we assumed a due date that is more or less restricted subject to a

tardiness factor (∼ U [0.2, 1.0] ∈ R) and a due-date range factor (∼ U [0.2, 1.0] ∈ R)

(cf. Akturk and Ozdemir 2000; Cicirello 2003; Mönch et al. 2005). Each of the

objectives is used in half of the simulations. The test instances comprise different

numbers of machines (∼ U [1, 10] ∈ N), agents (∼ U [2, 10] ∈ N) as well as jobs per

agent (∼ U [20, 200] ∈ N). Besides the job-specific owner, weight, and due date,

the jobs are also characterized by a respective processing time (∼ U [1, 10] ∈ N).

The negotiation was allotted, with equal probability, 10.0, 1.0, or 0.1 seconds of
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negotiation time.

For the simulation of the negotiations, we used the Mediated Negotiation Pro-

tocol Based on Simulated Annealing (MNP-SA) by Lang and Fink (2014). In the

basic protocol, a mediator proposes a set of contract candidates that are alterations

of the current contract draft, and the negotiation parties choose the contracts that

are acceptable for them, i.e., they accept or reject the proposals. If a contract is

accepted by every party, it can become the new contract draft, and new contract

candidates are generated deflecting from it. Nevertheless, since a lot of applica-

tions are characterized by competition for resources, there may be less overlapping

responses than socially desirable. Therefore, the protocol demands that a certain

quota of the proposal set has to be accepted. This quota declines over time and

imitates the cooling of the Metropolis criterion of the simulated annealing meta-

heuristic (see Metropolis et al. 1953; Kirkpatrick 1983; Černý 1985). By doing so,

socially desirable outcomes close to the Pareto frontier can be obtained even with

selfish behavior and conflicting interests (Lang and Fink 2014).

Besides with and without quotas, the protocol has optional policy building

blocks that can be applied additionally to the basic protocol: Instead of having

a mediator agent, the agents can propose individually desirable alterations as

candidates. In the case of quotas, there can be a third response state – besides

accept and reject – that reveals that a contract is only accepted due to the quota

restriction. If every agent responded this way, the candidate would also be rejected.

Furthermore, there can be a prenegotiation for determining the initial contract

draft or a contract just needs a majority instead of unanimity to be able to be

become the current contract draft.

The mentioned five building blocks (quotas, agent-based proposals, three-valued

logic, prenegotiation, majority rule) can be combined and yield different protocol

variants. Moreover, we used shift as well as swap operations for mutating the se-

quences of the machine schedule and assumed two different start parameter values

for the quotas building block. The usage and combination of the building blocks

and the two last mentioned options led to 96 different protocol candidates after

excluding infeasible protocol configurations. Finally, we trained the ANN with the

negotiation parameters (e.g., number of agents and machines or tardiness factor),

the protocol parameters (e.g., which building blocks were used), and a target value
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(see next section). Furthermore, as a benchmark method, we applied a standard

linear regression with ordinary least squares on a sample of 2.5 million data sets4.

5.2 Target Measuring

As argued before, the objective function cannot simply be observed and used

in a centralized way as the agents might not be willing to directly share this

information with a third party. Therefore, we introduce a measure that reveals

little information about the actual cost functions of the negotiating parties. The

agents reveal a level of satisfaction, i.e., they state how satisfied they are with the

outcome. For this purpose, they need to make up their mind what outcome value

for a given scenario could be expected. We simulated this by running two individual

heuristic optimisation procedures for each agent – resulting in an estimate for the

individual best possible and individual worst possible value. At first, the jobs of

an agent are sorted by the weight (for the case of total weighted completion time)

or the due date (for the case of maximum lateness) to construct an initial solution.

Then, a greedy local search procedure is applied. Finally, we computed the level

of satisfaction for each agent as follows: 1 − outcome−best
worst−best . For the evaluation, we

used averaged values over all agents. The histogram of the obtained satisfaction

levels for all 10 million data sets is shown in Figure 3.

The histogram shows that the negotiation results are mostly distributed be-

tween 85% and 100%. Some negotiations even obtained better results decentrally

than the heuristic estimation – without having information such as the weight

values or due dates. The average value of the level of satisfaction was 85.7% with

a standard deviation of 17.9%.

The clustering near to 100% may result from the huge spread between the best

and worst conceivable value. Whereas, for the best value, only the jobs of one

agent are considered and distributed among several machines, the jobs are lined

up on one machine for the worst value and the respective agent’s jobs are the last

ones in the sequence.

4More data sets would have exceeded the available working memory of 8 GB.
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Figure 3: Histogram of the satisfaction level of the simulation data sets (outliers
truncated)

5.3 Topologies

We tested 12 different network topologies for the ANN by using different parame-

terizations for the following scenarios: (1) a single hidden layer only, (2) the same

number of neurons in both hidden layers, (3) more neurons in the second hidden

layer than in the first, and (4) vice versa. We conducted the learning process for

every setup five times using five million training data sets. The mean prediction

errors for separate 10,000 evaluation data sets are shown in Table 1.

The experiments show that the topology of the neural network can have a

significant influence on the prediction performance. First of all, there is no clear

tendency regarding the total number of nodes. Adding neurons leads to better

performances at first, but this effect is limited and is reversed at a given point.

Usually, more neurons also lead to a greater variation in the experiments. The

best results in terms of prediction and stability are achieved by the asymmetric

configuration with more nodes in the first hidden layer. On the other hand, the

reversed setup, more neurons in the second layer, achieves the worst results. Except

for the latter, two layers are superior to one hidden layer in terms of prediction
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One Hidden Layer Symmetric

M
100 250 500

M 50 100 250

N N 50 100 250

Min 3.96% 3.79% 4.21% Min 3.81% 3.39% 3.40%

µ 4.41% 4.04% 4.94% µ 4.33% 3.77% 4.66%

σ/µ 8.87% 5.45% 13.51% σ/µ 8.87% 7.21% 22.91%

Asymmetric (Opening) Asymmetric (Closing)

M 100 100 250 M 250 500 500

N 250 500 500 N 100 100 250

Min 3.92% 3.97% 4.23% Min 3.60% 3.26% 3.36%

µ 4.75% 5.43% 6.33% µ 3.82% 3.47% 3.91%

σ/µ 20.33% 27.39% 38.19% σ/µ 4.42% 5.12% 14.33%

Benchmark

Regression: 8.24%

Table 1: Average prediction error for the five learning runs (5 million training data

sets and 10,000 evaluation data sets)

errors. As mentioned before, we used a linear regression as a benchmark method.

The prediction error of the regression is approx. twice as high as the average error

of the ANN. Except for the configuration M = 250, N = 500 every learning run

had better performance than the linear regression.

5.4 Training Data Size

One disadvantage of artificial neural networks is said to be the high requirements

regarding the training data size. Figure 4 shows a typical history of the (moving)

average prediction error subject to different sizes of training data.

With more training data, the prediction error is decreasing. The alteration rate

of the descent also decreases and seems to be converging to zero. The fact that the

neural network is able to make predictions comparable to the linear regression after

only 50,000 training sets shows the difficulty of making predictions with common

statistical methods based on the very heterogeneous negotiation data, which is

characterized by a lot of noise. The latter is also indicated by the peaks in the
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Figure 4: Moving average of prediction error (grey) and trend (black)

learning curve.

5.5 Negotiation

Eventually, we conducted 1,000 negotiation simulations in which we applied the

proposed DSS-NPS with varying protocols based on an ANN prediction. As a

benchmark, we used a protocol that resulted from the linear regression (P-REG)

as well as the protocol that achieved the best average performance in the 10 million

training data sets (P-BES). For the regression-based protocol, we configured the

parameters according to the sign of the significant coefficient estimates, i.e., if a

building block had a positive estimate, we applied it in the protocol; in the case

of insignificant coefficient estimates, we used a random generator to decide if it is

applied in the protocol.

The average level of satisfaction of the DSS-NPS was 91.16% (coefficient of vari-

ation (CV): 13.39%), whereas the P-REG leads to a negotiation result of 90.70%

(CV: 14.18%) and P-BES achieved 90.75% (CV: 14.19%). To test for statistical sig-

nificance, we did a Wilcoxon-Mann-Whitney test (Mann and Whitney 1947). The
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satisfaction level of the DSS-NPS is statistically significantly larger than of P-REG

(p-Value: 0.049%) as well as P-BES (p-Value: 0.026%). The outcomes of P-REG

and P-BES, however, are not statistically distinguishable (p-Value: 40.94%).

Concluding, the DSS-NPS not only yields the best negotiation results with a

very high significance but also the most stable ones.

6 Discussion

The computational results suggest that the proposed DSS-NPS is capable to pro-

vide better results than a regression based approach (P-REG) or a protocol that is

successful in the training data (P-BES). In contrast to the benchmark procedures,

the DSS-NPS is able to recommend a protocol dynamically with respect to the

specific underlying characteristics. This flexibility and discretion is a major advan-

tage of the proposed system. Although there is a noticeable prediction error, the

ANN delivers good predictions of the performance of protocol candidates which is

shown by the gap between the predictive power of the ANN and the regression.

Finally, since the welfare generated by the negotiation, measured by the proxy of

level of satisfaction, could be enhanced, the application of the DSS-NPS proved

itself to be beneficial.

As we have addressed before, the exposure of private information about nego-

tiation parameters is not a self-evident assumption as agents may have objections

against this revelation (Lang and Fink 2013). Since sensible information might

be given to competing parties, there is an issue of trust in the DSS-NPS. If the

confidential information was exposed, it could be utilised during the negotiation,

i.e., the now better informed counter agents can make better decisions to the dis-

advantage of the exposed agent (Sandholm 1999). Furthermore, the information

about operational data can also be used against the agent outside of the negotia-

tion context on a strategic level. For instance, negotiations on machine allocation

can disclose information about the respective order situation of the companies;

this can be utilised for competitive price changes or customer acquisitions due to

increased advertisement activities. Another aspect to discuss is the possibility of

manipulating the system. There may be a way to change the recommendations

of the DSS-NPS in favour of oneself by stating false information. For example,
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changing the revealed level of satisfaction leads to a different linking between the

neurons; this could asymmetrically alter the prediction of the ANN. Furthermore,

an agent could lie about his or her information in the prediction phase, e.g., by

stating a false objective, which also might result in an asymmetrically change to

the benefit of the lying agent (cf. Myerson 1983, 2008).

A drawback of artificial neural networks is that they require large amounts of

training data sets. As shown in the computational experiments, millions of data

sets are needed to obtain a satisfying predictive power. The simulations of this

study addressed an important but small area of cooperative operational planning.

An implementation that is supposed to create a universal DSS-NPS has to take

this into account and make sure that sufficient training data is available. Besides

the restricted problem space, the protocol space of this study mainly focussed on

a single protocol family which incorporates a large number of potential configura-

tions and parameterizations, though. Nevertheless, a general support system also

has to deal with an unrestricted protocol space; thus, creating a universal system

may be very challenging. As a consequence, the system seems to be adequate

for specific purposes – such as the machine scheduling example presented here –

rather than being a single universal tool that can handle all kinds of problems and

protocols simultaneously.

Artificial neural networks do not need statistical assumptions or knowledge

about the input data. An ANN is self-organizing and independent of the underlying

problem, whereas statistical methods are often based on assumption such as, e.g.,

normal distribution of residuals (Shmueli and Koppius 2011). The neural network

itself is a black box, i.e., the weights of the links between the neurons are opaque

and can take numerically very different values with a comparable predictive power.

However, an ANN possesses implicit knowledge that has to be extracted costly

before it can be utilised (Buscema 2013; Kaikhah and Doddameti 2006). The bias

towards explanatory models (see Shmueli and Koppius 2011) and the fact that an

ANN is initially a black box could obstruct technology acceptance of ANN based

systems.
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7 Conclusion and Future Work

The aim of this study was to investigate the problem of selecting an adequate

protocol for automated negotiation and develop a design artifact that improves

the welfare generated by a negotiation by finding adequate protocols. To address

this issue, we designed a decision support system for negotiation protocol selection

(DSS-NPS). The system is based on a machine learning approach for supervised

learning. Specifically, we implemented an artificial neural network (ANN) that is

supposed to learn patterns and connections between the performance of a protocol

and the characteristics of the protocol and negotiation scenario. The negotiating

parties can use this prediction as protocol recommendation. The computational

experiments suggest that the design is, on the one hand, able to make adequate pre-

dictions on the protocol performance and, on the other hand, capable to improve

the negotiation by utilising those predictions. We showed that the negotiation

outcome can be significantly improved.

This work contributes to existing research by addressing the problem of pro-

tocol selection. Furthermore, as a main contribution, we build and evaluate an

artifact than can support organizations in their managing activities, namely, joint

operational planning by means of negotiation. The prototype proved itself to be

beneficial and, by doing so, advances the knowledge of information systems re-

search.

Nevertheless, the positive results also underlie some limitations: First of all, the

experimental environment is characterized by a restricted protocol and negotiation

problem space. The implications cannot be generalized to a universal application

that can cope with unrestricted spaces. The need for enormous training data

suggests that the DSS-NPS is not applicable to be a unified support system that

handles all classes of problems and protocols simultaneously, but rather can be ap-

plied for specific purposes – as carried out in the experiments. Another limitation

is the possibility of manipulation; negotiating agents could misstate information

to obtain an advantage. This is feasible if false information in the learning or

prediction process leads to a one-sided benefit.

Future work will, among other things, address these limitations. Future re-

search will address possible ways to manipulate the support system which has to
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be analysed in detail. Based on the analysis, there might be countermeasures such

as adequate incentives to prevent or at least limit manipulation. Furthermore, the

DSS-NPS is going to be evaluated for further problems and protocols. At this,

the sensitivity of adding further elements to the protocol or problem space will be

investigated in detail. Finally, the findings of this study’s and future evaluations

will be considered for improving the design (build-and-evaluate loop).
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Ströbel, M. and Weinhardt, C. (2003). The Montreal taxonomy for electronic ne-
gotiations. Group Decision and Negotiation, 12 (2), 143–164.

Thomas, D. J. and Griffin, P. M. (1996). Coordinated supply chain management.
European Journal of Operational Research, 94 (1), 1–15.

Vetschera, R. (2013). Negotiation processes: An integrated perspective. EURO
Journal on Decision Processes, 1 (1-2), 135–164.

28



Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders.
The Journal of Finance, 16 (1), 8–37.

Vulkan, N. (1999). Economic implications of agent technology and e-commerce.
The Economic Journal, 109 (453), 67–90.

Widrow, B. and Hoff, M. (1960). Adaptive switching circuits. In IRE WESCON
Convention Record Part 4, 96–104.

Yang, Y., Singhal, S., and Xu, Y. (2009). Offer with choices and accept with delay:
A win-win strategy model for agent based automated negotiation. Proceedings
of the International Conference on Information Systems (ICIS 2009).

Yegnanarayana, B. (2004). Artificial Neural Networks. Prentice-Hall of India, New
Delhi, India.

29



  

IMPRINT 

 SERIES 

HSU Institute of Computer Science Research Paper Series 

ISSN 2198-3968 

 

EDITOR 

Prof. Dr. Andreas Fink 

Institute of Computer Science 

Helmut-Schmidt-Universität Hamburg 

Holstenhofweg 85 

22043 Hamburg, Germany 

http://ifi.hsu-hh.de 

HSU Institute of Computer Science Research Paper Series  •  ISSN 2198-3968   


