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Abstract
Battery electric freight vehicles have the potential to mitigate the local urban road
freight transport emissions, but their numbers are still insignificant. Logistics
companies often consider electric vehicles as too costly compared to vehicles
powered by combustion engines. The current literature suggests that increasing
the mileage can maximize the competitiveness of electric freight vehicles. In this
manuscript we develop a generic model to determine the cost-optimal balance
between a high utilization of electric freight vehicles – which often have low
operational costs – and their required expensive battery replacements. Our work
relies on empirical findings of the real-world energy consumption from a large
German field test with vehicles of 7.5 and 12 tons, respectively. Our results
suggest that increasing the range to the technical maximum by intermediate
(quick) charging and multi-shift usage is not the most cost-efficient strategy in
every case. A low daily mileage is more cost-efficient at high energy prices or
consumptions, relative to the diesel prices or consumptions, or if the battery
is not safeguarded by a long battery warranty. In practical applications our
model may help companies to choose the most suitable electric vehicle for the
application purpose, or the optimal trip length from a given set of options. For
policymakers, our analysis provides insights on the relevant parameters that may
either reduce the cost-gap at lower daily mileages, or increase the utilization of
electric urban freight vehicles, in order to abate the negative impact of urban
road freight transport on the environment.
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1 Introduction

Electric freight vehicles have been proposed as a measure to reduce the air pollu-
tant emissions from transport and achieve a carbon dioxide-free city logistics by
2030, as envisioned by the European Commission (2011). However, the numbers
of battery electric vehicles operated by logistics companies remain marginal, de-
spite the recent bans for combustion vehicles in Asian and European cities due
to overstepped air pollutant limit values and growing corporate environmental
responsibility activities in the transport sector. One of the main barriers for the
companies are the higher costs of electric vehicles, compared to conventional vehi-
cles with an internal combustion engine (Kley et al., 2011; Amburg and Pitkanen,
2012; Taefi et al., 2015).

Total cost of ownership (TCO) calculations suggest that a key variable to deter-
mine the competitiveness of electric freight vehicles is their utilization (Feng and
Figliozzi, 2013; Lee et al., 2013; Lebeau et al., 2015b).
Vehicle costs are also analyzed in research on vehicle routing problems (VRP)
with electric vehicles (EVRP). VRP model the optimal route planning in order to
minimize, e.g., the total mileage, the number of vehicles required or operational
costs, subject to a minimum customer service requirement. EVRP models inte-
grate additional restrictions and constraints, for instance range limitation of the
electric vehicles or intermediate recharging. Research on EVRP has derived the
same conclusion, that a high mileage of electric trucks is one of the key factors
to achieve a more competitive operation, e.g., Davis and Figliozzi (2013) and
Lebeau et al. (2015a).

A possible option to achieve a high mileage is to operate the electric freight vehi-
cles in multi-shift operation, which would, on the downside, lead to more frequent
battery replacements. Hence, the time and number of battery replacements have
to be considered as they can impair the competitiveness of the electric freight
vehicle (Feng and Figliozzi, 2013; Lebeau et al., 2015b; Lee et al., 2013). How-
ever, those authors do not provide a conclusion on the optimal balancing between
electric vehicle (EV) utilization and the necessary battery replacements.

Further, previous research furthermore calls for integrating a more detailed un-
derstanding of the energy model of EV into TCO and EVRP (Afroditi et al.,
2014; Conti et al., 2015; De Cauwer et al., 2015; Lebeau et al., 2015a). While
first energy models exist in EVRP, scientific evidence on the realistic energy con-
sumption of medium-duty electric vehicles is scarce, cf. section 2. Hence, the
aim of the present work is to fill in the described gaps and deliver a generic
vehicle-centered cost-optimization model, based on the vehicle’s energy avail-
ability, consumption and charging profile, in short, its operational profile. By
applying the model to certain external conditions and vehicles, we aim to answer
the questions:

• Which average daily mileage is the most cost-efficient for a certain EV
model compared to a similar diesel model?

• What are the main parameters that influence the cost-efficiency?
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Our work may provide the basis for enhancing utilized energy models of existing
TCO and EVRP calculations. Furthermore, our model may help practitioners
in deciding on a suitable freight EV model or finding the most competitive op-
erational profile for their existing freight EV. Finally, our results indicate which
parameters are most relevant for policymakers, to either subsidize the purchase,
or the operation of electric freight vehicles.

The remainder of this manuscript is structured as follows: Section 2 presents
the related literature and details the research gaps and available knowledge in
the related scientific disciplines. Section 3 provides information on the analyzed
real-world test and describes the TCO calculation model. The results of the real
world-test are detailed and discussed in section 4. Subsequently, the results are
included in the TCO calculation which is presented and discussed in section 5.
Finally, section 6 derives implications of the work.

2 Background

In order to detect the most cost-efficient mileage of an EV, the TCO at various
driven mileages up to the possible maximum have to be determined and com-
pared to those of a conventional vehicle. In TCO calculations, usually a fixed
daily mileage within the range of an EV is assumed and subsequently varied in
a local sensitivity or elasticity analysis. The energy (or fuel) consumption is a
sensitive parameter in TCO calculations (Lee et al., 2013; Feng and Figliozzi,
2013), but is approximated differently throughout TCO studies. Parameter val-
ues are usually taken from manufacturer’s data sheets or calculated by applying
real-world travel speed profiles or drive cycles.

Feng and Figliozzi (2013) compare the TCO of an EV to the TCO of a conven-
tional medium-duty vehicle and analyze the fleet replacement in six scenarios.
They set the energy consumption of the EV to a value of 0.8 kWh/km without
further elaboration and conclude that the EV needs a high utilization of at least
80 miles/day (129 km/day) to become competitive in three of six calculated sce-
narios. An additionally considered battery replacement significantly reduces the
competitiveness and impacts the break-even points of the EV. Macharis et al.
(2013) compare the TCO of eight battery electric and five conventional diesel
vehicles. Their calculation integrates the cost of battery replacement once the
battery warranty expires, but they do not spell out which energy consumption
their calculations are based upon. The authors find that while electric quadricy-
cles and small vans can become competitive, the medium-duty EV does not. In a
later work, the same authors focus their research on light commercial vehicles and
calculate the TCO for operations in Belgium (Lebeau et al., 2015b). According
to the authors, the values for energy consumption reflect the “urban consump-
tion”. However, a sample comparison with the manufacturers’ data sheets of
the Renault Kangoo Z.E and the Nissan e-NV 200 shows that specific values
for urban consumption had not been utilized in the publication, but the com-
bined energy consumptions were in fact according to the UN/EC Regulation 101
(Nissan, 2015), based on the New European Drive Cycle (NEDC). The sensitiv-
ity analysis of Lebeau et al. (2015b) confirms the findings of Feng and Figliozzi
(2013) that the electric vehicles become more competitive with an increased uti-



2 Background 4

lization. Their sensitivity analysis suggests that the cost-efficiency of the light
commercial vehicles decreases with each battery replacement, concluding that
an electric vehicle’s battery should only be replaced if it is intended to operate
the vehicle until the end-of-life of the next battery pack. However, the study
leaves open how a battery replacement affects the competitiveness of the electric
vehicles compared to conventional vehicles.

Field-tests suggest that the realistic energy consumption of electric freight ve-
hicles can deviate from the values reported by the vehicles’ manufacturers, as
utilized in the TCO calculations above, but scientific evidence is scarce. A real-
world test in the US with a total of 530 electric vehicles of two types delivers an
average energy consumption of 0.52 kWh/km (5.5 ton Navistar eStar) and 1.15
kWh/km (7.5 to 12 ton Smith Electric Newton) (Prohaska et al., 2015). How-
ever, the authors indicate in the supplementary material that these figures cover
multiple vehicle configurations, in multiple environments, topologies, and load
profiles and hence are an average that cannot be used to predict the efficiency of
any particular vehicle. A better comparability between the values given by the
manufacturer and realistic energy consumption can be drawn if a specific vehi-
cle is tested according to a standard test procedure. In Europe and China, the
energy consumption of any passenger car (EV or conventional) is measured by
a dynamometer test defined in UN ECE-R101 based on the NEDC drive profile.
Commercial freight vehicles (EV or conventional) are tested on the road accord-
ing to German standard DIN 70030-2. The study of De Cauwer et al. (2015) in
Belgium finds that the real-world energy consumption of a small electric deliv-
ery van, the Renault Kangoo ZE, deviates by 48% from the energy consumption
according to the NEDC. This result is similar to the outcome of a field test eval-
uating 200 electric passenger cars over a two-year period in Denmark (Fetene
et al., 2016), where the EV consumed on average 46.6% more energy than indi-
cated by the manufacturer’s data sheets. Wang et al. (2015) compare the energy
consumption of different passenger car types in a real-world test according to
the NEDC values, suggesting that the traffic conditions of Beijing are compar-
atively favorable for electric vehicles: their average energy consumption is only
3.1% higher than the NEDC results, while conventional vehicles consume 38.8%
more energy in the real-world than indicated by the NEDC. An even greater dif-
ference of 45% between the measured fuel consumption according to the NEDC
and real-world data was reported for commercially used conventional passenger
cars in Europe for year 2013 (Mock et al., 2014). The first models have been
developed to describe the energy consumption of electric passenger cars and an
overview on the past studies is provided for example by Zhang and Yao (2015).
Electric freight vehicles differ from electric passenger cars, since the amount of
loaded cargo is an additional factor influencing the energy consumption. Hence,
additional empirical evidence on the realistic consumption of medium-duty elec-
tric vehicles is required.

The TCO calculation of Lee et al. (2013) approximates the realistic energy con-
sumption of urban freight transport by implementing urban and suburban drive
cycles, such as the New York City Cycle to calculate the TCO for medium-duty
electric vehicles in the USA. They vary the daily range between 48 to 96 km/day
and assume that the vehicle retires when the total mileage reaches 240,000 km.
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Their study finds that – over an array of possible conditions – the EV TCO
becomes more competitive in urban drive cycles with frequent stops and low av-
erage speeds, if the achievable lifetime vehicle distance traveled is high and at
the same time no expensive battery replacement or quick-charging equipment are
necessary. However, the authors do not discuss whether it is technically possible
to achieve the highest daily mileage considered (96 km) at the end of the battery’s
life. At this point, the battery can only achieve 80% of its initial capacity and
has to be replaced (Narula et al., 2011). Hence, the state of health (SOH) of the
battery limits the maximal electric capacity and thus the range of an EV. Davis
and Figliozzi (2013) integrate models to calculate the power consumption, to in-
clude routing constraints, and to describe the real-world travel speed profiles, in
order to examine the competitiveness of a medium-duty EV. Their study finds
that the medium-duty EV becomes more competitive in scenarios with a high
vehicle utilization and where vehicles with an internal combustion engine oper-
ate inefficiently – for example, during deliveries with frequent stops and idling
motor, or in congested urban traffic. The authors additionally research the ef-
fects of a single battery replacement after 150,000 miles (241,402 km). When
including this battery replacement, the EV TCO increases and only in a few
of the researched scenarios does the vehicle become more cost-competitive than
a conventional vehicle. While the authors explicitly implement different energy
consumption levels, they do not account for a reduced battery capacity and thus
reduced range, due to the reduced battery SOH during its life-time.

None of the TCO calculations in the literature consider recharging the EV battery
during its operation, in order to prolong the range. In EVRP, Goeke and Schnei-
der (2015) and Schneider et al. (2014) consider the necessary time to recharge
the EV depending on the remaining battery charge. Similar to the EVRP with
time windows and recharging by Hiermann et al. (2016), they assume the time for
fully recharging the battery to be a linear function. Since in reality the servicing
time by the customer might not allow a complete recharge of the battery, Keskin
and Catay (2015) develop an EVRP with partial battery recharging. The EVRP
of Felipe et al. (2014) additionally allows partial recharges with various charging
standards. Both consider the time for recharging a battery to be a linear function.
However, research on lithium-based batteries – the most common EV batteries –
shows that their performance is non-linear and time-variant (Marra et al., 2010),
especially when charging at higher C-rates (Kim et al., 2011). Figure 1 depicts a
typical charging characteristic of a lithium-ion battery at a charging rate of 1C
based on Panasonic (2012), applying the widely-used constant current/ constant
voltage charging methodology (Zgheib et al., 2016).

The C-rate indicates at which current relative to the battery’s capacity the bat-
tery is charged or discharged. At 1C, the energy available in a battery, or equiv-
alently its SOC, increases linearly with the charging time by up to about 75%
SOC. Up to this limit, the battery is charged by a constant current (CC-phase).
When the maximum cell voltage is reached at about 75% SOC, the charging
method is switched to constant voltage (CV-phase) (Marra et al., 2012) in order
to protect the battery from overcharging (Moon et al., 2011). If the C-rate is
reduced, the linear CC-phase is extended (Moon et al., 2011), i.e. to 90% SOC
at 0.5 C, for the battery researched by Marra et al. (2012). A full charge of
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Fig. 1: Charging characteristic of an exemplary EV lithium-ion battery

this battery at 0.5 C takes about three times longer than charging it to only
from 10 to 70% SOC (ibidem). This characteristic can be utilized to reduce the
time needed for recharging, by only recharging within the CC-phase to add a
certain mileage to the vehicle’s range. Not fully recharging the battery might
also limit the increased energy consumption, when starting a trip with a full bat-
tery, as observed – but not further explained –in the study of Fetene et al. (2016).

Research in EVRP already implements the first realistic observations of energy
consumption and some TCO models utilize drive cycles or energy models to sim-
ulate realistic energy consumption. However, field data on the realistic energy
consumption of electric freight vehicles are still scarce and not yet incorporated
in TCO calculations. At the same time, the process of battery recharging has
received some but far less attention in EVRP and none in TCO calculations.
Moreover, neither of the cited publications have considered the findings from
battery research regarding the battery’s SOH, which influences the available en-
ergy in an EV, and thus range at high mileage scenarios. The current study
will fill these gaps in order to analyze the most cost-efficient mileage of an EV
compared to a conventional vehicle.

3 Model formulation and methodology

We base our analysis of the most cost-efficient mileage of electric freight vehicles
on the TCO evaluation methodology (section 3.1). We implement the findings
of the literature review into an energy model. The model considers the energy
availability depending on the battery’s state of health; energy recharging based
on the lithium ion battery’s linear charging characteristics between 10 and 70%
SOC and realistic energy consumptions (section 3.2). The latter are obtained
from a German real-world field test (section 3.3). A numeric simulation is carried
out for three medium-duty electric and comparable diesel vehicles (section 3.4),
calculating the differential TCO up to the theoretically possible maximal average
daily mileage. We obtain this maximal mileage by deriving a range-optimized
usage profile (section 3.5).
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3.1 Calculation of the ∆TCO

In order to assess whether an electric freight vehicle is more cost-efficient than a
conventional counterpart, the TCO of electric and diesel models are calculated
and compared. The ∆TCO in equation 1 delivers a negative result if the cumu-
lative cost of the EV is lower than the cumulative cost of the diesel vehicle at the
end of the TCO calculation.

∆TCO = TCOEV − TCODiesel (1)

with

TCO =
M∑

m=0

Xm · (1 + r)
−m

+
M∑

m=1

Ym ·m · (1 + r)
−m

+
M∑

m=1

K∑
s=1

Zs · s · (1 + r)
−m

(2)

The TCO of the vehicles’ TCODiesel and TCOEV are each equal to the sum
of three components, compare equation 2: i) One-time investments Xm, such
as the costs for purchasing the vehicle, for battery replacement, and the costs
for scrapping or revenue from reselling the vehicle or batteries; ii) annual “fixed”
costs Ym, such as the circulation tax or costs for emission testing, which re-
occur in the first month of each year and are zero in the other months; iii)
kilometer-dependent costs Zs, which grow by the distance (km) s traveled, for
example costs for energy or diesel respectively, or maintenance and service. The
limits M and K denote the maximal values for the month or monthly driven
kilometers, respectively. As usual in TCO calculations, the discount factor r
delivers the discount rate (1 + r)

−m to represent the time value for money in
each of the three components. We calculate the TCO for steps of one km up
to the maximal mileage per day with the software package Matlab on a desktop
computer. Subsequently, in a one-at-a-time empirical sensitivity analysis, we
vary the input factors and calculate the relative difference of the observed output
parameter – the cost-difference, based on the methodology described by Hamby
(1994) and Karnavas et al. (1993). The analysis is performed in order to reduce
the output uncertainty and to understand which parameters contribute most to
the variability of the results.

3.2 Model formulation

With the observations from the literature review in section 2, we derive equation
3 for calculating the realistic EV range RReal:

RReal =

K∑
s=1

E · SOHs · SOCs,c

CReal (3)



3 Model formulation and methodology 8

subject to:

SOHk = 1− 0.2 · s

K
(4a)

s = v · t (4b)

K =

KWrnt if number of kilometers is warranted
0.9 · E ·NWrnt

CReal if number of cycles is warranted
(4c)

SOCs,c =

{
SOC Init − k · CReal

E if the EV is driving
SOC Init + c

T if the EV is charging
(4d)

T =

{
0.33 · T 0-100% if given charge time T is from 0% to 100%
T 20-80% if given charge time T is from 20% to 80%

(4e)

Further parameters and variables:
E the maximal energy available in fresh EV battery (kWh)
CReal the realistic energy consumption of EV (kWh/km)
v the average speed of the vehicles (km/h)
KWrnt the kilometers warranted before the battery’s end-of-life (km)
NWrnt the number of cycles warranted before the battery’s end-of-life
T 0-100% the time to charge the battery 0% to 100% (min)
T 20-80% the time stated to charge the battery 20% to 80% (min)
SOCInit the initial state of charge before charging or driving (%)
c duration of recharging the EV (min)
t duration of driving the EV (min)

Equation 4a describes the state of health of a battery. A fresh battery has a SOH
of 100% which degrades with calendar life and usage. Once the battery reaches
80% of the initial capacity (80% SOH) the battery has reached its end-of-life as
EV battery (Marra et al., 2010; Narula et al., 2011). The battery degradation
due to the usage mainly depends on four factors, i) the number of cycles, ii) the
charge/discharge current rates, iii) the depth of discharge and iv) the ambient
temperatures (Marra et al., 2010; Conti et al., 2015). In practical applications,
the SOH can be derived by measuring the internal resistance of a battery and
comparing it to the battery’s initial resistance (Marra et al., 2010). Nevertheless,
in practice, battery manufacturers base their warranties on a guaranteed number
of charging cycles NWrnt or kilometers KWrnt, sometimes in combination with
calendar life. The distance s driven with the current battery is calculated by
multiplying the average vehicle speed v by the time t spent driving in equation
4b.

We derive the mileage K, at which the batteries need to be replaced (equation
4c), by considering the warranted number of kilometers and warranted cycles.
We assume that the battery reaches its end-of-life, once the battery manufac-
turer’s warranty expires. This is given when the driven distance s is equal to
the total number of kilometers warranted KWrnt. In the case where the man-
ufacturer warrants a certain amount of battery cycles instead of the number of
kilometers, the warranted battery cycles need to be translated into the kilome-
ters driven. In order to be able to do this, first the “cycle” needs to be defined,
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since manufacturers sometimes do not exactly specify on what to count as a cycle
in their data sheets. This raises questions with respect to partial charging. In
the current study, we follow the common definition that full cycles in percent
are counted: for example, charging twice from 0% to 50% and discharging twice
from 50% to 0% is counted as one full cycle. To derive an approximation for
the number of total number of kilometers K covered by the warranty, the initial
(realistic) battery range at the average 90% SOH is multiplied with the number
of guaranteed cycles NWrnt.

Equation 4d denotes how much of the possible energy E is available at a certain
point in time. The value depends on the initial SOCInit and decreases when
the EV is driven or increases when the EV is charged. For driving, the model
utilizes a realistic average vehicle speed v and energy consumption CReal, based on
several drivers, several topographies, loads, stops, auxiliary usage and ambient
temperatures, compare section 3.3. For this reason, we can assume a linear
decrease of the SOC per kilometer driven. If an EV offers different charging
levels, our model selects the highest charging speed. Since we aim to minimize
the charging time and thus maximize the time available for driving, we keep the
SOC between 10% and 70%, where it can be charged linearly in about a third of
the time needed for a full charge T 0-100% at 0.5 C (Marra et al., 2012). In case
where the manufacturers state the time needed to charge the battery from 20%
to 80%, this value (T 20-80%) is applied. Accordingly, SOCInit is set to 70% for
the first calculation, and the model assures that the final charge of the day only
recharges the battery up to this level, in order to provide a similar starting point
for each day of the range and TCO calculation.

3.3 Energy consumption of medium-duty EV in the real-world Elmo test

In order to present scientific evidence with regard to the realistic energy con-
sumption of electric freight vehicles, we analyze data from the project “Elektro-
mobile Urbane Wirtschaftsverkehre” (acronym: “Elmo”). The German project
title translates as “Electrified commercial transport in urban areas”. The project
was co-financed by the German Federal Ministry of Transport and Digital In-
frastructure and led by the Fraunhofer Institute for Material Flow and Logistics,
IML, for the time period between September 2011 and June 20151.

In June 2012, the German Federal Government ranked Elmo as a “lighthouse
project” for the successful demonstration of electric vehicles in commercial trans-
port (BMWI, 2012). The project conducted one of the largest field tests with
medium-duty electric vehicles in Germany at that time. During the project’s
run-time, ten medium-duty electric vehicles of three companies covered over
130,000 km in about two years. All deliveries were carried out in the German
federal state of North Rhine-Westphalia. Four different types of electric vehicles
were deployed: three types of up to 7.49 tons and one of up to 11.99 tons, either
utilized for deliveries to third parties (business or end customers) or transport
on-own-account. An overview of the vehicles’ specifications and utilization is

1 Further information about the project is available at
http://www.iml.fraunhofer.de/de/themengebiete/verkehrslogistik/themen_
transportverkehrlogistik/Elmo.html (in German)
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provided in Table 1, based on information of the vehicle manufacturers within
the project and publicly available information, such as data sheets. Due to con-
fidentiality reasons, most of the information provided will be presented in an
aggregated form or discussed in comparison to the average values of the German
urban freight transportation segment.

EV
Type

Manu-
facturer

Transport
task

Gross
weight

[t]

Battery
energy
[kWh]

Approx.
price

[¤]

Charging
time

[h]

Range
[km]

A 1 Third party
delivery

7.49 61 65,000 8-10 80-100

B 1 Third party
delivery

7.49 77 75,000 12 105-115

C 2 Third party
delivery

7.49 80 110,000 ≥8 110-160

D 3 On-own-account 11.99 160 200,000 4.5 200

Tab. 1: Overview of the medium-duty electric vehicles utilized in project Elmo

All utilized vehicles were converted from available diesel models. The EV type B
is an experimental vehicle derived from type A, developed by the same manufac-
turer. It only differs in terms of battery capacity and weight. Purchase prices are
confidential, hence our approximations are based on general information by the
manufacturers. The specific final sale prices depend on the chosen configurations.
For the experimental EV type B we estimated the price based on the informa-
tion for type A plus the differential average battery costs, which amounted to
¤437/kWh in the year 2013 according to Nykvist and Nilsson (2015).

It can be observed that the EV manufacturers communicated an expected range
of an EV, instead of a fix energy consumption according to a standard mea-
surement procedure, i.e., DIN 70030-2. One of the manufacturers reasoned that
the EV range and hence energy consumption depends largely on the ambient
temperature, drive style, topography, number of stops, usage of auxiliary loads,
etc. Hence, the manufacturers were hesitant to provide a misleading measure-
ment value and rather indicated an expected range according to the intended
customer’s use case.

The main focus of the project Elmo was to assess whether battery electric ve-
hicles meet the requirements for day-to-day operations for companies running
corporate fleets. One guiding question was how these vehicles can be integrated
into existing fleet and logistics operations. As a secondary goal, the project
aimed to assess aspects related to traffic, operational processes, energy supply,
and ecologic influences which arise during the integration of electric vehicles into
the corporate fleet (Stütz et al., 2016). Our study reports the results related to
the energy consumption of the vehicles in the field test.

The vehicles’ data were logged manually by the drivers, since the use of data
loggers was technically and legally restricted. Logged data were for example the
time, date, duration, distance and number of stops per round trip, as well as
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the SOC at the beginning and the end of the trip. The data were manually
enriched with additional information, such as the average temperature, and the
average price of diesel based on the EU oil price bulletin (European Commission).
Qualitative data from interviews (with drivers and operation managers) as well
as field studies were used to validate the correctness of the manually recorded
data. Moreover, this approach helped to shed some light on vehicle utilization as
the data, besides daily round trips, also covered downtime and vehicle outages.
Hence, the reasons which impeded continuous vehicle operation during the course
of the project can also be analyzed using the Elmo database.

3.4 Vehicles compared in the TCO

We test our model and answer the research question by carrying out exemplary
numeric simulations of medium-duty electric vehicles. Those vehicles are not yet
mass produced, but are converted from existing diesel vehicles. Thus, the EV
models chosen in this TCO calculation are technically identical to their conven-
tional siblings, except for the drive-train: the 7.49 ton Toyota Dyna 200 is the
basis for the 7.49 ton Dyna EV 200 converted by Emoss; the 5 ton Plantos by
German E-Cars is based on a 5 ton Mercedes Sprinter; the 11.99 ton CM1260 is
based on a MAN TGL and was also converted by Emoss. Both conversion com-
panies, Emoss and German E-cars provided recent information about the prices
and technical details of the electric vehicles in telephone interviews. Recent infor-
mation of the Toyota Dyna 200 was gathered from the general European importer
and information on the conventional MAN TGL was gathered from a local dis-
tributor. The configuration of the Mercedes Sprinter was chosen with the help
of the Mercedes Online-configurator in February 2016, which indicated that the
5 ton 513 CDI with EURO VI Motor and automatic gearshift comes closest to
the Plantos. Additional information about the Sprinter was taken from Mercedes
data sheets for the variant with the ultra-high roof and long wheelbase (Mercedes
Benz, 2015).

3.5 Range-maximized usage profile

The equations in section 3.2 deliver the maximal technically possible range of an
EV, in case the usage profile is optimized. This means that the time for driving
t and charging c are optimized in our model, at a given average energy con-
sumption due to routing, topography, driver’s behavior, etc. In this scenario, we
assume that all loading and unloading of the cargo, drivers breaks and changes
can take place while the vehicle charges.

The maximized exemplary usage profile for the calculation assumes that the
vehicle starts to drive once the SOC reaches 70%. Hence, it remains within the
linear area of the charging curve and reduces the time required for charging.
Furthermore, the exemplary profile assumes that the vehicle stops in order to
deliver freight and recharge, as soon as the SOC reaches 10%, in order to prevent
the negative aspects of a deep battery discharge. The last charge and trip of
the day are adjusted, so that after a 24 h period the EV attains the initial value
of 70% SOC. Since the SOH of the battery degrades with the driven number of
kilometers (see equation 4a), the range that can be achieved with the described
usage profile is calculated on a daily basis in equation 3.
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Fig. 2: Examples of user profiles delivering the same range

It is noteworthy that many other solutions exist which deliver a similar optimal
range with different levels for the SOH. For instance, the EV could be driven on
shorter trips and could be charged more frequently during shorter stops. Hence,
the usage profile can be adapted to the user requirements. Exemplary profiles
leading to the same maximal range are depicted in Figure 2.

4 Energy consumption in the Elmo real-world test

The data of the project Elmo are analyzed with regard to two aspects. First,
we describe the usage profile and average energy consumption of the tested EV.
Second, we discuss the energy consumption distribution over the months.

4.1 Usage profile and average energy consumption

The data in project Elmo were collected in the period from September 2012 to
July 2014. During this period, the EV traveled a total of 131,018 km, performed
196,906 delivery stops and consumed 102,736 kWh of energy in total. Table 2
shows the aggregated mileage and plug-to-wheel energy consumption per EV
type. The latter is compared to the given energy consumption, in utilizing equa-
tion 3 (with a new and fully charged battery; SOH= 100%, SOC = 100%, K=1)
to convert the ranges given by the manufacturers in Table 1.

EV
Type

Route profile

Mileage [km] Energy consumption [kWh/km]

Average Standard
deviation

Given Average

A Urban, 200 stops 73.80 ± 5% 0.61 to 0.76 0.74
B Urban, 200 stops 77.25 ± 7% 0.67 to 0.73 0.90
C Urban, 30 stops 49.04 ± 9% 0.75 to 1.09 0.90
D Freeway and urban,

3-4 stops
92.92 ± 12% 0.8 0.73

Tab. 2: Real-world energy consumption per EV type in project “Elmo”

According to Table 2, the average daily mileage of the two EV types A and B
were relatively similar to each other and constant throughout the months of this
study: type A traveled 73.80 ± 5% km/day (relative standard deviation), type
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B traveled 77.25 ±7% km/day. Both vehicle types were used to collect and dis-
tribute parcel shipments. A typical urban parcel delivery round trip in Germany,
suitable for an EV, is characterized by picking up the parcels in the early morning
at a distribution center, then driving a certain distance mostly on urban roads
– sometimes also including a short passage on rural roads or freeways – to the
delivery area. Here, up to 200 stops are performed in order to deliver the parcels
throughout the day, with short driving distances in-between the stops in urban
traffic conditions. The EV returns to the distribution center in the evening, where
the vehicle is slow-charged overnight. This driving profile is very energy intensive,
hence we expected high energy consumptions for these two vehicle types. Indeed,
Table 2 shows that the actual energy consumption of the type A vehicles is at the
upper margin of the expectations while the experimental type B did not meet the
manufacturer’s expectancy and consumed 23% more than maximally anticipated.

The type C EV transported goods for the companies on own account. The ve-
hicles started from depots located close to the cities’ borders on fixed tours of
49 km/day ±9%. In the city, about 30 stops were performed, before returning
to the depot and slow-charging overnight. The EV types B and C both have
a similar gross weight and nearly similar battery size, but were converted by
different companies. Their energy consumptions were nearly at par (although
it has to be recognized that type B undertook six to seven times more delivery
stops). The type C EV consumed 0.9 kWh/km on average, in the middle of the
range specified by the manufacturer. This result was expectable: on the one
hand, energy was conserved, as the cargo was unloaded during the tour, hence
the EV was operated only partly loaded and the drivers were trained by the
manufacturer to utilize an energy-conservative drive style. On the other hand,
the vehicles were operated in urban traffic, which again raised the energy demand.

Of all electric vehicles in the field test, type D covered the longest average dis-
tance of 94.92 km/day ± 12%. The route profile of this EV type differed from
the others, since it covered longer distances of constant speed between only three
to four stops per day. The vehicles type received a full slow-charge over night.
In order to increase the range, the company tested to the partial charging of the
EV when it returned to the depot in-between the delivery stops by the faster
level 2 DC charging. In certain test cases with intermediate charging, the type
D traveled substantially more than 300 km/day. With a gross weight of 12 tons,
type D was the heaviest vehicle in the fleet test and its battery was 160 kWh,
which is about double the size of types B and C. The manufacturer reported
the EV range to be 200 km, which translates to an energy consumption of 0.8
kWh/km. This is similar to the energy consumption of type C, although type C
has a lower gross weight. Surprisingly, the realistic energy consumption of type D
was, with 0.73 kWh/km, 8% below the manufacturers values and had the lowest
energy consumption of all vehicles in the test.

We discuss the results of the real-world test in what follows:

• Interestingly, this study found that the heaviest vehicle (type D) had the
lowest energy consumption in the field test. All vehicle types were de-
ployed in the same federal state, with a roughly comparable climate, to-
pography and payload profile. Assuming that all vehicle types were driven
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by trained drivers applying an energy-conservative driving-style and usage
of auxiliaries, the main difference between the usage profiles was that type
D undertook less stops and the tours contained longer stretches of freeway
driving. This suggests that medium-duty EV energy demand increases with
the number of delivery stops in urban traffic and reduces in more smooth
traffic conditions, similar to conventional diesel vehicles. Whether the ef-
fect is attenuated compared to diesel vehicles, due to the recuperation of
energy when braking, has not been assessed in this study.

• The comparison between the EV types A and B, which mainly differ in
the battery size, offers an interesting finding: both electric vehicles are
identically constructed and equipped with a similar battery type. Further,
both electric vehicles are deployed by the same company, on similar route
profiles and climate conditions, with comparable cargo loads. Assuming a
comparable use of auxiliaries, the additional energy consumption of the EV
type B (0.90 vs. 0.74 kWh/km) suggests that the larger and thus heavier
battery potentially had a negative impact on the range gain. Deriving the
range from the realistic energy consumption shows that the EV can only
travel about 3 km more than type A, while costing approximately ¤10,000
more, due to the larger battery. Hence, this result suggests that equipping
an EV with a larger battery might not automatically lead to a higher range,
since the vehicle’s gross weight and hence the energy consumption increases.

• The energy consumption deviated between -8 % and 24 % from the values
given by the EV manufacturers. In the real-world tests of De Cauwer
et al. (2015) and Fetene et al. (2016), the electric passenger car energy
consumption is reported to be between 29 % and 64 % higher than stated
in the data sheets according to the NEDC measurement. Hence, the freight
EV manufacturers’ information on the expected range and thus energy
consumption gives a better estimation of the realistic consumption than
the available information for passenger vehicles, which is usually based on
NEDC measurements.

• All electric vehicles were charged with energy from renewable sources, which
result in no plug-to-wheel emissions, and well-to-plug CO2-equivalent emis-
sions of 0.04 kg/kWh; diesel fuel has well-to-tank emissions of 0.57 kg/l
and 2.67 kg/l tank-to-wheel (Umweltbundesamt, 2014). The real-world
fuel consumptions of the comparable diesel vehicles in the project are com-
pany confidential, hence the overall savings of CO2-equivalents in the test
may only be estimated: assuming the consumption of the conventional fleet
between 0.2 and 0.25 l/km, the ten electric vehicles saved 81 to 102 tons
of CO2-equivalents throughout the test. Naturally, this potential increases
by up to 1.5% (i.e. zero well-to-plug emissions) when the respective vehi-
cle owner makes use of local sources of renewable energy. In case of EV
type D, over the course of the project time frame, on average 29% of the
electricity required to charge the vehicles came from a large photo-voltaic
array mounted on the roof of the distribution center. With respect to the
confidentiality of fuel consumption data, we are able to report the follow-
ing range of possible savings in CO2-equivalents: EV types A to C: 20 to
30 kg/day, EV type D: 90-100 kg/day. The substantial differences trace
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back to two different aspects: i) different average daily mileage: EV type D
served up to two or three routes/day while A to C only had one; ii) higher
fuel savings per km: EV type D replaced a heavier truck with a substan-
tially higher fuel consumption per km than the ICEs replaced by EV types
A to C.

4.2 Variation of the energy consumption throughout the calendar year

The energy consumption of the vehicles is assessed over the calendar year. Figure
3 shows the difference from the average energy consumption for each month per
EV type and marks the largest deviation from the average.
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Fig. 3: Relative deviation of energy consumption per month from average

Interestingly, the energy consumption differences of the EV types vary. While
type D shows a relative constant energy consumption throughout the year of
±4%, the deviation from the yearly average is especially large for type C (be-
tween -42% and +28%).

In order to interpret these results, we compare our results to exemplary find-
ings in the literature: Fetene et al. (2016) found a 34% increase of the energy
consumption in the five “winter” months (November to March) compared to the
“summer” (all other months) in a real-world test with 200 electric passenger cars
in Denmark. For the 3.5 ton parcel delivery vehicles of DHL, an increased en-
ergy demand of 30 to 60% was recorded in winter due to an increasing load by
auxiliaries (Taefi et al., 2016). In the area of the Elmo field-test, the average
temperature is the lowest (below 10 degrees Celsius) in the same five “winter”
months (Wetterdienst, 2016). However, in our real-world test with medium-duty
electric vehicles, the “winter” effect is only partly visible. The energy consump-
tion in “winter” increases by 6%, 11%, 32%, and 2% compared to “summer”, for
the types A, B, C and D, respectively (Figure 4).

We assume the results are superimposed by other influencing factors, such as a
higher stop-frequency; a different use of auxiliaries, such as heating; or different
cargo weights in certain delivery seasons. These influences might also explain
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Fig. 4: Increase of average EV energy consumption in winter

the differences in the energy consumptions of the four types. Especially for
type C, the use of the cabin heating could provide a possible reason for the
increased power consumption in winter. It was the only vehicle type in which
an electric heating spiral of 2 kW maximum power was actually an option for
the driver. EV types A and B also feature a heating spiral of similar maximum
power, but drivers were ordered not to use the cabin heating. These vehicles
face, furthermore, an increased transport volume and stop frequency towards
the end of the year compared to spring or summer. The root causes for an
increased power consumptions are, therefore, expected to be rather endogenous
than exogenous. EV type D was equipped with an independent heater (powered
by a small combustion engine) so that any influence of the heating on electric
power consumption can be ruled out. Having observed these effects, we suggest
further research, in order to explain the empirically observed differences in the
energy consumption of medium-duty electric vehicles and their influencing factors
in more detail.

5 ∆TCO calculation and optimal mileage of electric vehicles

In applying the generic ∆TCO model presented in section 3 we compare the
overall costs of medium-duty electric vehicles with their conventional siblings.
For confidentiality reasons only one vehicle is similar to an EV type utilized in
the Elmo test. Two further vehicle pairs with different technical characteristics
are added, to put the results into perspective. The technical characteristics of the
compared vehicles are described in Section 5.1. The calculation is placed within
the reference scenario of Germany. Parameters, such as taxes, subsidies, city
tolls, or the costs of goods and services for servicing and maintaining the vehicles
differ from country to country; further, different projections on cost developments
exist. Hence, section 5.2 describes the utilized cost projections and parameters.
We describe the results of the TCO calculations in section 5.3, then carry out
a sensitivity analysis in order to identify parameters that cause uncertainty and
analyze their impact in section 5.4. Based on the calculation results we discuss
the cost-optimal mileage of exemplary medium-duty electric vehicles in section
5.5.
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5.1 Technical characteristics of the compared vehicles in the TCO

The TCO calculation is carried out for three vehicle pairs. We compare conven-
tional diesel medium-duty vehicles to their electrical conversion model. Hence,
the vehicles can be considered as technically identical, except for the power-train.
The technical characteristics of the vehicles compared in this TCO are listed in
Table 3.

Acronym MAN
Diesel

MAN-
based EV

Dyna
Diesel

Dyna-
based EV

Sprinter
Diesel

Sprinter-
based EV

Model TGL CM1260 Dyna 200 Dyna EV
200

Sprinter
CDI 513

Plantos

Manufacturer /
Converter

MAN Emoss Toyota Emoss Mercedes German
E-Cars

Gross weight [t] 11.99 11.99 7.49 7.49 5 5
Purchase price1 [¤] 75,000 200,000 31,765 110,000 50,601 95,000
Power-train
Power [kW] 133 150 110 120 95 85
Estimated realistic consumption of energy or fuel
Diesel [l/km] 0.19 n/a 0.1 n/a 0.11 n/a
Energy [kWh/km] n/a 0.73 n/a 0.75 n/a 0.464
Battery parameters
Energy [kWh] n/a 160 n/a 120 n/a 38.6
Range [km] n/a 200 n/a 160 n/a 120
Battery warranty
Cycles n/a 2,000 n/a n/a n/a 2,000
Years n/a 5 years n/a 3 years n/a n/a
Kilometers n/a n/a n/a 100,000 n/a n/a
Charging time
SAE AC Level 2 [h] n/a n/a n/a 8 n/a 14
SAE DC Level 1 [h] n/a 23 n/a n/a n/a 2.52

1excl. VAT 2 20-80 % 3 0 - 50%

Tab. 3: Technical characteristics of the vehicles compared in the TCO

The purchase prices of the vehicles are approximations – as stated by the man-
ufacturers – since the final price depends on the specific configuration. The
realistic fuel consumptions of the MAN is given with 18 - 20 l/100 km, of which
we choose the average. The energy consumption of the MAN-based EV was
measured in the real-world test. This vehicle charges from 0 to 50% SOC in 2
hours. Applying a linear extrapolation, which is possible in the CC-phase, this
is equivalent to a time of 144 min when charging from 10 to 70% SOC. The con-
sumption of the Dyna diesel and EV are both given by the manufacturers for the
standard platform model without a box, hence they are comparable. The energy
consumption of the standard model Mercedes Sprinter is 10.5 l/100 km in urban
conditions with a commercial registration. This value was increased by 5% in
order to account for our long wheelbase and ultra-high roof configuration. No
additional correction of the fuel consumption is undertaken for the commercial
vehicles, since their fuel consumption stated in the data sheets must be measured
on the road according to DIN 70030-2. The values for the Sprinter EV, however,
deviate from the standard road measurement: its energy consumption is mea-
sured by a dynamometer test, based on the NEDC. Hence, its consumption of
0.32 kWh/km is corrected by +45% according to the findings in the literature.
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5.2 Scenario and projections

The TCO model in this study anticipates that the vehicles are purchased in the
final days of the year 2015 (m = 0) and deployed from January 2016 (m = 1)
onwards for six years or 72 month. The following parameters and projections are
utilized:

• Purchase price subsidy: In Germany the purchase costs of electric vehi-
cles were not subsidized in 2015, hence no cost reduction of EV price is
incorporated into the TCO calculation.

• Vehicle tax: The vehicle taxes for the diesel vehicles are calculated ac-
cording to the vehicle’s technical specifications and included in the TCO
calculation. Electric vehicles are exempt from the annual circulation tax
for ten years.

• Emission testing: Electric vehicles are free of tailpipe emissions; hence costs
for emission testing (¤10 annually) only occur for the diesel vehicles in the
TCO comparison.

• Battery price projection: The prices for replacing EV batteries are pro-
jected to decrease relatively sharply, but many different projections exist.
We base our model calculation on the most recent and complete review and
projection of battery prices by Nykvist and Nilsson (2015). The authors
report that the average battery price was US $410 in 2014 and they project
that it will decline with an annual learning rate of 14 ± 6% until 2017/2018.
At that time the average price of US $230 will be level with the price of
the market leaders and decline with a learning rate of about 8%.

• EV battery replacement: Modern lithium batteries have been used in EV
applications only recently. Hence, most experiences regarding the battery
lifetime are based on experiences under laboratory conditions. Due to the
uncertainty of the battery lifetime in real-world applications, we assume
that an EV battery will need to be replaced once the battery warranty
expires.

• Battery resale value: The first modern EV batteries which reached their
end-of-life just recently entered the secondhand market. Experts estimate
that the batteries can be sold at about 50% of the current price for a new
battery, and will be utilized in stationary applications (Narula et al., 2011).
Following this evaluation, our TCO will incorporate a resale value of 50%
of the current battery price at the end of the battery life.

• Vehicle resale value: The discounted residual value of the vehicle (without
the battery) is calculated as a linear function: we assume that the vehicles
cannot be resold and need to be scrapped in the theoretically achievable
highest lifetime mileage scenario (over 500,000 km), but can retrieve a resale
value of 50% of the purchase price without the batteries in the lowest mile
scenario (below 3,000 km).

• Charging infrastructure: This calculation model excludes costs for the
charging infrastructure for two reasons. Firstly, the installation costs vary
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significantly based on the chosen technology and the prerequisites of the
company’s electrical installation. Secondly, the more expensive quick-charging
infrastructure can be shared among several electric vehicles. Hence, infras-
tructure costs need to be assessed individually.

• Energy price projection: The energy price is based on a comprehensive
study for the Federal Ministry of Economic Affairs and Energy (Schlesinger
et al., 2014). The authors project that the energy price excluding VAT paid
by industry customers will rise from ¤0.119/kWh to ¤0.159/kWh in 2020,
and further to ¤0.177/kWh in 2025.

• Diesel price projection: We base the diesel price on a projection by Brokate
et al. (2013). They have developed a scenario analysis for the German
passenger car market until 2040 and based their projections of the diesel
price on a projection provided by the International Energy Agency in 2012
in which the diesel price will increase from ¤1.14/l in 2010 to ¤1.21/l in
2020, and to ¤1.24/l in 2030 (excluding VAT).

• Feasibility of the energy and diesel price projections: We test the feasibil-
ity of the projections by linearly interpolating the value for the year 2014
and comparing it to the realistic average values without VAT in Germany
in year 2014. The average diesel price paid by consumers was at ¤1.13/l,
the average price of electrical energy for companies with a total energy
consumption between 2,000 MWh to under 20,000 MWh was ¤0.135/kWh
(Statistisches Bundesamt, 2015). Assuming linear price increases, the inter-
polated values from the diesel price forecast for 2014 are ¤1.17/l of diesel
and ¤0.135/kWh of electrical energy. With errors between 2 and 3%, both
prognoses can be accepted as sufficient for the basic TCO calculation. How-
ever, the recent decrease of crude oil and thus diesel price is not included in
these projections and is discussed separately in the conclusions (section 6).

• Discount factor: The base interest rate in Germany hit a historical low with
1.8% in Germany in 2015, while the weighted average cost of capital sunk
to 6.7% in the transport and leisure industry (KPMG, 2015). This study
sets the discount factor to 5%.

This model generates the ∆TCO between vehicle pairs, hence costs which are
similar for both vehicles, such as costs for scrapping, vehicle insurance, and road
worthiness testing, can be neglected and are not included in the consideration.

5.3 Results of the ∆TCO calculation

Based on the input values discussed in section 5.2 and 5.1, the monthly ∆TCO
of the vehicle pairs are calculated according to equation 2. This equation delivers
negative values for the cost-differences if the TCO of the EV is lower than the
TCO of the compared diesel vehicle. Figure 5 depicts the results for the diesel and
electric MAN-based vehicle, Figure 6 for the Dyna-based vehicles, and Figure 7
for the Sprinter-based vehicles.
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Fig. 5: ∆TCO of electric and diesel 12 ton MAN-based vehicles
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Fig. 6: ∆TCO of electric and diesel 7.5 ton Dyna-based vehicles
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Fig. 7: ∆TCO of electric and diesel 5 ton Sprinter-based vehicles



5 ∆TCO calculation and optimal mileage of electric vehicles 21

We evaluate our model by plotting a commonly depicted TCO graph of the
electric and diesel vehicles over time at an average mileage of 45 km/day and 90
km/day in Figures 5a, 6a, and 7a. Additionally, the resulting cost-differences are
calculated according to equation 1 and are included in the graph. The graphs
deliver four typical results which we anticipated from existing findings in the
literature and thus verify that the model delivers appropriate results:

1. The operational costs of the electric vehicles are lower than the operational
costs of the diesel vehicles, hence the TCO graphs of the diesel vehicles
increase more steeply than the graphs of the electric vehicles.

2. The operational costs of electric vehicles at higher average mileages (90
km/day compared to 45 km/day) are relatively lower than for the diesel
vehicles.

3. The battery replacements in the higher mileage scenario in Figures 7a and
6a impair the advantages of the EV operational costs.

4. None of the medium-duty electric vehicles are competitive compared to
their conventional sibling. At a daily average of 90 km driven on 300 days
for six years, the electric vehicles are between ¤27,700 (Sprinter-based) and
¤78,500 (MAN-based) more expensive than their conventional counterpart.

5. None of the medium-duty electric vehicles are competitive compared to
their conventional sibling. At a daily average of 90 km driven on 300 days
for six years, the electric vehicles are between ¤27,700 (Sprinter-based) and
¤78,500 (MAN-based) more expensive than their conventional counterpart.

In order to analyze the most cost-efficient mileage, we slice the costs calculated
in the last months of the TCO from the three-dimensional data and plot them
over the numbers of kilometers in the Figures 5b, 6b, and 7b. The cost-difference
of the MAN-based vehicles in Figure 5b behaves according to the expectations:
with a higher mileage the EV becomes increasingly competitive. However, the
cost-differences are not falling monotonically. Spikes occur if more frequent bat-
tery changes are required at higher mileages. As an example, the MAN-based EV
is relatively more cost-efficient when driving between 120 and 215 km/day than
at 230 km/day. The costs for the battery replacements are also the reason that
the TCO of the Sprinter EV does not significantly decrease at higher mileages,
despite lower operational costs, Figure 7b. Further, the hypothesis that all elec-
tric vehicles become more cost-efficient at higher mileages is disproved by the
Dyna vehicles. The differential costs depicted in Figure 6b show that the Dyna
EV becomes less cost-efficient the higher the number of kilometer driven.

The three-dimensional graphs of the three vehicle pairs are included in the Ap-
pendix as a reference. In order to analyze the reasons for the different cost
progressions and to interpret the results, we carry out a sensitivity analysis.

5.4 Sensitivity analysis

The parameters of the MAN-based vehicles are varied in a one-at-a-time sensi-
tivity analysis. The goals of this analysis are two-fold: first, we aim to detect
important parameters that have the highest impact on the competitiveness of the
EV at lower daily mileages. Second, we pursue to understand which parameters
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are mainly responsible for the EV to become more (or less) competitive with an
increasing mileage. Therefore, we vary the input parameters by ±20%.

Figure 8 depicts in an exemplary manner how the differential costs change when
adapting the vehicle-related input parameters of battery warranty, energy con-
sumption, diesel consumption and battery size. In order to achieve consistent
results, a change of the parameters “battery price” and “battery size” also in-
cludes an adaptation of the purchase price.
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Fig. 8: Sensitivity analysis of selected input parameters of MAN-based vehicles

In fitting a linear regression L = a + b · km to the results, we are able to ap-
ply the analysis over all average mileages (km) per day. The regression delivers
the parameters a and b, of which a represents the intersection with the y-axis
(cost-differences) and b the factor at which the graph is descending or ascending.
We relate the output difference to the input difference. The resulting sensitiv-
ity indexes SIa and SIb indicate the importance of the respective parameter for
the relative costs at lower mileages (SIa) and with an increasing mileage (SIb),
compare Table 4. Positive values for SIa indicate that varying the input param-
eter leads to a higher competitiveness of the EV. A positive value for SIb shows
that the TCO of the EV performs relatively better the more the vehicle is utilized.

It can be observed that the sensitivity indexes are not always symmetrical. The
reason is that the variance of some parameters may have several influences, which
have a different magnitude, depending on the calendar date when they occur. As
an example, reducing the energy consumption leads to savings due to compara-
bly lower operational costs per km. At the same time, this change influences the
recharging profile; this again influences the time and number of required battery
replacements. Since the projections for diesel fuel, electric energy and battery
prices utilized in the model are not linear, compare section 5.2, the points in time
when the energy and diesel are consumed, and the battery is replaced lead to
different, non-symmetric results for the costs.

The sensitivity index SIa in Table 4 shows that, of the tested parameters, the size
of the battery is the most relevant parameter influencing the differential TCO at
low average daily mileages (SIa = 0.62). Reducing the battery size by 20% leads
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SIb SIa

Parameter +20% -20% +20% -20%

Vehicle characteristics
Battery warranty 1.43 -1.78 -0.03 0.02
Energy consumption -6.25 6.29 0.02 -0.01
Diesel consumption 7.36 -7.36 0.01 -0.01
Battery size 0.66 -0.69 -0.56 0.56

Scenario parameters
Energy price -4.38 4.38 -0.01 0.01
Diesel price 7.36 -7.36 0.01 -0.01
Discount value 0.10 -0.11 -0.14 0.15
Residual value vehicle -1.42 1.42 0.29 -0.29
Resale value battery 1.25 -1.25 0.06 -0.06
Diesel road tax 0.00 0.00 0.01 -0.01
Purchase price battery -2.62 2.62 -0.26 0.26
Maintenance EV -0.72 0.72 0.00 0.00
Maintenance conventional vehicle 1.41 -1.41 0.00 0.00

Operational profile
Operation days 2.96 -1.28 0.03 -0.05
Charging speed -0.02 1.25 0.04 -0.01

Tab. 4: Sensitivity indexes of the MAN-based vehicles’ TCO input parameters

to a reduction of the TCO gap of 14%, since the EV would have a lower purchase
price with a smaller battery. However, reducing the battery size has a negative
impact on the competitiveness of an EV at higher ranges (SIb = −0.69), because
due to the smaller battery more frequent battery changes are required, also com-
pare Figures 8d and 8h. However, it has to be pointed out that the one-at-a-time
sensitivity analysis does not reflect the potential need for further charging infras-
tructure to recharge the smaller battery during operations, which could outweigh
the cost-savings for a smaller battery. In contrast, a smaller battery could lead
to an increased energy efficiency of the EV (compare section 4.1, page 12), which
could positively impact the EV TCO. An individual assessment, depending on
the tour planning and recharging possibilities, is, therefore, required to analyze
whether an EV might increase its competitiveness with a smaller battery.

Two further relevant factors at low average daily mileages are the residual value
of the vehicle only (not the battery) and the purchase price of the battery. A
20% lower residual value for the vehicle has a relative higher negative impact on
the TCO of the EV (SIa = −0.29), since the initial purchase price of the EV is
higher than of the diesel vehicle. However, with higher average daily mileages,
the impact of the factor is slightly decreasing (SIb = 1.42), since the TCO model
assumes that the vehicles fetch a lower resale price with a higher mileage. A
20% lower battery purchase price obviously reduces SIa (0.26) and also posi-
tively influences the TCO of the EV the higher the number of kilometers driven
(SIb = 2.62).
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None of the factors that mostly influence the TCO at lower mileages are relevant
when increasing the mileage. Index SIb shows that with a higher utilization the
most important factors are the variances of the diesel consumption and price. A
decrease of the diesel price and consumption by 20% leads to an increase of the
slope of the cost graphs (both -7.36), also compare Figure 8g. A reduction of
the energy consumption (SIb = 6.29) has a slightly lower effect compared to an
equal increase of the diesel price, also compare Figures 8c and 8f. A reduction of
the energy price has only about 60% the effect of an equal increase of the diesel
price (4.38 vs. 7.36). Further parameters that impact the slope of the graph to
a smaller extent are the purchase price of the battery and the battery warranty.
These parameters mainly determine whether an EV becomes more competitive
with a growing mileage.

5.5 Discussion

The results of the study indicate that none of the three exemplary calculated
medium-duty electric vehicles are more profitable than comparable diesel ve-
hicles. This finding supports the case study of Macharis et al. (2013), which
also found a medium-duty EV calculation to be non-competitive. Our study
researched the cost-optimal mileage in further detail. We find that a higher uti-
lization of an EV can reduce the cost gap, but scenarios exist where this is not
the case. Within the preconditions of our scenario, it is for example more ad-
vantageous to operate the 12 ton MAN-based EV at an average of 200 km/day
than at 250 km/day; the costs of the 5 ton Sprinter-based EV only vary slightly
over the number of kilometers driven; while the 7.49 ton Dyna EV becomes more
costly with a higher mileage. Hence, our results partly contradict the hypothesis
that is commonly derived in the literature via TCO and EVRP calculations, that
electric vehicles become relatively more competitive compared to conventional
diesel vehicles with an increasing mileage.

It is noteworthy that in order to reach very high average daily mileages, a multi-
shift utilization with intermediate quick-charging of the battery would be neces-
sary. The possible costs for the charging infrastructure have not been included in
the model. A potential need for building up quick-charging infrastructure would
shift the result in favor of the diesel vehicles. Further, achieving a very high
mileage operational pattern might be rare in a practical application. Moreover,
charging the EV battery with high charging rates was found to accelerate battery
degradation (Lacey et al., 2013). Hence, a long battery warranty is important to
reduce the risk of costly battery replacements, especially in high mileage scenar-
ios which are only achievable with intermediate charging.

Our sensitivity analysis underlines the importance that companies clearly analyze
the planned usage profile before choosing a suitable EV. A low energy consump-
tion, high utilization and long battery warranty are the most important param-
eters that can lead to a competitive operation of the EV. However, the realistic
diesel consumption and future diesel price estimations are even more relevant
factors that determine whether an EV can be operated profitably compared to
a diesel vehicle. If a company operates very fuel-efficient diesel vehicles, but the
comparable EV model is not energy-efficient, an exchange with an EV might not
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be profitable. The example of the Dyna vehicles illustrates the impact of these
factors at increasing mileages. In our model the energy and diesel prices as well
as the days of operation are similar for all simulated vehicles. The manufacturers
of the conventional Dyna vehicle indicated that the realistic diesel consumption
of the vehicle is rather low, arguing that it was designed as a fuel-efficient vehicle.
At the same time, the converted Dyna EV consumed nearly as much energy as
the 12 ton MAN-based EV, as indicated by the conversion company. This, paired
with a relatively short battery warranty of 100,000 km, leads to increasing costs
of the Dyna EV with a growing mileage compared to the diesel model.

The reason for the differences between our findings and those in the body of liter-
ature is that existing sensitivity analyses researched the difference of the output
(i.e., cost) based on changes for the input parameters (i.e., mileage) by varying
a base parameter (i.e., 50 km). This so-called ‘local’ sensitivity analysis delivers
results relative to the chosen setting of the base parameters, but not for the entire
parameter distribution. The local findings may not be valid far from the base set-
tings (Hamby, 1994). This is the case in our research. By expanding the mileage
to the theoretical maximum, we include the so far under-researched effects of the
reduced state of health of a battery and more frequent battery changes on the
cost-efficiency of medium-duty electric vehicles. Our calculation thus expands
the knowledge base on the competitiveness of electric vehicles at high average
daily mileages. This understanding is relevant in practical applications, since the
Elmo real-world test shows that companies undertake testing to raise the daily
mileage significantly over 300 km, in order to increase the competitiveness of
their electric vehicles.

Based on these results, we do not recommend a minimum period of time to
achieve a cost-efficient medium-duty EV operation as noted by Davis and Figliozzi
(2013), nor do we suggest to only sell an EV at the point in time where the
battery has to be replaced, as recommended by Lebeau et al. (2015b) for light
commercial electric vehicles. Instead, we suggest that for each vehicle, it is
necessary to individually calculate the most cost-efficient mileage, based on the
specific EV parameters, such as its energy consumption, charging rate, battery,
size battery warranty; as well as the compared diesel vehicle’s parameters; and
the external factors, such as energy prices, subsidies and vehicle purchase prices
in the markets.

6 Conclusion

This study analyzes the cost-optimal mileage of medium-duty electric vehicles
compared to similar conventional vehicles. In order to reach this goal, this study
fills gaps in the literature by adding evidence about the real-world energy con-
sumption of medium-duty electric vehicles; applying a time-optimized EV charg-
ing strategy; and including battery degradation and replacement in a total cost
of ownership calculation.
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The results of our study suggest that in certain, but not in every scenario an
EV will become more cost-efficient with an increasing mileage compared to a
conventional vehicle. Hence, we recommend that practitioners should determine
the necessary operational profile before purchasing an EV, in order to select a
vehicle configuration which delivers the most cost-efficient TCO compared to the
replaced diesel vehicle. This includes analyzing the traffic conditions in which the
EV will be deployed, since our study indicates that – similar to conventional ve-
hicles – the energy consumption of an EV in high-density urban traffic with many
stops is higher than when the EV is driven on long stretches at constant speeds.
In utilizing our calculation model, it is possible to analyze whether purchasing an
EV with a smaller battery but intermediate quick-charging option might offer a
more cost-efficient solution. An EV with a larger battery might not only be more
expensive and hence less competitive; due to the higher battery weight, but the
potentially reduced energy-efficiency of the EV might impair anticipated gains in
the range of vehicles, as found in the Elmo real-world test.

As a limitation to our results, the TCO has been calculated with an oil price
prognosis as input factor which does not reflect the recent price turbulence. The
current oil price is about 30% below the projections assumed in the model, which
are based on the International Energy Agency’s projections of 2012. Our analysis
shows that applying a 30% lower diesel price would lead to an increasing cost
gap for all three exemplary simulated EV models.

This finding has interesting implications for policymakers. In 2016, the German
government adopted a subsidy scheme of ¤4,000 when purchasing an EV. In
the Netherlands, a maximal “environmental investment allowance” of 36% of the
purchase price, up to ¤50,000 can be granted (Netherlands Enterprise Agency,
2015). While any of these subsidies would lower the TCO gap of an EV at very
low mileages, the EV would become less competitive the more it is utilized, if the
current diesel price prevails. This is counter-productive, since an EV only gen-
erates effective environmental advantages when it is utilized as much as possible
and replaces a conventional vehicle. Hence, our findings suggest that subsidizing
a high utilization of electric vehicles is a more successful and sustainable pol-
icy strategy. The real-world test presented in this study indicates that the ten
medium-duty electric vehicles saved a significant amount of between 81 to 102
tons of CO2-equivalents throughout the 131,018 km driven in the test. The most
important cost-leverage to motivate companies to purchase and operate an EV at
high mileages, is to raise the per-kilometer costs of diesel vehicles relative to elec-
tric vehicles. A potential measure, thus, is to increasing the price of diesel fuel,
i.e., by abandoning the taxation subsidy of diesel fuel: since diesel fuel has an
overall tax advantage of ¤0.219/l at filling stations, compared to petrol in Ger-
many. Further policy options to raise the relative per-kilometer costs of diesel
vehicles are to implement a kilometer-dependent city toll for conventional freight
vehicles; to reduce the energy price taxation when charging electric vehicles; or
to subsidize the setup of proprietary quick-charging infrastructure for companies.

Despite higher costs, medium-duty electric vehicles might pose an interesting op-
tion for multi-shift trips that include night delivery. Electric vehicles are more
silent in operation, especially when accelerating or decelerating in urban traffic
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(Cavar and Jolic, 2011). Our model proposes answers to the relevant question
of how the competitiveness of electric vehicles develops in high-mileage or multi-
shift utilization. Even though uncertainties exist with regard to the utilized input
values, such as the future oil price or the resale value of batteries, the main results
of our model are generalizable and the model is transferable to other markets and
vehicles, by adapting the input values, such as external parameters and technical
vehicle specifications. Moreover, the discussed factors can be utilized in future
calculations that include an EV energy model, such as electric vehicle routing
problems and life cycle analyses.

The following limitations of the current study offer opportunities for future re-
search:

• Due to the lack of data, we estimated the costs for service and maintenance
of medium-duty electric vehicles to be half the costs of conventional vehicles,
similar to other TCO calculations in the literature (Feng and Figliozzi, 2013;
Macharis et al., 2013; Lebeau et al., 2015b). Further real-world tests are
needed to determine whether this estimation is valid, since our sensitivity
analysis showed that the costs for maintenance and service have a mild but
not negligible impact on the TCO calculation.

• Our study finds in accordance with Lee et al. (2013), that apart from the
vehicle’s mileage, the TCO is most sensitive to the diesel fuel efficiency or
costs. While the efficiency of the electric vehicles was closely monitored in
the Elmo field-tests, the fuel consumptions of comparable diesel vehicles
were only estimated by the fleet managers. Real-world fuel consumptions
of the medium-duty diesel vehicles, which are compared to electric vehicles
in a TCO calculation, need to be monitored with a similar level of detail,
in order to carry out an exact TCO calculation.

• The maximal possible daily range of the EV has been calculated by analyz-
ing the charging characteristic of an exemplary lithium-ion battery. Hence,
our results are valid for electric vehicles with a lithium-ion battery only,
and still might deviate slightly, depending on the specific battery.

While this study emphasizes the importance that logistics companies understand
the most cost-efficient operational profile of their medium-duty electric vehicles,
it also highlights that most of these vehicles cannot financially compete under
the current conditions in Germany. Subsidies and privileges are required in order
to help logistics companies to bridge the TCO gap, if a substantially higher
number of electric vehicles is desired to reduce the local air pollution as well as
greenhouse gas and noise emissions in cities. As the current study suggests, such
subsidies should preferably increase the utilization of electric vehicles in urban
freight transport by increasing the advantage of the operational costs of electric
vehicles.
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(b) 7.5 ton Dyna-based vehicles
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Fig. 9: 3D-view of electric and diesel ∆TCO
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