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AbstratIn this note we ompute exat boundary spetra for D-instantons in �-models onthe supergroup PSL(2j2). Our results are obtained through an expliit summation ofthe perturbative expansion for onformal dimensions to all orders in the urvatureradius. The analysis exploits several remarkable properties of the perturbationseries that arises from resalings of the metri on PSL(2j2) relative to a �xed Wess-Zumino term. Aording to Berkovits, Vafa and Witten, the models are relevantin the ontext of string theory on AdS3 with non-vanishing RR-ux. The noteonludes with a number of omments on various possible generalizations to othersupergroups and higher dimensional superoset theories.
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Contents1 Introdution 12 Colletion of bakground material 82.1 Branes at the WZ point: gluing onditions and geometry . . . . . . . . . . 82.2 Boundary partition funtion and its Casimir deomposition . . . . . . . . . 112.3 The RR-perturbation and its exat marginalilty . . . . . . . . . . . . . . . 123 Deformation of the boundary partition funtion 133.1 The boundary 2-point funtion . . . . . . . . . . . . . . . . . . . . . . . . 143.2 Perturbative expansion for onformal weights . . . . . . . . . . . . . . . . 163.3 Perturbation of boundary onformal weights . . . . . . . . . . . . . . . . . 183.4 Computation of boundary onformal weights . . . . . . . . . . . . . . . . . 204 Conlusions and outlook 21A The superalgebra psl(2j2) and its representations 25B Derivation of the main vanishing lemma 261 IntrodutionThe elebrated AdS/CFT orrespondene [1, 2℄ has promoted the solution of string theoryin Anti-de Sitter (AdS) spaes to one of the entral problems of modern mathematialphysis. Progress in this diretion requires to onstrut new types of quantum �eldtheories with internal Lie superalgebra symmetries. The preise model to be onsidereddepends on the partiular approah that is employed. Reent investigations have beenbased on ertain gauge �xed versions of the Green-Shwarz superstring [3, 4, 5, 6, 7, 8℄,the pure spinor formalism [9, 10, 11, 12℄ and the hybrid formalism [13, 14℄.Without muh further omment on the preise relation with string theory (see someremarks below, however), we shall turn our attention to a partiular lass of quantum the-ories with internal supersymmetries, namely to non-linear sigma models on supergroups.They are haraterized by the following simple ationSf;k[S℄ = � 12�f 2 Z�d2z str �S�1�SS�1 ��S�� k12� Z� d�1str��S�1dS�3� (1.1)1



with a suitably normalized supertrae str. Here, S is a map from the world-sheet � tosome supergroup G. We have weighted the standard kineti term with a oupling onstantf 2 and also added a topologial Wess-Zumino (WZ) term with oeÆient k. For sigmamodels on bosoni groups, quantum onformal invariane requires f�2 = k. One wehave adjusted the oupling onstants in this way, we are dealing with a Wess-Zumino-Novikov-Witten (WZNW) theory whih an be solved using the algebrai tehniques of2-dimensional onformal �eld theory, exploiting the in�nite dimensional urrent algebrasymmetry of the WZNW model.It is one of the intriguing features of ertain supersymmetri target spaes that therequirement of quantum onformal invariane may not impose any restrition on f�2, seee.g. [13, 15, 16, 17℄. This happens whenever the supergroup G has vanishing dual Coxeternumber. The latter ondition is satis�ed e.g. for the superonformal groups PSL(NjN)that appear in the AdS/CFT orrespondene, but also for OSP(2N+2jN) and D(2; 1;�).In these ases, the ation (1.1) gives rise to a ontinuous family of onformal quantum�eld theories. All models share the same global target spae symmetries. On the otherhand, the WZ point with f�2 = k is still distinguished by an enhanement of world-sheetsymmetries. For generi values of f , one only expets to �nd a few hiral higher spin �eldsin addition to the Virasoro symmetry that omes with onformal invariane (see [15℄ fordetails). Whatever the preise hiral symmetry is, it will almost ertainly not suÆe fora full algebrai solution of generi supergroup sigma models. This insight has lead manysientists working in the �eld to disard onformal �eld theory tehniques and to turnto other methods in integrable systems, suh as the Bethe-Ansatz and generalizationsthereof.Though ultimately, omputations in superspae sigma models may involve a varietyof integrable tehniques (see e.g. [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29℄ for aninomplete olletion of reent relevant ideas, a few results and many further referenes,in partiular to the earlier literature), it seems to us that the real potential of onformal�eld theory methods has not been explored with suÆient are. In fat, we shall seebelow that a ombination of algebrai tehniques with onformal perturbation theory anprovide powerful new results going far beyond the WZ point. To be more preise, wepropose to onsider the sigma models (1.1) as deformations of a WZNW model,Sf;k[S℄ = SWZNWk [S℄ � �2� ZHd2z str �S�1�SS�1 ��S� = SWZNWk [S℄ + S�[S℄ : (1.2)2



The deformation parameter � is related to k and f through � = f�2 � k. For reasonsto be explained below, we shall often refer to this deformation of the WZNW model as a\RR-deformation". Note, however, that on the level of sigma models it simply hangesthe overall sale fator of the metri while leaving the magneti bakground �eld invariant.Our approah is then to study the sigma model through onformal perturbation theoryaround the WZ point. In this note we restrit our attention to the simplest objets,namely to partition funtions, leaving investigations of orrelators et. as an interestingproblem for future researh.In order to explain our strategy, let us briey look at simple torus ompati�ations.Suppose we are interested e.g. in the spetrum of strings on a 1-dimensional irle witharbitrary ompati�ation radius r. At generi points in the 1-dimensional moduli spae,the hiral symmetry of the model is generated by the U(1) urrent i�X and its anti-holomorphi ounterpart. With respet to these urrents, the theory is not rational. Butthere exist some distinguished points in the moduli spae at whih the hiral symmetry isenhaned and the theory beomes rational one the additional hiral �elds are taken intoaount. In partiular, the moduli spae ontains one point, known as the self-dual radiusr0 = rSD, where the symmetry gets enhaned to an sl(2) urrent algebra at level k = 1.At this speial radius, all spetra an be omposed from a �nite number of setors. Withlater generalizations in mind, we onsider the partition funtion on a strip or half-planewith Neumann boundary onditions whih is simply given by the vauum harater of thesl(2) urrent algebra1Zr0N (q) = �su(2)0;k=1 = #3(q2)=�(q) = 1�(q) Xn2Z qn2 : (1.3)Other points in the moduli spae may be reahed through a deformation with the per-turbation S = 2� R d2z�X ��X. The perturbation series for the onformal dimensions ofboundary �elds an be summed up to all orders in perturbation theory. Our partitionfuntion (1.3) gets deformed toZrN(q) = 1�(q) Xn2Z q n21� : (1.4)The result orresponds to the spetrum of a point-like brane on a irle with radiusr = r0p1� . In the perturbative treatment, the fator 1=(1� ) = 1 + =(1� ) arises1At the self-dual radius there is no fundamental di�erene between a D-instanton and an extendedbrane sine they an an be rotated ontinuously into the other, see e.g. [30℄.3



from a geometri series as explained e.g. in [31℄. Bulk spetra an also be omputed, eitherdiretly or through modular transformation of the boundary partition funtion. Let uspoint out that the perturbative analysis is insensitive to the fat that the theory eases tobe rational one we move away from the self-dual radius. Of ourse, in this partiular asethe U(1) urrent algebra symmetry is suÆiently large for an algebrai onstrution of thetheory at generi radii and suh a onstrution is about as diÆult as it is at the self-dualpoint. Hene, there is no good motivation to pass through a perturbative onstrution.But there exists a better example to illustrate the enormous potential onformal per-turbation theory may possess. It is provided by the 1-dimensional boundary sine-Gordontheory. In this model, a periodi potential is swithed on along the boundary of a free�eld theory. As a onsequene, the spetrum of boundary dimension develops gaps whihan grow with the strength � of the perturbation. Eventually, only a point-like spetrumremains. Given the omplexity of the spetrum at intermediate values of �, one mightsuspet that its preise form is very diÆult to determine. Yet, the boundary partitionfuntion an be alulated rather easily in perturbation theory [32, 30, 33℄, for any valueof the deformation parameter �. In this example, the boundary potential redues thehiral symmetry to the Virasoro algebra. In priniple, the latter is still suÆiently largeto allow for a standard CFT onstrution of the boundary sine-Gordon theory, but suhan analysis is of the same level of diÆulty as the solution of Liouville theory and it hasnever been arried out. Hene, the example of boundary sine-Gordon theory supportsour laim that in some situations, onformal perturbation theory provides an easy routeto ompliated results that seem (almost) inaessible through the usual algebrai meth-ods. A similar piture will emerge from our study of boundary spetra on supergroup�-models.Even though most of the ideas and tehnial steps we are about to explain hold quitegenerally, we shall arry them out in a partiular example, namely for the supergroupPSL(2j2). This allows our presentation to be very onrete. Furthermore, our resultsapply to string theory in AdS3� S3 whose solution has been redued to the onstrutionof sigma models on the supergroup PSL(2j2) through the hybrid approah developedby Berkovits, Vafa and Witten [13℄. In this ontext, the WZNW model orrespondsto a bakground with pure NSNS 3-form ux. Swithing on an additional RR �eld ismodelled by the marginal perturbation with S� whih is why we often refer to this term4



      

RR-deformation
AdS with B-�eldD-instanton

�Figure 1: The inuene of NSNS and RR potentials on strings in the bulk and on aninstantoni brane.as RR-deformation. Sigma models on PSL(2j2) and losely related target superspaeshave been investigated by several groups [13, 15, 34, 35, 36℄. For our analysis, the studiesby Bershadsky et al. have been partiularly useful.With the example of strings in AdS3 in mind, we may re-evaluate our optimistihopes to ompute exat spetra through perturbation theory. Let us think of the targetspae as a 3-dimensional solid ylinder. Sine AdS3 is urved, the orresponding sigmamodel is interating. At the WZ point, the interation falls o� exponentially towards theboundary of the ylinder. This has several e�ets on the bulk spetrum. In partiular,the spetrum is ontinuous and there exist so-alled long string states that an strethalong the boundary [37℄. The RR-deformation now adds another term to the interationwhih inreases exponentially near the boundary. Obviously, suh a new term must havedrasti e�ets on the spetrum. Certainly, long string states disappear. In addition,the spetrum is expeted to beome disrete sine losed strings are now moving in a boxbetween the two exponential walls. The dramati e�ets of the RR-deformation may raisedoubts that perturbative omputations ould be suessfully performed. And indeed, itis most likely true that the bulk spetrum of the theory is not amenable to a perturbativeexpansion in �. But the situation hanges if we onsider the boundary spetrum [38, 39℄on a D-instanton instead. Suppose, the instanton has been plaed at the enter of thesolid ylinder. Open strings that end on suh a D-instanton must be very highly exitedin order to penetrate into the region lose to the boundary where the RR-bakground uxan be felt. Therefore a D-instanton spetrum might be aessible through a perturbativeomputation. Below we shall see that this intuition is indeed orret. In fat, we are ableto determine the exat spetrum of a D-instanton for any value of �. The same alulationfails at one step when we try to apply it to the bulk or to spetra on non-ompat branes.5



Our main new result is a omplete omputation of the boundary spetrum for max-imally symmetri, point-like branes in sigma models on the supergroup PSL(2j2). Thepartition funtion of suh a system was argued in [40℄ to be of the general formZPSL(2j2)DI;� (z1; z2; q) = strH � qL0� 24 zK011 zK022 � (1.5)= Xj1 6=j2 a�j1j2(q)�[j1;j2℄(z1; z2) + Xj b�j (q)�P[j℄(z1; z2) :Here, K01 and K02 are two Cartan elements in the bosoni subalgebra sl(2) � sl(2) ofpsl(2j2) and we have denoted the haraters of the ontributing �nite dimensional psl(2j2)representations by � (see Appendix A for expliit formulas). The branhing funtions bjand aj1;j2 at the WZ point � = 0 were also determined in [40℄. Our aim in this work isto show that the branhing funtions bj are independent of the deformation parameter �whilea�j1;j2(q) = q�Cj1;j22 �k(k+�) a�=0j1;j2(q) with Cj1;j22 = j2(j2 + 1)� j1(j1 + 1) : (1.6)Let us already point out that the dependene of the onformal weights on the deformationparameter � is very similar to the one found in free �eld theory (see eq. (1.4)). We shallsee that this is due to some peuliar features of the Lie superalgebra psl(2j2).Our formulas (1.5) and (1.6) ontain a surprising wealth of information. Let us unravelsome of that through a few seleted ases. Consider, for example, the boundary urrentJ�(x) where � runs through some 14-dimensional basis of psl(2j2). Under the ation of theglobal psl(2j2), the urrents transform in the adjoint representation whih is part of theatypial module P[0℄ (see Appendix A). Sine the branhing funtions bj are independentof �, states transforming in any of the P[j℄ do not reeive orretions. Hene, the urrentsJ� ontinue to possess dimension h = 1, as expeted. Things beome more interestingone we proeed to produts J�J� of urrents. These form a 196-dimensional subspae of�elds transforming in the 48-dimensional representations [0; 1℄; [1; 0℄ and various subspaesof P[j℄. Hene, under the deformation, the weight of 96 �elds gets lifted while 100 �eldsremain at onformal weight h = 2.Formula (1.6) passes a few interesting test. To begin with, we observe that the energyshift is positive for states with suÆiently large momentum j1 in the radial diretion ofAdS3. This is in line with our geometri intuition: Only states that are highly exitedin the radial diretion an penetrate to the region near the boundary of AdS3 where6



their energy gets lifted due to the RR perturbation. It is also interesting to evaluateour formula in the semi-lassial regime, i.e. for large values of the level k. Insertingthe relation � = f�2 � k in (1.6) and sending k to in�nity, the spetrum of boundaryonformal weights is seen to oinide with the spetrum of f 2C2 up to the usual integershifts. The eigenvalues of f 2C2 may be interpreted as energies for a partile moving onPSL(2j2). Hene, at large level k and modulo integers, the spetrum of the sigma modelon PSL(2j2) agrees with the minisuperspae approximation, as it is supposed to. A muhmore detailed investigation of the approah to minisuperspae spetra for superspheremodels is inluded in a very interesting upoming paper by Candu and Saleur [41℄.The plan of this work is as follows. In the next setion we ollet some bakgroundmaterial, partly from our earlier paper [40℄. This inludes a areful disussion of maximallysymmetri, point-like branes in the WZNWmodel on PSL(2j2). The ones that are relevantfor our analysis are loated at the group unit e of the bosoni base and they extend inall eight fermioni diretions. The assoiated boundary partition funtion is disussedin setion 2.2 along with more details on the Casimir deomposition (1.5) at the WZpoint. Setion 2.3 ontains a onstrution of the perturbing �eld in terms of urrentsand a new proof of its exat marginality. Most of our novel results are obtained insetion 3 whih begins with a few omments on 2-point funtions. Setion 3.2 lists severalobservations onerning the perturbative series generated by S�. We shall show thatthe RR-deformation, while being non-abelian and non-onstant on PSL(2j2) in general,simpli�es drastially in the evaluation of psl(2j2) invariant quantities, suh as onformalweights. In fat, the RR-deformation turns out to be quasi-abelian, i.e. its ombinatorisis no more omplex than it is for onstant shifts of the losed string bakground �elds ina at target spae. There remains a mixing problem, however, that we an only overomewhen the general results are applied to boundary onformal weights of a point-like D-instanton. This is explained in setion 3.3 before we ombine all our results into an exatomputation of boundary weights, following losely the steps of a similar omputationin [31℄. Our onluding setion inludes extensive omments on possible generalizations,appliations and onsequenes.
7



2 Colletion of bakground materialThe purpose of the following setion is mainly to provide the bakground material thatour subsequent perturbative evaluation of boundary partition funtions is based upon.In the �rst part we gear up to explain the struture of the boundary partition funtionwe are about to deform. We start with a few omments on brane geometries in WZNWmodels on PSL(2j2), extending our previous analysis of branes in the gl(1j1) WZNWmodel [42℄.2 One of the instantoni D-branes we �nd, possesses exatly the spetrumthat was antiipated in [40℄. The full �eld theory partition funtion and its so-alledCasimir deomposition is reviewed in the seond subsetion. We then turn to a moredetailed analysis of the perturbing �eld, mostly following our previous disussion in [40℄.On this oasion, we propose a new argument for the exat marginality of � whih di�ersa bit in harater from the original derivation [15, 13℄. Rather than using the vanishingof the dual Coxeter number of psl(2j2), our reasoning exploits the position of � at thebottom of a logarithmi multiplet (see also [43℄). Most of the results we desribe beloware not new and the impatient or experiened reader may skip forward to setion 3, atleast on �rst reading.2.1 Branes at the WZ point: gluing onditions and geometryAs we shall explain in great detail below, the suess of our subsequent exat omputa-tion of a boundary partition funtion for the sigma model on PSL(2j2) hinges on threekey properties of the imposed boundary ondition. To begin with, it (i) must preservesome ombination of left and right regular psl(2j2) transformations. At the WZ point,maximally symmetri boundary onditions are assoiated with so-alled twisted onju-gay lasses (see [44℄ and [42℄ for the supersymmetri ase). Expliit formulas for thedeformation of the partition funtion an only be found if (ii) the orresponding twistedonjugay lass is point-like loalized on the bosoni base and (iii) it is deloalized in allthe fermioni diretions. Later we shall rephrase these onditions as inherent featuresof the boundary onformal �eld theory. Our aim here is to desribe a boundary ondi-tion whih meets all these requirements and to determine the relevant boundary partitionfuntion at the WZ point.In the WZNW model, the global symmetries of the PSL(2j2) sigma model are gener-2This �rst subsetion is based on unpublished notes of TC on branes in supergroup WZNW models.8



ated by the zero modes of hiral urrentsJ(z) := �k�SS�1 ; �J(�z) := kS�1 ��S : (2.1)A boundary WZNW model is sale invariant if the Sugawara stress tensor obeys T (z) =�T (�z) all along the boundary z = �z. Suh a onformal boundary theory preserves a globalpsl(2j2) symmetry provided that the urrents satisfy the following gluing onditionJ�(z) = 
 �J�(�z) for z = �z : (2.2)Here, 
 is a metri preserving automorphism of the Lie superalgebra. It determines thepreise ombination J0 + 
 �J0 of global psl(2j2) harges that remains unbroken by theboundary ondition. In the ase of bosoni groups, the geometry underlying maximallysymmetri boundary onditions in WZNW models was unravelled in [44℄ (see also [45, 46℄for various generalizations and [47℄ for a review). There it was shown that a boundaryondition in whih left and right moving urrents are identi�ed with a trivial gluing auto-morphism 
 = id orrespond to branes whose world-volume is loalized along onjugaylasses. When 
 is nontrivial, the relevant geometri objets are twisted onjugay lassesC
u = f h 2 G j h = gu
(g�1) gwhere u is an element in G and we have lifted the automorphism 
 from the Lie algebrato the group. As explained in [42℄, the derivation of [44℄ arries over to WZNW modelson supergroups (see also [48℄ for a general analysis).Having outlined the link between boundary onditions and onjugay lasses we arenow searhing for a pair (u;
) suh that C
u meets the requirements (ii) and (iii) we havelisted in the introdutory paragraph to this subsetion. We shall not ondut our searhsystematially. Instead, let us simply argue that the hoie u = e and 
(X) = (�1)jXjXdoes the job. The orresponding twisted onjugay lass C
u is loalized at the unit elemente of the bosoni group and it extends in all fermioni diretions, i.e. along those tangentvetors X 2 psl(2j2) whih have degree jXj = 1. It is easy to see that 
(X) = (�1)jXjXis onsistent with the Lie superalgebra struture and the metri. Hene, it extends to agluing automorphism on the entire urrent algebra. Moreover, parametrizing elements gof the supergroup in the form g = exp(F ) exp(B) where F (B) is any linear ombinationof odd (even) elements, we �ndC
u = f h 2 G j h = eF eB
 �e�Be�F � = e2F g :9



Indeed, the bosoni oordinates have dropped out and we remain with a superonjugaylass of superdimension 0j8 whih extends merely along the 8 fermioni diretions. Weonlude that the spae of funtions on the orresponding brane is given byf = f(�a; ��b) (2.3)where �1; : : : ; �4 and their bared ounterparts are four fermioni oordinates that parame-trize the odd generators F . The relevant ation of psl(2j2) on this 28-dimensional spae isobtained by restriting the 
-twisted adjoint ation of psl(2j2) on the supergroup PSL(2j2)to a point in the bosoni submanifold, or more expliitly,Aa1 = ��a � 12�abd�b(��d � �d�)� �abd�b(�� ��d � ��d ��) ;Aab = �i�a�b + i�b�a � i��a ��b + i��b ��a ; Aa2 = �a : (2.4)The urious reader an �nd expliit formulas for the generators of the left and right regularation LX and RX in [40℄. When ombined as AX = LX + (�1)jXjRX , they result in thetwisted adjoint ation that is relevant for the minisuperspae desription of the symmetryof our brane.Under the twisted adjoint ation AX , the 28-dimensional spae of ground states (2.3)may be seen to transform aording to the representationB(0; 0) := Indgg(0)V(0;0) = U(g)
g(0) V(0;0) �= P0 � [1; 0℄ � [0; 1℄ :Here, g(0) denotes the bosoni subalgebra of the Lie superalgebra g = psl(2j2) and weintrodued V(0;0) for the trivial 1-dimensional representation of g(0). Aording to generalmathematial results, the module B(0; 0) is projetive. Hene, it is guaranteed to deom-pose into a diret sum of projetive modules. The orresponding deomposition is spelledout on the right hand side. Here, the symbols [0; 1℄ and [1; 0℄ denote 48-dimensional ir-reduible typial representations (long multiplets) of psl(2j2). These are generated fromthe two 3-dimensional representations of sl(2)� sl(2) by the appliation of four fermionigenerators. In addition, there appears the 160-dimensional projetive over P[0℄ of thetrivial representation [0℄. It is an indeomposable representation that is built up fromirreduible atypials (short multiplets) of psl(2j2) aording to the following diagramP[0℄ : [0℄ �! 3[1=2℄ �! 2[1℄� 6[0℄ �! 3[1=2℄ �! [0℄ :10



This so-alled omposition series tells us that P[0℄ ontains the trivial representation [0℄as a true subrepresentation. Its representation spae is spanned by the unique invariantelement in P[0℄. We all this subrepresentation [0℄ the sole of P[0℄. At the other end ofthe diagram, i.e. in the so-alled head of P[0℄, we �nd another opy of [0℄. It is assoiatedwith the fator spae of P[0℄ whih is obtained if we divide the projetive over by itsmaximal non-trivial subrepresentation. A brief summary of the representation theory ofpsl(2j2) is provided in appendix A. Many more details an be found in [49, 40℄. We advisereaders who are unfamiliar with indeomposable representations of Lie superalgebras toonsult those referenes or other mathematial literature.2.2 Boundary partition funtion and its Casimir deompositionAfter this brief disussion of brane geometry and the spae of ground states, let us an-alyze the exited states whih arise through appliation of urrent algebra modes. Byonstrution, these states transform in representations that emerge from a produt of aprojetive module with some power of the adjoint and whih, by abstrat mathematialresults, an be deomposed into projetives. Expliit formulas for the involved haraterswere provided in [40℄. Sine we do not need the details below, we refrain from reproduingthese formulas here. In [40℄ we also explained how setors ereted over projetive modulesan be deomposed into representations of the Lie superalgebra psl(2j2). The result anbe expressed in the formZPSL(2j2)D0 (z1; z2; q) = �P[0℄(z1; z2; q) + �[1;0℄(z1; z2; q) + �[0;1℄(z1; z2; q)= Xj1 6=j2 �aP[0℄j1j2(q) + a[1;0℄j1j2 (q) + a[0;1℄j1j2(q)� �[j1;j2℄(z1; z2) (2.5)+ Xj �bP[0℄j (q) + b[1;0℄j (q) + b[0;1℄j (q)� �P[j℄(z1; z2)where �[j1;j2℄ and �P[j℄ are superharaters of the Lie superalgebra psl(2j2) (see Ap-pendix A for expliit formulas). Formula (2.5) is known as the Casimir deompositionof the partition funtion. The various branhing oeÆients aij and bj ount how manytimes a projetive psl(2j2) multiplet appears on a given energy level. These numbersmay be determined with the help of the Raah-Speiser algorithm. A detailed explanationan be found in [40℄ along with a few expliit expressions for the branhing of the rep-resentation P̂ [0℄. Here it suÆes to reall that the lowest onformal weight h$j1;j2 among11



all the multiplets [j1; j2℄ that are generated out of ground states in the representations$ �= P[0℄; [0; 1℄; [1; 0℄ satis�esh$j1;j2 = C2($)=k + n(j1; j2) with n(j1; j2) 2 Nwhere we denoted the eigenvalue of the quadrati Casimir element in the representation$ by C2($).3 The same formula with j1 = j2 applies to the projetive overs P[j℄.Note that at the WZ point the spetrum has huge degeneraies beause many di�erentrepresentations of psl(2j2) an appear on the same level of the state spae. We shall seehow the RR-deformation partially removes this degeneray.2.3 The RR-perturbation and its exat marginaliltyThe most important atress of this work ertainly is the perturbing �eld � that generatesthe deformation away from the WZ point. So, it is important to fully appreiate itsstruture and properties. The following disussion is mostly borrowed from our paper[40℄ whih in turn was based upon [15, 13℄. The deformation we are interested in isgenerated by the �eld�(z; �z) = : str �S�1�SS�1 ��S� : = � 1k2 : J�(z)���(z; �z) �J�(�z) : (2.6)The seond formulation involves the left and right invariant (anti-)holomorphi urrentsJ�(z) and �J�(�z) along with some degenerate primary �elds ���(z; �z) that transform inthe (atypial) adjoint representation [1=2℄ of psl(2j2), i.e.J�(z)���(w; �w) = if�� �z � w ���(w; �w) + : : : ; (2.7)�J�(�z)���(w; �w) = if����z � �w ���(w; �w) + : : : : (2.8)Let us stress that the vertex operators ��� possess zero onformal weight, as all vertexoperators that are assoiated with the atypial setor of the theory. Aording to [15℄, the�eld � generates a truly marginal perturbation S�� of the WZNWmodel. By onstrution,the �eld � has onformal weights h = �h = 1 but in priniple its dimension ould hangewhen we perturb the theory, i.e. � ould be marginally relevant. This is not the ase. We3The Casimir element is non-diagonalizable in P [0℄. Its generalized eigenfuntions possess vanishingeigenvalue. 12



shall establish true marginality of � through a new argument, simpler and of a somewhatdi�erent harater than the one used in [15℄.Our key observation is that all N -point funtions of � vanish identially. Reallfrom [40℄ that the entire bulk spetrum of the PSL(2j2) WZNW model is organized inprojetive modules with respet to global PSL(2j2) (left or right) transformations. Hene,our perturbing �eld � is part of an indeomposable PSL(2j2) multiplet P[0℄. Sine � isinvariant, i.e. X�(z; �z) := [JX0 ;�(z; �z)℄ = 0 for all X 2 psl(2j2) ;it is assoiated with the bottom (sole) of the projetive over P[0℄. Consequently, theremust exist another bulk �eld 	 = 	(z; �z) along with a (fermioni) symmetry generatorQ suh that �(z; �z) = Q	(z; �z) = [JQ0 ;	(z; �z)℄ :The rest of the argument is now rather standard. Let us onsider the N -point funtion of�. By the previous omment we an represent one of the N �elds as � = Q	 and obtain
�(z1; �z1) NY�=2�(z� ; �z�)� = 
Q	(z1; �z1) NY�=2�(z� ; �z�)� (2.9)= NX�=2
	(z1; �z1)�(z2; �z2) : : : Q�(z� ; �z�) : : :�(zn; �zN)� = 0 : (2.10)We have used the psl(2j2) invariane of the expetation value to re-shu�e Q from 	 tothe other �elds. The resulting N � 1 terms in the seond row all vanish beause Q nowats on one of the invariant �eld insertions �. Sine all N -point funtions of � vanish,there is no need to ever renormalize the perturbing �eld. Hene, its saling dimensionremains unaltered.3 Deformation of the boundary partition funtionWith the proper preparation from the previous setion we now ome to the entral aimof this work: To ompute the onformal weights of boundary �elds on our point-likebrane as we go beyond the WZ point. After a few remarks on the general strutureof 2-point funtions we shall disuss several remarkable features of the RR-deformationfor onformal weights. These lead to drasti simpli�ations of the relevant perturbative13



expansions. In fat, their ombinatoris is no more omplex than the ombinatoris ofradius deformations in torus ompati�ations! There remains a mixing problem, however,that we an only overome for the boundary spetra of point-like loalized branes. Therelevant argument is presented in the third subsetion. Finally, all the piees are olletedand the onformal weights of boundary �elds are omputed expliitly, following a loselyrelated omputation in [31℄.3.1 The boundary 2-point funtionA boundary partition funtion stores all information about the onformal weights ofboundary �elds. The latter are also enoded in the boundary 2-point funtions whihis the plae from whih we are going to read them o�. In logarithmi onformal �eld the-ories, suh as the WZNW model on PSL(2j2), the 2-point funtions ontains additionaldata that we are not interested in and, in fat, annot ompute perturbatively. Sinethe reader may not be so familiar with these issues, we shall briey disuss the generalstruture of 2-point funtions in RR-deformations of the WZNW model on PSL(2j2).Let us reall that our boundary onditions were hosen suh that they preserve aglobal psl(2j2) symmetry. This remains unbroken by the RR-deformation and hene allquantities in the deformed theory are organized in psl(2j2) multiplets. We shall label theboundary �elds by 	�(x) with a supersript � that refers to the psl(2j2) representationthe �eld transforms in. As we have reviewed above, boundary �elds on our instantonibrane an only transform in projetive modules � of psl(2j2). These an be either typiallong multiplets or the projetive overs of atypial short multiplets. In the followingdisussion we do not have to distinguish between these two possibilities. The form of the2-point funtions is strongly onstrained by the usual Ward identities expressing onformalinvariane and global psl(2j2) symmetry,h	�1(x1)	�2(x2) i� = 1(x1 � x2)�1(�)+�2(�) C12(�) : (3.1)Here, the symbol C12(�) denotes an intertwiner from the arrier spae of the tensorprodut �1 
 �2 to the trivial representation. Let us note in passing that the spae ofsuh intertwiners may be multi-dimensional. The objets � = �(	�) at on the arrierspae of the representation �. They desribe the ation of L0 on the �eld multiplets 	�.Therefore, they learly ommute with the ation of psl(2j2). We may split � into a term14



that is proportional to the identity and a nil-potent ontribution,�(�) = h(�) � 1� + Æ(�)where some �nite power of Æ vanishes. If the nilpotent part Æ is non-zero for one ofthe �elds 	�1 or 	�2 then the 2-point funtion ontains logarithmi singularities. It isimportant to stress that all the quantities we have introdued, namely the onstants hand the maps Æ; C12 depend on the deformation parameter �. For reasons that will soonbeome lear, we are not able to say anything useful about the �-dependene of Æ andC12. On the other hand, we shall ompute h(�) exatly, to all orders in perturbationtheory. For a �eld 	 = 	�, the results ish	(�) = h	(0)� C�2k �k + � = h	(0)� C�2 =k + C�2 f 2 : (3.2)Here, C�2 is the (generalized) eigenvalue of the quadrati Casimir in the representation�, i.e. C�2 = j2(j2 + 1) � j1(j1 + 1) for � = [j1; j2℄ and C�2 = 0 whenever � is one ofthe projetive overs P[j℄. Note that the shift of the onformal weight only depends onthe transformation behaviour of 	 = 	� under the ation of psl(2j2). The simple result(3.2) is rather remarkable. Let us stress again that the numbers h(�) provide exatly theinformation that is enoded in the boundary partition funtion. In partiular, the traeover state spae is blind to any nilpotent terms Æ(�) so that our ignorane onerning their� dependene does not really matter as long as we don't attempt to go beyond omputingpartition funtions.There is one more omment that might be worth adding. As we have seen in se-tion 2.3 already, logarithmi onformal �eld theories ontain many vanishing orrelators.In partiular, suppose that 	1 and 	2 are two �elds that are assoiated with states in thesole of a projetive over. Then their 2-point funtion is bound to vanish by the samearguments we explained in setion 2.3. A related observation was made by Bershadsky etal. in [15℄. The authors of that work then went on to onlude that the onformal weightsof �elds in atypial representations ould not be read o� from their 2-point funtions. Wesee now that this onlusion is inorret. For eah �eld in an atypial multiplet thereexists some �eld suh that the assoiated 2-point funtion is non-zero. If we pik 	1 fromthe sole of a projetive over, for instane, then we an �nd an appropriate �eld 	2 inthe head of the dual projetive over. 15



3.2 Perturbative expansion for onformal weightsThe perturbative omputation of hi(�) may seem like a daunting task at �rst, yet alonebeause of the very involved ombinatoris of perturbation theory in urved bakgrounds.In this subsetion we shall list three observations that will allow us to drop most of theterms in the expansion for onformal weights. In fat, the terms that an safely be ignoredare preisely the ones that arise from the urvature of PSL(2j2). Suh simpli�ations,however, only apply to omputations of psl(2j2) invariant quantities suh as onformalweights et. The reader is warned never to use the rules we are about to derive foromputations of other struture onstants.All observations made in this subsetion are based on a simple mathematial resultthat was �rst formulated and exploited in the work of Bershadsky et. al. [15℄. Considersome psl(2j2) invariant A and suppose that A may be written as A = Cabfab wherefab are the struture onstants of psl(2j2) and Cab are some numbers. Then A an beshown to vanish, i.e. A = 0. Sine the supporting argument provided in [15℄ laks a bit ofmathematial preision, we have inluded a full proof and further disussion in appendixB of this paper. Bershadsky and ollaborators applied the vanishing of A to a perturbativeonstrution of the psl(2j2) invariant �-funtion. We shall exploit the same result in ouromputation of the numbers h	 whih are psl(2j2) invariants as well. A similar vanishingriterion is not satis�ed for intertwiners � between two indeomposables or for maps Cfrom the tensor produt of indeomposables to the trivial representation (see also furtheromments in Appendix B). Therefore, we are not able to ompute the full 2-point funtionof boundary �elds, as mentioned before.Let us now apply this mathematial lemma to our omputation of onformal weights.The perturbative treatment we have in mind requires to evaluate orrelators with inser-tions of the perturbing �eld �. Reall that � was omposed from the vertex operators��� and urrents J�; �J�. An initial step is to remove all the urrent insertions throughurrent algebra Ward identities. In the proess, pairs of urrents get ontrated usingJ�(z) J�(w) = if���z � w J�(w) + k���(z � w)2 + : : : � k���(z � w)2 (3.3)The �rst equality is the usual operator produt for psl(2j2) urrents. Sine we are onlyinterested in omputing the invariants h	, we an drop all terms that involve the strutureonstants f of the Lie superalgebra psl(2j2). This applies to the �rst term in the above16



operator produt whih distinguishes the non-abelian urrents from the abelian algebra ofat target spaes. Here and in the following we shall use the symbol � to mark equalitiesthat are true up to terms involving struture onstants. In onlusion, we have seen that,as far as the omputation of onformal dimensions is onerned, we may neglet the non-abelian nature of the urrents J�. Obviously, this leads to �rst drasti simpli�ations ofthe perturbative expansion.Currents are not only ontrated with other urrents. They an also at on the vertexoperators ���. The relevant operator produt expansions have already been displayed ineq. (2.7) when we �rst introdued ���. With our new sensitivity for the appearane ofstruture onstants we notie immediately that these operator produts are proportionalto f . Hene, we onludeJ�(z) ���(w; �w) = if�� �z � w ���(w; �w) + : : : � 0 : (3.4)Consequently, we an simply ignore all terms in whih a urrent ats on one of the vertexoperators ���. In this respet, ��� does no longer behave like a vertex operator, but rathermimis the behavior of a onstant bakground �eld.Of ourse, ��� still is a non-trivial �eld and it therefore has possibly singular operatorproduts with other �elds in the theory. Suh non-trivial operator produts of the �elds��� ould threaten a suessful omputation of onformal dimension. Here is where a thirdobservation omes to our resue. Note that shifts of the insertion point of the �eld ���are ontrolled by the following operator version of the Knizhnik-Zamolodhikov equation�z���(z; �z) = ik f��� : J�(z)���(z; �z) : � 0 : (3.5)This means that in omputations of invariants we an treat ��� as a funtion of on-formal weight zero. Let us stress again that the operator produts of ��� an ertainlyontain singularities. Relation (3.5) only asserts that all singular terms may be droppedin omputations of onformal dimensions.The rules (3.3) to (3.5) are the main results of this subsetion. They will be employedat the end of this setion when we ompute boundary onformal weights. Related obser-vations for the bakground �eld expansion of sigma models on PSL(NjN) were formulatedin [15℄. A suessful omputation of onformal weights requires one more important in-gredient, though, that is novel to our analysis. This is what we are going to addressnext. 17



3.3 Perturbation of boundary onformal weightsOur arguments up to this point have made no use of the fat that we were setting o�to ompute onformal dimensions of boundary �elds for a very partiular boundary on-dition. In fat, everything we have stated applies to whatever onformal dimension wewould like to ompute, bulk or boundary. But there remains an issue that we annotoverome in suh a general ontext. Aording to the results of the previous subsetionour vertex operators ��� behave like a matrix of funtions rather than �elds. This sim-pli�es things immensely. But even multipliation with a set of funtions an be a ratherinvolved operation whih we would have to diagonalize expliitly on �eld spae beforewe ould spell out onformal dimensions. In other words, there still exists a potentiallyompliated mixing problem to be solved. Here is where our speial hoie of boundaryonditions omes in. As we shall see, it is hosen suh that we an e�etively replae ���by a onstant. Thereby, the mixing problem disappears.While the reasoning to be detailed below is somewhat tehnial, the basi idea is rathersimple: Before the bulk �eld ��� an at on boundary �elds, it must be restrited to theworld-volume of the brane. Sine our brane is point-like loalized at the group unit ofthe bosoni base, the restrition of ��� ontains no further dependene on the bosonioordinates and hene should have a rather simple ation on boundary �elds.In order to make this geometri intuition more preise, let us look at the bulk-boundaryoperator produt expansion of the vertex operator ���(z; �z). As the world-sheet oordinateapproahes the point x on the boundary of the upper half-plane, we an re-expand thebulk �eld in terms of operators 	(x) on the boundary. The leading terms of this expansionread ���(z; �z) = 1jz � �zj2=k C [1;0℄	[1;0℄(x) + CP[0℄	P[0℄(x) + : : : : (3.6)On the boundary, the �eld with smallest onformal weight is the multiplet 	[1;0℄ that isassoiated with the ground states in the 48-dimensional typial representation [1; 0℄. Inaddition, there is one multiplet 	P[0℄ of �elds with vanishing onformal weight. All other�elds possess positive saling dimension and we have not displayed them in the expansion.The struture onstants C [1;0℄ and CP[0℄ are largely determined by psl(2j2) symmetry.Under the ation of the unbroken global psl(2j2), the bulk multiplet ��� transforms in the2-fold twisted4 tensor produt [1=2℄

 [1=2℄ of the adjoint representation. Consequently,4All tensor produts in this subsetion are onstruted with the ation X ! X 
 1 + (�1)jXj1 
X18



CP[0℄ intertwines between [1=2℄

 [1=2℄ and the projetive over P[0℄ et.Let us reall from the previous subsetion that, in all omputations of onformaldimensions, the bulk �eld ��� behaves like a set of funtions on target spae. Thereby,we are allowed to drop all terms from the bulk boundary operator produt (3.6) whihontain a non-trivial dependene on world-sheet oordinates, i.e.���(z; �z) � CP[0℄	P[0℄(x) : (3.7)Here, � has the same meaning as before, warning us that the relation (3.7) should onlybe used in omputations of onformal weights.Further progress now requires to turn attention to the intertwiner CP[0℄ from thetwisted tensor produt [1=2℄

 [1=2℄ to the projetive over P[0℄. The preise strutureof [1=2℄
 [1=2℄ �= [1=2℄ 

 [1=2℄ has been determined in [49℄. There, the tensor produtwas shown to deompose into four indeomposable representations. These inlude thetypial multiplets [1; 0℄ and [0; 1℄ along with the trivial representations [0℄ and one atypialindeomposable whose sole onsists of a single adjoint [1=2℄. The result implies that thespae of intertwiners from [1=2℄
 [1=2℄ to the projetive over P[0℄ is 1-dimensional. Infat, the only non-trivial intertwiner CP[0℄ maps the invariant [0℄ in [1=2℄

 [1=2℄ to thesole of P[0℄. Transferred bak to our bulk boundary operator produt (3.7) we onludethat only the sole of the boundary multiplet 	[0℄ an arise. Sine the orrespondingboundary operator is the identity �eld, we onlude��� � 0 (�1)j�j��� 1 :Here, we have used that every intertwiner from [1=2℄

 [1=2℄ to the trivial representation[0℄ is related to the metri by (�1)j�j��� with j�j = jX�j as before. Sine the �eld ���is a quantum analogue of the representation matrix Rad(g)�� and sine we are evaluatingthe latter at the unit element, g = e, we obviously have 0 = 1. Consequently, in allomputations of boundary onformal weights we are allowed to set � � (�1)j�j��� . Let usstress that our arguments rely heavily on the fat that we analyze the boundary �elds onpoint-like branes. In partiular, we used that there was no boundary �eld that transformsin the atypial [1=2℄ representation.where the seond term is twisted by the gluing automorphism 
19



3.4 Computation of boundary onformal weightsLet us now �nally harvest the results of our areful analysis in the previous two subse-tions. As we have shown in the seond subsetion, the perturbation series for onformaldimensions is idential to the one that appears in an abelian theory with onstant bak-ground �elds. Put di�erently, the urrents J� and �J� behave like J� � �ipk�X� and�J� � ipk ��X� in a theory of 14 free �elds X�. Moreover, the matrix ��� an be treatedas if it was a onstant, similar to the parameter  we introdued in our brief disussionof irle ompati�ations around eq. (1.3). Inluding our hoies of normalization, thepreise relation is read o� from� �2��(z; �z) = �2�k2 : J�(z)���(z; �z) �J�(�z) : � �2�k ���(x)�X� ��X� :Here, we have used a lower ase x in the argument of � in order to stress that it behaveslike a funtion on target spae. On the other hand, there is no dependene on the �eldsX�. For our speial hoie of 
, the gluing ondition (2.2) mimis Dirihlet boundaryonditions for the bosons and Neumann boundary onditions for the fermions in free �eldtheory, �X�(z; �z) = �(�1)j�j ��X�(z; �z) for z = �z :Putting things together, our setup is essentially idential to the starting point of theperturbative analysis in [31℄, Hene, we an arry over all results from that paper andonlude that the hange of boundary onformal dimensions an be determined from ane�etive perturbing bulk �eld of the formS� �! �2�k ZH dzd�z � 1k + (�1)F��� �� ���J�(z) �J�(�z) (3.8)where H is the upper half-plane and we are no longer allowed to ontrat urrentsamong eah other or with the matrix valued �elds � = (���). The matrix (�1)F isde�ned by (�1)F�� = (�1)j�j��� . To leading order, the e�etive perturbation (3.8) agreeswith the original perturbing term. Higher order ontributions are enoded in a fatork=(k + ��(�1)F ) that resembles the familiar 1=(1� ) in the irle ompati�ation (seedisussion after eq. 1.3). The signs in the denominator take are of the gluing onditionwe imposed. There are a few remarks we would like to add. To begin with, note that thereis no need for any normal ordering in the previous formula, just as in free �eld theorywith onstant bakground �elds. Our e�etive perturbation (3.8) has rather limit validity,20



though. While in [31℄ the e�etive perturbation was used to ompute both the hangeof onformal weights and of 3-point ouplings, our entire derivation here was restritedto onformal weights! So, the formula (3.8) for the e�etive interation should never beused in omputations of struture onstants. Let us �nally point out that for the timebeing we only assumed that the left and right moving urrents satisfy the gluing ondition(2.2). Therefore, our result holds for all branes of this gluing type, inluding those asesin whih the brane extends along some of the bosoni diretions.In the �nal step we speialize now to the instantoni brane that is loated at the unitelement e of the bosoni base. Using our results from the previous subsetion we maythen replae the funtions ��� by onstants, i.e. we insert � = (�1)F1 into the formula(3.8), S� �! �2�k ZH dzd�z � 1k + �� J�(z)(�1)j�j �J�(�z) : (3.9)The hange of the boundary onformal weights is determined by the logarithmi diver-gene in the regulated 2-point funtion whih in turn arises from the simple poles of theoperator produts between the e�etive perturbing �eld and the boundary �elds 	�. Withthe usual normalizations, the resulting shift Æ�h of onformal weights beomesÆ�h(	�) = �2�� �2�k 1k + � �(J�J�)� = � �k(k + �) C�2 :Note that the fator (�1)j�j in the e�etive perturbation is absorbed when we relate theanti-holomorphi urrent �J� with the boundary value of the holomorphi urrent J�. Asa result, we have established the antiipated formula (3.2).4 Conlusions and outlookIn this note we omputed the full spetrum on a point-like brane in sigma models withtarget spae PSL(2j2). The result was obtained by summing expliitly the perturbationseries that is generated by the RR-deformation S�. A non-vanishing topologial WZ termwas required in our analysis to guarantee that we ould onstrut the spetrum diretly atone point of the moduli spae. We believe that this is merely a tehnial ondition that anbe overome, at least in many examples (see next paragraph). A very deisive element wasto fous on invariants of a Lie superalgebra to whih the vanishing lemma (see appendix B)applies. This leaves ample room for generalization to other supergroup and oset spaes21



with psl(NjN) or osp(2N+2j2N) symmetry. As explained in setion 3.2, the vanishinglemma renders the perturbation series for onformal dimensions quasi-abelian. On theother hand, the e�etive perturbing operator (3.8) requires additional diagonalizationwhenever ��� is non-trivial. Here, we irumvented the issue with our speial hoie ofinstantoni boundary onditions whih allowed us to replae ��� by a onstant. Finally,to have suÆient ontrol over the boundary partition funtion, a Casimir deompositionof the spetrum had to be performed. Suh a deomposition is not always possible - itneeds the brane to streth out in all fermioni diretions. Sine branes in generi positionsare fully deloalized along fermioni oordinates, no serious limitations should arise forgeneralizations to other bakgrounds. In the following few paragraphs we shall go throughall our assumptions in more detail, with an emphasis on general strutures rather thanthe spei� model we dealt with above.To get our perturbative expansion started, we need the exat form of the bound-ary partition funtion at one point of the moduli spae. In many ases, suh an initialondition may ome from a WZNW model. The solution of WZNW models on type Isupergroups has been addressed in [50℄, based on similar studies of several onrete ex-amples [51, 40, 52℄. It may be interesting to stress that a point with non-abelian urrentalgebra symmetry may exist in the moduli spae even if no topologial term appears inthe ation of the model under onsideration. The simplest example is one more pro-vided by irle ompati�ation whose world-sheet symmetry gets enhaned to an su(2)urrent algebra at the self-dual radius. Similar phenomena are very likely to our formany other prinipal hiral models on supergroups or osets. For example, aordingto an intriguing onjeture of Candu and Saleur [41℄, there exists a partiular hoie ofthe oupling at whih the prinipal hiral model on the supersphere S3j2 oinides witha OSP(4j2) WZNW model at level k = �1=2. In general, suh speial points in modulispae and their exat properties are diÆult to detet. But even if no points with urrentalgebra symmetries are known to exist, exat spetra may still be aessible with di�erenttehniques, suh as the use of lattie onstrutions et. (see e.g. [18, 29, 41℄).One the WZ point (or any other expliitly solvable point) is under ontrol, we wouldlike to deform the model. In most ases, summing up an entire perturbation series is ahopeless enterprise. Still, we have seen that expliit summation is possible for the RR-deformation of the PSL(2j2) sigma model, at least one we fous on appropriate quantitiessuh as onformal weights of boundary �elds. Drasti simpli�ations in the ombinatoris22



of the perturbative expansion resulted from three observations, (3.3) to (3.5), in se-tion 3.2. None of them is spei� to a target spae with psl(2j2) symmetry. In fat, theunderlying tehnial lemma (reviewed in appendix B) is losely related to the vanishingdual Coxeter number of psl(2j2), a property psl(2j2) shares with three families of Liesuperalgebras, namely psl(NjN), osp(2N+2jN) and D(2; 1;�). These desribe the globalsymmetries of many interesting superspaes, ranging from odd dimensional superspheresS2N+1j2N to the oset spaes that are involved in the AdS/CFT orrespondene. We wishto stress that a vanishing � funtion of the deformation and the quasi-abelianness of theperturbative expansion for onformal dimensions appear as two sides of the same oin.Indeed, they an both be traed bak to the vanishing lemma.Let us also point out one more that, even though the perturbation series simpli�esfor all spetra, we were only able to exploit this fat in the ase of point-like branes. Itseems to us that the absene of bosoni zero modes might be an important feature forthe suess of the omputation, but whether it is deisive remains an interesting openproblem. In partiular, our brief disussion of bulk spetra in AdS3 (see introdution)suggests that the remaining diagonalization for losed string modes ould be more thana mere tehnial issue. In ase the diret perturbative omputation of bulk spetra turnsout to be impossible, one might still be able to �nd bulk onformal dimensions indiretlythrough modular transformation of boundary partition funtions. Approahing the bulkspetrum through open losed string duality would ertainly require expliit formulasfor the branhing funtions a(q); b(q), going somewhat beyond their mere algorithmionstrution [40℄. Another potential hurdle to overome are the modular properties ofthe branhing funtions a(q); b(q) whih might be diÆult to ontrol. Even if this is notpossible in general, the branhing funtions might well ombine into simpler objets forspei� values of the deformation parameter �. At points with an enhaned world-sheetsymmetry one would expet an in�nite number of branhing funtions to align suh thatthey build the haraters of a larger hiral algebra. The latter ould well possess simplermodular properties. A systemati detetion of points with enhaned symmetry along theline of deformations and the reonstrution of the bulk spetrum is a promising path forfuture researh.Two further omments onern the degeneraies we found in our D-instanton spetra.Aording to the results in [15℄, the hiral symmetry of sigma models on PSL(2j2) isgenerated by the psl(2j2) Casimir �elds, and hene is muh smaller than the full Casimir23



algebra, see [40℄ for more explanation. Here, we found that the degeneraies of the bound-ary spetrum are determined by the Casimir deomposition. Hene, they are larger thanone would have expeted based on the hiral symmetry alone. This is a remarkable resultwhih points towards the existene of some enhaned (possibly non-loal) symmetry, atleast for the boundary spetra we were onerned with in our work. It would ertainly bevery rewarding to unover this symmetry. A seond enhanement of degeneraies is foundin the atypial setor of the model. In fat, the onformal weight of �elds transforming inan atypial representation of psl(2j2) do not reeive any orretions. Therefore suh �eldsare guaranteed to possess an integer onformal weight. Similar phenomena have beenenountered in reent work of Read and Saleur [53℄. Following their analysis we believethat the large degeneray in the atypial setor may be explained by the ombined ationof two ommuting symmetries. One of them is the Lie superalgebra psl(2j2) of globaltransformations. The seond should be losely related to the algebra of Casimir �elds orsome extension thereof.Results on non-linear sigma models with super target spaes are urrently not diretlyappliable to strings in AdS geometries other than via the hybrid approah for AdS3.Nevertheless we believe that two rather general lessons an be inferred from our studies.First of all, onformal �eld theory tehniques, and in partiular onformal perturbationtheory, an be rather powerful even in ases when the hiral symmetry is not suÆient toarry out a full-edged algebrai onstrution of the model. Furthermore, models with apsl(2j2) symmetry an be muh better behaved than one would expet after looking atany of their subsetors. In fat, supposedly simpler subsetors, suh as e.g. those based onthe bosoni sl(2), an lead to tehnial problems that are muh more diÆult and neverenountered in the full psl(2j2) model. In this sense, subsetor theories may turn out tobe inappropriate as toy models for the kind of theories we are ultimately interested in.Aknowledgment: We wish to thank Constantin Candu, Gerhard G�otz, Andreas Lud-wig, Sylvain Ribault, Hubert Saleur, J�org Teshner and Kay Wiese for omments or dis-ussions during the various stages of this work. The researh of T.Q. is funded by a MarieCurie Intra-European Fellowship, ontrat number MEIF-CT-2007-041765. We further-more aknowledge partial support from the EU Researh Training Network Superstringtheory, MRTN-CT-2004-512194 and from ForesUniverse, MRTN-CT-2004-005104.24



A The superalgebra psl(2j2) and its representationsThe Lie superalgebra psl(2j2) possesses six bosoni generators Kab = �Kba with a; b =1; : : : ; 4. They form the Lie algebra so(4) whih is isomorphi to sl(2)� sl(2). In addition,there are eight fermioni generators that we denote by Sa�. They split into two sets(� = 1; 2) eah of whih transform in the vetor representation of so(4) (a = 1; : : : ; 4)whih is the (1=2; 1=2) of sl(2)� sl(2). The relations of psl(2j2) are then given by[Kab; Kd℄ = i �ÆaKbd � ÆbKad � ÆadKb + ÆbdKa�[Kab; S℄ = i �ÆaSb � ÆbSa�[Sa�; Sb�℄ = i ��� �abdKd : (A.1)Here, ��� and �abd denote the usual ompletely antisymmetri �-symbols with �12 = 1 and�1234 = 1, respetively. An invariant metri is given byhKab; Kdi = ��abd hSa�; Sb�i = �2��� Æab : (A.2)It is unique up to a salar fator. The signs have been hosen in view of the real formpsu(1; 1j2) whih is onsidered in the main text. In order to de�ne a root spae deom-position of psl(2j2) we split the fermions into two sets of four generatorsg(1)+ = spanfSa1g ; g(1)� = spanfSa2g :As indiated by the subsripts �, we shall think of the fermioni generators Sa1 as anni-hilation operators and of Sa2 as reation operators.Finite dimensional projetive representations of psl(2j2) fall into two lasses. The �rstone onsists of all the long multiplets. These are labelled by two spins j1; j2 with j1 6= j2and their superharaters read�[j1;j2℄(z1; z2) = trh(�1)F zK011 zK022 i = �j1(z1)�j2(z2)�F (z1; z2) : (A.3)where �j(z) =Pjl=�j zl are the standard haraters for �nite dimensional representationsof the Lie algebra sl(2) and the fermioni fator �F is given by�F (z1; z2) = 4 + z11 + z�11 + z2 + z�12 � 2(z 121 + z� 121 )(z 122 + z� 122 ) : (A.4)Let us also note in passing that the value C2([j1; j2℄) of the quadrati Casimir in typialrepresentations may be expressed asC2�[j1; j2℄� = j2(j2 + 1)� j1(j1 + 1) :25



There exists a seond lass of projetive representations P[j℄ whose members are labelledby a single spin j. They are built up from short multiplets suh that their superharaterbeomes�P[j℄ = h2�j(z1)�j(z2)� �j+ 12 (z1)�j+ 12 (z2)� �jj� 12 j(z1)�jj� 12 j(z2)i�F (z1; z2) : (A.5)The quadrati Casimir is non-diagonalizable in the projetive overs, with Jordan ellsup to rank �ve. Generalized eigenvalues of C2 in P[j℄ are well known to vanish for allspins j. In this sense we shall write C2�P[j℄� = 0.The haraters (A.3) and (A.5) are important ingredients in the Raah-Speiser algo-rithm that furnishes the Casimir deomposition for the partition funtion of a point-likebrane, see [40℄ for details.B Derivation of the main vanishing lemmaOur evaluation of the perturbative expansion for onformal weights is based on the fatthat a psl(2j2)-invariant A vanishes whenever it is of the form A = Cabfab. In order tomake our presentation self-ontained the vanishing lemma is derived below. We use thisopportunity to larify a few unsatisfatory issues in the original argument [15℄.For the following disussion it is useful to onsider A;C and f as intertwiners ratherthan a bunh of numbers. By de�nition, an invariant A is an intertwiner from the trivialrepresentation to itself. Similarly, the struture onstants fab may be onsidered as anintertwiner from the 3-fold tensor produt of the adjoint [1=2℄ to the trivial representation.The possible form of [1=2℄
3 an be severely onstrained using results from [49℄. The 2-foldtensor produt [1=2℄
[1=2℄ ontains three irreduible representations I = [0℄�[1; 0℄�[0; 1℄as well as a more ompliated indeomposable �inde1=2;1=2. The tensor produt of I with [1=2℄an easily be evaluated. Furthermore, the typial ontributions to �inde1=2;1=2 
 [1=2℄ do notpresent any obstale. This results in the deomposition[1=2℄
3 = [1=2℄� 2P1=2 � 3�[1; 0℄� [0; 1℄�� 4�[3=2; 1=2℄� [1=2; 3=2℄�� �[2; 0℄� [0; 2℄�� � � � (B.1)The remaining terms \� � �" are the atypial parts in the tensor produt �inde1=2;1=2 
 [1=2℄.They are built by ombining the following onstituents�2[0℄1; 2[0℄3; 5[1=2℄1; 2[1=2℄3; 4[1℄2; [3=2℄1; [3=2℄3	 (B.2)26



into a bunh of indeomposable representations.5 The preise form of these indeompos-ables is urrently not known to us. Nevertheless one an derive analytially that theirsoles an only ontain the representations [0℄1 and 2[1=2℄1. Due to the self-duality of[1=2℄
3, the same statement holds for the heads. One an also hek that there is no trueinvariant in [1=2℄
3, i.e. that the head and the sole are formed by two di�erent [0℄'s. Theargument rests on an expliit onstrution of the unique invariant state and the subse-quent proof that it, in fat, lies in the image of the quadrati Casimir operator. Henethe unique invariant state has to be the sole of a larger indeomposable multiplet.Given any representation of psl(2j2), the number of independent interwiners to thetrivial representation may be obtained by ounting the number of times [0℄ appears as thehead of an indeomposable sub-representation. In the ase of [1=2℄
3, there is only onesuh ourrene of [0℄, as we have just argued. Hene, the intertwiner to the trivial repre-sentation is unique up to normalization. This map is what we denote by f . Bershadsky etal. now ontinued to argue that the onstants Cab that are ontrated with fab to formthe invariant A must be proportional to fab (indies lowered with the metri) beauseof the uniqueness of f . A then vanishes beause of the numerial identity fabfab = 0.We arrive at the same onlusion if we employ that f and C ombine into an invariant Aprovided that C is a o-invariant, i.e. an intertwiner from the trivial representation to the3-fold tensor produt of the adjoint. Suh o-invariants are in one to one orrespondenewith representations [0℄ in the sole of [1=2℄
3. A glane bak onto our argument aboveshows that there is a single suh representation and hene C is unique. The reason forthe vanishing of any invariant A = C Æ f is that the image ImC of C, given by the soleof [1=2℄
3, is in the kernel of f , i.e. ImC has no omponent in the head of [1=2℄
3. Theoutome of this analysis, namely the vanishing of an invariant A = C Æ f , is the ruialingredient in our observations (3.3) to (3.5).Referenes[1℄ J. M. Maldaena, The large N limit of superonformal �eld theories andsupergravity, Adv. Theor. Math. Phys. 2 (1998) 231{252 [hep-th/9711200℄.5The subsript refers to an additional SL(2; C ) multipliity, see [49℄.
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