
*0
7∣
2.
35
49
*

 DESY 07-226
 ITFA-2007-55

ar
X

iv
:0

71
2.

35
49

v1
  [

he
p-

th
] 

 2
0 

D
ec

 2
00

7

Boundary spe
tra in superspa
e �-models
Thomas Quella2;3, Volker S
homerus1;3 and Thomas Creutzig11 DESY Hamburg, Theory Group,Notkestrasse 85, D{22607 Hamburg, Germany2 Institute for Theoreti
al Physi
s, University of Amsterdam,Val
kenierstraat 65, 1018 XE Amsterdam, The Netherlands3 Isaa
 Newton Institute for Mathemati
al S
ien
es,20 Clarkson Road, Cambridge, CB3 0EH, United KongdomDe
ember 21, 2007

Abstra
tIn this note we 
ompute exa
t boundary spe
tra for D-instantons in �-models onthe supergroup PSL(2j2). Our results are obtained through an expli
it summation ofthe perturbative expansion for 
onformal dimensions to all orders in the 
urvatureradius. The analysis exploits several remarkable properties of the perturbationseries that arises from res
alings of the metri
 on PSL(2j2) relative to a �xed Wess-Zumino term. A

ording to Berkovits, Vafa and Witten, the models are relevantin the 
ontext of string theory on AdS3 with non-vanishing RR-
ux. The note
on
ludes with a number of 
omments on various possible generalizations to othersupergroups and higher dimensional super
oset theories.
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tionThe 
elebrated AdS/CFT 
orresponden
e [1, 2℄ has promoted the solution of string theoryin Anti-de Sitter (AdS) spa
es to one of the 
entral problems of modern mathemati
alphysi
s. Progress in this dire
tion requires to 
onstru
t new types of quantum �eldtheories with internal Lie superalgebra symmetries. The pre
ise model to be 
onsidereddepends on the parti
ular approa
h that is employed. Re
ent investigations have beenbased on 
ertain gauge �xed versions of the Green-S
hwarz superstring [3, 4, 5, 6, 7, 8℄,the pure spinor formalism [9, 10, 11, 12℄ and the hybrid formalism [13, 14℄.Without mu
h further 
omment on the pre
ise relation with string theory (see someremarks below, however), we shall turn our attention to a parti
ular 
lass of quantum the-ories with internal supersymmetries, namely to non-linear sigma models on supergroups.They are 
hara
terized by the following simple a
tionSf;k[S℄ = � 12�f 2 Z�d2z str �S�1�SS�1 ��S�� k12� Z� d�1str��S�1dS�3� (1.1)1



with a suitably normalized supertra
e str. Here, S is a map from the world-sheet � tosome supergroup G. We have weighted the standard kineti
 term with a 
oupling 
onstantf 2 and also added a topologi
al Wess-Zumino (WZ) term with 
oeÆ
ient k. For sigmamodels on bosoni
 groups, quantum 
onformal invarian
e requires f�2 = k. On
e wehave adjusted the 
oupling 
onstants in this way, we are dealing with a Wess-Zumino-Novikov-Witten (WZNW) theory whi
h 
an be solved using the algebrai
 te
hniques of2-dimensional 
onformal �eld theory, exploiting the in�nite dimensional 
urrent algebrasymmetry of the WZNW model.It is one of the intriguing features of 
ertain supersymmetri
 target spa
es that therequirement of quantum 
onformal invarian
e may not impose any restri
tion on f�2, seee.g. [13, 15, 16, 17℄. This happens whenever the supergroup G has vanishing dual Coxeternumber. The latter 
ondition is satis�ed e.g. for the super
onformal groups PSL(NjN)that appear in the AdS/CFT 
orresponden
e, but also for OSP(2N+2jN) and D(2; 1;�).In these 
ases, the a
tion (1.1) gives rise to a 
ontinuous family of 
onformal quantum�eld theories. All models share the same global target spa
e symmetries. On the otherhand, the WZ point with f�2 = k is still distinguished by an enhan
ement of world-sheetsymmetries. For generi
 values of f , one only expe
ts to �nd a few 
hiral higher spin �eldsin addition to the Virasoro symmetry that 
omes with 
onformal invarian
e (see [15℄ fordetails). Whatever the pre
ise 
hiral symmetry is, it will almost 
ertainly not suÆ
e fora full algebrai
 solution of generi
 supergroup sigma models. This insight has lead manys
ientists working in the �eld to dis
ard 
onformal �eld theory te
hniques and to turnto other methods in integrable systems, su
h as the Bethe-Ansatz and generalizationsthereof.Though ultimately, 
omputations in superspa
e sigma models may involve a varietyof integrable te
hniques (see e.g. [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29℄ for anin
omplete 
olle
tion of re
ent relevant ideas, a few results and many further referen
es,in parti
ular to the earlier literature), it seems to us that the real potential of 
onformal�eld theory methods has not been explored with suÆ
ient 
are. In fa
t, we shall seebelow that a 
ombination of algebrai
 te
hniques with 
onformal perturbation theory 
anprovide powerful new results going far beyond the WZ point. To be more pre
ise, wepropose to 
onsider the sigma models (1.1) as deformations of a WZNW model,Sf;k[S℄ = SWZNWk [S℄ � �2� ZHd2z str �S�1�SS�1 ��S� = SWZNWk [S℄ + S�[S℄ : (1.2)2



The deformation parameter � is related to k and f through � = f�2 � k. For reasonsto be explained below, we shall often refer to this deformation of the WZNW model as a\RR-deformation". Note, however, that on the level of sigma models it simply 
hangesthe overall s
ale fa
tor of the metri
 while leaving the magneti
 ba
kground �eld invariant.Our approa
h is then to study the sigma model through 
onformal perturbation theoryaround the WZ point. In this note we restri
t our attention to the simplest obje
ts,namely to partition fun
tions, leaving investigations of 
orrelators et
. as an interestingproblem for future resear
h.In order to explain our strategy, let us brie
y look at simple torus 
ompa
ti�
ations.Suppose we are interested e.g. in the spe
trum of strings on a 1-dimensional 
ir
le witharbitrary 
ompa
ti�
ation radius r. At generi
 points in the 1-dimensional moduli spa
e,the 
hiral symmetry of the model is generated by the U(1) 
urrent i�X and its anti-holomorphi
 
ounterpart. With respe
t to these 
urrents, the theory is not rational. Butthere exist some distinguished points in the moduli spa
e at whi
h the 
hiral symmetry isenhan
ed and the theory be
omes rational on
e the additional 
hiral �elds are taken intoa

ount. In parti
ular, the moduli spa
e 
ontains one point, known as the self-dual radiusr0 = rSD, where the symmetry gets enhan
ed to an sl(2) 
urrent algebra at level k = 1.At this spe
ial radius, all spe
tra 
an be 
omposed from a �nite number of se
tors. Withlater generalizations in mind, we 
onsider the partition fun
tion on a strip or half-planewith Neumann boundary 
onditions whi
h is simply given by the va
uum 
hara
ter of thesl(2) 
urrent algebra1Zr0N (q) = �su(2)0;k=1 = #3(q2)=�(q) = 1�(q) Xn2Z qn2 : (1.3)Other points in the moduli spa
e may be rea
hed through a deformation with the per-turbation S
 = 
2� R d2z�X ��X. The perturbation series for the 
onformal dimensions ofboundary �elds 
an be summed up to all orders in perturbation theory. Our partitionfun
tion (1.3) gets deformed toZrN(q) = 1�(q) Xn2Z q n21�
 : (1.4)The result 
orresponds to the spe
trum of a point-like brane on a 
ir
le with radiusr = r0p1� 
. In the perturbative treatment, the fa
tor 1=(1� 
) = 1 + 
=(1� 
) arises1At the self-dual radius there is no fundamental di�eren
e between a D-instanton and an extendedbrane sin
e they 
an 
an be rotated 
ontinuously into the other, see e.g. [30℄.3



from a geometri
 series as explained e.g. in [31℄. Bulk spe
tra 
an also be 
omputed, eitherdire
tly or through modular transformation of the boundary partition fun
tion. Let uspoint out that the perturbative analysis is insensitive to the fa
t that the theory 
eases tobe rational on
e we move away from the self-dual radius. Of 
ourse, in this parti
ular 
asethe U(1) 
urrent algebra symmetry is suÆ
iently large for an algebrai
 
onstru
tion of thetheory at generi
 radii and su
h a 
onstru
tion is about as diÆ
ult as it is at the self-dualpoint. Hen
e, there is no good motivation to pass through a perturbative 
onstru
tion.But there exists a better example to illustrate the enormous potential 
onformal per-turbation theory may possess. It is provided by the 1-dimensional boundary sine-Gordontheory. In this model, a periodi
 potential is swit
hed on along the boundary of a free�eld theory. As a 
onsequen
e, the spe
trum of boundary dimension develops gaps whi
h
an grow with the strength � of the perturbation. Eventually, only a point-like spe
trumremains. Given the 
omplexity of the spe
trum at intermediate values of �, one mightsuspe
t that its pre
ise form is very diÆ
ult to determine. Yet, the boundary partitionfun
tion 
an be 
al
ulated rather easily in perturbation theory [32, 30, 33℄, for any valueof the deformation parameter �. In this example, the boundary potential redu
es the
hiral symmetry to the Virasoro algebra. In prin
iple, the latter is still suÆ
iently largeto allow for a standard CFT 
onstru
tion of the boundary sine-Gordon theory, but su
han analysis is of the same level of diÆ
ulty as the solution of Liouville theory and it hasnever been 
arried out. Hen
e, the example of boundary sine-Gordon theory supportsour 
laim that in some situations, 
onformal perturbation theory provides an easy routeto 
ompli
ated results that seem (almost) ina

essible through the usual algebrai
 meth-ods. A similar pi
ture will emerge from our study of boundary spe
tra on supergroup�-models.Even though most of the ideas and te
hni
al steps we are about to explain hold quitegenerally, we shall 
arry them out in a parti
ular example, namely for the supergroupPSL(2j2). This allows our presentation to be very 
on
rete. Furthermore, our resultsapply to string theory in AdS3� S3 whose solution has been redu
ed to the 
onstru
tionof sigma models on the supergroup PSL(2j2) through the hybrid approa
h developedby Berkovits, Vafa and Witten [13℄. In this 
ontext, the WZNW model 
orrespondsto a ba
kground with pure NSNS 3-form 
ux. Swit
hing on an additional RR �eld ismodelled by the marginal perturbation with S� whi
h is why we often refer to this term4



      

RR-deformation
AdS with B-�eldD-instanton

�Figure 1: The in
uen
e of NSNS and RR potentials on strings in the bulk and on aninstantoni
 brane.as RR-deformation. Sigma models on PSL(2j2) and 
losely related target superspa
eshave been investigated by several groups [13, 15, 34, 35, 36℄. For our analysis, the studiesby Bershadsky et al. have been parti
ularly useful.With the example of strings in AdS3 in mind, we may re-evaluate our optimisti
hopes to 
ompute exa
t spe
tra through perturbation theory. Let us think of the targetspa
e as a 3-dimensional solid 
ylinder. Sin
e AdS3 is 
urved, the 
orresponding sigmamodel is intera
ting. At the WZ point, the intera
tion falls o� exponentially towards theboundary of the 
ylinder. This has several e�e
ts on the bulk spe
trum. In parti
ular,the spe
trum is 
ontinuous and there exist so-
alled long string states that 
an stret
halong the boundary [37℄. The RR-deformation now adds another term to the intera
tionwhi
h in
reases exponentially near the boundary. Obviously, su
h a new term must havedrasti
 e�e
ts on the spe
trum. Certainly, long string states disappear. In addition,the spe
trum is expe
ted to be
ome dis
rete sin
e 
losed strings are now moving in a boxbetween the two exponential walls. The dramati
 e�e
ts of the RR-deformation may raisedoubts that perturbative 
omputations 
ould be su

essfully performed. And indeed, itis most likely true that the bulk spe
trum of the theory is not amenable to a perturbativeexpansion in �. But the situation 
hanges if we 
onsider the boundary spe
trum [38, 39℄on a D-instanton instead. Suppose, the instanton has been pla
ed at the 
enter of thesolid 
ylinder. Open strings that end on su
h a D-instanton must be very highly ex
itedin order to penetrate into the region 
lose to the boundary where the RR-ba
kground 
ux
an be felt. Therefore a D-instanton spe
trum might be a

essible through a perturbative
omputation. Below we shall see that this intuition is indeed 
orre
t. In fa
t, we are ableto determine the exa
t spe
trum of a D-instanton for any value of �. The same 
al
ulationfails at one step when we try to apply it to the bulk or to spe
tra on non-
ompa
t branes.5



Our main new result is a 
omplete 
omputation of the boundary spe
trum for max-imally symmetri
, point-like branes in sigma models on the supergroup PSL(2j2). Thepartition fun
tion of su
h a system was argued in [40℄ to be of the general formZPSL(2j2)DI;� (z1; z2; q) = strH � qL0� 
24 zK011 zK022 � (1.5)= Xj1 6=j2 a�j1j2(q)�[j1;j2℄(z1; z2) + Xj b�j (q)�P[j℄(z1; z2) :Here, K01 and K02 are two Cartan elements in the bosoni
 subalgebra sl(2) � sl(2) ofpsl(2j2) and we have denoted the 
hara
ters of the 
ontributing �nite dimensional psl(2j2)representations by � (see Appendix A for expli
it formulas). The bran
hing fun
tions bjand aj1;j2 at the WZ point � = 0 were also determined in [40℄. Our aim in this work isto show that the bran
hing fun
tions bj are independent of the deformation parameter �whilea�j1;j2(q) = q�Cj1;j22 �k(k+�) a�=0j1;j2(q) with Cj1;j22 = j2(j2 + 1)� j1(j1 + 1) : (1.6)Let us already point out that the dependen
e of the 
onformal weights on the deformationparameter � is very similar to the one found in free �eld theory (see eq. (1.4)). We shallsee that this is due to some pe
uliar features of the Lie superalgebra psl(2j2).Our formulas (1.5) and (1.6) 
ontain a surprising wealth of information. Let us unravelsome of that through a few sele
ted 
ases. Consider, for example, the boundary 
urrentJ�(x) where � runs through some 14-dimensional basis of psl(2j2). Under the a
tion of theglobal psl(2j2), the 
urrents transform in the adjoint representation whi
h is part of theatypi
al module P[0℄ (see Appendix A). Sin
e the bran
hing fun
tions bj are independentof �, states transforming in any of the P[j℄ do not re
eive 
orre
tions. Hen
e, the 
urrentsJ� 
ontinue to possess dimension h = 1, as expe
ted. Things be
ome more interestingon
e we pro
eed to produ
ts J�J� of 
urrents. These form a 196-dimensional subspa
e of�elds transforming in the 48-dimensional representations [0; 1℄; [1; 0℄ and various subspa
esof P[j℄. Hen
e, under the deformation, the weight of 96 �elds gets lifted while 100 �eldsremain at 
onformal weight h = 2.Formula (1.6) passes a few interesting test. To begin with, we observe that the energyshift is positive for states with suÆ
iently large momentum j1 in the radial dire
tion ofAdS3. This is in line with our geometri
 intuition: Only states that are highly ex
itedin the radial dire
tion 
an penetrate to the region near the boundary of AdS3 where6



their energy gets lifted due to the RR perturbation. It is also interesting to evaluateour formula in the semi-
lassi
al regime, i.e. for large values of the level k. Insertingthe relation � = f�2 � k in (1.6) and sending k to in�nity, the spe
trum of boundary
onformal weights is seen to 
oin
ide with the spe
trum of f 2C2 up to the usual integershifts. The eigenvalues of f 2C2 may be interpreted as energies for a parti
le moving onPSL(2j2). Hen
e, at large level k and modulo integers, the spe
trum of the sigma modelon PSL(2j2) agrees with the minisuperspa
e approximation, as it is supposed to. A mu
hmore detailed investigation of the approa
h to minisuperspa
e spe
tra for superspheremodels is in
luded in a very interesting up
oming paper by Candu and Saleur [41℄.The plan of this work is as follows. In the next se
tion we 
olle
t some ba
kgroundmaterial, partly from our earlier paper [40℄. This in
ludes a 
areful dis
ussion of maximallysymmetri
, point-like branes in the WZNWmodel on PSL(2j2). The ones that are relevantfor our analysis are lo
ated at the group unit e of the bosoni
 base and they extend inall eight fermioni
 dire
tions. The asso
iated boundary partition fun
tion is dis
ussedin se
tion 2.2 along with more details on the Casimir de
omposition (1.5) at the WZpoint. Se
tion 2.3 
ontains a 
onstru
tion of the perturbing �eld in terms of 
urrentsand a new proof of its exa
t marginality. Most of our novel results are obtained inse
tion 3 whi
h begins with a few 
omments on 2-point fun
tions. Se
tion 3.2 lists severalobservations 
on
erning the perturbative series generated by S�. We shall show thatthe RR-deformation, while being non-abelian and non-
onstant on PSL(2j2) in general,simpli�es drasti
ally in the evaluation of psl(2j2) invariant quantities, su
h as 
onformalweights. In fa
t, the RR-deformation turns out to be quasi-abelian, i.e. its 
ombinatori
sis no more 
omplex than it is for 
onstant shifts of the 
losed string ba
kground �elds ina 
at target spa
e. There remains a mixing problem, however, that we 
an only over
omewhen the general results are applied to boundary 
onformal weights of a point-like D-instanton. This is explained in se
tion 3.3 before we 
ombine all our results into an exa
t
omputation of boundary weights, following 
losely the steps of a similar 
omputationin [31℄. Our 
on
luding se
tion in
ludes extensive 
omments on possible generalizations,appli
ations and 
onsequen
es.
7



2 Colle
tion of ba
kground materialThe purpose of the following se
tion is mainly to provide the ba
kground material thatour subsequent perturbative evaluation of boundary partition fun
tions is based upon.In the �rst part we gear up to explain the stru
ture of the boundary partition fun
tionwe are about to deform. We start with a few 
omments on brane geometries in WZNWmodels on PSL(2j2), extending our previous analysis of branes in the gl(1j1) WZNWmodel [42℄.2 One of the instantoni
 D-branes we �nd, possesses exa
tly the spe
trumthat was anti
ipated in [40℄. The full �eld theory partition fun
tion and its so-
alledCasimir de
omposition is reviewed in the se
ond subse
tion. We then turn to a moredetailed analysis of the perturbing �eld, mostly following our previous dis
ussion in [40℄.On this o

asion, we propose a new argument for the exa
t marginality of � whi
h di�ersa bit in 
hara
ter from the original derivation [15, 13℄. Rather than using the vanishingof the dual Coxeter number of psl(2j2), our reasoning exploits the position of � at thebottom of a logarithmi
 multiplet (see also [43℄). Most of the results we des
ribe beloware not new and the impatient or experien
ed reader may skip forward to se
tion 3, atleast on �rst reading.2.1 Branes at the WZ point: gluing 
onditions and geometryAs we shall explain in great detail below, the su

ess of our subsequent exa
t 
omputa-tion of a boundary partition fun
tion for the sigma model on PSL(2j2) hinges on threekey properties of the imposed boundary 
ondition. To begin with, it (i) must preservesome 
ombination of left and right regular psl(2j2) transformations. At the WZ point,maximally symmetri
 boundary 
onditions are asso
iated with so-
alled twisted 
onju-ga
y 
lasses (see [44℄ and [42℄ for the supersymmetri
 
ase). Expli
it formulas for thedeformation of the partition fun
tion 
an only be found if (ii) the 
orresponding twisted
onjuga
y 
lass is point-like lo
alized on the bosoni
 base and (iii) it is delo
alized in allthe fermioni
 dire
tions. Later we shall rephrase these 
onditions as inherent featuresof the boundary 
onformal �eld theory. Our aim here is to des
ribe a boundary 
ondi-tion whi
h meets all these requirements and to determine the relevant boundary partitionfun
tion at the WZ point.In the WZNW model, the global symmetries of the PSL(2j2) sigma model are gener-2This �rst subse
tion is based on unpublished notes of TC on branes in supergroup WZNW models.8



ated by the zero modes of 
hiral 
urrentsJ(z) := �k�SS�1 ; �J(�z) := kS�1 ��S : (2.1)A boundary WZNW model is s
ale invariant if the Sugawara stress tensor obeys T (z) =�T (�z) all along the boundary z = �z. Su
h a 
onformal boundary theory preserves a globalpsl(2j2) symmetry provided that the 
urrents satisfy the following gluing 
onditionJ�(z) = 
 �J�(�z) for z = �z : (2.2)Here, 
 is a metri
 preserving automorphism of the Lie superalgebra. It determines thepre
ise 
ombination J0 + 
 �J0 of global psl(2j2) 
harges that remains unbroken by theboundary 
ondition. In the 
ase of bosoni
 groups, the geometry underlying maximallysymmetri
 boundary 
onditions in WZNW models was unravelled in [44℄ (see also [45, 46℄for various generalizations and [47℄ for a review). There it was shown that a boundary
ondition in whi
h left and right moving 
urrents are identi�ed with a trivial gluing auto-morphism 
 = id 
orrespond to branes whose world-volume is lo
alized along 
onjuga
y
lasses. When 
 is nontrivial, the relevant geometri
 obje
ts are twisted 
onjuga
y 
lassesC
u = f h 2 G j h = gu
(g�1) gwhere u is an element in G and we have lifted the automorphism 
 from the Lie algebrato the group. As explained in [42℄, the derivation of [44℄ 
arries over to WZNW modelson supergroups (see also [48℄ for a general analysis).Having outlined the link between boundary 
onditions and 
onjuga
y 
lasses we arenow sear
hing for a pair (u;
) su
h that C
u meets the requirements (ii) and (iii) we havelisted in the introdu
tory paragraph to this subse
tion. We shall not 
ondu
t our sear
hsystemati
ally. Instead, let us simply argue that the 
hoi
e u = e and 
(X) = (�1)jXjXdoes the job. The 
orresponding twisted 
onjuga
y 
lass C
u is lo
alized at the unit elemente of the bosoni
 group and it extends in all fermioni
 dire
tions, i.e. along those tangentve
tors X 2 psl(2j2) whi
h have degree jXj = 1. It is easy to see that 
(X) = (�1)jXjXis 
onsistent with the Lie superalgebra stru
ture and the metri
. Hen
e, it extends to agluing automorphism on the entire 
urrent algebra. Moreover, parametrizing elements gof the supergroup in the form g = exp(F ) exp(B) where F (B) is any linear 
ombinationof odd (even) elements, we �ndC
u = f h 2 G j h = eF eB
 �e�Be�F � = e2F g :9



Indeed, the bosoni
 
oordinates have dropped out and we remain with a super
onjuga
y
lass of superdimension 0j8 whi
h extends merely along the 8 fermioni
 dire
tions. We
on
lude that the spa
e of fun
tions on the 
orresponding brane is given byf = f(�a; ��b) (2.3)where �1; : : : ; �4 and their bared 
ounterparts are four fermioni
 
oordinates that parame-trize the odd generators F . The relevant a
tion of psl(2j2) on this 28-dimensional spa
e isobtained by restri
ting the 
-twisted adjoint a
tion of psl(2j2) on the supergroup PSL(2j2)to a point in the bosoni
 submanifold, or more expli
itly,Aa1 = ��a � 12�ab
d�b(�
�d � �d�
)� �ab
d�b(��
 ��d � ��d ��
) ;Aab = �i�a�b + i�b�a � i��a ��b + i��b ��a ; Aa2 = �a : (2.4)The 
urious reader 
an �nd expli
it formulas for the generators of the left and right regulara
tion LX and RX in [40℄. When 
ombined as AX = LX + (�1)jXjRX , they result in thetwisted adjoint a
tion that is relevant for the minisuperspa
e des
ription of the symmetryof our brane.Under the twisted adjoint a
tion AX , the 28-dimensional spa
e of ground states (2.3)may be seen to transform a

ording to the representationB(0; 0) := Indgg(0)V(0;0) = U(g)
g(0) V(0;0) �= P0 � [1; 0℄ � [0; 1℄ :Here, g(0) denotes the bosoni
 subalgebra of the Lie superalgebra g = psl(2j2) and weintrodu
ed V(0;0) for the trivial 1-dimensional representation of g(0). A

ording to generalmathemati
al results, the module B(0; 0) is proje
tive. Hen
e, it is guaranteed to de
om-pose into a dire
t sum of proje
tive modules. The 
orresponding de
omposition is spelledout on the right hand side. Here, the symbols [0; 1℄ and [1; 0℄ denote 48-dimensional ir-redu
ible typi
al representations (long multiplets) of psl(2j2). These are generated fromthe two 3-dimensional representations of sl(2)� sl(2) by the appli
ation of four fermioni
generators. In addition, there appears the 160-dimensional proje
tive 
over P[0℄ of thetrivial representation [0℄. It is an inde
omposable representation that is built up fromirredu
ible atypi
als (short multiplets) of psl(2j2) a

ording to the following diagramP[0℄ : [0℄ �! 3[1=2℄ �! 2[1℄� 6[0℄ �! 3[1=2℄ �! [0℄ :10



This so-
alled 
omposition series tells us that P[0℄ 
ontains the trivial representation [0℄as a true subrepresentation. Its representation spa
e is spanned by the unique invariantelement in P[0℄. We 
all this subrepresentation [0℄ the so
le of P[0℄. At the other end ofthe diagram, i.e. in the so-
alled head of P[0℄, we �nd another 
opy of [0℄. It is asso
iatedwith the fa
tor spa
e of P[0℄ whi
h is obtained if we divide the proje
tive 
over by itsmaximal non-trivial subrepresentation. A brief summary of the representation theory ofpsl(2j2) is provided in appendix A. Many more details 
an be found in [49, 40℄. We advisereaders who are unfamiliar with inde
omposable representations of Lie superalgebras to
onsult those referen
es or other mathemati
al literature.2.2 Boundary partition fun
tion and its Casimir de
ompositionAfter this brief dis
ussion of brane geometry and the spa
e of ground states, let us an-alyze the ex
ited states whi
h arise through appli
ation of 
urrent algebra modes. By
onstru
tion, these states transform in representations that emerge from a produ
t of aproje
tive module with some power of the adjoint and whi
h, by abstra
t mathemati
alresults, 
an be de
omposed into proje
tives. Expli
it formulas for the involved 
hara
terswere provided in [40℄. Sin
e we do not need the details below, we refrain from reprodu
ingthese formulas here. In [40℄ we also explained how se
tors ere
ted over proje
tive modules
an be de
omposed into representations of the Lie superalgebra psl(2j2). The result 
anbe expressed in the formZPSL(2j2)D0 (z1; z2; q) = �P[0℄(z1; z2; q) + �[1;0℄(z1; z2; q) + �[0;1℄(z1; z2; q)= Xj1 6=j2 �aP[0℄j1j2(q) + a[1;0℄j1j2 (q) + a[0;1℄j1j2(q)� �[j1;j2℄(z1; z2) (2.5)+ Xj �bP[0℄j (q) + b[1;0℄j (q) + b[0;1℄j (q)� �P[j℄(z1; z2)where �[j1;j2℄ and �P[j℄ are super
hara
ters of the Lie superalgebra psl(2j2) (see Ap-pendix A for expli
it formulas). Formula (2.5) is known as the Casimir de
ompositionof the partition fun
tion. The various bran
hing 
oeÆ
ients aij and bj 
ount how manytimes a proje
tive psl(2j2) multiplet appears on a given energy level. These numbersmay be determined with the help of the Ra
ah-Speiser algorithm. A detailed explanation
an be found in [40℄ along with a few expli
it expressions for the bran
hing of the rep-resentation P̂ [0℄. Here it suÆ
es to re
all that the lowest 
onformal weight h$j1;j2 among11



all the multiplets [j1; j2℄ that are generated out of ground states in the representations$ �= P[0℄; [0; 1℄; [1; 0℄ satis�esh$j1;j2 = C2($)=k + n(j1; j2) with n(j1; j2) 2 Nwhere we denoted the eigenvalue of the quadrati
 Casimir element in the representation$ by C2($).3 The same formula with j1 = j2 applies to the proje
tive 
overs P[j℄.Note that at the WZ point the spe
trum has huge degenera
ies be
ause many di�erentrepresentations of psl(2j2) 
an appear on the same level of the state spa
e. We shall seehow the RR-deformation partially removes this degenera
y.2.3 The RR-perturbation and its exa
t marginaliltyThe most important a
tress of this work 
ertainly is the perturbing �eld � that generatesthe deformation away from the WZ point. So, it is important to fully appre
iate itsstru
ture and properties. The following dis
ussion is mostly borrowed from our paper[40℄ whi
h in turn was based upon [15, 13℄. The deformation we are interested in isgenerated by the �eld�(z; �z) = : str �S�1�SS�1 ��S� : = � 1k2 : J�(z)���(z; �z) �J�(�z) : (2.6)The se
ond formulation involves the left and right invariant (anti-)holomorphi
 
urrentsJ�(z) and �J�(�z) along with some degenerate primary �elds ���(z; �z) that transform inthe (atypi
al) adjoint representation [1=2℄ of psl(2j2), i.e.J�(z)���(w; �w) = if�� �z � w ���(w; �w) + : : : ; (2.7)�J�(�z)���(w; �w) = if����z � �w ���(w; �w) + : : : : (2.8)Let us stress that the vertex operators ��� possess zero 
onformal weight, as all vertexoperators that are asso
iated with the atypi
al se
tor of the theory. A

ording to [15℄, the�eld � generates a truly marginal perturbation S�� of the WZNWmodel. By 
onstru
tion,the �eld � has 
onformal weights h = �h = 1 but in prin
iple its dimension 
ould 
hangewhen we perturb the theory, i.e. � 
ould be marginally relevant. This is not the 
ase. We3The Casimir element is non-diagonalizable in P [0℄. Its generalized eigenfun
tions possess vanishingeigenvalue. 12



shall establish true marginality of � through a new argument, simpler and of a somewhatdi�erent 
hara
ter than the one used in [15℄.Our key observation is that all N -point fun
tions of � vanish identi
ally. Re
allfrom [40℄ that the entire bulk spe
trum of the PSL(2j2) WZNW model is organized inproje
tive modules with respe
t to global PSL(2j2) (left or right) transformations. Hen
e,our perturbing �eld � is part of an inde
omposable PSL(2j2) multiplet P[0℄. Sin
e � isinvariant, i.e. X�(z; �z) := [JX0 ;�(z; �z)℄ = 0 for all X 2 psl(2j2) ;it is asso
iated with the bottom (so
le) of the proje
tive 
over P[0℄. Consequently, theremust exist another bulk �eld 	 = 	(z; �z) along with a (fermioni
) symmetry generatorQ su
h that �(z; �z) = Q	(z; �z) = [JQ0 ;	(z; �z)℄ :The rest of the argument is now rather standard. Let us 
onsider the N -point fun
tion of�. By the previous 
omment we 
an represent one of the N �elds as � = Q	 and obtain
�(z1; �z1) NY�=2�(z� ; �z�)� = 
Q	(z1; �z1) NY�=2�(z� ; �z�)� (2.9)= NX�=2
	(z1; �z1)�(z2; �z2) : : : Q�(z� ; �z�) : : :�(zn; �zN)� = 0 : (2.10)We have used the psl(2j2) invarian
e of the expe
tation value to re-shu�e Q from 	 tothe other �elds. The resulting N � 1 terms in the se
ond row all vanish be
ause Q nowa
ts on one of the invariant �eld insertions �. Sin
e all N -point fun
tions of � vanish,there is no need to ever renormalize the perturbing �eld. Hen
e, its s
aling dimensionremains unaltered.3 Deformation of the boundary partition fun
tionWith the proper preparation from the previous se
tion we now 
ome to the 
entral aimof this work: To 
ompute the 
onformal weights of boundary �elds on our point-likebrane as we go beyond the WZ point. After a few remarks on the general stru
tureof 2-point fun
tions we shall dis
uss several remarkable features of the RR-deformationfor 
onformal weights. These lead to drasti
 simpli�
ations of the relevant perturbative13



expansions. In fa
t, their 
ombinatori
s is no more 
omplex than the 
ombinatori
s ofradius deformations in torus 
ompa
ti�
ations! There remains a mixing problem, however,that we 
an only over
ome for the boundary spe
tra of point-like lo
alized branes. Therelevant argument is presented in the third subse
tion. Finally, all the pie
es are 
olle
tedand the 
onformal weights of boundary �elds are 
omputed expli
itly, following a 
loselyrelated 
omputation in [31℄.3.1 The boundary 2-point fun
tionA boundary partition fun
tion stores all information about the 
onformal weights ofboundary �elds. The latter are also en
oded in the boundary 2-point fun
tions whi
his the pla
e from whi
h we are going to read them o�. In logarithmi
 
onformal �eld the-ories, su
h as the WZNW model on PSL(2j2), the 2-point fun
tions 
ontains additionaldata that we are not interested in and, in fa
t, 
annot 
ompute perturbatively. Sin
ethe reader may not be so familiar with these issues, we shall brie
y dis
uss the generalstru
ture of 2-point fun
tions in RR-deformations of the WZNW model on PSL(2j2).Let us re
all that our boundary 
onditions were 
hosen su
h that they preserve aglobal psl(2j2) symmetry. This remains unbroken by the RR-deformation and hen
e allquantities in the deformed theory are organized in psl(2j2) multiplets. We shall label theboundary �elds by 	�(x) with a supers
ript � that refers to the psl(2j2) representationthe �eld transforms in. As we have reviewed above, boundary �elds on our instantoni
brane 
an only transform in proje
tive modules � of psl(2j2). These 
an be either typi
allong multiplets or the proje
tive 
overs of atypi
al short multiplets. In the followingdis
ussion we do not have to distinguish between these two possibilities. The form of the2-point fun
tions is strongly 
onstrained by the usual Ward identities expressing 
onformalinvarian
e and global psl(2j2) symmetry,h	�1(x1)	�2(x2) i� = 1(x1 � x2)�1(�)+�2(�) C12(�) : (3.1)Here, the symbol C12(�) denotes an intertwiner from the 
arrier spa
e of the tensorprodu
t �1 
 �2 to the trivial representation. Let us note in passing that the spa
e ofsu
h intertwiners may be multi-dimensional. The obje
ts � = �(	�) a
t on the 
arrierspa
e of the representation �. They des
ribe the a
tion of L0 on the �eld multiplets 	�.Therefore, they 
learly 
ommute with the a
tion of psl(2j2). We may split � into a term14



that is proportional to the identity and a nil-potent 
ontribution,�(�) = h(�) � 1� + Æ(�)where some �nite power of Æ vanishes. If the nilpotent part Æ is non-zero for one ofthe �elds 	�1 or 	�2 then the 2-point fun
tion 
ontains logarithmi
 singularities. It isimportant to stress that all the quantities we have introdu
ed, namely the 
onstants hand the maps Æ; C12 depend on the deformation parameter �. For reasons that will soonbe
ome 
lear, we are not able to say anything useful about the �-dependen
e of Æ andC12. On the other hand, we shall 
ompute h(�) exa
tly, to all orders in perturbationtheory. For a �eld 	 = 	�, the results ish	(�) = h	(0)� C�2k �k + � = h	(0)� C�2 =k + C�2 f 2 : (3.2)Here, C�2 is the (generalized) eigenvalue of the quadrati
 Casimir in the representation�, i.e. C�2 = j2(j2 + 1) � j1(j1 + 1) for � = [j1; j2℄ and C�2 = 0 whenever � is one ofthe proje
tive 
overs P[j℄. Note that the shift of the 
onformal weight only depends onthe transformation behaviour of 	 = 	� under the a
tion of psl(2j2). The simple result(3.2) is rather remarkable. Let us stress again that the numbers h(�) provide exa
tly theinformation that is en
oded in the boundary partition fun
tion. In parti
ular, the tra
eover state spa
e is blind to any nilpotent terms Æ(�) so that our ignoran
e 
on
erning their� dependen
e does not really matter as long as we don't attempt to go beyond 
omputingpartition fun
tions.There is one more 
omment that might be worth adding. As we have seen in se
-tion 2.3 already, logarithmi
 
onformal �eld theories 
ontain many vanishing 
orrelators.In parti
ular, suppose that 	1 and 	2 are two �elds that are asso
iated with states in theso
le of a proje
tive 
over. Then their 2-point fun
tion is bound to vanish by the samearguments we explained in se
tion 2.3. A related observation was made by Bershadsky etal. in [15℄. The authors of that work then went on to 
on
lude that the 
onformal weightsof �elds in atypi
al representations 
ould not be read o� from their 2-point fun
tions. Wesee now that this 
on
lusion is in
orre
t. For ea
h �eld in an atypi
al multiplet thereexists some �eld su
h that the asso
iated 2-point fun
tion is non-zero. If we pi
k 	1 fromthe so
le of a proje
tive 
over, for instan
e, then we 
an �nd an appropriate �eld 	2 inthe head of the dual proje
tive 
over. 15



3.2 Perturbative expansion for 
onformal weightsThe perturbative 
omputation of hi(�) may seem like a daunting task at �rst, yet alonebe
ause of the very involved 
ombinatori
s of perturbation theory in 
urved ba
kgrounds.In this subse
tion we shall list three observations that will allow us to drop most of theterms in the expansion for 
onformal weights. In fa
t, the terms that 
an safely be ignoredare pre
isely the ones that arise from the 
urvature of PSL(2j2). Su
h simpli�
ations,however, only apply to 
omputations of psl(2j2) invariant quantities su
h as 
onformalweights et
. The reader is warned never to use the rules we are about to derive for
omputations of other stru
ture 
onstants.All observations made in this subse
tion are based on a simple mathemati
al resultthat was �rst formulated and exploited in the work of Bershadsky et. al. [15℄. Considersome psl(2j2) invariant A and suppose that A may be written as A = Cab
fab
 wherefab
 are the stru
ture 
onstants of psl(2j2) and Cab
 are some numbers. Then A 
an beshown to vanish, i.e. A = 0. Sin
e the supporting argument provided in [15℄ la
ks a bit ofmathemati
al pre
ision, we have in
luded a full proof and further dis
ussion in appendixB of this paper. Bershadsky and 
ollaborators applied the vanishing of A to a perturbative
onstru
tion of the psl(2j2) invariant �-fun
tion. We shall exploit the same result in our
omputation of the numbers h	 whi
h are psl(2j2) invariants as well. A similar vanishing
riterion is not satis�ed for intertwiners � between two inde
omposables or for maps Cfrom the tensor produ
t of inde
omposables to the trivial representation (see also further
omments in Appendix B). Therefore, we are not able to 
ompute the full 2-point fun
tionof boundary �elds, as mentioned before.Let us now apply this mathemati
al lemma to our 
omputation of 
onformal weights.The perturbative treatment we have in mind requires to evaluate 
orrelators with inser-tions of the perturbing �eld �. Re
all that � was 
omposed from the vertex operators��� and 
urrents J�; �J�. An initial step is to remove all the 
urrent insertions through
urrent algebra Ward identities. In the pro
ess, pairs of 
urrents get 
ontra
ted usingJ�(z) J�(w) = if���z � w J�(w) + k���(z � w)2 + : : : � k���(z � w)2 (3.3)The �rst equality is the usual operator produ
t for psl(2j2) 
urrents. Sin
e we are onlyinterested in 
omputing the invariants h	, we 
an drop all terms that involve the stru
ture
onstants f of the Lie superalgebra psl(2j2). This applies to the �rst term in the above16



operator produ
t whi
h distinguishes the non-abelian 
urrents from the abelian algebra of
at target spa
es. Here and in the following we shall use the symbol � to mark equalitiesthat are true up to terms involving stru
ture 
onstants. In 
on
lusion, we have seen that,as far as the 
omputation of 
onformal dimensions is 
on
erned, we may negle
t the non-abelian nature of the 
urrents J�. Obviously, this leads to �rst drasti
 simpli�
ations ofthe perturbative expansion.Currents are not only 
ontra
ted with other 
urrents. They 
an also a
t on the vertexoperators ���. The relevant operator produ
t expansions have already been displayed ineq. (2.7) when we �rst introdu
ed ���. With our new sensitivity for the appearan
e ofstru
ture 
onstants we noti
e immediately that these operator produ
ts are proportionalto f . Hen
e, we 
on
ludeJ�(z) ���(w; �w) = if�� �z � w ���(w; �w) + : : : � 0 : (3.4)Consequently, we 
an simply ignore all terms in whi
h a 
urrent a
ts on one of the vertexoperators ���. In this respe
t, ��� does no longer behave like a vertex operator, but rathermimi
s the behavior of a 
onstant ba
kground �eld.Of 
ourse, ��� still is a non-trivial �eld and it therefore has possibly singular operatorprodu
ts with other �elds in the theory. Su
h non-trivial operator produ
ts of the �elds��� 
ould threaten a su

essful 
omputation of 
onformal dimension. Here is where a thirdobservation 
omes to our res
ue. Note that shifts of the insertion point of the �eld ���are 
ontrolled by the following operator version of the Knizhnik-Zamolod
hikov equation�z���(z; �z) = ik f��� : J�(z)���(z; �z) : � 0 : (3.5)This means that in 
omputations of invariants we 
an treat ��� as a fun
tion of 
on-formal weight zero. Let us stress again that the operator produ
ts of ��� 
an 
ertainly
ontain singularities. Relation (3.5) only asserts that all singular terms may be droppedin 
omputations of 
onformal dimensions.The rules (3.3) to (3.5) are the main results of this subse
tion. They will be employedat the end of this se
tion when we 
ompute boundary 
onformal weights. Related obser-vations for the ba
kground �eld expansion of sigma models on PSL(NjN) were formulatedin [15℄. A su

essful 
omputation of 
onformal weights requires one more important in-gredient, though, that is novel to our analysis. This is what we are going to addressnext. 17



3.3 Perturbation of boundary 
onformal weightsOur arguments up to this point have made no use of the fa
t that we were setting o�to 
ompute 
onformal dimensions of boundary �elds for a very parti
ular boundary 
on-dition. In fa
t, everything we have stated applies to whatever 
onformal dimension wewould like to 
ompute, bulk or boundary. But there remains an issue that we 
annotover
ome in su
h a general 
ontext. A

ording to the results of the previous subse
tionour vertex operators ��� behave like a matrix of fun
tions rather than �elds. This sim-pli�es things immensely. But even multipli
ation with a set of fun
tions 
an be a ratherinvolved operation whi
h we would have to diagonalize expli
itly on �eld spa
e beforewe 
ould spell out 
onformal dimensions. In other words, there still exists a potentially
ompli
ated mixing problem to be solved. Here is where our spe
ial 
hoi
e of boundary
onditions 
omes in. As we shall see, it is 
hosen su
h that we 
an e�e
tively repla
e ���by a 
onstant. Thereby, the mixing problem disappears.While the reasoning to be detailed below is somewhat te
hni
al, the basi
 idea is rathersimple: Before the bulk �eld ��� 
an a
t on boundary �elds, it must be restri
ted to theworld-volume of the brane. Sin
e our brane is point-like lo
alized at the group unit ofthe bosoni
 base, the restri
tion of ��� 
ontains no further dependen
e on the bosoni

oordinates and hen
e should have a rather simple a
tion on boundary �elds.In order to make this geometri
 intuition more pre
ise, let us look at the bulk-boundaryoperator produ
t expansion of the vertex operator ���(z; �z). As the world-sheet 
oordinateapproa
hes the point x on the boundary of the upper half-plane, we 
an re-expand thebulk �eld in terms of operators 	(x) on the boundary. The leading terms of this expansionread ���(z; �z) = 1jz � �zj2=k C [1;0℄	[1;0℄(x) + CP[0℄	P[0℄(x) + : : : : (3.6)On the boundary, the �eld with smallest 
onformal weight is the multiplet 	[1;0℄ that isasso
iated with the ground states in the 48-dimensional typi
al representation [1; 0℄. Inaddition, there is one multiplet 	P[0℄ of �elds with vanishing 
onformal weight. All other�elds possess positive s
aling dimension and we have not displayed them in the expansion.The stru
ture 
onstants C [1;0℄ and CP[0℄ are largely determined by psl(2j2) symmetry.Under the a
tion of the unbroken global psl(2j2), the bulk multiplet ��� transforms in the2-fold twisted4 tensor produ
t [1=2℄

 [1=2℄ of the adjoint representation. Consequently,4All tensor produ
ts in this subse
tion are 
onstru
ted with the a
tion X ! X 
 1 + (�1)jXj1 
X18



CP[0℄ intertwines between [1=2℄

 [1=2℄ and the proje
tive 
over P[0℄ et
.Let us re
all from the previous subse
tion that, in all 
omputations of 
onformaldimensions, the bulk �eld ��� behaves like a set of fun
tions on target spa
e. Thereby,we are allowed to drop all terms from the bulk boundary operator produ
t (3.6) whi
h
ontain a non-trivial dependen
e on world-sheet 
oordinates, i.e.���(z; �z) � CP[0℄	P[0℄(x) : (3.7)Here, � has the same meaning as before, warning us that the relation (3.7) should onlybe used in 
omputations of 
onformal weights.Further progress now requires to turn attention to the intertwiner CP[0℄ from thetwisted tensor produ
t [1=2℄

 [1=2℄ to the proje
tive 
over P[0℄. The pre
ise stru
tureof [1=2℄
 [1=2℄ �= [1=2℄ 

 [1=2℄ has been determined in [49℄. There, the tensor produ
twas shown to de
ompose into four inde
omposable representations. These in
lude thetypi
al multiplets [1; 0℄ and [0; 1℄ along with the trivial representations [0℄ and one atypi
alinde
omposable whose so
le 
onsists of a single adjoint [1=2℄. The result implies that thespa
e of intertwiners from [1=2℄
 [1=2℄ to the proje
tive 
over P[0℄ is 1-dimensional. Infa
t, the only non-trivial intertwiner CP[0℄ maps the invariant [0℄ in [1=2℄

 [1=2℄ to theso
le of P[0℄. Transferred ba
k to our bulk boundary operator produ
t (3.7) we 
on
ludethat only the so
le of the boundary multiplet 	[0℄ 
an arise. Sin
e the 
orrespondingboundary operator is the identity �eld, we 
on
lude��� � 
0 (�1)j�j��� 1 :Here, we have used that every intertwiner from [1=2℄

 [1=2℄ to the trivial representation[0℄ is related to the metri
 by (�1)j�j��� with j�j = jX�j as before. Sin
e the �eld ���is a quantum analogue of the representation matrix Rad(g)�� and sin
e we are evaluatingthe latter at the unit element, g = e, we obviously have 
0 = 1. Consequently, in all
omputations of boundary 
onformal weights we are allowed to set � � (�1)j�j��� . Let usstress that our arguments rely heavily on the fa
t that we analyze the boundary �elds onpoint-like branes. In parti
ular, we used that there was no boundary �eld that transformsin the atypi
al [1=2℄ representation.where the se
ond term is twisted by the gluing automorphism 
19



3.4 Computation of boundary 
onformal weightsLet us now �nally harvest the results of our 
areful analysis in the previous two subse
-tions. As we have shown in the se
ond subse
tion, the perturbation series for 
onformaldimensions is identi
al to the one that appears in an abelian theory with 
onstant ba
k-ground �elds. Put di�erently, the 
urrents J� and �J� behave like J� � �ipk�X� and�J� � ipk ��X� in a theory of 14 free �elds X�. Moreover, the matrix ��� 
an be treatedas if it was a 
onstant, similar to the parameter 
 we introdu
ed in our brief dis
ussionof 
ir
le 
ompa
ti�
ations around eq. (1.3). In
luding our 
hoi
es of normalization, thepre
ise relation is read o� from� �2��(z; �z) = �2�k2 : J�(z)���(z; �z) �J�(�z) : � �2�k ���(x)�X� ��X� :Here, we have used a lower 
ase x in the argument of � in order to stress that it behaveslike a fun
tion on target spa
e. On the other hand, there is no dependen
e on the �eldsX�. For our spe
ial 
hoi
e of 
, the gluing 
ondition (2.2) mimi
s Diri
hlet boundary
onditions for the bosons and Neumann boundary 
onditions for the fermions in free �eldtheory, �X�(z; �z) = �(�1)j�j ��X�(z; �z) for z = �z :Putting things together, our setup is essentially identi
al to the starting point of theperturbative analysis in [31℄, Hen
e, we 
an 
arry over all results from that paper and
on
lude that the 
hange of boundary 
onformal dimensions 
an be determined from ane�e
tive perturbing bulk �eld of the formS� �! �2�k ZH dzd�z � 1k + (�1)F��� �� ���J�(z) �J�(�z) (3.8)where H is the upper half-plane and we are no longer allowed to 
ontra
t 
urrentsamong ea
h other or with the matrix valued �elds � = (���). The matrix (�1)F isde�ned by (�1)F�� = (�1)j�j��� . To leading order, the e�e
tive perturbation (3.8) agreeswith the original perturbing term. Higher order 
ontributions are en
oded in a fa
tork=(k + ��(�1)F ) that resembles the familiar 1=(1� 
) in the 
ir
le 
ompa
ti�
ation (seedis
ussion after eq. 1.3). The signs in the denominator take 
are of the gluing 
onditionwe imposed. There are a few remarks we would like to add. To begin with, note that thereis no need for any normal ordering in the previous formula, just as in free �eld theorywith 
onstant ba
kground �elds. Our e�e
tive perturbation (3.8) has rather limit validity,20



though. While in [31℄ the e�e
tive perturbation was used to 
ompute both the 
hangeof 
onformal weights and of 3-point 
ouplings, our entire derivation here was restri
tedto 
onformal weights! So, the formula (3.8) for the e�e
tive intera
tion should never beused in 
omputations of stru
ture 
onstants. Let us �nally point out that for the timebeing we only assumed that the left and right moving 
urrents satisfy the gluing 
ondition(2.2). Therefore, our result holds for all branes of this gluing type, in
luding those 
asesin whi
h the brane extends along some of the bosoni
 dire
tions.In the �nal step we spe
ialize now to the instantoni
 brane that is lo
ated at the unitelement e of the bosoni
 base. Using our results from the previous subse
tion we maythen repla
e the fun
tions ��� by 
onstants, i.e. we insert � = (�1)F1 into the formula(3.8), S� �! �2�k ZH dzd�z � 1k + �� J�(z)(�1)j�j �J�(�z) : (3.9)The 
hange of the boundary 
onformal weights is determined by the logarithmi
 diver-gen
e in the regulated 2-point fun
tion whi
h in turn arises from the simple poles of theoperator produ
ts between the e�e
tive perturbing �eld and the boundary �elds 	�. Withthe usual normalizations, the resulting shift Æ�h of 
onformal weights be
omesÆ�h(	�) = �2�� �2�k 1k + � �(J�J�)� = � �k(k + �) C�2 :Note that the fa
tor (�1)j�j in the e�e
tive perturbation is absorbed when we relate theanti-holomorphi
 
urrent �J� with the boundary value of the holomorphi
 
urrent J�. Asa result, we have established the anti
ipated formula (3.2).4 Con
lusions and outlookIn this note we 
omputed the full spe
trum on a point-like brane in sigma models withtarget spa
e PSL(2j2). The result was obtained by summing expli
itly the perturbationseries that is generated by the RR-deformation S�. A non-vanishing topologi
al WZ termwas required in our analysis to guarantee that we 
ould 
onstru
t the spe
trum dire
tly atone point of the moduli spa
e. We believe that this is merely a te
hni
al 
ondition that 
anbe over
ome, at least in many examples (see next paragraph). A very de
isive element wasto fo
us on invariants of a Lie superalgebra to whi
h the vanishing lemma (see appendix B)applies. This leaves ample room for generalization to other supergroup and 
oset spa
es21



with psl(NjN) or osp(2N+2j2N) symmetry. As explained in se
tion 3.2, the vanishinglemma renders the perturbation series for 
onformal dimensions quasi-abelian. On theother hand, the e�e
tive perturbing operator (3.8) requires additional diagonalizationwhenever ��� is non-trivial. Here, we 
ir
umvented the issue with our spe
ial 
hoi
e ofinstantoni
 boundary 
onditions whi
h allowed us to repla
e ��� by a 
onstant. Finally,to have suÆ
ient 
ontrol over the boundary partition fun
tion, a Casimir de
ompositionof the spe
trum had to be performed. Su
h a de
omposition is not always possible - itneeds the brane to stret
h out in all fermioni
 dire
tions. Sin
e branes in generi
 positionsare fully delo
alized along fermioni
 
oordinates, no serious limitations should arise forgeneralizations to other ba
kgrounds. In the following few paragraphs we shall go throughall our assumptions in more detail, with an emphasis on general stru
tures rather thanthe spe
i�
 model we dealt with above.To get our perturbative expansion started, we need the exa
t form of the bound-ary partition fun
tion at one point of the moduli spa
e. In many 
ases, su
h an initial
ondition may 
ome from a WZNW model. The solution of WZNW models on type Isupergroups has been addressed in [50℄, based on similar studies of several 
on
rete ex-amples [51, 40, 52℄. It may be interesting to stress that a point with non-abelian 
urrentalgebra symmetry may exist in the moduli spa
e even if no topologi
al term appears inthe a
tion of the model under 
onsideration. The simplest example is on
e more pro-vided by 
ir
le 
ompa
ti�
ation whose world-sheet symmetry gets enhan
ed to an su(2)
urrent algebra at the self-dual radius. Similar phenomena are very likely to o

ur formany other prin
ipal 
hiral models on supergroups or 
osets. For example, a

ordingto an intriguing 
onje
ture of Candu and Saleur [41℄, there exists a parti
ular 
hoi
e ofthe 
oupling at whi
h the prin
ipal 
hiral model on the supersphere S3j2 
oin
ides witha OSP(4j2) WZNW model at level k = �1=2. In general, su
h spe
ial points in modulispa
e and their exa
t properties are diÆ
ult to dete
t. But even if no points with 
urrentalgebra symmetries are known to exist, exa
t spe
tra may still be a

essible with di�erentte
hniques, su
h as the use of latti
e 
onstru
tions et
. (see e.g. [18, 29, 41℄).On
e the WZ point (or any other expli
itly solvable point) is under 
ontrol, we wouldlike to deform the model. In most 
ases, summing up an entire perturbation series is ahopeless enterprise. Still, we have seen that expli
it summation is possible for the RR-deformation of the PSL(2j2) sigma model, at least on
e we fo
us on appropriate quantitiessu
h as 
onformal weights of boundary �elds. Drasti
 simpli�
ations in the 
ombinatori
s22



of the perturbative expansion resulted from three observations, (3.3) to (3.5), in se
-tion 3.2. None of them is spe
i�
 to a target spa
e with psl(2j2) symmetry. In fa
t, theunderlying te
hni
al lemma (reviewed in appendix B) is 
losely related to the vanishingdual Coxeter number of psl(2j2), a property psl(2j2) shares with three families of Liesuperalgebras, namely psl(NjN), osp(2N+2jN) and D(2; 1;�). These des
ribe the globalsymmetries of many interesting superspa
es, ranging from odd dimensional superspheresS2N+1j2N to the 
oset spa
es that are involved in the AdS/CFT 
orresponden
e. We wishto stress that a vanishing � fun
tion of the deformation and the quasi-abelianness of theperturbative expansion for 
onformal dimensions appear as two sides of the same 
oin.Indeed, they 
an both be tra
ed ba
k to the vanishing lemma.Let us also point out on
e more that, even though the perturbation series simpli�esfor all spe
tra, we were only able to exploit this fa
t in the 
ase of point-like branes. Itseems to us that the absen
e of bosoni
 zero modes might be an important feature forthe su

ess of the 
omputation, but whether it is de
isive remains an interesting openproblem. In parti
ular, our brief dis
ussion of bulk spe
tra in AdS3 (see introdu
tion)suggests that the remaining diagonalization for 
losed string modes 
ould be more thana mere te
hni
al issue. In 
ase the dire
t perturbative 
omputation of bulk spe
tra turnsout to be impossible, one might still be able to �nd bulk 
onformal dimensions indire
tlythrough modular transformation of boundary partition fun
tions. Approa
hing the bulkspe
trum through open 
losed string duality would 
ertainly require expli
it formulasfor the bran
hing fun
tions a(q); b(q), going somewhat beyond their mere algorithmi

onstru
tion [40℄. Another potential hurdle to over
ome are the modular properties ofthe bran
hing fun
tions a(q); b(q) whi
h might be diÆ
ult to 
ontrol. Even if this is notpossible in general, the bran
hing fun
tions might well 
ombine into simpler obje
ts forspe
i�
 values of the deformation parameter �. At points with an enhan
ed world-sheetsymmetry one would expe
t an in�nite number of bran
hing fun
tions to align su
h thatthey build the 
hara
ters of a larger 
hiral algebra. The latter 
ould well possess simplermodular properties. A systemati
 dete
tion of points with enhan
ed symmetry along theline of deformations and the re
onstru
tion of the bulk spe
trum is a promising path forfuture resear
h.Two further 
omments 
on
ern the degenera
ies we found in our D-instanton spe
tra.A

ording to the results in [15℄, the 
hiral symmetry of sigma models on PSL(2j2) isgenerated by the psl(2j2) Casimir �elds, and hen
e is mu
h smaller than the full Casimir23



algebra, see [40℄ for more explanation. Here, we found that the degenera
ies of the bound-ary spe
trum are determined by the Casimir de
omposition. Hen
e, they are larger thanone would have expe
ted based on the 
hiral symmetry alone. This is a remarkable resultwhi
h points towards the existen
e of some enhan
ed (possibly non-lo
al) symmetry, atleast for the boundary spe
tra we were 
on
erned with in our work. It would 
ertainly bevery rewarding to un
over this symmetry. A se
ond enhan
ement of degenera
ies is foundin the atypi
al se
tor of the model. In fa
t, the 
onformal weight of �elds transforming inan atypi
al representation of psl(2j2) do not re
eive any 
orre
tions. Therefore su
h �eldsare guaranteed to possess an integer 
onformal weight. Similar phenomena have beenen
ountered in re
ent work of Read and Saleur [53℄. Following their analysis we believethat the large degenera
y in the atypi
al se
tor may be explained by the 
ombined a
tionof two 
ommuting symmetries. One of them is the Lie superalgebra psl(2j2) of globaltransformations. The se
ond should be 
losely related to the algebra of Casimir �elds orsome extension thereof.Results on non-linear sigma models with super target spa
es are 
urrently not dire
tlyappli
able to strings in AdS geometries other than via the hybrid approa
h for AdS3.Nevertheless we believe that two rather general lessons 
an be inferred from our studies.First of all, 
onformal �eld theory te
hniques, and in parti
ular 
onformal perturbationtheory, 
an be rather powerful even in 
ases when the 
hiral symmetry is not suÆ
ient to
arry out a full-
edged algebrai
 
onstru
tion of the model. Furthermore, models with apsl(2j2) symmetry 
an be mu
h better behaved than one would expe
t after looking atany of their subse
tors. In fa
t, supposedly simpler subse
tors, su
h as e.g. those based onthe bosoni
 sl(2), 
an lead to te
hni
al problems that are mu
h more diÆ
ult and neveren
ountered in the full psl(2j2) model. In this sense, subse
tor theories may turn out tobe inappropriate as toy models for the kind of theories we are ultimately interested in.A
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A The superalgebra psl(2j2) and its representationsThe Lie superalgebra psl(2j2) possesses six bosoni
 generators Kab = �Kba with a; b =1; : : : ; 4. They form the Lie algebra so(4) whi
h is isomorphi
 to sl(2)� sl(2). In addition,there are eight fermioni
 generators that we denote by Sa�. They split into two sets(� = 1; 2) ea
h of whi
h transform in the ve
tor representation of so(4) (a = 1; : : : ; 4)whi
h is the (1=2; 1=2) of sl(2)� sl(2). The relations of psl(2j2) are then given by[Kab; K
d℄ = i �Æa
Kbd � Æb
Kad � ÆadKb
 + ÆbdKa
�[Kab; S

℄ = i �Æa
Sb
 � Æb
Sa
�[Sa�; Sb�℄ = i ��� �ab
dK
d : (A.1)Here, ��� and �ab
d denote the usual 
ompletely antisymmetri
 �-symbols with �12 = 1 and�1234 = 1, respe
tively. An invariant metri
 is given byhKab; K
di = ��ab
d hSa�; Sb�i = �2��� Æab : (A.2)It is unique up to a s
alar fa
tor. The signs have been 
hosen in view of the real formpsu(1; 1j2) whi
h is 
onsidered in the main text. In order to de�ne a root spa
e de
om-position of psl(2j2) we split the fermions into two sets of four generatorsg(1)+ = spanfSa1g ; g(1)� = spanfSa2g :As indi
ated by the subs
ripts �, we shall think of the fermioni
 generators Sa1 as anni-hilation operators and of Sa2 as 
reation operators.Finite dimensional proje
tive representations of psl(2j2) fall into two 
lasses. The �rstone 
onsists of all the long multiplets. These are labelled by two spins j1; j2 with j1 6= j2and their super
hara
ters read�[j1;j2℄(z1; z2) = trh(�1)F zK011 zK022 i = �j1(z1)�j2(z2)�F (z1; z2) : (A.3)where �j(z) =Pjl=�j zl are the standard 
hara
ters for �nite dimensional representationsof the Lie algebra sl(2) and the fermioni
 fa
tor �F is given by�F (z1; z2) = 4 + z11 + z�11 + z2 + z�12 � 2(z 121 + z� 121 )(z 122 + z� 122 ) : (A.4)Let us also note in passing that the value C2([j1; j2℄) of the quadrati
 Casimir in typi
alrepresentations may be expressed asC2�[j1; j2℄� = j2(j2 + 1)� j1(j1 + 1) :25



There exists a se
ond 
lass of proje
tive representations P[j℄ whose members are labelledby a single spin j. They are built up from short multiplets su
h that their super
hara
terbe
omes�P[j℄ = h2�j(z1)�j(z2)� �j+ 12 (z1)�j+ 12 (z2)� �jj� 12 j(z1)�jj� 12 j(z2)i�F (z1; z2) : (A.5)The quadrati
 Casimir is non-diagonalizable in the proje
tive 
overs, with Jordan 
ellsup to rank �ve. Generalized eigenvalues of C2 in P[j℄ are well known to vanish for allspins j. In this sense we shall write C2�P[j℄� = 0.The 
hara
ters (A.3) and (A.5) are important ingredients in the Ra
ah-Speiser algo-rithm that furnishes the Casimir de
omposition for the partition fun
tion of a point-likebrane, see [40℄ for details.B Derivation of the main vanishing lemmaOur evaluation of the perturbative expansion for 
onformal weights is based on the fa
tthat a psl(2j2)-invariant A vanishes whenever it is of the form A = Cab
fab
. In order tomake our presentation self-
ontained the vanishing lemma is derived below. We use thisopportunity to 
larify a few unsatisfa
tory issues in the original argument [15℄.For the following dis
ussion it is useful to 
onsider A;C and f as intertwiners ratherthan a bun
h of numbers. By de�nition, an invariant A is an intertwiner from the trivialrepresentation to itself. Similarly, the stru
ture 
onstants fab
 may be 
onsidered as anintertwiner from the 3-fold tensor produ
t of the adjoint [1=2℄ to the trivial representation.The possible form of [1=2℄
3 
an be severely 
onstrained using results from [49℄. The 2-foldtensor produ
t [1=2℄
[1=2℄ 
ontains three irredu
ible representations I = [0℄�[1; 0℄�[0; 1℄as well as a more 
ompli
ated inde
omposable �inde
1=2;1=2. The tensor produ
t of I with [1=2℄
an easily be evaluated. Furthermore, the typi
al 
ontributions to �inde
1=2;1=2 
 [1=2℄ do notpresent any obsta
le. This results in the de
omposition[1=2℄
3 = [1=2℄� 2P1=2 � 3�[1; 0℄� [0; 1℄�� 4�[3=2; 1=2℄� [1=2; 3=2℄�� �[2; 0℄� [0; 2℄�� � � � (B.1)The remaining terms \� � �" are the atypi
al parts in the tensor produ
t �inde
1=2;1=2 
 [1=2℄.They are built by 
ombining the following 
onstituents�2[0℄1; 2[0℄3; 5[1=2℄1; 2[1=2℄3; 4[1℄2; [3=2℄1; [3=2℄3	 (B.2)26



into a bun
h of inde
omposable representations.5 The pre
ise form of these inde
ompos-ables is 
urrently not known to us. Nevertheless one 
an derive analyti
ally that theirso
les 
an only 
ontain the representations [0℄1 and 2[1=2℄1. Due to the self-duality of[1=2℄
3, the same statement holds for the heads. One 
an also 
he
k that there is no trueinvariant in [1=2℄
3, i.e. that the head and the so
le are formed by two di�erent [0℄'s. Theargument rests on an expli
it 
onstru
tion of the unique invariant state and the subse-quent proof that it, in fa
t, lies in the image of the quadrati
 Casimir operator. Hen
ethe unique invariant state has to be the so
le of a larger inde
omposable multiplet.Given any representation of psl(2j2), the number of independent interwiners to thetrivial representation may be obtained by 
ounting the number of times [0℄ appears as thehead of an inde
omposable sub-representation. In the 
ase of [1=2℄
3, there is only onesu
h o

urren
e of [0℄, as we have just argued. Hen
e, the intertwiner to the trivial repre-sentation is unique up to normalization. This map is what we denote by f . Bershadsky etal. now 
ontinued to argue that the 
onstants Cab
 that are 
ontra
ted with fab
 to formthe invariant A must be proportional to fab
 (indi
es lowered with the metri
) be
auseof the uniqueness of f . A then vanishes be
ause of the numeri
al identity fab
fab
 = 0.We arrive at the same 
on
lusion if we employ that f and C 
ombine into an invariant Aprovided that C is a 
o-invariant, i.e. an intertwiner from the trivial representation to the3-fold tensor produ
t of the adjoint. Su
h 
o-invariants are in one to one 
orresponden
ewith representations [0℄ in the so
le of [1=2℄
3. A glan
e ba
k onto our argument aboveshows that there is a single su
h representation and hen
e C is unique. The reason forthe vanishing of any invariant A = C Æ f is that the image ImC of C, given by the so
leof [1=2℄
3, is in the kernel of f , i.e. ImC has no 
omponent in the head of [1=2℄
3. Theout
ome of this analysis, namely the vanishing of an invariant A = C Æ f , is the 
ru
ialingredient in our observations (3.3) to (3.5).Referen
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