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1 Introdu
tionThe lo
al operators of a quantum �eld theory form an in�nite-dimensional linear spa
e whi
hthe transformation properties under spa
e-time and internal symmetries naturally de
omposeinto subspa
es, ea
h 
ontaining in�nitely many operators with assigned spin and 
harge. For thegeneri
 quantum �eld theory des
ribing a renormalization group traje
tory 
owing out of a non-trivial �xed point, a further, quantitative 
hara
terization of the operator spa
e is a very diÆ
ulttask. Parti
ularly relevant is the 
hara
terization of the operators by their s
aling dimension,as determined by the short distan
e behavior of the two point fun
tions. The spe
trum ofthe s
aling dimensions, as well as the number of operators sharing the same dimension, aredistinguishing data of the theory whi
h remain, however, out of rea
h in the generi
 
ase.Two-dimensional quantum �eld theory enjoys in this respe
t a spe
ial status. Here, thein�nite-dimensional nature of 
onformal symmetry allows the solution of �xed point theories [1℄,revealing in parti
ular a de
omposition of the operator spa
e into families 
ontaining operatorswith integer-spa
ed s
aling dimensions. The number of families, the s
aling dimensions andthe degenera
y within ea
h integer level are all known. Two non-negative integers, l and �l,determine, through their di�eren
e and their sum, the spin and (up to a 
onstant 
hara
teristi
of the family) the s
aling dimension of an operator.Perturbative 
onsiderations [2, 3, 4℄ suggest that, up to symmetry breaking e�e
ts, su
h astru
ture should survive a perturbation of the �xed point leading to a massive theory. Theexisten
e in two dimensions of massive integrable theories provides the 
han
e of testing non-perturbatively this 
onje
ture, but also poses a problem whi
h is intriguing and 
hallenging at thesame time. Indeed, integrable massive theories are solved on-shell, through the determinationof the exa
t S-matrix, and any information about the operators needs to be extra
ted fromthe parti
le dynami
s. The monodromy properties and the singularity stru
ture provide a setof equations [5, 6℄ for the matrix elements of the operators on asymptoti
 states (form fa
tors)whi
h have the S-matrix as their only input, and whose spa
e of solutions is expe
ted to 
oin
idewith the operator spa
e of the theory.The latter issue was �rst addressed by Cardy and Mussardo in [7℄, where the simplest 
ase,that of the thermal Ising model, was investigated. They showed that the number of solutionsof the form fa
tor equations with spin s and with the mildest asymptoti
 behavior at highenergy 
oin
ides with the number of 
hiral operators (i.e. having �l = 0) �xed by 
onformal �eldtheory for spin s = l at the ultraviolet �xed point1. Mildest asymptoti
 behavior is a reasonable
onje
ture for the 
hiral operators, whi
h are the most relevant among the operators with givenspin.While 
learly supporting the idea of the isomorphism of 
riti
al and o�-
riti
al operatorspa
es, this original study deferred to subsequent investigations some important issues. First ofall, the 
ounting of generi
, non-
hiral, operators requires the introdu
tion in the form fa
torapproa
h of some information about the levels, whi
h are no longer uniquely spe
i�ed by the1Of 
ourse a similar analysis 
an be performed for the operators with l = 0 (anti
hiral).1



spin. Moreover, as already pointed out in [7℄, the 
ase of the thermal Ising model is \de
eptivelysimple" due to its equivalen
e with a free fermioni
 theory2. In parti
ular, all the form fa
torsolutions 
an be generated by repeated a
tion of the 
onserved quantities, a 
ir
umstan
e whi
hdoes not persist for the generi
 integrable theory.The problem of 
onsidering intera
ting integrable theories was ta
kled by Koubek [8℄, whoextended the analysis of Cardy and Mussardo for the 
onje
tured 
hiral solutions to severalmassive deformations of minimal 
onformal models. She also performed a more general 
ountingof the form fa
tor solutions a

ording to the asymptoti
 behavior for given spin, obtainingvery suggestive formal relations with the 
hara
ters whi
h in 
onformal �eld theory spe
ify thestru
ture of the operator families. The inability to establish a 
onne
tion with the levels l and�l, however, prevented her from showing the isomorphism between the 
onformal and massiveoperator spa
es. It was shown in [9, 10, 11℄ how this type of 
ounting 
an be extended to thesine-Gordon model and its restri
tions.In this paper we show expli
itly for the massive Lee-Yang model that the spa
e of solutions ofthe form fa
tor equations de
omposes into subspa
es labeled by a pair of non-negative integers(l; �l) related to the spin and to the asymptoti
 behavior of the form fa
tors at high energy.We then show that the dimension of ea
h subspa
e exa
tly 
oin
ides with the dimension of thesubspa
e of the 
onformal operator spa
e with levels (l; �l), proving in this way the isomorphismbetween the 
riti
al and o�-
riti
al operator spa
es. The 
hoi
e of the Lee-Yang model for a�rst time proof is obvious: on one hand, this model is fully representative of generi
 integrablequantum �eld theories with respe
t to the features whi
h are of interest here (it is a massive,intera
ting theory originating from a non-trivial �xed point of the renormalization group, withan operator spa
e whi
h 
annot be entirely generated by repeated a
tion of 
onserved quantitieson lowest level operators); on the other, it minimizes the te
hni
alities and best illustrates theessential points due to the presen
e of the minimal number of operator families (two) and of asingle spe
ies of massive parti
les.The paper is organized as follows. After re
alling in the next se
tion the stru
ture of theoperator spa
e of the Lee-Yang model at 
riti
ality, we turn in se
tion 3 to the analysis of thespa
e of solutions of the form fa
tor equations in the massive theory. The 
omparison betweenthe 
riti
al and o�-
riti
al operator spa
es is then performed in se
tion 4. Se
tion 5 
ontainsfew �nal remarks while some te
hni
al parts of the proof are detailed in two appendi
es.2 The 
onformal operator spa
eAt a 
riti
al point the operators undergo the general 
onformal �eld theory 
lassi�
ation [1℄. As
aling operator �(x) is �rst of all labeled by a pair (��; ���) of 
onformal dimensions whi
h2The spin se
tor 
onsidered in [7℄, however, is non-trivial due to non-lo
ality with respe
t to the fermions.
2



determine the s
aling dimension X� and the spin s� asX� = �� + ��� (2.1)s� = �� � ���: (2.2)There exist operator families asso
iated to the lowest weight representations of the Virasoroalgebra [Ln; Lm℄ = (n�m)Ln+m + 
12n(n2 � 1)Æn+m;0 : (2.3)The Ln's generate the 
onformal transformations asso
iated to the 
omplex variable z = x1+ix2,with the 
entral 
harge 
 labeling the 
onformal theory. The same algebra, with the same value of
, holds for the generators �Ln of the 
onformal transformations in the variable �z = x1� ix2. TheLn's 
ommute with the �Lm's. Ea
h operator family 
onsists of a primary operator �0 (whi
his annihilated by all the generators Ln and �Ln with n > 0) and in�nitely many des
endantoperators obtained through the repeated a
tion on the primary of the Virasoro generators. Abasis in the spa
e of des
endants of �0 is given by the operatorsL�i1 : : : L�iI �L�j1 : : : �L�jJ �0 (2.4)with 0 < i1 � i2 � : : : � iI (2.5)0 < j1 � j2 � : : : � jJ : (2.6)The levels (l; �l) =  IXn=1 in ; JXn=1 jn! (2.7)determine the 
onformal dimensions of the des
endants (2.4) in the form(�; ��) = (��0 + l; ���0 + �l) : (2.8)In general the number of independent operators at level (l; �l) is p(l)p(�l), p(l) being the numberof partitions of l into positive integers. This number, however, is redu
ed in a model dependentway in presen
e of degenerate representations asso
iated to primary operators �r;s whi
h possessa vanishing linear 
ombination of des
endant operators (null ve
tor) when l or �l equals rs. Sothe dimensionality of the subspa
e with levels (l; �l) in the family of �0 is usually written asd�0(l)d�0(�l), with the integers d�0(l) whi
h 
an be en
oded in the res
aled 
hara
ter��0(q) = 1Xl=0 d�0(l)ql : (2.9)The 
onformal �eld theory with the smallest operator 
ontent is the minimal model M2;5,with 
entral 
harge 
 = �22=5, possessing only two primary operators: the identity I = �1;1 =�1;4 with 
onformal dimensions (0; 0), and the operator ' = �1;2 = �1;3 with 
onformal dimen-sions (�1=5;�1=5). The negative values of the 
entral 
harge and of X' show that the model3



does not satisfy re
e
tion-positivity. It goes under the name of Lee-Yang model be
ause it de-s
ribes (see [12℄) the universal properties of the edge singularity of the zeros of the partitionfun
tion of the Ising model in an imaginary magneti
 �eld [13, 14, 15℄.The 
hara
ters for the two operator families of the Lee-Yang model are [16, 17, 18℄�I(q) = 1Yn=0 1(1� q2+5n) (1� q3+5n) (2.10)�'(q) = 1Yn=0 1(1� q1+5n) (1� q4+5n) : (2.11)They also enjoy the following ('fermioni
' [19℄) representation based on the Rogers-Ramanujanidentities [20℄: �I(q) = G�1, �'(q) = G0; (2.12)where Gp = 1Xk=0 qk(k�p)(q)k ; (2.13)(q)k = kYi=1(1� qi) : (2.14)This representation, when 
ompared with the de�nition (2.9), yields the following expansionsfor the dimensions of the spa
es of 
hiral des
endants of level ldI(l) = 1XN=0P (N; l �N(N + 1)); d'(l) = 1XN=0P (N; l �N2); (2.15)where P (N;M) is the number of the partitions of the non-negative integer M into the integers1; 2; : : : ; N ; it is generated by 1(q)N = 1XM=0P (N;M)qM : (2.16)We setP (0; 0) = 1; P (N;M) = 0 for N � 0 and M < 0; P (0;M) = 0 for M > 0; (2.17)noti
e that P (N; 0) = 1. The generating fun
tions Gp satisfy the re
ursion relationGp = Gp�1 + q1�pGp�2; (2.18)whi
h implies �I(q) + �'(q) = G1; (2.19)and leads to dI(l) + d'(l) = 1XN=0P (N; l �N(N � 1)): (2.20)4



The o

urren
e of di�erent representations for the 
hara
ters of rational 
onformal �eld theo-ries is a general phenomenon. Fermioni
 representations have been derived for 
lasses of rational
onformal theories de�ned as 
osets of aÆne Lie algebras [19℄ and in parti
ular for the series ofnon-unitary minimal models M(2; 2p+ 3) [21℄. These representations follow by a quasi-parti
leinterpretation based on the Bethe Ansatz des
ription and give alternative representations ofthe 
hara
ters with respe
t to the Feigin-Fu
hs-Felder 
onstru
tion [22℄. Their derivation usesgeneralizations of the Rogers-Ramanujan identities (the Gordon-Andrews identities [23℄).3 Operators in the massive theoryA renormalization group traje
tory originating from the Lee-Yang 
onformal point is obtainedperturbing the modelM2;5 with its only non-trivial primary operator '. This gives the massiveLee-Yang model with a
tion A = ACFT + g Z d2x'(x) : (3.1)It follows from the general results of [2℄ about perturbed 
onformal �eld theories that the theory(3.1) belongs to the 
lass of integrable quantum �eld theories. These are 
hara
terized by theexisten
e of an in�nite number of 
onserved quantities whi
h indu
es the 
omplete elasti
ity andfa
torization of the s
attering pro
esses, and allows the exa
t determination of the S-matrix [24℄.It was shown in [25℄ that the massive Lee-Yang model has a mass spe
trum 
ontaining a singlespe
ies of neutral parti
les A(�) with two-body s
attering determined by the amplitude3S(�) = tanh 12 �� + 2i�3 �tanh 12 �� � 2i�3 � ; (3.2)whi
h, due to fa
torization, spe
i�es the full S-matrix. The bound state pole lo
ated at � =2i�=3 
orresponds to the fusion pro
ess AA! A and has the residueRes�=2i�=3S(�) = i�2; (3.3)where � = i21=231=4 is the three-parti
le 
oupling; the fa
t that � is purely imaginary is againrelated to the la
k of re
e
tion-positivity [25℄.Within integrable quantum �eld theory the operators are 
onstru
ted determining theirmatrix elements on the asymptoti
 parti
le states. All the matrix elements of a given lo
aloperator �(x) 
an be obtained from the n-parti
le form fa
torsF�n (�1; : : : ; �n) = h0j�(0)j�1 : : : �ni; (3.4)where j0i denotes the va
uum (i.e. zero-parti
le) state. The form fa
tors satisfy a set of fun
-tional equations taking into a

ount the spin s� of the operator, the monodromy properties3The on-shell two-momentum of a parti
le of mass m is parameterized by a rapidity variable � as (p0; p1) =(m 
osh �;m sinh �). In (3.2) � denotes the rapidity di�eren
e of the 
olliding parti
les.5



under analyti
 
ontinuation in rapidity spa
e and the pole singularities asso
iated to boundstates and annihilation pro
esses [5, 6℄. For the Lee-Yang model these equations readF�n (�1 + �; : : : ; �n + �) = es��F�n (�1; : : : ; �n) (3.5)F�n (�1; : : : ; �i; �i+1; : : : ; �n) = S(�i � �i+1)F�n (�1; : : : ; �i+1; �i; : : : ; �n) (3.6)F�n (�1 + 2i�; �2; : : : ; �n) = F�n (�2; : : : ; �n; �1) (3.7)Res�0=� F�n+2(�0 + i�3 ; � � i�3 ; �1; : : : ; �n) = i�F�n+1(�; �1; : : : ; �n) (3.8)Res�0=�+i� F�n+2(�0; �; �1; : : : ; �n) = i241� nYj=1S(� � �j)35F�n (�1; : : : ; �n) ; (3.9)with S(�) and � spe
i�ed above. The spa
e of solutions of these equations is linear in theoperators and is expe
ted to 
oin
ide with the in�nite-dimensional operator spa
e of the massivetheory. It is our task to show that this spa
e of solutions is isomorphi
 to the 
onformal operatorspa
e des
ribed in the previous se
tion.Let us start writing the general solution to the equations (3.6){(3.9). It readsF�n (�1; : : : ; �n) = U�n (�1; : : : ; �n) Y1�i<j�n Fmin(�i � �j)
osh �i��j2 �
osh(�i � �j) + 12� . (3.10)Here the fa
tors in the denominator introdu
e the bound state and annihilation poles pres
ribedby (3.8) and (3.9), whi
h are the only singularities of the form fa
tors in rapidity spa
e, whileFmin(�) = �i sinh �2 exp�2Z 10 dtt 
osh t6
osh t2 sinh t sin2 (i� � �)t2� � (3.11)is the solution of the equations F (�) = S(�)F (��) (3.12)F (� + 2i�) = F (��) (3.13)free of zeros and poles for Im� 2 (0; 2�); it behaves asymptoti
ally aslimj�j!1 e�j�jFmin(�) = C1; (3.14)with C1 = �14
2 ; 
 = exp�2Z 10 dtt sinh t2 sinh t3 sinh t6sinh2 t � : (3.15)All the information spe
ifying the operator � is 
ontained in the fun
tions U�n (�1; : : : ; �n).They are entire fun
tions of the rapidities, symmetri
 and (up to a fa
tor (�1)n�1) 2�i-periodi
in all �j's, and homogeneous of degree s� (i.e. they a

ount for the property (3.5)). Of 
oursethe fun
tions U�n with di�erent n are related by the residue equations (3.8) and (3.9). Theseequations allow to build a solution starting from an initial 
ondition for n = 1, and thendetermining the matrix elements with a larger number of parti
les. In doing this, however, oneshould keep in mind that there 
an be more solutions 
orresponding to a given initial 
ondition.6



Indeed, N -parti
le matrix elements with vanishing residues on the bound state and kinemati
alpoles are themselves initial 
onditions of kernel solutions whi
h in a linear 
ombination give no
ontribution for n < N . Enumerating the kernel solutions is then essential for 
ounting theindependent solutions of the form fa
tor equations, as originally observed in [26℄.We 
all minimal s
alar N -kernel solution KNn (�1; :::; �n) the solution of the form fa
torequations (3.5){(3.9) with s� = 0 and initial 
onditionKNn (�1; :::; �n) = 8><>: 0 for n < NQ1�i<j�N Fmin(�i � �j) for n = N; (3.16)where N � 2. The initial 
ondition of the general spin s N -kernel solution di�ers from thisone by a multipli
ative fa
tor whi
h is an entire fun
tion of the rapidities, symmetri
 and 2�i-periodi
 in all �j's and homogeneous of degree s. After introdu
ing the elementary symmetri
polynomials �(n)i generated bynYi=1(x+ xi) = nXk=0 xn�k�(n)k (x1; : : : ; xn) ; (3.17)with xi � e�i , a basis in the spa
e of N -kernel solutions is provided by the solutionsK(a1;::;aN�1jA)nwith initial 
onditionK(a1;::;aN�1jA)n (�1; :::; �n) =8><>: 0 for n < N(�(N)N )AQ1�i�N�1(�(N)i )aiKNN (�1; :::; �N ) for n = N; (3.18)where a1; : : : aN�1 are non-negative integers and A is an integer. If we formally de�ne the spins '1-kernel' solution with initial 
onditionK(s)n (�) = 8>><>>: 0 for n = 0��(1)1 �s = es� for n = 1; (3.19)and formally asso
iate the identity solution F In = Æn;0 to N = 0, we have that all the solutionsof the form fa
tor equations (3.5){(3.9) 
an be written as linear 
ombinations of the N -kernelsolutions with N � 0. In the following we perform our analysis of the spa
e of solutions withinthis basis.It follows from (3.18) and (3.19) that the spin iss = N�1Xi=1 iai +NA : (3.20)Sin
e (3.14) implies KNN (�1 + �; ::; �k + �; �k+1; :::; �N ) � ek(N�k)� (3.21)7



for � ! +1, N > 1 and 1 � k � N � 1, we have4, in the same limit and within the samerestri
tions on N and k,K(a1;::;aN�1jA)N (�1 + �; : : : ; �k + �; �k+1; : : : ; �n) � eyk�; (3.22)with yk = k�1Xi=1 iai + k N�1Xi=k ai +A+N � k! : (3.23)After de�ning y = Maxfykgk=f1;:::;N�1g; (3.24)we 
an atta
h to ea
h solution K(a1;::;aN�1jA)n two non-negative integers l and �l in the followingway l = Maxfs; y; 0g; (3.25)�l = l � s : (3.26)By de�nition, the 
ondition yk � l; (3.27)is satis�ed and, if both l and �l are non-vanishing, there 
ertainly exists at least one value of kfor whi
h it holds as an equality. Sin
e yN�1 = �A + s + N � 1, (3.27) with k = N � 1 givesA � N � �l � 1, and then the parameterizationA = aN +N � �l � 1; (3.28)with aN a non-negative integer.Then we see that to ea
h K(a1;::;aN�1jA)n with N > 1 in the basis of kernel solutions we 
anasso
iate two non-negative intergers, l and �l, whose di�eren
e 
oin
ides with the spin. Moreover,taking into a

ount (3.28), ea
h solution is identi�ed by N non-negative integers a1; : : : ; aN , andwe will use the notationK(a1;::;aN)n (�1; : : : ; �n) = K(a1;::;aN�1jA)n (�1; : : : ; �n) : (3.29)As for the 
ases N = 0; 1, sin
e the set of yk's is empty, we set y � 0, so that l and �l arestill de�ned by (3.25) and (3.26). Noti
e that no N -kernel solution with N > 1 is 
ompatiblewith l = �l = 0. Indeed, (3.20) with s = 0 gives A � 0, whi
h 
ontradi
ts (3.28) with �l = 0 andN > 1. Hen
e, there are only two independent solutions with l = �l = 0 : the identity, whi
h wasasso
iated to N = 0, and the solution with N = 1 and s = 0.4In order to simplify the notation the dependen
e of yk on a1; : : : ; aN�1; A is not indi
ated expli
itly.
8



4 Isomorphism between 
riti
al and o�-
riti
al operator spa
eWe now want to 
ount how many independent solutions of the form fa
tor equations (3.5){(3.9)
orrespond to a given pair of non-negative integers l and �l (we say these solutions are of type(l; �l)). In the basis of the N -kernel solutions dis
ussed in the previous se
tion the problemredu
es to 
ounting how many sets of integers a1; : : : ; aN 
an determine the given values of land �l through the relations (3.20), (3.25) and (3.26).Let us 
onsider �rst the 
ase of solutions of type (l; 0), whi
h is parti
ularly simple. Sin
el = s, the only 
onstraint 
omes from (3.20) whi
h be
omesNXi=0 iai = l �N(N � 1); (4.1)and holds for all N � 0. For a given N , the number of ways of satisfying this 
onditionwith non-negative integers a1; : : : ; aN 
oin
ides with the number of partitions of l �N(N � 1)into the positive integers i = 1; : : : ; N � N (l), where N (l) is the largest integer ensuring thenon-negativity of l � N(N � 1). We saw in se
tion 2 that the number of su
h partitions isP (N; l �N(N � 1)), so that the dimension of the spa
e of solutions of type (l; 0) isd(l; 0) = 1XN=0P (N; l �N(N � 1)) : (4.2)Comparison with (2.20) then gives d(l; 0) = dI(l) + d'(l); (4.3)i.e. for any non-negative l the dimension of the spa
e of solutions of type (l; 0) of the form fa
torequations for the massive theory identi
ally 
oin
ides with the total dimension of the spa
e ofoperators of level (l; 0) in the 
riti
al theory.An analogous result holds for the spa
e of solutions of type (0; �l). Indeed, we show inappendix A that, for ea
h solution K(a1;::;aN)n (�1; : : : ; �n) of type (l; 0), a 
orresponding solution�K(a1;::;aN )n (�1; : : : ; �n) of type (0; l) is obtained performing in (3.18) the substitution �(N)i ! ��(N)i ,where ��(n)i stay for the symmetri
 polynomials 
omputed in �xi � e��i .In prin
iple the previous 
ounting pro
edure 
an be extended to the solutions of type (l; �l)with both l and �l non-vanishing. In this 
ase, however, the analysis is substantially 
ompli
atedby the fa
t that l now 
oin
ides with y, whi
h is non-trivially determined through (3.23) and(3.24). There is, however, a simpler path. We show in appendix B that a solution K(a1;::;aN)n oftype (l; �l) satis�es the asymptoti
 fa
torization propertylim�!+1 e�l�K(a1;::;aN)N (�1 + �; :::; �R + �; �R+1:::; �N ) =(C1)RLK(a(l)1 ;::;a(l)R )R (�1; :::; �R) �K(a(�l)1 ;::;a(�l)L )L (�R+1:::; �N ) ; (4.4)where K(a(l)1 ;::;a(l)R )R de�nes a solution of type (l; 0), �K(a(�l)1 ;::;a(�l)L )L de�nes a solution of type (0; �l),1 � R � N � 1, L = N � R, and the integers a(l)1 ; ::; a(l)R , a(�l)1 ; ::; a(�l)L are determined by the9



a1; ::; aN as a(l)i = ai for 1 � i � R� 1; (4.5)a(�l)N�i = ai for R+ 1 � i � N � 1; (4.6)a(l)R = NXi=R ai � �l + 2L ; a(�l)L = � NXi=R+1 ai + �l � 2(L� 1): (4.7)Inversely, the spe
i�
ation of the ai's in terms of the a(l)i 's and a(�l)i 's is 
ompleted by the relationsaN = � LXi=1 a(�l)i + �l � 2(L� 1); (4.8)aR = a(l)R + a(�l)L � 2: (4.9)The non-negativity of aR implies a(l)R + a(�l)L � 2 ; (4.10)while that of aN follows fromaN � � LXi=1 ia(�l)i + �l � 2(L� 1) = (L� 2)(L� 1) � 0 : (4.11)Hen
e, equation (4.4) 
an be used to 
hara
terize all solutions of type (l; �l) in terms of thoseof type (l; 0) and (0; �l). More pre
isely, given a solution of type (l; 0) and one of type (0; �l), theyspe
ify a solution of type (l; �l) provided (4.10) is satis�ed. The two 
onditionsa(l)R = 0; a(�l)L � 2; (4.12)a(l)R � 1; a(�l)L � 1; (4.13)exhaust all the independent possibilities and lead to the following expression for the dimensionof the spa
e of solutions of type (l; �l)d(l; �l) = d(0j(l; 0))d(2j(0; �l)) + d(1j(l; 0))d(1j(0; �l)); (4.14)where d(0j(l; 0)) is the dimension of the subspa
e of solutions spanned by the R-kernels of type(l; 0) with a(l)R = 0 and R � N (l), and d(ij(l; 0)) with i � 0 is the dimension of the subspa
e ofsolutions spanned by the R-kernels of type (l; 0) with a(l)R � i and R � N (l) (analogous de�nitionsfor the dimensions of subspa
es of type (0; �l) are understood). The formula for d(ij(l; 0)) withi � 0 is simply derived rede�ning a(l)R = a(l);iR + i, with now a(l);iR � 0, so thatd(ij(l; 0)) = 1XN=0P (N; l �N(N + i� 1)): (4.15)10



By de�nition d(0j(l; 0)) gives the number of partitions of l�R(R�1) into the integers 1; : : : ; R�1(a(l)R = 0), so that d(0j(l; 0)) = 1XN=1P (N � 1; l �N(N � 1)); (4.16)whi
h implies d(0j(l; 0)) = d(2j(l; 0)). Finally, re
alling (2.15) we obtain the identitiesd(2j(l; 0)) = dI(l); d(1j(l; 0)) = d'(l); (4.17)so that (4.14) be
omes d(l; �l) = dI(l)dI(�l) + d'(l)d'(�l) : (4.18)This formula 
ompletes our proof showing that the spa
e of solutions of the form fa
tor equationsfor the massive Lee-Yang model de
omposes into subspa
es labeled by pairs of non-negativeintegers l and �l whose dimensionality 
oin
ides with that of the subspa
e of 
onformal operatorsof level (l; �l).5 Con
lusionWe have shown in this paper for the Lee-Yang model how the operator spa
e re
onstru
tedfrom the parti
le dynami
s of the massive theory through the form fa
tor equations (3.5){(3.9)is a dire
t sum of subspa
es with given levels whi
h exa
tly 
oin
ides with the de
ompositiondi
tated by 
onformal symmetry at the �xed point.It is worth stressing that we are able to a
hieve this result be
ause, through (3.25) and (3.26),we are able to atta
h to ea
h solution belonging to a basis for the whole spa
e of solutions of theform fa
tor equations two non-negative integers that, after the isomorphism has been shown,is natural to 
all levels. This notion of levels for the generi
 form fa
tor solution is absent inprevious investigations, and this is why an equation like (4.18) is not 
ontained there.At 
riti
ality 
onformal symmetry also naturally yields the notion of operator families 
or-responding the lowest weight representations of the Virasoro algebra. In the massive theory, inabsen
e of internal symmetries whi
h distinguish them, the two operator families of the Lee-Yang model 
annot be disentangled using the form fa
tor equations (3.5){(3.9) only. Additionalinformation is needed to pass from the 
lassi�
ation of the solutions a

ording to the levels tothe identi�
ation of spe
i�
 operators within them.As far as the family of ' is 
on
erned, this operator, being responsible for the breaking of
onformal symmetry, is proportional to the tra
e � of the energy-momentum tensor, and on thisground the solution of the form fa
tor equations 
orresponding to it was originally identi�ed in[27, 3℄. This solution 
oin
ides with that with N = 1, s = 0 in the N -kernel basis that inse
tion 3 we identi�ed as the only operator other than the identity with l = �l = 0.The �rst non-trivial representatives of the identity family appear at level 2. The solutions forthe energy-momentum 
omponents T and �T with levels (2; 0) and (0; 2), respe
tively, are imme-diately obtained from the solution for � through the energy-momentum 
onservation equations.11



Hen
e, the �rst genuinely new solution in this family is that for the 
omposite operator T �Twith levels (2; 2). Here it is worth re
alling that, while at the 
onformal point the de
ouplingof holomorphi
 and anti-holomorphi
 
omponents redu
es non-
hiral operators to trivial prod-u
ts of the 
hiral ones, in the massive theory the de
oupling is lost5 and non-
hiral operatorsneed to be suitably de�ned as regularized produ
ts. It is then parti
ularly relevant that ourproof of one-to-one 
orresponden
e between operators at and away from 
riti
ality in
ludes thenon-
hiral ones. The form fa
tor solution for T �T in the Lee-Yang model was determined in [28℄exploiting also some general properties of this operator obtained in [29℄.In [30℄ all the operators with l; �l � 7 for the massive Lee-Yang model were obtained a
tingon the form fa
tor solutions for �, T , �T and T �T with the �rst few 
onserved quantities of thisintegrable quantum �eld theory. For these values of l and �l, (4.18) was then reprodu
ed withthe two terms in the r.h.s. disentangled.It is reasonable to expe
t that the approa
h illustrated here for the simplest non-trivial 
ase
an be generalized to more 
ompli
ated integrable quantum �eld theories. In all massive in-tegrable 
ases the analysis of the stru
ture of the operator spa
e redu
es to the study of thespa
e of solutions of a system of equations like (3.5){(3.9), 
ompli
ated in general by the pres-en
e of several spe
ies of parti
les. The form fa
tor equations, instead, undergo substantialmodi�
ations when integrability is lost and parti
le produ
tion be
omes possible. In the gen-eral two-dimensional 
ase, however, both integrable and non-integrable renormalization grouptraje
tories originate from a given �xed point. Then, up to symmetry breaking e�e
ts, thenon-integrable form fa
tor equations should yield the same operator spa
e than the integrableones.A
knowledgments. The work of G.D. is partially supported by the ESF grant INSTANSand by the MUR proje
t \Quantum �eld theory and statisti
al me
hani
s in low dimensions".The work of G.N. was supported by the ANR program MIB-05 JC05-52749 and is 
urrentlysupported by the 
ontra
t MEXT-CT/2006/042695.A Chiral and anti
hiral solutionsNoti
e that the generi
 N -kernel K(a1;::;aN )n (�1; :::; �n) of type (0; �l > 0) 
an be rewritten as�K(�a1;::;�aN)n (�1; :::; �n) = 8><>: 0 for n < N;(��(N)N )N�1Q1�i�N (��(N)i )�aiKNN (�1; :::; �N ) for n = N; (A.1)5Equation (4.4) expresses that the de
oupling is re
overed in the 
onformal, high energy limit.
12



where ��(N)i stay for the symmetri
 polynomials 
omputed in �xi � e��i , and that the integers�a1; ::; �aN given by�ai = aN�i; n < N ; �aN = � NXi=1 ai + 2(N � 1)� �l! (A.2)are non-negative. This is obvious for �ai with n < N , while for �aN = �y1(a1; :::; aN ) it followsfrom (3.27) with l = 0. In addition, in terms of the �ai the 
ondition s = ��l is rewritten asNXi=1 i�ai = �l �N(N � 1): (A.3)Inversely, any solution �K(�a1;::;�aN)n (�1; :::; �n) with �a1; ::; �aN non-negative integers satisfying(A.3) is a N -kernel of type (0; �l). Indeed, due to (A.3), �K(�a1;::;�aN)n (�1; :::; �n) has spin s = ��l,while using (A.2) yk 
an be rewritten in terms of �a1; ::; �aN asyk = � k�1Xi=0(k � i)�aN�i + k(k � 1)! ;so that yk � 0 for 1 � k � N � 1; then (3.25) implies l = 0.Hen
e we see that the spa
es of kernel solutions of type (�l; 0) and (0; �l) are isomorphi
. Indeed,N non-negative integers �a1; ::; �aN satisfying (A.3) de�ne the solutionK(�a1;::;�aN )n (�1; :::; �n) of type(�l; 0) (as dis
ussed in se
tion 4) as well as the solution �K(�a1;::;�aN )n (�1; :::; �n) of type (0; �l).B Asymptoti
 fa
torizationIt follows from (3.14) that the minimal N -parti
le kernel (3.16) satis�es the asymptoti
 fa
tor-ization propertylim�!+1 e�RL�KNN (�1+�; :::; �R+�; �R+1:::; �N ) = (C1)RLKRR (�1; :::; �R)KLL (�R+1:::; �N ): (B.1)On the other hand the elementary symmetri
 polynomials enjoy the propertieslim�!+1 e�k��(N)p (x1e�; ::; xke�; xk+1; ::; xN ) = �(k)k (x1; : : : ; xk)�(N�k)p�k (xk+1; : : : ; xN ); k � p � N;(B.2)lim�!+1 e�p��(N)p (x1e�; ::; xke�; xk+1; ::; xN ) = �(k)p (x1; : : : ; xk); p � k � N: (B.3)Using these equations it is simple to see that (4.4) holds for a N -kernel solution satisfying (3.27)as an equality for k = R. However, we still have to prove that the fa
tors on the r.h.s. of (4.4)are indeed a R-kernel of type (l; 0) and a L-kernel of type (0; �l), i.e. that the integers a(l)1 ; ::; a(l)Rand a(�l)1 ; ::; a(�l)L are non-negative and satisfy the 
ondition (4.1) and (A.3), respe
tively. Equation(4.1) for the a(l)i follows fromRXi=1 ia(l)i = R�1Xi=1 iai +R( NXi=R ai � �l + 2L) = l �R(R� 1); (B.4)13



where the last equality is due to the fa
t that (3.27) holds as an equality for k = R. Analogously,LXi=1 ia(�l)i = � NXj=R+1(j �R)aj + L(�l � 2(L� 1)) = �l � L(L� 1); (B.5)where we have used NXj=R+1(j �R)aj = ��l + L(�l + 1� L); (B.6)a result whi
h follows taking the di�eren
e of (3.20) and (3.27) for k = R.The integers a(l)i and a(�l)j with 1 � i � R�1 and 1 � j � L�1 are non-negative by (4.5)-(4.6)and so we have to prove only the non-negativity of a(l)R and a(�l)L . If we rewritea(l)R = (R�1Xi=1 iai +R NXi=R ai)� (R�1Xi=1 iai + (R� 1) NXi=R ai)� �l + 2L;we get a(l)R � 0 using (3.27) for k = R and k = R� 1 . Similarly,a(�l)L = ( RXi=1 iai +R NXi=R+1 ai)� ( RXi=1 iai + (R+ 1) NXi=R+1 ai) + �l � 2(L� 1);so using (3.27) for k = R and k = R+ 1 we get a(�l)L � 0, in this way 
ompleting the proof.Let us now prove the 
hara
terization of kernel solutions of type (l; �l) in terms of those oftype (l; 0) and (0; �l). We have just to prove that, given R non-negative integers a(l)1 ; ::; a(l)R andL non-negative integers a(�l)1 ; ::; a(�l)L satisfying (4.10) and, respe
tively, the 
onditions (4.1) and(A.3), then the integers a1; ::; aN determined by (4.5), (4.6), (4.8), (4.9) satisfy (3.20) and (3.27),with (3.27) whi
h is an equality for k = R. For this purpose noti
e that the di�eren
e of (B.4)and (B.5) givesNXi=1 iai = RXi=1 ia(l)i � LXj=1 ja(�l)j �N(2L� (�l + 1)) +R� L = l � �l �N(N � (�l + 1)); (B.7)where to derive the last equality we have used (4.1) for the a(l)i and (A.3) for the a(�l)j . This isthe spin 
ondition (3.20). The identity (3.27) for k = R follows fromRXi=1 iai +R NXi=R+1 ai = RXi=1 ia(l)i �R(2L� �l) = l �R(N �R+ (N � (�l + 1))); (B.8)where to derive the last equality we have used the 
ondition (4.1) for the a(l)i .Consider now the inequality (3.27) for k 6= R. For k < R we havek�1Xi=1 iai + k NXi=k ai = k�1Xi=1 ia(l)i + k RXi=k a(l)i � k(2L� �l) � l � k((N � k) + (N � (�l + 1))); (B.9)14



where to derive the last inequality we have used the 
ondition (3.27) with k < R for the integersa(l)1 ; ::; a(l)R . For k > R we havek�1Xi=1 iai+k NXi=k ai = RXi=1 ia(l)i � LXj=1+(N�k)(j�N+k)a(�l)j �2R�k(2(L�1)��l) � l�k((N�k)+(N��l�1));(B.10)where to obtain the last inequality we have used (4.1) for the a(l)i andLXj=1+p(j � p)a(�l)j � �(L� p)(p+ (L� 1)) ; (B.11)this last inequality follows taking the di�eren
e of (A.3) and (3.27) applied to the a(�l)i . (B.9)and (B.10) provide the 
onditions (3.27) for k 6= R, in this way 
ompleting the proof.Referen
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