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AbstratFor the simplest quantum �eld theory originating from a non-trivial �xed point of the renor-malization group, the Lee-Yang model, we show that the operator spae determined bythe partile dynamis in the massive phase and that presribed by onformal symmetry atritiality oinide.
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1 IntrodutionThe loal operators of a quantum �eld theory form an in�nite-dimensional linear spae whihthe transformation properties under spae-time and internal symmetries naturally deomposeinto subspaes, eah ontaining in�nitely many operators with assigned spin and harge. For thegeneri quantum �eld theory desribing a renormalization group trajetory owing out of a non-trivial �xed point, a further, quantitative haraterization of the operator spae is a very diÆulttask. Partiularly relevant is the haraterization of the operators by their saling dimension,as determined by the short distane behavior of the two point funtions. The spetrum ofthe saling dimensions, as well as the number of operators sharing the same dimension, aredistinguishing data of the theory whih remain, however, out of reah in the generi ase.Two-dimensional quantum �eld theory enjoys in this respet a speial status. Here, thein�nite-dimensional nature of onformal symmetry allows the solution of �xed point theories [1℄,revealing in partiular a deomposition of the operator spae into families ontaining operatorswith integer-spaed saling dimensions. The number of families, the saling dimensions andthe degeneray within eah integer level are all known. Two non-negative integers, l and �l,determine, through their di�erene and their sum, the spin and (up to a onstant harateristiof the family) the saling dimension of an operator.Perturbative onsiderations [2, 3, 4℄ suggest that, up to symmetry breaking e�ets, suh astruture should survive a perturbation of the �xed point leading to a massive theory. Theexistene in two dimensions of massive integrable theories provides the hane of testing non-perturbatively this onjeture, but also poses a problem whih is intriguing and hallenging at thesame time. Indeed, integrable massive theories are solved on-shell, through the determinationof the exat S-matrix, and any information about the operators needs to be extrated fromthe partile dynamis. The monodromy properties and the singularity struture provide a setof equations [5, 6℄ for the matrix elements of the operators on asymptoti states (form fators)whih have the S-matrix as their only input, and whose spae of solutions is expeted to oinidewith the operator spae of the theory.The latter issue was �rst addressed by Cardy and Mussardo in [7℄, where the simplest ase,that of the thermal Ising model, was investigated. They showed that the number of solutionsof the form fator equations with spin s and with the mildest asymptoti behavior at highenergy oinides with the number of hiral operators (i.e. having �l = 0) �xed by onformal �eldtheory for spin s = l at the ultraviolet �xed point1. Mildest asymptoti behavior is a reasonableonjeture for the hiral operators, whih are the most relevant among the operators with givenspin.While learly supporting the idea of the isomorphism of ritial and o�-ritial operatorspaes, this original study deferred to subsequent investigations some important issues. First ofall, the ounting of generi, non-hiral, operators requires the introdution in the form fatorapproah of some information about the levels, whih are no longer uniquely spei�ed by the1Of ourse a similar analysis an be performed for the operators with l = 0 (antihiral).1



spin. Moreover, as already pointed out in [7℄, the ase of the thermal Ising model is \deeptivelysimple" due to its equivalene with a free fermioni theory2. In partiular, all the form fatorsolutions an be generated by repeated ation of the onserved quantities, a irumstane whihdoes not persist for the generi integrable theory.The problem of onsidering interating integrable theories was takled by Koubek [8℄, whoextended the analysis of Cardy and Mussardo for the onjetured hiral solutions to severalmassive deformations of minimal onformal models. She also performed a more general ountingof the form fator solutions aording to the asymptoti behavior for given spin, obtainingvery suggestive formal relations with the haraters whih in onformal �eld theory speify thestruture of the operator families. The inability to establish a onnetion with the levels l and�l, however, prevented her from showing the isomorphism between the onformal and massiveoperator spaes. It was shown in [9, 10, 11℄ how this type of ounting an be extended to thesine-Gordon model and its restritions.In this paper we show expliitly for the massive Lee-Yang model that the spae of solutions ofthe form fator equations deomposes into subspaes labeled by a pair of non-negative integers(l; �l) related to the spin and to the asymptoti behavior of the form fators at high energy.We then show that the dimension of eah subspae exatly oinides with the dimension of thesubspae of the onformal operator spae with levels (l; �l), proving in this way the isomorphismbetween the ritial and o�-ritial operator spaes. The hoie of the Lee-Yang model for a�rst time proof is obvious: on one hand, this model is fully representative of generi integrablequantum �eld theories with respet to the features whih are of interest here (it is a massive,interating theory originating from a non-trivial �xed point of the renormalization group, withan operator spae whih annot be entirely generated by repeated ation of onserved quantitieson lowest level operators); on the other, it minimizes the tehnialities and best illustrates theessential points due to the presene of the minimal number of operator families (two) and of asingle speies of massive partiles.The paper is organized as follows. After realling in the next setion the struture of theoperator spae of the Lee-Yang model at ritiality, we turn in setion 3 to the analysis of thespae of solutions of the form fator equations in the massive theory. The omparison betweenthe ritial and o�-ritial operator spaes is then performed in setion 4. Setion 5 ontainsfew �nal remarks while some tehnial parts of the proof are detailed in two appendies.2 The onformal operator spaeAt a ritial point the operators undergo the general onformal �eld theory lassi�ation [1℄. Asaling operator �(x) is �rst of all labeled by a pair (��; ���) of onformal dimensions whih2The spin setor onsidered in [7℄, however, is non-trivial due to non-loality with respet to the fermions.
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determine the saling dimension X� and the spin s� asX� = �� + ��� (2.1)s� = �� � ���: (2.2)There exist operator families assoiated to the lowest weight representations of the Virasoroalgebra [Ln; Lm℄ = (n�m)Ln+m + 12n(n2 � 1)Æn+m;0 : (2.3)The Ln's generate the onformal transformations assoiated to the omplex variable z = x1+ix2,with the entral harge  labeling the onformal theory. The same algebra, with the same value of, holds for the generators �Ln of the onformal transformations in the variable �z = x1� ix2. TheLn's ommute with the �Lm's. Eah operator family onsists of a primary operator �0 (whihis annihilated by all the generators Ln and �Ln with n > 0) and in�nitely many desendantoperators obtained through the repeated ation on the primary of the Virasoro generators. Abasis in the spae of desendants of �0 is given by the operatorsL�i1 : : : L�iI �L�j1 : : : �L�jJ �0 (2.4)with 0 < i1 � i2 � : : : � iI (2.5)0 < j1 � j2 � : : : � jJ : (2.6)The levels (l; �l) =  IXn=1 in ; JXn=1 jn! (2.7)determine the onformal dimensions of the desendants (2.4) in the form(�; ��) = (��0 + l; ���0 + �l) : (2.8)In general the number of independent operators at level (l; �l) is p(l)p(�l), p(l) being the numberof partitions of l into positive integers. This number, however, is redued in a model dependentway in presene of degenerate representations assoiated to primary operators �r;s whih possessa vanishing linear ombination of desendant operators (null vetor) when l or �l equals rs. Sothe dimensionality of the subspae with levels (l; �l) in the family of �0 is usually written asd�0(l)d�0(�l), with the integers d�0(l) whih an be enoded in the resaled harater��0(q) = 1Xl=0 d�0(l)ql : (2.9)The onformal �eld theory with the smallest operator ontent is the minimal model M2;5,with entral harge  = �22=5, possessing only two primary operators: the identity I = �1;1 =�1;4 with onformal dimensions (0; 0), and the operator ' = �1;2 = �1;3 with onformal dimen-sions (�1=5;�1=5). The negative values of the entral harge and of X' show that the model3



does not satisfy reetion-positivity. It goes under the name of Lee-Yang model beause it de-sribes (see [12℄) the universal properties of the edge singularity of the zeros of the partitionfuntion of the Ising model in an imaginary magneti �eld [13, 14, 15℄.The haraters for the two operator families of the Lee-Yang model are [16, 17, 18℄�I(q) = 1Yn=0 1(1� q2+5n) (1� q3+5n) (2.10)�'(q) = 1Yn=0 1(1� q1+5n) (1� q4+5n) : (2.11)They also enjoy the following ('fermioni' [19℄) representation based on the Rogers-Ramanujanidentities [20℄: �I(q) = G�1, �'(q) = G0; (2.12)where Gp = 1Xk=0 qk(k�p)(q)k ; (2.13)(q)k = kYi=1(1� qi) : (2.14)This representation, when ompared with the de�nition (2.9), yields the following expansionsfor the dimensions of the spaes of hiral desendants of level ldI(l) = 1XN=0P (N; l �N(N + 1)); d'(l) = 1XN=0P (N; l �N2); (2.15)where P (N;M) is the number of the partitions of the non-negative integer M into the integers1; 2; : : : ; N ; it is generated by 1(q)N = 1XM=0P (N;M)qM : (2.16)We setP (0; 0) = 1; P (N;M) = 0 for N � 0 and M < 0; P (0;M) = 0 for M > 0; (2.17)notie that P (N; 0) = 1. The generating funtions Gp satisfy the reursion relationGp = Gp�1 + q1�pGp�2; (2.18)whih implies �I(q) + �'(q) = G1; (2.19)and leads to dI(l) + d'(l) = 1XN=0P (N; l �N(N � 1)): (2.20)4



The ourrene of di�erent representations for the haraters of rational onformal �eld theo-ries is a general phenomenon. Fermioni representations have been derived for lasses of rationalonformal theories de�ned as osets of aÆne Lie algebras [19℄ and in partiular for the series ofnon-unitary minimal models M(2; 2p+ 3) [21℄. These representations follow by a quasi-partileinterpretation based on the Bethe Ansatz desription and give alternative representations ofthe haraters with respet to the Feigin-Fuhs-Felder onstrution [22℄. Their derivation usesgeneralizations of the Rogers-Ramanujan identities (the Gordon-Andrews identities [23℄).3 Operators in the massive theoryA renormalization group trajetory originating from the Lee-Yang onformal point is obtainedperturbing the modelM2;5 with its only non-trivial primary operator '. This gives the massiveLee-Yang model with ation A = ACFT + g Z d2x'(x) : (3.1)It follows from the general results of [2℄ about perturbed onformal �eld theories that the theory(3.1) belongs to the lass of integrable quantum �eld theories. These are haraterized by theexistene of an in�nite number of onserved quantities whih indues the omplete elastiity andfatorization of the sattering proesses, and allows the exat determination of the S-matrix [24℄.It was shown in [25℄ that the massive Lee-Yang model has a mass spetrum ontaining a singlespeies of neutral partiles A(�) with two-body sattering determined by the amplitude3S(�) = tanh 12 �� + 2i�3 �tanh 12 �� � 2i�3 � ; (3.2)whih, due to fatorization, spei�es the full S-matrix. The bound state pole loated at � =2i�=3 orresponds to the fusion proess AA! A and has the residueRes�=2i�=3S(�) = i�2; (3.3)where � = i21=231=4 is the three-partile oupling; the fat that � is purely imaginary is againrelated to the lak of reetion-positivity [25℄.Within integrable quantum �eld theory the operators are onstruted determining theirmatrix elements on the asymptoti partile states. All the matrix elements of a given loaloperator �(x) an be obtained from the n-partile form fatorsF�n (�1; : : : ; �n) = h0j�(0)j�1 : : : �ni; (3.4)where j0i denotes the vauum (i.e. zero-partile) state. The form fators satisfy a set of fun-tional equations taking into aount the spin s� of the operator, the monodromy properties3The on-shell two-momentum of a partile of mass m is parameterized by a rapidity variable � as (p0; p1) =(m osh �;m sinh �). In (3.2) � denotes the rapidity di�erene of the olliding partiles.5



under analyti ontinuation in rapidity spae and the pole singularities assoiated to boundstates and annihilation proesses [5, 6℄. For the Lee-Yang model these equations readF�n (�1 + �; : : : ; �n + �) = es��F�n (�1; : : : ; �n) (3.5)F�n (�1; : : : ; �i; �i+1; : : : ; �n) = S(�i � �i+1)F�n (�1; : : : ; �i+1; �i; : : : ; �n) (3.6)F�n (�1 + 2i�; �2; : : : ; �n) = F�n (�2; : : : ; �n; �1) (3.7)Res�0=� F�n+2(�0 + i�3 ; � � i�3 ; �1; : : : ; �n) = i�F�n+1(�; �1; : : : ; �n) (3.8)Res�0=�+i� F�n+2(�0; �; �1; : : : ; �n) = i241� nYj=1S(� � �j)35F�n (�1; : : : ; �n) ; (3.9)with S(�) and � spei�ed above. The spae of solutions of these equations is linear in theoperators and is expeted to oinide with the in�nite-dimensional operator spae of the massivetheory. It is our task to show that this spae of solutions is isomorphi to the onformal operatorspae desribed in the previous setion.Let us start writing the general solution to the equations (3.6){(3.9). It readsF�n (�1; : : : ; �n) = U�n (�1; : : : ; �n) Y1�i<j�n Fmin(�i � �j)osh �i��j2 �osh(�i � �j) + 12� . (3.10)Here the fators in the denominator introdue the bound state and annihilation poles presribedby (3.8) and (3.9), whih are the only singularities of the form fators in rapidity spae, whileFmin(�) = �i sinh �2 exp�2Z 10 dtt osh t6osh t2 sinh t sin2 (i� � �)t2� � (3.11)is the solution of the equations F (�) = S(�)F (��) (3.12)F (� + 2i�) = F (��) (3.13)free of zeros and poles for Im� 2 (0; 2�); it behaves asymptotially aslimj�j!1 e�j�jFmin(�) = C1; (3.14)with C1 = �142 ;  = exp�2Z 10 dtt sinh t2 sinh t3 sinh t6sinh2 t � : (3.15)All the information speifying the operator � is ontained in the funtions U�n (�1; : : : ; �n).They are entire funtions of the rapidities, symmetri and (up to a fator (�1)n�1) 2�i-periodiin all �j's, and homogeneous of degree s� (i.e. they aount for the property (3.5)). Of oursethe funtions U�n with di�erent n are related by the residue equations (3.8) and (3.9). Theseequations allow to build a solution starting from an initial ondition for n = 1, and thendetermining the matrix elements with a larger number of partiles. In doing this, however, oneshould keep in mind that there an be more solutions orresponding to a given initial ondition.6



Indeed, N -partile matrix elements with vanishing residues on the bound state and kinematialpoles are themselves initial onditions of kernel solutions whih in a linear ombination give noontribution for n < N . Enumerating the kernel solutions is then essential for ounting theindependent solutions of the form fator equations, as originally observed in [26℄.We all minimal salar N -kernel solution KNn (�1; :::; �n) the solution of the form fatorequations (3.5){(3.9) with s� = 0 and initial onditionKNn (�1; :::; �n) = 8><>: 0 for n < NQ1�i<j�N Fmin(�i � �j) for n = N; (3.16)where N � 2. The initial ondition of the general spin s N -kernel solution di�ers from thisone by a multipliative fator whih is an entire funtion of the rapidities, symmetri and 2�i-periodi in all �j's and homogeneous of degree s. After introduing the elementary symmetripolynomials �(n)i generated bynYi=1(x+ xi) = nXk=0 xn�k�(n)k (x1; : : : ; xn) ; (3.17)with xi � e�i , a basis in the spae of N -kernel solutions is provided by the solutionsK(a1;::;aN�1jA)nwith initial onditionK(a1;::;aN�1jA)n (�1; :::; �n) =8><>: 0 for n < N(�(N)N )AQ1�i�N�1(�(N)i )aiKNN (�1; :::; �N ) for n = N; (3.18)where a1; : : : aN�1 are non-negative integers and A is an integer. If we formally de�ne the spins '1-kernel' solution with initial onditionK(s)n (�) = 8>><>>: 0 for n = 0��(1)1 �s = es� for n = 1; (3.19)and formally assoiate the identity solution F In = Æn;0 to N = 0, we have that all the solutionsof the form fator equations (3.5){(3.9) an be written as linear ombinations of the N -kernelsolutions with N � 0. In the following we perform our analysis of the spae of solutions withinthis basis.It follows from (3.18) and (3.19) that the spin iss = N�1Xi=1 iai +NA : (3.20)Sine (3.14) implies KNN (�1 + �; ::; �k + �; �k+1; :::; �N ) � ek(N�k)� (3.21)7



for � ! +1, N > 1 and 1 � k � N � 1, we have4, in the same limit and within the samerestritions on N and k,K(a1;::;aN�1jA)N (�1 + �; : : : ; �k + �; �k+1; : : : ; �n) � eyk�; (3.22)with yk = k�1Xi=1 iai + k N�1Xi=k ai +A+N � k! : (3.23)After de�ning y = Maxfykgk=f1;:::;N�1g; (3.24)we an attah to eah solution K(a1;::;aN�1jA)n two non-negative integers l and �l in the followingway l = Maxfs; y; 0g; (3.25)�l = l � s : (3.26)By de�nition, the ondition yk � l; (3.27)is satis�ed and, if both l and �l are non-vanishing, there ertainly exists at least one value of kfor whih it holds as an equality. Sine yN�1 = �A + s + N � 1, (3.27) with k = N � 1 givesA � N � �l � 1, and then the parameterizationA = aN +N � �l � 1; (3.28)with aN a non-negative integer.Then we see that to eah K(a1;::;aN�1jA)n with N > 1 in the basis of kernel solutions we anassoiate two non-negative intergers, l and �l, whose di�erene oinides with the spin. Moreover,taking into aount (3.28), eah solution is identi�ed by N non-negative integers a1; : : : ; aN , andwe will use the notationK(a1;::;aN)n (�1; : : : ; �n) = K(a1;::;aN�1jA)n (�1; : : : ; �n) : (3.29)As for the ases N = 0; 1, sine the set of yk's is empty, we set y � 0, so that l and �l arestill de�ned by (3.25) and (3.26). Notie that no N -kernel solution with N > 1 is ompatiblewith l = �l = 0. Indeed, (3.20) with s = 0 gives A � 0, whih ontradits (3.28) with �l = 0 andN > 1. Hene, there are only two independent solutions with l = �l = 0 : the identity, whih wasassoiated to N = 0, and the solution with N = 1 and s = 0.4In order to simplify the notation the dependene of yk on a1; : : : ; aN�1; A is not indiated expliitly.
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4 Isomorphism between ritial and o�-ritial operator spaeWe now want to ount how many independent solutions of the form fator equations (3.5){(3.9)orrespond to a given pair of non-negative integers l and �l (we say these solutions are of type(l; �l)). In the basis of the N -kernel solutions disussed in the previous setion the problemredues to ounting how many sets of integers a1; : : : ; aN an determine the given values of land �l through the relations (3.20), (3.25) and (3.26).Let us onsider �rst the ase of solutions of type (l; 0), whih is partiularly simple. Sinel = s, the only onstraint omes from (3.20) whih beomesNXi=0 iai = l �N(N � 1); (4.1)and holds for all N � 0. For a given N , the number of ways of satisfying this onditionwith non-negative integers a1; : : : ; aN oinides with the number of partitions of l �N(N � 1)into the positive integers i = 1; : : : ; N � N (l), where N (l) is the largest integer ensuring thenon-negativity of l � N(N � 1). We saw in setion 2 that the number of suh partitions isP (N; l �N(N � 1)), so that the dimension of the spae of solutions of type (l; 0) isd(l; 0) = 1XN=0P (N; l �N(N � 1)) : (4.2)Comparison with (2.20) then gives d(l; 0) = dI(l) + d'(l); (4.3)i.e. for any non-negative l the dimension of the spae of solutions of type (l; 0) of the form fatorequations for the massive theory identially oinides with the total dimension of the spae ofoperators of level (l; 0) in the ritial theory.An analogous result holds for the spae of solutions of type (0; �l). Indeed, we show inappendix A that, for eah solution K(a1;::;aN)n (�1; : : : ; �n) of type (l; 0), a orresponding solution�K(a1;::;aN )n (�1; : : : ; �n) of type (0; l) is obtained performing in (3.18) the substitution �(N)i ! ��(N)i ,where ��(n)i stay for the symmetri polynomials omputed in �xi � e��i .In priniple the previous ounting proedure an be extended to the solutions of type (l; �l)with both l and �l non-vanishing. In this ase, however, the analysis is substantially ompliatedby the fat that l now oinides with y, whih is non-trivially determined through (3.23) and(3.24). There is, however, a simpler path. We show in appendix B that a solution K(a1;::;aN)n oftype (l; �l) satis�es the asymptoti fatorization propertylim�!+1 e�l�K(a1;::;aN)N (�1 + �; :::; �R + �; �R+1:::; �N ) =(C1)RLK(a(l)1 ;::;a(l)R )R (�1; :::; �R) �K(a(�l)1 ;::;a(�l)L )L (�R+1:::; �N ) ; (4.4)where K(a(l)1 ;::;a(l)R )R de�nes a solution of type (l; 0), �K(a(�l)1 ;::;a(�l)L )L de�nes a solution of type (0; �l),1 � R � N � 1, L = N � R, and the integers a(l)1 ; ::; a(l)R , a(�l)1 ; ::; a(�l)L are determined by the9



a1; ::; aN as a(l)i = ai for 1 � i � R� 1; (4.5)a(�l)N�i = ai for R+ 1 � i � N � 1; (4.6)a(l)R = NXi=R ai � �l + 2L ; a(�l)L = � NXi=R+1 ai + �l � 2(L� 1): (4.7)Inversely, the spei�ation of the ai's in terms of the a(l)i 's and a(�l)i 's is ompleted by the relationsaN = � LXi=1 a(�l)i + �l � 2(L� 1); (4.8)aR = a(l)R + a(�l)L � 2: (4.9)The non-negativity of aR implies a(l)R + a(�l)L � 2 ; (4.10)while that of aN follows fromaN � � LXi=1 ia(�l)i + �l � 2(L� 1) = (L� 2)(L� 1) � 0 : (4.11)Hene, equation (4.4) an be used to haraterize all solutions of type (l; �l) in terms of thoseof type (l; 0) and (0; �l). More preisely, given a solution of type (l; 0) and one of type (0; �l), theyspeify a solution of type (l; �l) provided (4.10) is satis�ed. The two onditionsa(l)R = 0; a(�l)L � 2; (4.12)a(l)R � 1; a(�l)L � 1; (4.13)exhaust all the independent possibilities and lead to the following expression for the dimensionof the spae of solutions of type (l; �l)d(l; �l) = d(0j(l; 0))d(2j(0; �l)) + d(1j(l; 0))d(1j(0; �l)); (4.14)where d(0j(l; 0)) is the dimension of the subspae of solutions spanned by the R-kernels of type(l; 0) with a(l)R = 0 and R � N (l), and d(ij(l; 0)) with i � 0 is the dimension of the subspae ofsolutions spanned by the R-kernels of type (l; 0) with a(l)R � i and R � N (l) (analogous de�nitionsfor the dimensions of subspaes of type (0; �l) are understood). The formula for d(ij(l; 0)) withi � 0 is simply derived rede�ning a(l)R = a(l);iR + i, with now a(l);iR � 0, so thatd(ij(l; 0)) = 1XN=0P (N; l �N(N + i� 1)): (4.15)10



By de�nition d(0j(l; 0)) gives the number of partitions of l�R(R�1) into the integers 1; : : : ; R�1(a(l)R = 0), so that d(0j(l; 0)) = 1XN=1P (N � 1; l �N(N � 1)); (4.16)whih implies d(0j(l; 0)) = d(2j(l; 0)). Finally, realling (2.15) we obtain the identitiesd(2j(l; 0)) = dI(l); d(1j(l; 0)) = d'(l); (4.17)so that (4.14) beomes d(l; �l) = dI(l)dI(�l) + d'(l)d'(�l) : (4.18)This formula ompletes our proof showing that the spae of solutions of the form fator equationsfor the massive Lee-Yang model deomposes into subspaes labeled by pairs of non-negativeintegers l and �l whose dimensionality oinides with that of the subspae of onformal operatorsof level (l; �l).5 ConlusionWe have shown in this paper for the Lee-Yang model how the operator spae reonstrutedfrom the partile dynamis of the massive theory through the form fator equations (3.5){(3.9)is a diret sum of subspaes with given levels whih exatly oinides with the deompositionditated by onformal symmetry at the �xed point.It is worth stressing that we are able to ahieve this result beause, through (3.25) and (3.26),we are able to attah to eah solution belonging to a basis for the whole spae of solutions of theform fator equations two non-negative integers that, after the isomorphism has been shown,is natural to all levels. This notion of levels for the generi form fator solution is absent inprevious investigations, and this is why an equation like (4.18) is not ontained there.At ritiality onformal symmetry also naturally yields the notion of operator families or-responding the lowest weight representations of the Virasoro algebra. In the massive theory, inabsene of internal symmetries whih distinguish them, the two operator families of the Lee-Yang model annot be disentangled using the form fator equations (3.5){(3.9) only. Additionalinformation is needed to pass from the lassi�ation of the solutions aording to the levels tothe identi�ation of spei� operators within them.As far as the family of ' is onerned, this operator, being responsible for the breaking ofonformal symmetry, is proportional to the trae � of the energy-momentum tensor, and on thisground the solution of the form fator equations orresponding to it was originally identi�ed in[27, 3℄. This solution oinides with that with N = 1, s = 0 in the N -kernel basis that insetion 3 we identi�ed as the only operator other than the identity with l = �l = 0.The �rst non-trivial representatives of the identity family appear at level 2. The solutions forthe energy-momentum omponents T and �T with levels (2; 0) and (0; 2), respetively, are imme-diately obtained from the solution for � through the energy-momentum onservation equations.11



Hene, the �rst genuinely new solution in this family is that for the omposite operator T �Twith levels (2; 2). Here it is worth realling that, while at the onformal point the deouplingof holomorphi and anti-holomorphi omponents redues non-hiral operators to trivial prod-uts of the hiral ones, in the massive theory the deoupling is lost5 and non-hiral operatorsneed to be suitably de�ned as regularized produts. It is then partiularly relevant that ourproof of one-to-one orrespondene between operators at and away from ritiality inludes thenon-hiral ones. The form fator solution for T �T in the Lee-Yang model was determined in [28℄exploiting also some general properties of this operator obtained in [29℄.In [30℄ all the operators with l; �l � 7 for the massive Lee-Yang model were obtained atingon the form fator solutions for �, T , �T and T �T with the �rst few onserved quantities of thisintegrable quantum �eld theory. For these values of l and �l, (4.18) was then reprodued withthe two terms in the r.h.s. disentangled.It is reasonable to expet that the approah illustrated here for the simplest non-trivial asean be generalized to more ompliated integrable quantum �eld theories. In all massive in-tegrable ases the analysis of the struture of the operator spae redues to the study of thespae of solutions of a system of equations like (3.5){(3.9), ompliated in general by the pres-ene of several speies of partiles. The form fator equations, instead, undergo substantialmodi�ations when integrability is lost and partile prodution beomes possible. In the gen-eral two-dimensional ase, however, both integrable and non-integrable renormalization grouptrajetories originate from a given �xed point. Then, up to symmetry breaking e�ets, thenon-integrable form fator equations should yield the same operator spae than the integrableones.Aknowledgments. The work of G.D. is partially supported by the ESF grant INSTANSand by the MUR projet \Quantum �eld theory and statistial mehanis in low dimensions".The work of G.N. was supported by the ANR program MIB-05 JC05-52749 and is urrentlysupported by the ontrat MEXT-CT/2006/042695.A Chiral and antihiral solutionsNotie that the generi N -kernel K(a1;::;aN )n (�1; :::; �n) of type (0; �l > 0) an be rewritten as�K(�a1;::;�aN)n (�1; :::; �n) = 8><>: 0 for n < N;(��(N)N )N�1Q1�i�N (��(N)i )�aiKNN (�1; :::; �N ) for n = N; (A.1)5Equation (4.4) expresses that the deoupling is reovered in the onformal, high energy limit.
12



where ��(N)i stay for the symmetri polynomials omputed in �xi � e��i , and that the integers�a1; ::; �aN given by�ai = aN�i; n < N ; �aN = � NXi=1 ai + 2(N � 1)� �l! (A.2)are non-negative. This is obvious for �ai with n < N , while for �aN = �y1(a1; :::; aN ) it followsfrom (3.27) with l = 0. In addition, in terms of the �ai the ondition s = ��l is rewritten asNXi=1 i�ai = �l �N(N � 1): (A.3)Inversely, any solution �K(�a1;::;�aN)n (�1; :::; �n) with �a1; ::; �aN non-negative integers satisfying(A.3) is a N -kernel of type (0; �l). Indeed, due to (A.3), �K(�a1;::;�aN)n (�1; :::; �n) has spin s = ��l,while using (A.2) yk an be rewritten in terms of �a1; ::; �aN asyk = � k�1Xi=0(k � i)�aN�i + k(k � 1)! ;so that yk � 0 for 1 � k � N � 1; then (3.25) implies l = 0.Hene we see that the spaes of kernel solutions of type (�l; 0) and (0; �l) are isomorphi. Indeed,N non-negative integers �a1; ::; �aN satisfying (A.3) de�ne the solutionK(�a1;::;�aN )n (�1; :::; �n) of type(�l; 0) (as disussed in setion 4) as well as the solution �K(�a1;::;�aN )n (�1; :::; �n) of type (0; �l).B Asymptoti fatorizationIt follows from (3.14) that the minimal N -partile kernel (3.16) satis�es the asymptoti fator-ization propertylim�!+1 e�RL�KNN (�1+�; :::; �R+�; �R+1:::; �N ) = (C1)RLKRR (�1; :::; �R)KLL (�R+1:::; �N ): (B.1)On the other hand the elementary symmetri polynomials enjoy the propertieslim�!+1 e�k��(N)p (x1e�; ::; xke�; xk+1; ::; xN ) = �(k)k (x1; : : : ; xk)�(N�k)p�k (xk+1; : : : ; xN ); k � p � N;(B.2)lim�!+1 e�p��(N)p (x1e�; ::; xke�; xk+1; ::; xN ) = �(k)p (x1; : : : ; xk); p � k � N: (B.3)Using these equations it is simple to see that (4.4) holds for a N -kernel solution satisfying (3.27)as an equality for k = R. However, we still have to prove that the fators on the r.h.s. of (4.4)are indeed a R-kernel of type (l; 0) and a L-kernel of type (0; �l), i.e. that the integers a(l)1 ; ::; a(l)Rand a(�l)1 ; ::; a(�l)L are non-negative and satisfy the ondition (4.1) and (A.3), respetively. Equation(4.1) for the a(l)i follows fromRXi=1 ia(l)i = R�1Xi=1 iai +R( NXi=R ai � �l + 2L) = l �R(R� 1); (B.4)13



where the last equality is due to the fat that (3.27) holds as an equality for k = R. Analogously,LXi=1 ia(�l)i = � NXj=R+1(j �R)aj + L(�l � 2(L� 1)) = �l � L(L� 1); (B.5)where we have used NXj=R+1(j �R)aj = ��l + L(�l + 1� L); (B.6)a result whih follows taking the di�erene of (3.20) and (3.27) for k = R.The integers a(l)i and a(�l)j with 1 � i � R�1 and 1 � j � L�1 are non-negative by (4.5)-(4.6)and so we have to prove only the non-negativity of a(l)R and a(�l)L . If we rewritea(l)R = (R�1Xi=1 iai +R NXi=R ai)� (R�1Xi=1 iai + (R� 1) NXi=R ai)� �l + 2L;we get a(l)R � 0 using (3.27) for k = R and k = R� 1 . Similarly,a(�l)L = ( RXi=1 iai +R NXi=R+1 ai)� ( RXi=1 iai + (R+ 1) NXi=R+1 ai) + �l � 2(L� 1);so using (3.27) for k = R and k = R+ 1 we get a(�l)L � 0, in this way ompleting the proof.Let us now prove the haraterization of kernel solutions of type (l; �l) in terms of those oftype (l; 0) and (0; �l). We have just to prove that, given R non-negative integers a(l)1 ; ::; a(l)R andL non-negative integers a(�l)1 ; ::; a(�l)L satisfying (4.10) and, respetively, the onditions (4.1) and(A.3), then the integers a1; ::; aN determined by (4.5), (4.6), (4.8), (4.9) satisfy (3.20) and (3.27),with (3.27) whih is an equality for k = R. For this purpose notie that the di�erene of (B.4)and (B.5) givesNXi=1 iai = RXi=1 ia(l)i � LXj=1 ja(�l)j �N(2L� (�l + 1)) +R� L = l � �l �N(N � (�l + 1)); (B.7)where to derive the last equality we have used (4.1) for the a(l)i and (A.3) for the a(�l)j . This isthe spin ondition (3.20). The identity (3.27) for k = R follows fromRXi=1 iai +R NXi=R+1 ai = RXi=1 ia(l)i �R(2L� �l) = l �R(N �R+ (N � (�l + 1))); (B.8)where to derive the last equality we have used the ondition (4.1) for the a(l)i .Consider now the inequality (3.27) for k 6= R. For k < R we havek�1Xi=1 iai + k NXi=k ai = k�1Xi=1 ia(l)i + k RXi=k a(l)i � k(2L� �l) � l � k((N � k) + (N � (�l + 1))); (B.9)14
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