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Baxterization of GL,(2) and its application to
the Liouville model and some other models on a lattice
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Abstract

We develop the Baxterization approach to (an extensiorheffjuiantum grourL, (2). We
introduce two matrices which play the role of spectral patndependent L-matrices and
observe that they are naturally related to two differentgltiplications. Using these comultipli-
cation structures, we find the related fundamental R—oper &t terms of powers of coproducts
and also give their equivalent forms in terms of quantumgdilithms. The corresponding quan-
tum local Hamiltonians are given in terms of logarithms ofitige operators. An analogous
construction is developed for the g—oscillator and WeyEhlgs using that their algebraic and
coalgebraic structures can be obtained as reductions ¢ fleothe quantum group. As an appli-
cation, the lattice Liouville model, the g—DST model, thdt®ora model, a lattice regularization
of the free field, and the relativistic Toda model are congde
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1 Introduction: motivation and outline of main results

A quantum model is a systeff#, A, H), with a Hilbert space/, an algebra of observables,
and a HamiltoniarH. The model igntegrableif there exists a complete set of quantum integrals
of motion, i.e., a set of self-adjoint elements.4fwhich commute with each other and with the
Hamiltonian. Forhomogeneousne—dimensional lattice models one Ras= K£¥N, A = B®N,
with one copy of Hilbert spac& and algebra of local observablésbeing associated to each
of the N sites of a one—dimensional latticé is usually characterized as a representation of an
algebrail of “symmetries”, ands is generated from the operators which represent the elsmént
onk.

A key step in constructing an integrable lattice model is toadfian L—matrix
L()\) € Mat(n) ® B and an auxiliary R—matri®()\) € Mat(n)®? such that the following matrix
commutation relation

Riy(A) Ly (M) Lo () = Los(p) Ly (M) Raz(N), 1)

where, € C, is equivalent to the defining relations f Here and below we use the standard
notation: subscripts indicate nontrivial components imste product, e.g.R,, = R ® 1, etc.
For further details on the R—matrix approach to quantungnatgility we refer the reader to the
review [F1].

For a model on aclosed one—dimensional lattice, i.e., with periodic boundary dien
tions, a set of quantum integrals of motion is generated ey atxiliary transfer—matrix
T(N) = trg(LaN(A) - .. Lo (X)). However, these integrals are in general non-local, hey t
are not representable as a sum of terms each containinguiardontributions only from several
nearest sites. The recipe [ET2] for constructiogal integrals of motion for a model with a given
L-matrix is to find first the correspondirfgndamentaR—operatoR(\) € B2, which satisfies
the following intertwining relation (here and below we wike it in the braid form):

R23(A) Lia(Ap) Las(p) = Lo (i) Lis(Ap) Ry (A) - 2

The corresponding transfer—matrix is constructedTd3) = tra(RaN(A)PaN e Ral(A)Pal),
where the subscript stands now for an auxiliary copy &, andP is the unitary operator permut-
ing tensor factors i8®2. The fundamental R—operator is usuatgular, that is, after appropriate
normalization, it satisfies the relation

R(1)=1®1. 3)

If the regularity condition holds, then first and higher orttegarithmic derivatives off (\) at
A=1 are local integrals of motion for the periodic homogeneowsi@hin question. In particular,
the Hamiltonian is often chosen as the most local integrathvimvolves only nearest neighbour
interaction:

N
H= ’L% [10g T(A)]Azl — Z Hn,n+1 = Z Z% [Rn+1,n(>‘)] A=1" (4)

where the summation assumes tNatl = 1.



Thus, finding the fundamental R—operator for a given L—masrian important part of the R—
matrix approach to quantum integrable models. Furtherntioieproblem is closely related to the
problem of constructing the corresponding evolution ojpesaand Q—operators. However, there
is no general method for solving equatidm (2). The particdlfficulty here is that it is not clear
apriori on which operator argument(s) the funct®f\) depends.

Among the few known examples of constructing a fundamentabpRrator the most alge-
braically transparent are those related to the case whersyimmetrytl admits the structure
of a bialgebra. Such examples include the XXX spin chain [K&®I closely related nonlinear
Schrodinger model [FT2], wherg = (sl;); and the XXZ spin chain [J1] and closely related
sine-Gordon model [ET2, T1], whete= U{,(sl3). A crucial observation for solving2) in these
cases is that the operator argumenROX) is A(C,), whereC|, is the Casimir element af andA
is the comultiplication that defines the bialgebra struzfil. The corresponding solutions {d (2)
are expressed, respectively, in terms of the Gamma funotida g—analogue (see [J1,/T1,F1)B2]
for more details in the latter case).

The aim of the present article is to develop a similar algebcanstruction of fundamental
R—operators for models whose underlying symmetry cormdgoin the sense of Eq.](1), to the
quantum group=L,(2). More precisely, we introduce the quantum gr@%@) with generators
a, b, ¢, d, 8, wheref may be chosen to be the inversebtor c. It will be important to consider
specialpositiverepresentations ﬁq(Q) which ensures that the operators that we use are positive
self—-adjoint. These properties are crucial for constngcfundamental R—operators since we will
need non—polynomial functions of generators and theircuhypts.

The article is organized as follows. First, we discBssterizationof GL,(2) and C:‘fq(Z),
presenting their defining relations in the forfd (1). The twatnces, g(A\) and g(\), which
play the role of an L—matrix fo[:;iq(Z), will be our main objects of consideration. Next, we
show that, besides the standard comultiplicatidn there is another algebra homomorphism
d: C?Eq(Q) — C?Eq(2)®2. Further, we solve Eq[12) fog(A) and g(A). The corresponding
fundamental R—operators are given (up to some twists) byepowf, respectivelyA(bc) and
d(ad—qbc). Next, we show that the L—matrices of the lattice Liouvill®del and the g—DST
model are nothing bug(\) and g(\) with appropriately chosen representations of generators.
Using this observation, we construct the correspondingl l@itice Hamiltonians. Finally, we
consider some reductions &fVLq(Q), including the g—oscillator algebrd, and the Weyl alge-
braW,. Following the same scheme, we introduce reductiong »f andg(A), and of A andd,
and then construct the corresponding fundamental R—aperhy solving Eq.[(2). We discuss
relation of these R—operators and of the corresponding lattece Hamiltonians to the Volterra
model, the relativistic Toda model, and a lattice reguitm of the free field.

Let us remark that, although our construction based on tb@iihe comultiplication structure
yields expressions for fundamental R—operators mainlypagps of coproducts of some elements,
it is often useful to rewrite these expressions in termsefjtirantum dilogarithnfunction or, more
precisely, its self-dual form_[FF2, F3] which is suitable @tgaling with thelg| = 1 case. A brief
account on this function along with several related statésmehich we use in the main text are
given in the Appendix.



2 GL,(2) and its Baxterization

Let ¢ = e, wherey € (0,7). We will use the abbreviated notati@i¥,,(2) for the algebra of
regular functions on the quantum grodrzz,n(GLq(Q)) (seellV1I.CP, KS]).

Definition 1. GL,(2) is a unital associative algebra with generatarsb, c, d, and defining rela-
tions
la,d] = (g—q~ ") be, [b,c] =0,

5
ab=gqba, ac=gqca, bd=qdb, cd=gqdc. ®)

SL,(2) is the factor algebra o&iL,(2) over the ideal generated by the relatiatd — gbc = 1.

Following the R—matrix approach to quantum groups [FRT&, glenerators ofiL,(2) can be
assembled into a matriy, = (g g) Then, by direct inspection of 16 quadratic exchange raati
one can verify the following assertion (see, €.40./[CP, KS]).

Lemma 1. The defining relations {5) are equivalent to the followinaten

R,, 913 923 = §23 G13 R,,, (6)

where the auxiliary R—matrix is given by either of the follogvmatrices

q 1 q_l 1 qfl q
- _ + — _ —
q_qfl 1 ) R~ = (R21) - 1 . . (7)
q q

R =

In what follows we will also need the following spectral pargter dependent R—matrices

) @ (qA) N -t
RO) = ART -\ TR = ol (3) wgg‘ﬁ , ®)
w(qA)
w(gA)
R()) = A373®1 R(A) A~375%1 — w(A) @(q) ©)
w(q) @ (A) ’
w(gA)

wherew(X) =X — A" andoy = (§ ).

In the theory of quantum groups, the notion Béxterizationwas originally introduced by
V. Jones[[J2] in the context of knot theory. It refers to thegadure of constructing spectral
parameter dependent solutions to the Yang—Baxter equatioof solutions to the constant (spec-
tral parameter independent) Yang—Baxter equation. An plain provided by the expression for
R()) in terms of R* in formula [8). Analogously, an L-matrix satisfying the Rirélation [2)
can be regarded as Baxterized if it is constructed from L#ines that satisfy the constant RLL
relation. For instance, the L—matrix of the XXZ model (seg,,gF1]) has the form

Lysz(N) = ALy + X1L_, (10)
whereL, satisfy the constant RLL relation with constant R—matrigieen by (7).
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In the theory of quantum integrable models it is crucial BraR—matrix is spectral dependent
(see Introduction), and so the Baxterization procedureeseas quite a common technique for
constructing new solutions to the Yang—Baxter equationterte new integrable models. How-
ever, what concerns the Baxterization of L-matrices, trs r@ajority of examples occur in the
cases where the symmetlyis a quantum algebra, typically the universal enveloping gfiantum
Lie algebra, likell = U, (sl2) for the XXZ model.

Quantum groups, in particula¥L,(2), are usually not considered from the point of view of
Baxterization of L—matrices. Inthe present paper, we wijlto fill this gap a bit. Let us commence
with observation that equatiohl (6) can be Baxterized, alb& somewhat weaker sense than it is
usually meant. For this purpose, we assemble the genendt6iis, (2) into two matrices:

a Ab . Ale A ld
g(\) = (Alc d) , 8= ( \a Ab) : (11)

Proposition 1. Each of the following matrix relations

Rlzo\) gls(AN) gzs(ﬂ) = gzs(ﬂ) gla@‘#) Rn(k) ) (12)
Ris(A) 813 (M) 825 (1) = 8a3 (1) 815 (M) Riz(N) (13)

holds if and only if the elemenis b, ¢, d satisfy the defining relationEl(5).

Proof. Matrices [(11) are related to each other and to the matas follows
1 1 1 1
g(A) =AzBgA72%, g(A) = ATz o g(A) A3 (14)
whereo; = (91). Notice also that
[R(A\),0301+1®0,] =0, [R(A), 0. ®@01) =0. (15)

Substituting the first of relation§ _(1L4) intb_(13), using first of relations [(15), and taking into
account relatior[{9) betwed®()) andR()), it is easy to see thai{112) is equivalent to the relation
R1,(A\) 913925 = 23013R1,()\), which is nothing but a linear combination of tie=R, and
R=R_ versions of Eq[{6). Sinckis arbitrary here, we conclude that{12) is equivalenfla(&)
hence, by Lemm@l 1, t€](5). Similarly, substituting the selcaation in [(14) into[(113), using (9)
to replaceR(A) with R()), and then taking into account both relations| (15), it is ¢assee that
(@3) is equivalent td (12), and hencetd (5). O

The proof shows that the Baxterization in{11) is not a true am the sense that it can
be removed by the twist transformatiorls 1(14). Furthermdoe, g()\), the transfer—matrix
Ty(A) = tra(gaN() ... gq,1(A)) does not actually depend onand thus it is not a generating
function for integrals of motion. However, the correspamgiransfer—matrix’; (\) for g(\) de-
pends on\ nontrivially, and the operator coefficients, in its expansionT;(\) = >, A"Ty,
form a set of mutually commuting elements(émq(2)®N.
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3 (A}Eq(2) and related lattice models

3.1 Definition of CAJZQ(Q) and its Baxterization
Let us introduce the following extension of the quantum gr6ii, (2).

Definition 2. @Eq(Q) is a unital associative algebra with generatatss, ¢, d, 0, and defining
relations [%) and

ab=q '0a, 0d=q'do, [b,0]=0, [0,d=0. (16)
Lemma 2. For a genericg, the center o@f,q(Q) is generated by the following elements
Dy=ad—-qbec, Ny =00, ng =0c. 17)

Proof. First, it is straightforward to check thdbd,, n;, and 77;’ commute with the generators
of @f;q(2). Next, any central elemed of @f;q(2) can be represented as a linear combination of
monomialsa™ d"ib™ ™0™, where alln’s are non—negative integers. Commutativity(ofwith

b, ¢, andf implies thatn, = ny. ThereforeC is equivalently represented as a linear combination
of monomiaIngbmckel. Commutativity ofC' with ¢ andd implies thatm + k£ = [. Hence, using
(I7), we conclude that is represented as a linear combination of monomigién, )™ (n})*. O

Lemma 3. The defining relationg{5) an@_(1L6) are equivalent to theofmihg set of equations:
Ry, 95595, = 9505 Ry Ri, gl 0., =9, R, (18)

wheregt = (? 9) andg™ = (§¢), the auxiliary matricesR* are given by((I7), and? in the first
relation is either of them.

Proof. Direct inspection. O

Let us assemble the generatorﬁﬁq@) into two matrices

a b AO0+X"te A ld
= 0 = . l
9(\) <A9+>\lc d) It ( Aa Ab ) (19)

Proposition 2. Each of the following matrix relations

Ri(A) 913(An) 923 (1) = g23(1) gu3(Ap) Ras(N), (20)
Riz(N) §13(M) 825 (1) = 923 (1) G235 (M) Raz (V) 4 (21)

holds if and only if the elemenis b, ¢, d, 6 satisfy the defining relationg1(5) and {16).

Proof. Notice that the second relation [n_{14) remains trugjfor) andg () given by [19). There-
fore, the same line of arguments as in the proof of Propasiiiestablishes equivalence of relations
(20) and[(211). Thus, it suffices to prove orlly{21). For thim aie observe that

g =xgt+A171g, (22)

6



whereg® were defined in Lemmnid 3. Substitute ndw (8) dnd (22) inid (2t)rmatch coefficients

at different powers ok andy. It is not difficult to check that resulting matrix relatioage exactly
those contained i (18). (For the coefficient\1.°, we have to take into account the relation
R* = P(R~) ' P along with the Hecke identitgt — R~ = (¢—q¢ ') P, whereP is the permu-
tation inMat(2)¥?, i.e., Pgi; P = g3,.) Thus, relations{20) anf{R1) are equivalen{id (18), and
hence, by Lemm 3, to the defining relationsf;’vﬁq(Q). O

Unlike theirGL,(2) prototypes[{I1), matriceS([L9) are true Baxterizationg'aindg . Indeed,
their g—determinants (see, e.q., [BT2], Appendix C) are

qdet g(A) = —qdet §(A) = Dy — ¢~ X1, (23)

which implies that the dependencegdf\) andg(\) on A cannot be removed by transformations

of the type [(I4).
Let us emphasize a close similarity between our L-matrioes:f,(2) and those fotf,(slz).

Indeed,g()\) in (22) andL«x, in (L0) are constructed in the same way from their constamt-co
terparts and they satisfy the RLL relations with the saméliamx R—matrices. Such a similarity
seems quite natural in view of a duality betwesiy, (2) andi/,(sl2) (see [CPLKS]). However,
this similarity is not absolute because the constant nestric. in (L0) are nondegenerate and
generate the Borel subalgebrasffsl,), whereag)_ is degenerate and division qu(Q) into
the subgroups generated fy looks somewhat asymmetric.

3.2 Standard and non—standard comultiplications forCAJZq(Q)

Recall that the linear homomorphistn: GL,(2) — GL,(2)®* defined on generators as follows

Ala)=a®a+b®c, Ab)=a®@b+b®d,

(24)
Alc)=c®a+d®c, Ald)=c®b+d®d.

is a coassociative algebra homomorphism, i.e., its homphiem propertyA(z y) = A(z)A(y)
is compatible with the defining relatiorid (5), and it satisfiee coassociativity property
(id @ A)A(z) = (A @ id)A(x) . (25)

The proof of these assertions is very simple in the R—mapjpt@ach due to an observation that
(24) can be rewritten in the matrix form as follows:

(Id®A)g = g2 G5 (26)
The fact that the Casimir elementGL,(2) is a group—like element w.r.t. the mayp that is
A(Dy) =Dy ® Dy, (27)

implies that the same malp_(24) defines also a coassociagjebral homomorphism f&8L,(2).
GL,(2) can be equipped with a bialgebra structure if, in additiorthi®s mapA, the linear

homomorphisne: GL,(2) — C is defined on generators as followgy) = (| ). ThenA ande

becomecomultiplicationandcounitmaps, respectively.
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A natural question about the algebﬁ,q(Q) is whether we can introduce for it a comultiplica-
tion map, and, in particular, whether we can extend the dieim{24) toé‘fq(2). It appears that
to defineA(#) compatible with[(b) and_(24) in a purely algebraic mannerasstraightforward.
However, for our purposes it will be sufficient to defing®) for (special positive representations
of) real forms of certain factor algebras(’équ(Q).

Definition 3. C?Eq(Q,]R) is a real form oféj;q(Q) equipped with an anti—-involution * defined on
generators by
a*=a, b'=b, cf=c, d'=d, 6"=0. (28)

C?EQ(Q,R) and @E;’(ZR) are the factor algebras cf?f;q(Q,R) over the ideals generated, respec-
tively, by the relationsy, = 1 andy; = 1.

Apparently, the algebraé’f,;(z,R) and @i;’ (2,R) are isomorphic; the corresponding isomor-
phism magp is defined on generators as follow$z) = a, (d) = d, 1(b) = ¢, t(c) = b, 1(0) = 6.

Definition 4. Let B be an algebra of linear operators acting on a Hilbert spdCe Let 4l stand
for GL(2,R) or GL!(2,R). An irreducible representation: $ — B is called positive if the
following operators areself—adjointand strictly positiveon K:

i) w(z) for © = a,b,c,d, 8, Dg;

i) g2 (a)(r(z)) " and ¢ (x(x)) ' (d) for z = b,c.

Remarkl. In Definition[4, elements ofl are realized byinboundedperators. Following [W1,
W2], we will understand the Weyl—type relations = ¢y in the defining relationg {5) and {16)
in the sense that, for a given pair of positive self-adjopperatorsr(x) and~(y), the following
unitary equivalence relations(z)"r (y)r(z)~" = e x(y) andn(y)r(z)7(y) "% = 'in(x)
hold for all# € R and admit analytic continuation to complex valueg.of
Remark2. Conditionii) in Definition[4 ensures that, for a pair of generatendy which satisfy
the Weyl-type relation, the sum(x) + (y) is a positive self-adjoint operator. Indeed detndv
be positive self-adjoint operators satisfying relatian= ¢?vu. Then, in general, the sum+ v
is a symmetric but not necessarily self-adjoint operatdi.[8, following [W1, W?2], we require
that the operatogu—'v is positive self-adjoint, then property {162) of the quamtdilogarithm
function S, () (see AppendiX_All) implies tha$,, (qu~'v) is a unitary operator. In this case
Eqg. (164) shows that + v is unitarily equivalent to both andv and hence is a positive self—
adjoint operator. Let us remark also that understandirajiosiuv = ¢%vu, ¢ = iy in the sense of
Remarl{1 is equivalent to say thiatg u, log v] = 2iy. Then, restricting our consideration to the
casey € (0, ), again ensures self-adjointnessuof v, by Proposition A.2 in[[S1].

An example of a positive representationsofwill be given below in Section 3.5. Notice that
m(ny) and w(ny) are also represented by positive self-adjoint operatorareber, we have
(0) = (n(b))~" for st = GL,(2,R) andn(g) = (w(c)) " for &t = GL!(2,R).

Proposition 3. Let B, K, andil be as in Definitiol 4 and let be a positive representation gif
Define the ma@\,; : 4 — B%? as a linear homomorphism such that:

) Ar(z) = (r ® 7)(A(z)) for z = a, b, c, d with A(z) given by [24);

i) Ar(0) = (Ax(b) " for = GL(2,R) and A, () = (Ar(c)) " for &t = GL!(2,R).
ThenA is analgebra homomorphismnd a*~homomorphismw.r.t. the anti—-involution[(28).



Proof. The crucial property oA (z) for z = a, b, ¢, d is that each of these operators is of the form
uz+v,, Whereu,, ando,, are positive self—adjoint operators satisfying the refati, v, = ¢*v,u,,
e.g. up = 7w(a)®n(b) andv, = w(b)®n(d) for z = b. Furthermore, it is easy to check that
quy ‘v, for z = a, b, ¢, d are positive self-adjoint operators thanks to conditigrin Definition[4.
According to Remarkl2, these facts together imply tha(z) for = a, b, ¢, d are also positive
self-adjoint and hendavertible operators. This, in particular, means that the inverseatpes in
the partiz) in the definition ofA,. are well defined.

SinceA is a homomorphism, it suffices to verify its properties far generators. In particular,
the *~homomorphism property, which [&\.(z))" = (* ® ¥)Ar(z) = A(z*) is obvious. The
algebra homomorphism property &f; for z = a, b, ¢, d is inherited from that ofA for GL,(2).
Finally, applyingA,®A, to (18) and multiplying the resulting relations witk, (b) (or Az (c)),
we see that they are equivalent to correct relations betwedhn) (resp. Ax(c)) and A, (z) for
T =a,b,c,d. O

Remark3. Using theu, + v, form of A,(z) along with Eq. [I64), we can write an explicit
expression foA,(6). For instance, in the case fif= GL,(2,R) we have

-1

Ar(0) = Su(w) (m(@) @ (b)) (Suw)) ™",  w=m(b)(r(a)) '@ (x(b) 'x(d). (29)

We introduced the mag . by extending the standard comultiplicati(’ﬁ](24ﬁbq(2). Now we
will show thatGL,(2) admits another “comultiplication§ which is not related ta\.

Proposition 4. The linear homomorphism: C:‘fq(2) — @f,q(2)®2 defined on generators as
follows

d(a) =a®0+bR®a, i0) =00,

(30)
i) =c®c, ib)y=0®b, id)=c®d,

is acoassociative algebra homomorphiand a*~homomorphismw.r.t. the anti—involution[(28).

Proof. First, for the *~homomorphism property, it suffices to netihat it obviously holds on
generators. Next, we notice that

(id ® §) g = g5 935 , (31)

where ¢g* were defined in Lemm&l3. This allows us to use the same apprasdh the
case ofGL,(2). Namely, the coassociativity property {25) follows imnudly if we apply
§, = (id® d ®id) andd; = (id ® id ® 6) to (31). In order to prove compatibility of the
homomorphism property @fwith the defining relationg {5) and (116), we recall that, byrirea(3,
these relations are equivalent to relatidnd (18). Theeefosuffices to apply; to (18), use[(31),
and then to verify the resulting R—matrix relations. Théelatask simply amounts to usinig {18)
twice, for instanced; (Ry,¢1595;) = Ri,01597,9530 = RL91505595,95, = 95501595,95 R, =
92392495390, B, = 05(9,95,RE).- O

Notice that ford there exists no counitbecause the bialgebra axiqii ® €) o § = id cannot
be fulfilled as seen from the action ®&bnd. Nevertheless, Propositidh 4 justifies referring s
a (non—standard) “comultiplication” for the sake of bregvit

9



An important difference of the non—standard “comultiption” from A is that the generators
b, c, andf are group-like w.r.td. Therefore, so are the central elemehis (17):

5(n) =ng @y, o)) =mn, n;. (32)
On the other hand, the Casimir eleméntis now not group-like. Instead, we have
d(Dy) =ac®0d+bc® D, . (33)

Therefore, the relatio®, = 1 cannot be imposed as a representation independent conditio
generators.

Although both matriceg()\) and g(\) define, according to Propositién 2, the same algebra
C:‘Eq(2), the mapy is in a sense more related §o\). Indeed, formulad (22) and (31) have strong
similarity with (10) and the formulid ® A)Ly = (L+).,(L+ )5, Which holds for the standard
comultiplication ofi/,(sl2). We will see below that the construction of the fundamentadperator
for g(\) indeed requires invoking the méapwhereas the corresponding constructiongfor) uses
the mapA .

3.3 Fundamental R—operator forg(\)

According to Propositionl2, both matricgg$\) andg()) can serve as an L—matrix for the alge-
brail = C?Eq(2). Following the general scheme outlined in Introduction, veee now to find
their corresponding fundamental R—operators, i.e., teesBh. [2). In this context, the following
preliminary remark is in order. In the casef= ,(sly), the L-matrices for the XXZ model
and for the sinh—Gordon model are related in essentiall\stimee way ag(\) andg()\) (cf. the
second relation in Eg._(14)) and, as a consequence, thelafnantal R—operators are also closely
related [FT2| T, BT2]. But in our case there will be no suclelationship between the funda-
mental R—operators fgi(\) andg (). To explain this difference between our case andAj{sl>)
case, let us formulate the following statement.

Lemma 4. Lets be a constant invertible matrix. Suppose that matrit€s) and L(\) = s- L())
satisfy Eq.[(IL) and define the same algetirdf there exists an automorphisimof {1 such that
s-L(A\)-s=(id®t)L(N), (34)
then the fundamental R—operators corresponding td) and L () are related as follows
RO\ = (' ®@id)R(N). (35)

Proof. Consider Eq.[{2) fod.()), substitute allZ.(\) with s - L(\), and use[{34). O

The structure of the L—matrices for the XXZ model and the stBbrdon model is such that
the automorphism does exist (for the generators &f (sly) it reads: .(E) = F, «(F) = E,
L(K) = K~1). But for g(\) given by [19) and = o,, matrix entries of the I.h.s. and the r.h.s. in
(34) have different functional dependenceanThis means that there is no automorphisthat
would resolve[(34) in our case and so we have to solvelEEq. (@rately forg(\) andg()).

Now we will solve Eq.[(2) forg()\). For brevity of notations, we will writer ® y instead of

m(z) @ m(y).
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Theorem 1. Let B, K, andl be as in Definitio 4 and let be a positive representation gf Let
g(\) € Mat(2)®B be as in[[ID). Then the operat®(\) € B%2 acting onK®K and defined by
the formula

RO = (c® b)*%l"gA (a@b+b@d)(c@a+d®c)* ' (cab) 36 (36)

1

wherea = ogg =

satlsfles the equation

R25(A) g12(An) 915 (1) = g12(12) 15 (Ap) Ra5(A) - (37)

If the tensor productr ® = is multiplicity free, then[(36) is the unique solution bf)(31p to
multiplication by a scalar factor.

Proof. Matching coefficients at different powers ofit is easy to see thdt (87) is equivalent to the
following set of equations:

[R(A), (0 ®@b)] =0 [R(A), (b@6)] =0, (38)
RO (c®a+Ad® ) Ac®a+d®c)R(N), (39)
RN (a®b+Ab®d) = (Aa®b+b®d)R()N), (40)
RA)(a®a+Ab®c)=(a®a+2"'b@c)R(N), (41)

RN (d®d+ A e®b) =(d®d+ Ac®b)R(), (42)
RA)MN0®a+d®0)=0®a+ A d®0)R()N). (43)

It is now easy to recognize in (B9)—=(42) a structure relabetthé comultiplicationA (cf. (24)). To
make this structure more transparent, we introdRice) = (c®b) 2 °6* R(\) (c®b) 2 '°8*. Then
equations[(38)£(43) acquire the following form:

[R(A),b®60] = [R(A),0b] =0, (44)

R(A) Az (b) = Az (D) R(N), R(A) Ax(c) = Ar(c) R(N), (45)
RO\ Ax(a) = A 2A-(a) R(N), ROA) Ax(d) = X2 Ar(d)R(N), (46)
RAMNI@a+A"1do0)=A"'00a+Ad®0)R(N). (47)

whereA; is the algebra homomorphism introduced in Propos(iion XtN#bserving that

[Ar(a),b®0] =0, Ar(b) (b®0)=q(b20)A(b), (48)
[Aﬂ(d)v b® 0] =0, AW(C) (b ® 0) = q_l(b ® 0) AF(C) ) (49)

are consequences dfl (5, _(16), afd](24), we infer that Eq®—(@B) are satisfied iR()\) is
taken to be a function ok, (ad) and A, (be). Furthermore, due to Ed. (R7) we hate (ad) =
qAr(bc)+D, ® Dy, where the last term is a multiple of the unit operator. Thiplies that we
can takeF?(A) to be a function ofA . (bc) only. Then Eqs[(44)E(46) are solved easily:

RO = (Ax(be)™' ™, o=l (50)

It remains to verify[(4]7). For this aim we notice that, sinkg(b) is invertible, Eq.[(4l7) is equiva-
lent to the relation
ROVX(A) = XA R, (51)

11



where we denoted(\) = A, (b)(A 0 ® a + A\~1d ® §). Now, using[2%), we find
X(A) = ¢ 'AO ®@b) Ar(a) + g A" (b ® 0) Ar(d) + A}, ® Dy + A~" Dy @1, . (52)

The sum of the last two terms here obviously satisfie$ (51) first two terms satisfy (51) as
a consequence of relatioris {44) ahd| (46). Thus, [Eq. (47)piseprand we have shown thaf(36)
indeed solves Eq.(87).

Let us prove the uniqueness Bf)). Notice thatR()\) is an invertible operator due to the
properties ofr. Suppose that there exists another solutiet{)), to Eqs. [4%4)-£26). Then it
follows from (@8)-{46) thaf(\) = (R(\)) 'R’(A) commutes withA(z) for all 2 € 4. Under
the assumption that ® = is multiplicity free, we invoke Lemmal2 and infer th&t\) can be a
function only of A (7). Butit follows from (48)-{49) that\ () does not commute with® 6.
Thus,F()) satisfying [44) cannot depend non-trivially do:(n;) and therefore it must be just a
scalar function. O

Remark4. The positivity property of the representatianis crucial for the assertion thdf (50)
solves Eqs.[(45)E(46). Indeed, it ensures that A, (bc) andy = A(z) for z = a,b,c,d are
positive self-adjoint operators (cf. Reméik 2) and theme{§0) solves Eqd._(45)—(16) in the sense
clarified in RemarklL. Notice also that on the same ground we (‘z;'.’17r(I))A7r(c))lt = (Aﬂ(bc))t.

Remarkb. For lattice integrable models, the function that most comimappears in solutions
for fundamental R—operators is thaantum dilogarithn{see Appendix/AJ1). Lemniall2 (see the
same Appendix) allows us to rewrite our solutignl(36) in afanvolving quantum dilogarithms:

R(\) = %}\1\;’) (a® )18 %)\{Vg)
o S5 (53
_Su QT o et SuA N
S Sown e e

wherew = ba '®@b 'd andw = dc '®a " 'c.
Fundamental R—operatdr (36) is regular in the sense of [rgnBhas the following properties:
(RNV))" =R H=RN). (54)
Application of formula[(#) to[(36) yields the following late Hamiltonian density:
Y Hp iy =10g((@ny1bn + buyidy) (Cniian + diyicn)) — log(bpbny) - (55)

Definition[4 along with Remarlki 2 ensure that the argumenthefdgarithms here are products of
commuting positive self—adjoint operators.

3.4 Fundamental R—operator forg(\)

Now we will solve Eq.[(2) forg()). For brevity of notations, we will writer ® y instead of
7(z) ® 7(y) andd instead of(r ® 7) o 4.

Theorem 2. Let B, K, and be as in Definitio 4 and let be a positive representation gf Let
§(\) € Mat(2)®B be as in[IY). Then the operat&()\) € B®? acting onK®K and defined by
the formula

A~

R(A) = (ac® 0d + be ® ad — gbe ® be)* '™, (56)

12



L = L satisfies the equation
g q vy

Ras(N) G2 (Ae) a3 (1) = G2 (1) G (M) Ras () (57)
If the tensor productr ® = is multiplicity free, then[(36) is the unique solution b 5ip to
multiplication by a scalar factor.

wherea =

Proof. Substituting the Baxterized forr_(22) ) into (§7) and matching coefficients at differ-
ent powers ofi, we see thaf(§7) is equivalent to the following set of maddguations:

R.; (M) 935 955 = 95 65 Ras (V) (58)

R.3(A\) (NG5 6vs + A 190,.015) = (V14 605 + A6, 615 Ras (V). (59)
Comparing[(EB) with[(31), we conclude that

[R(N), 6(z)] =0 (60)

for all generators and hence for allc {l. This suggests to se#¥\) as a function ob(Dy).
Matrix equation[(5B) is equivalent to the following set ofiatjons:

RN (a®d) =22(@®d)R(N), RN (@®c)=22(a®c)R(\), (61)
RAMN@d+A1deb) = (A\1'0d+ A d®b)R(N), (62)
RAOMNYM@a+Ae®@0+200c)=Nd@a+Ac®0+ 2 102c)R(N). (63)
Noticing that

3(Dy) (a®d) =g *(a®d)§(Dy),  3(Dg) (a®c) =q¢*(a®c)d(Dy),  (64)

we infer that a solution td (61) is given by

—_

RO = (6(D,)*' ", «

- (65)

Lemma 5. R(\) given by [[65) satisfies relatioR (62).

The proof is given in Appendix B. It remains to prove tRaf\) satisfies Eq{83). For this aim, we
notice that sincé(b) is represented by an invertible element, Eq] (63) is egeitab the relation

R()X(A) =XATHR(O), (66)
where we denoted()\) = ¢~ '5(b) A\ 'd® a + A"le® 0 + X 6 ® ¢) Now we observe that
X(A)=A0@d+A"'d®b)é(a) —qAd(0) (a®d) —ADg@n, —A"'n, @ Dy.  (67)
The sum of the last two terms here obviously satisfies (66} firkt two terms satisfyl (66) as a

consequence of relatioris (61) ahd|(62). Thus|, (63) is praneiwe have shown that (65) indeed

solves Eq.[(B]7).

Eq. (60) implies thaR()\) is essentially unique. Indeed, under the assumption sthatr
is multiplicity free, we invoke Lemma@l2 and infer thR()\) can be a function only of(D,)
and A (n;). Furthermore, EqL(32) implies that®m)d(n, ) is just a multiple of unity, s&R(\)
must be a function of(D,) only. Finally, it is clear that such a function satisfyingfjés given
by (68) uniquely up to a scalar factor. O
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Remark6. Lemmd12 allows us to rewrite our solutidn [56) in terms ofmguen dilogarithms:

R(\) = (be® D,)*' % Sf?])(\;)r) ,

= (D) b lawod. (68)

Fundamental R—operatdr (56) is regular and has the prepdf#). Application of formuld{4)
yields the following lattice Hamiltonian density:

’Yﬁn,nﬂ = 10g(an+10n+19ndn +bpyiCng (Dq)n) - (69)
Definition[4 along with Remarkl2 ensure that the argument efltilyarithm here is a positive

self—adjoint operator.

3.5 Lattice Liouville model

A one—parameter family,, of positive representations of = &;(2,]1%) ori = @VZ(Q,]R) on
the Hilbert spacéC = L?(R) can be constructed as follows (it is closely related to onthef
representations &L, (2,R) listed in [S1]):

T (a) = er Il (k™' + /ﬁe—ﬁq’) e

_1 _B
H, me(d) =K e 4H,

(70)
(b)) = me(c) = e ® 7 (6)

vw w0

B8
e2®,

Herex > 0, 8 = /87 = 2wV271 > 0, andII and® are self-adjoint operators di? (R) which
satisfy [IT, ®] = —i. Since elements dft are realized by unbounded operators IGH{R), it is
necessary to consider suitable subspaGes: L?(R) of test—functions on which all operators
mx(x), z € Y are well defined. Similar consideration was donelipfs((2,R)) in [PT,[BT1]. We
will provide analogous analytic details fay, elsewhere.

Let us now introduce the following L-matrix“(\) = x,(g(A)). In order to construct the
corresponding lattice model we assign a copy of this matrirdach site of the lattice, i.e. for
n=1,...,Nwe have

LL(}\) _ eg IIn (]- + /‘712 6_6¢n) eg M HAe_g(b” (71)
" K ()\ e%‘b” + Afle_g'b”) e‘g M ’

where &, and II,, act non-trivially only on then—th tensor factor in the Hilbert space
H = (L*(R))®N and therefore satisfy the relatiof,,, ®,,,] = —idnm.

In the pioneering work [FT3], a close analogue[of](71) wasstmieted as a special limit of the
L—matrix for the sine—Gordon model and put forward as an LiFisndescribing a lattice version
of the Liouville model with®,, andTI,, being discrete counterparts of the field and its conjugate
momentum variables. In its present form, L-matfix (71) waiaimed in [BT2] by analogous limit
applied to the sinh—Gordon model.

Thecontinuum limitof a classical lattice integrable model is usually consad@s the limit of
vanishing lattice spacing\(— oo, k — 0 with « N kept fixed) combined with the standard recipe
[EST] of replacement of lattice canonical variables bytleentinuum counterparts:

I, - kl(z), &,— P(z), z=nk, (72)
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which leads to the canonical Poisson brackgliBz), ®(y)} = d(x — y). In this classical contin-
uum limit we haveL;(X) = (9) 4+ & (U+(A) + U-(})) + O(k?), where 05 = 9, + 0,)

ga [0)) )\e_gtb éa,'i) 0
- 8 Y+ — 8
U—i—()‘) = ( )\eg(b —§8+q) ’ U—()‘) = A_leigé _%ai@ : (73)

These matrices satisfy the zero curvature equatiod/ (A) + 0;-U_(X) = 2[U+(N),U—_(N)],
provided thatd satisfies the equation of motion of the Liouville fieldt® = %e—ﬂ‘b. On this
ground it was suggested in [FT3] that[71) corresponds tttiadaversion of the Liouville model.
However, a direct verification of this claim, i.e., constian of a lattice Hamiltonian tha com-
mutes with the transfer matrix fdr (I71), aid turns in the continuum limit into the Hamiltonian
of the continuum Liouville model, has been missing until raithough some partial results have
been obtained. In particular, it was shownlin [BT2] that gp to the Hamiltonian of the lat-
tice sinh—Gordon model first the special limit procedurecdbed in [FT3] and then taking the
continuum limit, we indeed obtain the Hamiltonian of the tomum Liouville model. Another
computation([S3] demonstrated that, unlike for the sinfreBp model, the factorization method
[IK] of constructing integrals of motion applied tb (71) ide a lattice analogue only of the chiral
combination(H + P) of the Liouville Hamiltonian and momentum operator.

Results of Section 3.3 imply that

Hyli,n.H = (7rl<; ® ’/TF;)Hn,n-H 9 (74)

whereH,, ,,., is given by [55), is a quantum nearest—neighbour lattice ii@man correspond-
ing to L—matrix {71). In order to show thdt (74) is a latticealngue of the Hamiltonian for the
continuous Liouville model we consider first its classigalit where ®,, andIl,, become canon-
ical variables on the phase space equipped with the Poissoket{II,,, ®,,} = d,.,. A direct
computation usind (70) yields (up to an additive constant)

HL,Cl

n,n+1

log(% coshg (I + ) + 3 cosh§ (®n — Pni) (75)

1

v
B B

+ %2 e z(PntPni) (1+ er(Mntnt1) cogh g(@n —®p1))

+

K %(Hn+nn+1)e—ﬁ(¢n+¢n+1>>_

Let us remark that the difference betwelen (75) and the aoatogxpression obtained by a “naive”
limit in [BT2] is only in the last term. Taking now the continm limit of (Z5) according to[(72),
we obtain (again up to an additive constant)

k—0

lim > LHpC | = /da: (31 + 5 (9,®)° + 1 e P?), (76)
n

which is the Hamiltonian of the classical continuum Liolesinodel.

4 Reductions ofGL,(2) and related lattice models
Defining relations o@f,q(Q) admit the following reductionsi) 6 = 0; i) b = ¢; i4i) b = 0, and

iv) ¢ = 0. Below we will consider the problem of constructing the famkental R—matrices for
the corresponding reductions of matriggsd) andg()\) in each of these cases.

15



41 0=0

For# = 0, matrix g(\) reduces back tg(\) given by [11). In this case we take to be a
positive representation afL,(2) (modification of Definition # is obvious). As we discussed
at the end of Sectionl 2, dependence on the spectral paraofetee auxiliary transfer—matrix
for g(A\) can be removed with the help of the twist transformatiod .(14dwever, Eq.[(37) for
the corresponding fundamental R—matrix cannot be tram&fdrby a similar means to a spectral
parameter independent form.

Let R,()\) denote a solution td (87) wheig)\) is replaced withg()). IntroduceR,(\) =
(¢ ® ¢)2 1982 R,()) (¢ ® ¢)2 '°8 . Evidently, R,(\) must satisfy only Eqs[{39)=(#2), aifd(\)
must satisfy only Eqsl[ (45)—(%46). For the latter we have a-pammeter family of solutions:

Ro(X;8) = (An(0) @B} (Ag(e)) @ TP 108N ! (77)

o= logq *

Remark7. The reason why the proof of essential uniqueness giverRfay in Section[3.B
does not apply to the case ét)(A) despite that, by Lemmia 2, the center @L,(2) is gen-
erated only by the quadratic Casimir elemdw, is that the ratio of two solutionsf(\) =
(Ro(X; 1)) "Ro(X; B2) = (An(be 1)) P P2)1°62 depends non-trivially on theon—polynomial
Casimir elementhc=!, which can formally be written a$my_.o 1’ /1"

Next we consider thé = 0 counterpart of matrixj(\) which isg()\) given by [11). We again
taker to be a positive representation GL(2).

Let R,()\) denote a solution td(57) whegg)) is replaced withi()). Apparently,R,(\) must
satisfy [58) and as a consequence it is a functiod(d¥,) only (the Casimir elemenic™! is
group-like w.r.t.6 and hence is represented by a multiple of the unity). Furfméo\) must satisfy
Eq. (61) and the relations that replace EGS] (62}-(63), haRig\) (d®z) = A2(d®z) Ro()) for
z = a, b. Itis easy to see that the unique (up to a scalar factor)isalt these equations is given
by the same formula (65). But fér= 0 we havej(D,) = bc ® D,, which has nontrivial operator
dependence only in its first tensor component. This mﬂsés) rather useless for constructing
integrals of motion since it produces only those that havimtewaction between different sites of
the lattice (cf.[(6P) fol = 0).

Thus, we see a kind of dual pictures for matrigés) andg(\): it is the fundamental transfer—
matrix for the former and the auxiliary transfer—matrix foe latter that generate a set of mutually
commuting elements as™.

4.2 g-oscillator algebraA,

Interrelations between deformed oscillator algebras arahiym Lie algebras are well known
(see, e.g/ICR, KS]). Relation of the former to quantum gsogpalso known, see e.q. [S1, DK],
but has been employed in the context of integrable modetsdetensively. Here we will show
that a reduction o(?f,q(2) yields a g—oscillator algebra. This will allow us to adap tesults of
the previous sections, in particular, the constructionBupflamental R—operators, to the case of
the g—oscillator algebra. Recall that, as above, we dehlthi casg = ¢, v € (0, ).
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Definition 5. The g—oscillator algebra4, is a unital associative algebra with generatarsf, k,
kE~! and defining relationg k! =k~ 'k = 1, and

ek=qke, fk=q 'kf, le, /1= (g—q ) k?, (78)
and equipped with an anti—involution * defined on generatys
e=e, ['=f, K=k, (Y =k"'. (79)
Lemma 6. For a genericg, the center of4, is generated by the Casimir element
Co=ef—qk®. (80)

The lemma is standard [CP, KS]. Now we need the following &t useful statements
which are straightforward to verify:

Lemma 7. Letil be@f)@(&ﬂ%) or C’JE{]’(ZR). The linear homomorphism@ : & — A, defined on
generators as follows

Q(a’) =e, Q(C) = ka Q(b) = ka Q(e) = k_l ) Q(d) = f (81)
is an algebra homomorphism.

Lemma 8. The defining relationg {78) are equivalent to the followietation

Ry, Q(ghs Q(9):5 = Q(9)23 Q(g)i3 Ras s (82)
whereQ(g) = (. %), and the auxiliary R-matrix is given by either of the matsiae (7).

For Q—images of the Casimir elements we h&@eD,) = C, andQ(n;) = Q(n,) = 1. The
latter equalities mean that we identifieé@s the inverse tbothb andc.
Let us introduce the followin@—-images ofy(A) andg()):

Nk . METL4H X AL

) (Ak1+>\1k f )’ ) ( Ae Ak (83)
Proposition 5. Each of the following matrix relations

Ri2(A) L5 (M) L (1) = Ly (1) L35 (M) Raz(N) (84)

Rix(N) L (M) Ly (1) = L(p) LS (M) Rix(N), (85)

where the auxiliary R—matrices are given Iy (9) antl (8), eetiwely, holds if and only if the
elements;, f, k satisfy relations[{78) ané~' satisfies the following relations:

ek t=q¢g 'k e, fEkt=qk'f, [k, k1] =0. (86)

Proof. First, applying Lemmal]7 to Eqd. (20)—{21), we conclude th&itions [(8#)-£(85) do hold.
Next, it is easy to see that all the steps in the proof of PritipadZ remain valid. Therefore,
each of relationg (84)=(85) is equivalent fo](86) togethith \{82). The latter matrix relation is
equivalent to[(7B) by Lemndd 8. O

Notice that the comultiplicatiom\ has no consistent reduction #, since (Q ® Q)A(b) #
(Q® Q)A(c). Nevertheless, it is useful to observe the following.
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Proposition 6. The linear homomorphism\,: GL,(2,R) — A;@Q defined on generators as
follows: A,(z) = (Q® Q)A(x) for x = a,b,c,d, is an algebra homomorphisnand a
*~homomorphismw.r.t. the anti—involution[{79).

Proof. The assertion follows by combining Lemina 7 with the projsriif the standard comulti-
plication A for GL,(2). O

For the non—standard “comultiplication” we have the foliogvreduction ob to A,.

Proposition 7. The linear homomorphism), : A, — .A,;@? defined on generators as follows
due) =e@k ' +k®e, L(f)=kaf, LET)=FTeok (87)
is a coassociative algebra homomorphiamd a*~homomaorphismw.r.t. the anti—involution[(79).

Proof. Notice thatd, o Q@ = (Q®Q) o 4 is a linear homomorphism fromt to A$?, wheredl is
@73;(2,11%) or E}E;’(Q,]R). Therefore, applyin®@®Q to (31), we infer that

(id ® 64) Q(g™) = Qg 2 Qg™ )13, (88)

whereQ(g") = (k: 9)andQ(g ) = (’g {;) Further we can proceed exactly as in the proof of
Propositior[ 4. O

Definition 6. Let B be an algebra of linear operators acting on a Hilbert spaceAn irreducible
representationr,: A, — B is called positive if the following operators areself—adjointand
strictly positiveon K:

) ma(x) forz =e, f, k,Cy;

. 1 -1 1 -1

ii) qzwA(e)(wA(k)) and q¢2 (7TA(k‘)) T4(f).

Proposition 8. Let B and K be as in Definitiori 6 and let, be a positive representation of,.
Let LA(\), L*(\) € Mat(2)®B be as in[8B). Then the operatdRs'()), R*()\) € B2 acting on
K®K and defined by the formulae

RYN) = (k@ k)“218 N ((e@k+k fl(k@e+ f® k))o‘bgA (k®k)~3'er  (89)
RAN) = (k@ k' f + K2 @ ef — qk® @ k)% (90)

wherea = @, satisfy the equations

R25(A) L, (M) L (1) = L7, () Ly (M) R (A) (91)
Iéf;o‘) f’fz(ku) f’f3 (:U‘) = f’fz(:u‘) f’f;()‘lﬁ) IQ?;(A) . (92)

If the tensor productr, ® 7, is multiplicity free, then[(90) is the unique solution [of])(2p to
multiplication by a scalar factor.

Proof. First,m, = 7, ® Q: U — Bis clearly a positive representation fdr= CAJE;(Q,R) (as well
as forl = C:*EZ(Q,R)). Next, it is obvious thaR+(\) solving [91) is a solution of Eqd. (B8)=(43),
or, equivalentlyR4()\) = (k® k)2 62 RA(\) (k®k) 2 '8 is a solution of Eqs[{44)=(47), where
each termr ® y is understood as,(z) ® m,(y) and A, is replaced With\;, = (7, @ 74) 0 A 4.
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Notice that the definition oA , given in Propositiofn 6 is sufficient becaudg () does not enter
Eqgs. [44)1(4l7). Now, it is easy to see that thecounterparts of Eqs[_(#8)-(49) hold. This,
along with Propositiofi]6, implies that thg counterpart of formuld (50) holds as well. Whence
we obtain formulal(89) as the, counterpart of formulad(36). Finally, it is easy to see thn t
remaining verification of Eq[{51) in Theordm 1 is valid foeth, counterpart oX(\).

Analogous consideration for the, counterparts of EqsL(60)=(67), whefgwhich actually
stands for,;) is replaced with,, = (7, ® 1,) o 4, is straightforward because, by Propositién 7,
dr, has the same algebra homomorphism propertiels asor the same reason, thg analogue
of the uniqueness part of Theoréin 2 is valid if we invoke Lerithrastead of Lemmial 2. O

Fundamental R—operatois {89) ahdl(90) are regular and haveroperties given in(54). The
corresponding local Hamiltonian densities constructed(#) areQ—images of those il (55) and

(€9), namely

H;Zl,nﬂ = log((en+1kn + kg1 fn) (knyien + fn+1kn)) — log(knkns1), (93)
o =10g(ens knyikiy o +kyy (Coln) - (94)

As before, the arguments of the logarithms here are posiéifeadjoint operators.

4.3 g-DST model

The discrete self-trapping model, which describes a chiald coupled anharmonic oscillators,
is know to be integrable [EL, K$S]. The corresponding L-iraatisfies a counterpart of EQJ (1)
with additive spectral parameter and the rational auxilRsmatrix, which is obtained fronf}(9)
in the limit ¢ — 1. It was suggested in [PS, KP] that the following L—matrix

Mgt + Xk, f
LPsT(n) = [ 7 no 95
w (A ( . N (95)

where each triplee,, f., k) satisfies relationd (78) and operators assigned to diffesites
commute, can be regarded as an L—matrix associated with efarated discrete self-trapping
(g—-DST) model. The expansion of the corresponding auyilieansfer—matrix about the point
A = 0 yields

TN =ANQ+XNQ -HPT 4 ..., (96)
N N

Q= ]‘[1 kn HaPsT — 21 kn? 4 kylenky ! fos - (97)
n= n=

HereQ = " with h being the number of particles operator afid°s™ is a nearest—neighbour
Hamiltonian for the g—DST model.

Let us remark thaf{{95) is related fo*()) in (83) via a twist in either the auxiliary or in the
qguantum space:

LqDST()\) — )\%05 [A/A()\) )\—%05 — kalog)\ [A/A(A) k—alog/\’ o= loéq ) (98)

The first equality here implies that?<* (\) satisfies EqL{1) with the same auxiliary R—matix (8).
The second equality implies that the fundamental R—opefatal*”?**()) is related to that for
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LA()) as follows (notice thaf{90) commutes with® k)
RqDST(}\) — (1®k_)alog)\ IQA()\) (k_®1)7alog)\‘ (99)

Using [90) and applying formul&l(4) t6_(99), we find a neanesighbour Hamiltonian different
from (97) which corresponds to L—matrix (95):

ﬁquT = % Z <10g(Cq k?L«l»l + €n+1kn+lk;1fn) + log(knk;i1)> - (100)

Notice that the termog(kyk,!,) does not contribute to the total Hamiltonian in the case of a
periodic chain.

Remark8. Substituting[(6B) into[(99), we obtain (omitting a scalaztéa):

alog A Sw (Ailr)

-1
Sw(>\r) ’ r= (C'I)

R®PST(N) = (k® k) Ele@k 1f. (101)

An analogous formula was proposed [in_|[KP] in the caségpf< 1 in terms of the compact
quantum dilogarithn(z).

4.4 Weyl algebra

For the factor algebras @;3(2,11%) andév{]’(2,R) over the ideals generated by the relations 0
andb = 0, respectively, the only nontrivial defining relations afghe Weyl type. These factor
algebras are isomorphic to the following algebra.

Definition 7. The Weyl algebraV, is a unital associative algebra with generatarsi, v, v=*
and defining relations v=! = v~ 'v = 1 and

Ul =uu, uv=qou, Gv=q ‘v (1202)

and equipped with an anti—involution * defined on generatys

ut =u, =1, v =, (v™H* = v, (103)

The following statements are straightforward to verify.

Lemma 9. For a genericg, the center olV, is generated by the elemef} = u .
Lemma 10. The linear homomorphismg’ : @73;(2,]1%) - W, and Q" : éf,g(2,R) — W,
defined on generators as follows
Ql(a’) =u, Ql(b) =0, QI(C) =0, Q,(H) = ,Uil ) Q,(d) =u, (104)
Q”(a) =u, Q”(b) =0, Q”(C) =, Q”(O) = Uil ) Q”(d) u (105)

are algebra homomorphisms.

Now we will introduce contractions of the mapsandg suitable for\y,.
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Definition 8. Let B be an algebra of linear operators acting on a Hilbert spaceAn irreducible
representationr,,: YW, — B is called positive if the following operators areself-adjointand
strictly positiveon K:
i) () for z = u, a,v;
o 1 — 1 - _
i) g2 () (o (v) " and g2 (ww (v)) o (@).
Proposition 9. Let B and K be as in Definitio B and let,, be a positive representation &¥,.
The linear homomorphism,, : W, — B®? defined on generators as follows:

Ayy(u) = mp(u) @ my(u), Ay (1) = mp () @ my(a) , (106)
Ay (v) = Ty (u) @ Ty (v) + T (V) @ T (@) Aw(vil) = (Aw(v))_1

is analgebra homomorphismand a*~homomorphismw.r.t. the anti—involution[{103).

Proof. Notice thatA,, 0 @' = ((my 0 Q') ® (my 0 Q")) 0o Ais, by Lemm4D, a linear homomor-
phism from@flg(zR) to B. Therefore, for: = u, u, v, the claimed properties &f,, are inherited
from those ofA. For A,,(v~!), a consideration analogous to that in the proof of Propmrsi@
applies since, by Remalk 2,,(v) is a positive self-adjoint and hence invertible operator. O

Remarl9. We used in this proof thak,, is related toA via ©'. TheoppositecomultiplicationA},
(obtained by exchanging the tensor factors\ip,(z)) is similarly related toA via Q”, namely,
A}, 0 Q" = ((mwo Q") ® (mw 0 Q")) 0 A.
Remark10. Using the relation betweeA and A,,, we can write an explicit expression for
A,y (v~1). Namely, applying®’ to (29), we obtain

A7) = (mw@my) (Sulw) (™ @o7") (Sulw)) ') | (107)

wherew = vu~! ®@ v=14 andm,, (u™!) = my () (7TW(Zq))_1

Proposition 10. The linear homomorphisi, : W, — ng defined on generators as follows:
Sw(w)=u®v™,  Su(@)=v®d, Iy =0 @t (108)
is acoassociative algebra homomorphiand a*~homomorphisnw.r.t. the anti—involution[(103).

Proof. Straightforward. However, it is instructive to notice thigto Q" = (Q"®Q") o is a
linear homomorphism fronGL} (2,R) to W;*?. Therefore, applying2"®Q" to (31), we infer
that

(id ® 8y) Q"(97%) = Q"(9"h2 Q" (97 )13 (109)

whereQ”(g%) = (v,' §) andQ”(g7) = (5 §). u
It is easy to check that any monomial W(;@Z which commutes with,,(z), x = u,a,v is a
power ofd,, (Z,). But the centralizer o\, (W,) contains not only functions af,, (Z,).

Lemma 11. Denotez = uv ® wv~'. Then for allz € W, we have
[(mw ® ) (2), A (2)] = 0. (110)

Proof. It suffices to verify [(11D) for the generatous, v, which is straightforward. O
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4.5 Fundamental R—operators forg’(\) and ¢'()), Volterra and lattice free field
models

Let us introduce the followin@'—images ofy(\) andg(\) = o.g(A):

—1 ~
g0 = (Afj_l A&”>, 70 = <M; A“U). (111

Matrix ¢’()) is the L—-matrix for the Volterra model [V2] and is also retht® the lattice sine—
Gordon model[V2, F1, F2]. We will see below thgf ) is the L—matrix for the Volterra model
for a dual dynamical variable (we ugg\) rather thanQ’(g(\)) to make the duality most trans-
parent; the corresponding fundamental R—operators diffr by a twist). In the compact case, a
fundamental R—operator fgf(\) was found in[[V2]. Here we will give an alternative derivatjo
which exhibits transparently the underlying comultiptioa structure. For brevity of notations,
we will write z ® y instead ofr,, () ® m, (y).

Theorem 3. Let B and K be as in Definitiofi 8 and let,, be a positive representation bY,. Let
g'(\),d'(\) € Mat(2)®B be as in[[IT1). Then the operatd®¥()\), R’ (\) € B®? acting onK®K
and defined by the formulae

RO =r(z,\) 21198 (u@ v+ o @ @) '8 g5 los (112)
RO =73 )) 218 (d@v+o L @)% 2518 (113)
wherez = wuv ', z=w 'Quv™!,a = loéq’ satisfy the equations
Ry (N) 91, (M) 935 (1) = g5, (1) 915 (M) Ry (X)) (114)
R (A) 35, (M) Gy (1) = §h, (1) 355 () R (V) (115)

for any choice of the function(t, \).

Proof. Eq. (114) can be regarded a®ar Q'—image of[(37). It is easy to see, that Egs) (38)}-(43)
turn into the following relations:

R\, v@v =[R'\),v '@v]=[R\),u@u] =[R\),i@1 =0, (116)
RN (u@v+Aved) = \uev+vea)R(N), (117)
RO Ao '@u+a@v ) =@ '@u+ra®uv " )R'(N). (118)

To exhibit maximally the structure of these equations eglab the comultiplicatior,,,, we
introduceR’(\) = z 41982 R/(\)z 3%}, Then equationd (116)=(1118) acquire the following
form:

RO wov H)=Xxwov Hh)R'A), RONALW) =A,0) RN, (119)
R'O) A () = A 'Ap () R'(A), RO Aw(@) = XAy (@) R'(N) . (120)

It is now easy to see thdt (1119)—(120) are solved by
R'(N) =7(z,A) (A (v)*'*, (121)
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wherer(t, \) can be an arbitrary function thanks to Lemma 11 and the fatfthw @ v='] = 0.
Thus, we established thdf (112) satisfies {116)4(117). ngakito account thalz,v~! ®@ u] =

[z,a®v 1] = 0, it remains to prove tha’,(w, \) = % 196 (A, (v))*'*® 3% °8X satisfies[(TT8).
For this purpose we apply Lemrnal 12 and rewrite it as follows:

alog A Sw (>‘71W) W_% log A ’

S (}\ w) w=ovu ' @uvla, (122)

RL(w, A) = (Z)
where we used that z = ¢*2w. Multiplying [II8) with v ® @ from the right, we obtain the
following functional equation on functioR, (w, \):

RL(w,A) (A + ¢ 'w) = (1+ Aq¢™'w) R, (¢ w, A), (123)

which is easy to verify using Ed._(159).

To prove that[(11B) satisfies (115), we observe ghgt) andg’(\) are related in a way which
fits the hypotheses of Lemrhh 4 (namely- (§ | ) and the automorphismis defined by.(u) = 4,
u(@) = u, t(v*!) = vT1). Therefore, according to Ed.(35), the fundamental R-atperor §’())
isR'(\) = (:®id)R'()\). Noticing that.(z) = z and(z) = z, we obtain formula{113). 0

Remarkll In [V2|[F2,[FVZ], another solution to Ed. (I23) was given, redyn
Se(w) Sy (w1

So(Aw) S,(Aw—1) "

Eq. (166) in Appendik Al shows thai (122) ahd (I1L24) coinciddo a factor independent af.

Fundamental R—operatoifs (112) ahd (113) are regular trse se#rEq. [(8) ifr(¢,1) = 1. Fur-
thermore, they have the properties given[inl (54) provided ittt, \) = (¢, \=1) = 1/r(t,))
for t, A >0 (notice thatz* = z, z* = z, and|z,z] = 0). The corresponding local Hamiltonian
densities constructed vial (4) are given bY({) stands for the derivative oft, A) w.r.t. A at A =0)

RL(w, \) = (124)

7H7,z,n+1 = log (Unun+1 + anvn+1) - % log(vnvni1) + 7J(Zn+1,n) + %log(unanJrl) ) (125)
'Yﬁ;z,nﬂ = log (Unﬂn+1 + ﬂnv;il) + % log(tntny,) + r'(iml,n) + %log(vrjlv%l) . (126)
The arguments of the logarithms here are positive self#atdperators. Notice that the last terms

in (I28) and[(126) add only a constant to the total Hamiltormiethe case of a periodic chain.
Consider the following positive representations/gf on the Hilbert spacé = L*(R)

m(u) =€,  m@)=e?, m(v)=e??, (127)

m_(u) =e %%, m_() = e*?, n_(v) =e"P, (128)

werep and¢ are self-adjoint operators which satisfy #| = 7, v € (0, 7). For these represen-
tations, the classical limit of (125J={1126) acquires thiéofeing form (up to additive constants):

ymi(Hy ) = logcoshsy + ' (e*5-), (129)
v 7r_(I:I;L7n+1) = log cosh s_ + r'(e?*+) . (130)

wheresy = %pn + %an + ¢ny1 F dn. Itwas shown in[[V2] that_ are related (in a nonultralo-
cal way, via a discretized Miura transformation) to the diyhamical variables of the Volterra
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model, and that(129) for(¢, A\) = 0 coincides with the Hamiltonian of the Volterra model far.
The obvious symmetry between (129) ahd (130) makes it dierthe matrixg’(A) can as well
be taken as an L-matrix for the Volterra model and that theesponding Hamiltoniar_(180) for
r(t,\) = 0 is the Hamiltonian of the Volterra model for the dual dynaahicariables_.

Let us demonstrate that(\) can be regarded also as an L—matrix for a lattice regulariza-
tion of the free field. For this goal we have to choose suth)) in (I12) thatr'(e?’) =
log cosh ¢ + const in the classical limit. For instance, we can take (Ef._(12a) aotice that
[z,w] = 0 andz,, ,, Wy 410 = Zy)

So(M1Z,7Y) i sign Su(A W)

RN = —~——_~ - 131
W= 0z, (2w™) So (\w) (130)

Then [129) acquires the following form:
ymy(Hy o) = logcoshs, +logcoshs_ . (132)

In the continuum limit[(7R), we havey = x(p(z ) + 0,4(z)) + o(k) (x stands for the lattice
spacing) and(132) turns intd}, ,,,, = const + % (p + (059)?) + o(x?), i.e., it becomes the
Hamiltonian density of the free field. Furthermore asgnancopy of Lf(\) = 7 (¢'(k))) to
each site of the lattice, we get the following continuum tiofithis L-matrix: LL (A) = (§9) +
& (Ur(A) + U-(N)) + O(k?), where

1o Ae~2? 1o 0
Upy(\) = ( 3634? _§a+¢> . U_(\) = ( 2 ’ ¢ —%a¢> _ (133)

These matrices satisfy the zero curvature equatoi/ (X) + 0, U_(A) = 2[U4+ (M), U_ ()],
provided thatp satisfies the equation of motion of the free fidldly = 0.

4.6 Fundamental R—operator forg”()), lattice free field model

Let us introduce the followin@"—image ofg(\):

0
"(\) = “ . 134
9" (\) (Av_l—i—)\_lv ﬁ) (134)
Theorem 4. Let B and K be as in Definitiof 8 and let,, be a positive representation b¥,. Let
g"()\) € Mat(2)®B be as in[[I34). Then the operat8f' (\) € B¥? acting onK®XK and defined
by the formula
" 52 log A . 2108 a0y
RY(\) =228 ((v®u+u®v)(u®v+v®u)> 72 %8N (135)
wherez = v ? @ uv™? anda = 10 ;» satisfies the equation

RY,(N) gy, (M) 935 (1) = g1, (1) 975 () RYS(N) (136)
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Proof. As always, for brevity of notations, we write® y instead ofr,, (z) ® m,(y). Eq. [136)
can be regarded as@’'® Q"—image of [(3V). It is easy to see, that Eds.] (38)-(43) turo ihe
following relations:

RN (v@u+du®v) =Aveu+a®v)R'(N), (137)
R'\),u®u] =0, R'(\), i @] =0, (138)
R'A)Av ' @u+a@v ) =@ '@u+raouv " )R(N). (139)

It is easy to recognize in (IB7)=(138) a structure relatehéoopposite comultiplicatior\!,, in
accordance with Remalk 9. To make this structure more teagsfy we introduce

R'(\) = (v ®@v)2 A R"(\) (v @ v) 2 108 (140)

Then equationg_(137)=(189) acquire the following form:

R"(A) Al (v) = A}, () R"(N), (141)
R"(A) Al (w) = A72AL, (u) R"(A) R'(N) A}, (@) = X AL (@) R'(N),  (142)
RV Aol @u+dtage ) =N vt @u+ da®u ) R()N). (143)

According to LemmaZl1, a solution to Eds. (140)=(142) mayaioras a factor an arbitrary func-
tion of z = uv ! @ uw. Actually, it is more convenient to introduse= Z,z ! =vu ' ®@v 'a

Then [141)4(142) are solved by
R”(A) = (AL, ()5 R" (w, ) , (144)

where R”(t,)\) is yet undetermined function. Noticing thafA!, (v),v t@u] =
(Al (v),a®v '] = 0, we infer thatR” (w, \) must solve [TZ43). Multiplying[{143) with ® v
from the right, we obtain the following functional equation functionR” (w, \):

R'(w,\) Aqw™ + X1 = A tqw™ L + M) R (¢ 2w, \). (145)
Comparing this equation with (IP1)—(123), we conclude that

-2
Fe”(w,A)z(Zq)”‘myww_mgA 251980 (A, (0))** %8755 080 (146)

wherez = av~! ® uv~!. Notice thatA], (v) commutes withA,, (v) andz. Combining [14D),
(d44), and[(146), we obtain formula_(135). O

Fundamental R—operatdr (135) is regular and has the prep@iten in[(54). The correspond-
ing local Hamiltonian density constructed Via (4) is given b
H;L' g1 = 2 log((vn+1un + ﬁn+1vn) (un+1vn + vn+lﬁn)> + log(ﬂnﬂv;flunq);?) . (47

Definition[8 along with Remailki 2 ensure that the argumentefitst logarithm here is a product of
commuting positive self-adjoint operators. In the clagdinit ([{47) can be written as follows:

yHIS, =2log (unun+1 + Ginfings + Zg(vy, "ongs + vnv;jl)) + log(tp41up) - (148)

25



Consider the following one—parameter family of positive representations dV,:
mo(w) = Lot m(@) =Le i, myv)=e 22, (149)

wherex, 8, II, and ® are as in[(70). Let us introduce the following L—matriX:;*(\) =
KTy (g”(A)) and assign a copy of this matrix to each site of the lattice,

LF(A) = et 0 (150)
" m()\eg'b” +>\716_§¢”) e~Tln |
where[II,,, ®,,] = —idpm,. L—matrix (I50) can be obtained from the Liouville L—matifxin

Eq. (Z71) we shift the zero mode of the fiel®, — ®, + &, rescale the spectral parameter:
A— Ae‘fg, and take the limif — +oco.

One may expect that in such a limit the Liouville model tumimithe free field. Indeed, for the
representatiori (149), Eq._(148) acquires the followingnfor

v H'P = 21og(2 cosh g(l’[n +10,,,) + 2 cosh g(‘bnﬂ —®,)) + const, (151)

n,n+1

where we omitted the last term ih_(148) since it does not duute to the total Hamiltonian in
the case of a periodic chain. In the continuum lirhif(72), eeover from[(151) the Hamiltonian
density of the free field:H, ¢, = const + x2(I12 + (9,®)%) + o(x?). Furthermore, in the
continuum limit we havel}, (A\) = (§9) + & (U+(A) + U-(X)) + O(x?), where

89, @ 0 89 @ 0
U\ = 8% U_(\) = 87~ . 152
+( ) ( )\egén —§8+@ ) ) ( ) ( A_le,gq;,n _gai(p ( )

These matrices satisfy the zero curvature equatiord/; (\) + 0+ U_(N) = 2[U+ (), U-(N)],
provided thatd satisfies the equation of motion of the free fidld® = 0.

Remarkl2. Let us remark that the two fundamental R—operators that we foaind for the lattice
free field are quite similar. Namely, it is straightfowardctoeck that

R'(A) = (u '@u) 25 R'(N?) (u '@ u)2 87, (153)

whereR" (1)) is given by [135) andR’()) is given by [I31). Notice that, for a periodic chain, the
factors(u~'®u) 2 '°6* do not contribute to the total Hamiltonian.

4.7 Fundamental R—operator forg”()\), relativistic Toda model

Let us introduce the followin@"—image ofg()):

Aot 4+ X"y Xl
§"'(\) = . 154
g (N ( g 0 (154)
This matrix is related via a twist (cf_(98)) to the L—matriiktbe relativistic Toda model [KT, BS]:
P _ \"le—p _p2¢
LrT(}\) — (7T_ ®7T_)(l_valog/\ gl!(,»\) v—alog/\) — Ae 7)\ € N , (155)
! e 2¢ 0

26



wherer_ is the positive representatidn (128))0f,. A suitable limit of [155) forg — 1 yields the
L-matrix of the ordinary Toda chain model, which satisfieoanterpart of EqL{1) with additive
spectral parameter and a rational auxiliary R—matrix.

Integrals of motion both for the ordinary and relativistiodf models are constructed by means
of expanding the auxiliary transfer—-matriX(\) (cf. Sectior 4.B). Results of the present article
explain why the corresponding fundamental R—operatoraatarme employed for this purpose.

Theorenb. LetB and K be as in Definitioi B and let,, be a positive representation &¥,. Let
§"(\) € Mat(2)®B be as in[I54). Then the operatBf'(\) € B®? acting onK®K and defined
by the formula

R'(N) = (0w(Z0)) " = (wv @ v ta)* 182, (156)

wherea = ﬁ satisfies the equations
g q

RN G4 () 1 (1) = 6, (1) G ) RIS (). (157)

Proof. Reexamining the proof of Theorelmh 2 in the casé ot 0, we see that an analogue of
Eq. (60) holds in the formiR” (), 8,y ()], z = wu,i,v. Unlike A,,, the centralizer of,, (z),

x € W, is generated only by, (Z,). ThereforeR”(\) must be a function of,,(Z,). Itis easy
to see that that the = 0 counterparts of Eqd. (61)=(63) determine this functiomuely (up to a
scalar factor) and lead to formula_(156). O

Fundamental R—operatdr (156) is regular and has the prepajiven in [[(54). However, the
corresponding local Hamiltonian density constructed [iia (

Y H;Ll,n-&—l = log (Uglﬁnunﬂvnﬂ) , (158)

leads to a trivial total Hamiltonian in the case of a periodhain.

5 Conclusion

We have developed the Baxterization approach to the quagtaupGL,(2) and emphasized the
role of the standard and non-standard comultiplicationsdmstructing the corresponding fun-
damental R—operators. Our results imply that the quantumnstry algebra for a number of
integrable lattice models is the quantum grdifa, (2) or its reductions for which the comultipli-
cation structure is a reduction of those @, (2). This is especially remarkable in the case of the
lattice Liouville model because the quantum graip, (2) itself emerged for the first time exactly
in the study of relations for the monodromy matrix of theitatLiouville model [FT1]. For the
\olterra model, we have shown that the two dual L—-matricad te the same Hamiltonian but for
the dual dynamical variables. We have also emphasized t@fthe ambiguity in the solution
for the corresponding fundamental R—operators: fixing & inivial way yields the Hamiltonian
of the Volterra model, whereas fixing it in a self-dual waylgéethe Hamiltonian of a lattice reg-
ularization of the free field. For the latter model we have &sind another L—matrix which can
be regarded as a limit of that for the lattice Liouville madédlis interesting that, although the
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free field in continuum is a very simple model, the fundamleRteoperators related to its lattice
regularization have quite a nontrivial structure.
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A Appendix

A.1 Quantum dilogarithm

Consider the functional equation
S(g'z) = (1+x)S(qz). (159)

Its solution is given by the produdt(z) = []>2, (1 + z ¢**~'), which is convergent fog| < 1.
This function appears in various related forms in latticeegnable modeld [T1, V2, FV1] and
was coined “quantum dilogarithm” in_[FK1]. It was observed[E2,[F3] that, forq = eim?
w € (0,1), a well-defined solution té (159) is given by

_t

= (L+zg™ ) { dt  eiro 1087 }
g _ ! _ A 160
w(7) 7]:[1 (1+ 2% q2n71) exp 4t sinh wt Sinhi ( )
= Q

whereg = e~ andQ = R + 0. Among the important properties 6f,(x) are

-1

self—duality: S, (z*)=S,-1(z“ ), (161)
unitarity: Su(z) Sy(x) =1 forz e R, . (162)

This function is closely related to the Barnes double gamumatfon [B1] and plays an important
role in studies of non—compact quantum groups [F4, [PT| W1 /B34, [WZ2,[V3] and related
integrable models [KLS, FK2, T2, BT2].

The following lemma proves to be useful for converting pavef coproducts in formulae for
fundamental R—operators into expressions involving quardilogarithms.

Lemmal2 Letw andv be a pair of positive self-adjoint operators satisfying,tte sense of
Remark 1, the Weyl relationiv = ¢% v u, whereg = ¢™”, w € (0,1). Suppose that = qu~'v
is positive self—-adjoint. Then the following identity rsld

Sola™'w) & 1 Sulg W)
Su(gtw) Sw(gtwt)

[MES
[MES

(u+v) =u Ve (163)

Proof. Using relations: f(w) = f(g?w)u andv f(w™') = f(¢ 2w~ 1) v, it is easy to verify the
following identities

u4v=_S8,w)u(Suw) "= (Suw™) vS,w). (164)
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These are relations of unitary equivalence, thanks to thpgoty (162). Whence we infer that

S.(q'w)
Su(gtw)

holds in the sense of Remark 1. The second equalify in (168pealerived analogously. O

(Sw(w))f1 = u? u’ , (165)

[(ME
ST

(u+v)" = Su(w)uz u

Remarkl3. Equality of the two expressions involving quantum dilogaris in [163) allows us to
obtain the following functional identities:

t_ Sw(qitw) Sw(thil) _ Sw(‘]i?tw) Sw(q%wil)
Su(gw) Sulgw 1) — T T Su(w) Sy(w!

(166)

For the proof of Theorem 2 we will need the following lemmar (fioe sake of brevity we will
write x instead ofr 4(x)).

Lemmal3. Lete, f, andk generate a positive representatiary of the g—oscillator algebrad,,
(cf. Definition®). Then the following relation holds
S0 1) (AE*+e) = (\'E? +e) 5.0 1) (167)
Su(Mf) Su(Mf)

For a positive representation, we can write= u, + v., whereu, = f *ICq andv, =
¢ ' f~'k? are positive self-adjoint operators satisfying relatign, = ¢%v.u. (hence, by Re-
mark[2, e is positive self-adjoint; a rigorous operator—theoretimsideration of the formula
e = f~YC, + ¢ 'k?) is given in [S1]). Therefore, it7(¢) is a sufficiently nice function (i.e.
G(f) has a suitable domain, cf. the discussion’in [S1]), then we haG(f) = G(¢*f)k?* and
eG(f) = G(f)Cyf 1 + ¢ ' G(¢%f) f~'k2. Taking these relations into account, we infer that the
operator equation

G(f,\) (A\k*+e) = (A\T'k? +e) G(f, \) (168)

is equivalent to the following functional one:
GUHNA+qg ') ="+ NG (169)
Using [159), it is straightforward to check th@t f, \) = %}?;‘;) solves[(16D). O

A.2 Proof of Lemmal§

Formula [68) can be rewritten as follows:

RO\ = (D)% (0@ 1)*'* R(r; ) (c @ 1)*1%8* (170)
where 5 (ot
R(r;\) = % r=(D,) " (q—%b—la) ® (qéed) : (171)

Substituting [(170) in[{62), it is easy to check that Lenitha &dsivalent to the assertion that
R(r; \) satisfies the following relation:

REAMNI@d+deb)=A"100d+dob)R(rN). (172)
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Notice thatd ® b, § ® d, andr are positive self-adjoint operators. Now, a simple commria
(using, in particular, the identityda — ¢~ 'ad = (¢ — ¢~ ') D,) yields

(dRb)r—r(d®b)=(q—q )0xd (173)
(deb)(0ed) =¢ (00d)(doDb), r0ed) =q20xd)r. (174)

Comparing these relations wifi{78) we see thatd®b, f = r, andk? = f®d generate a positive
representation of the algehwé, (k can be defined as the unique positive self-adjoint squate roo
of # ® d). Invoking Lemmd_1B, we establish validity of EQ. (172) arhbe of Lemmals.
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