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t. As a starting point, we state some relevant geometri
al properties enjoyed by the 
osmologi
al horizonof a 
ertain 
lass of Friedmann-Robertson-Walker ba
kgrounds. Those properties are generalised to a larger 
lassof expanding spa
etimes M admitting a geodesi
ally 
omplete 
osmologi
al horizon =� 
ommon to all 
o-movingobservers. This stru
ture is later exploited in order to re
ast, in a 
osmologi
al ba
kground, some re
ent results fora linear s
alar quantum �eld theory in spa
etimes asymptoti
ally 
at at null in�nity. Under suitable hypotheseson M , en
ompassing both the 
osmologi
al de Sitter ba
kground and a large 
lass of other FRW spa
etimes, thealgebra of observables for a Klein-Gordon �eld is mapped into a subalgebra of the algebra of observables W(=�)
onstru
ted on the 
osmologi
al horizon. There is exa
tly one pure quasifree state � on W(=�) whi
h ful�ls asuitable energy-positivity 
ondition with respe
t to a generator related with the 
osmologi
al time displa
ements.Furthermore � indu
es a preferred physi
ally meaningful quantum state �M for the quantum theory in the bulk.If M admits a timelike Killing generator preserving =�, then the asso
iated self-adjoint generator in the GNSrepresentation of �M has positive spe
trum (i.e. energy). Moreover �M turns out to be invariant under everysymmetry of the bulk metri
 whi
h preserves the 
osmologi
al horizon. In the 
ase of an expanding de Sitterspa
etime, �M 
oin
ides with the Eu
lidean (Bun
h-Davies) va
uum state, hen
e being Hadamard in this 
ase.Remarks on the validity of the Hadamard property for �M in more general spa
etimes are presented.Contents1 Introdu
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al 
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lusions and open issues. 20A Proof of some te
hni
al results. 211 Introdu
tionIn the framework of quantum �eld theory over 
urved ba
kgrounds we witnessed, in the past few year,an in
reased display of new and important formal results. In many 
ases we 
an tra
k their origin in theexisten
e of a non trivial interplay between some �eld theories living on a Lorentzian ba
kground - sayM - and a suitable 
ounterpart 
onstru
ted over a 
o-dimension one submanifold of M , often 
hosen asthe 
onformal boundary of the spa
etime. Usually thought of as a realization of the so-
alled holographi
prin
iple, this resear
h line provided its most remarkable results in the framework of (asymptoti
ally)AdS ba
kgrounds. As a matter of fa
t, 
on
epts su
h as Malda
ena's 
onje
ture [AGM00℄ - in a stringframework - or Rehren's duality (see [DR02℄ and referen
es therein) - in the algebrai
 quantum �eld theorysetting - are appearing nowadays almost ubiquitously in the theoreti
al high-energy physi
s literature.More re
ently a similar philosophy has been also adopted to deal with a rather di�erent s
enario, namelyasymptoti
ally 
at spa
etimes, where it is future null in�nity {=+ � R�S2, i.e. the 
onformal boundary {whi
h plays the role of the above-mentioned 
o-dimension one submanifold [DMP06, Mo06, Mo07, Da07℄.Although one 
ould safely 
laim that all these mentioned results are 
ompelling, one should alsoa
tively seek 
onne
tions to those theoreti
al models whi
h are nowdays testable and, within this respe
t,one 
an safely 
laim that 
osmology is a rather natural playground. In this realm, one of the most widelyknown theories is in
ation where, as in other models, the pivotal role is played by a single s
alar �eldliving on an (almost) de Sitter ba
kground. Although, within this framework, most of the results aremainly, though not only, at a 
lassi
al level, it is to a 
ertain extent mandatory to look for a deep-rootedanalysis of the full-
edged underlying quantum �eld theory in order to a
hieve a more �rm understandingof the model under analysis.To this avail, the �rst, but to a 
ertain extent, not appealing 
han
e is to perform a 
ase-by-
aseanalysis of the quantum stru
ture of all the possible models nowadays available. In our opinion a moreattra
tive possibility is to look for some mean allowing us to draw some general 
on
lusions or to point outsome universal feature, independently from the 
hosen model or from the 
hosen ba
kground. Taking intoa

ount this philosophy, a natural \�rst step" to undertake would be to try to implement the previouslydis
ussed bulk-to-boundary 
orresponden
e whi
h appears to en
ode, almost per 
onstru
tion, all the
riteria of universality we are seeking for, in the 
ase of a large 
lass of 
osmologi
al models.As a starting point point let us assume the Cosmologi
al Prin
iple whi
h leads the underlying ba
k-ground to be endowed with the widely-used Friedmann-Robertson-Walker (FRW) metri
s. A dire
t2



inspe
tion of the geometri
 properties of these spa
etimes points out that, in most of the relevant physi-
al 
ases, su
h as de Sitter to quote just one example, it exists a natural submanifold whi
h, at �rst glan
e,appears to be a good 
andidate as the preferred 
o-dimension 1 hypersurfa
e: the 
osmologi
al (future orpast) horizon as de�ned by Rindler [Ri06℄. More pre
isely, in this paper we shall 
onsider the 
osmologi
alpast horizon =�, in 
ommon with all the 
o-moving observers, in order to deal with expanding universes.The �rst of the main aims of this manus
ript is indeed to dis
uss some non trivial geometri
 features ofthe 
osmologi
al horizon =�. Parti
ularly, under some te
hni
al restri
tions on the analyti
 form of theexpanding fa
tor in the FRW metri
 with 
at spatial se
tion, the horizon has a universal stru
ture and,hen
e, it represents the natural setting where to stage a bulk-to-boundary 
orresponden
e. An expandinguniverse admits a preferred future-oriented timelike ve
tor �eld X de�ning the worldlines of 
o-movingobservers, whose 
ommon expanding rest-frames are the 3-surfa
es orthogonal to X . In FRW metri
s Xis a 
onformal Killing �eld whi
h be
omes tangent to the 
osmologi
al horizon and, in the 
lass of FRWmetri
s we 
onsider, it individuates 
omplete null geodesi
s on =�.This extent will be generalised to expanding spa
etimes M equipped with a geodesi
ally 
omplete
osmologi
al horizon =� and an asymptoti
al 
onformal Killing �eld X , generally di�erent from FRWspa
etimes. The leading role of X in su
h a 
onstru
tion is strengthened by its intertwining relationwith the 
onformal fa
tor whi
h is a primary 
ondition to take into a

ount if one wants to study thestru
ture of the symmetry group of the horizon (a
tually a subgroup of the huge full isometry groupof the horizon viewed as a semi-Riemannian manifold). We also address su
h an issue and we dis
overthat su
h a group is a
tually an in�nite dimensional group SG=� whi
h has the stru
ture of an iteratedsemidire
t produ
t i.e. it is SO(3) n �C1(S2)n C1(S2)� where SO(3) is the spe
ial orthogonal groupwith a three dimensional algebra, whereas C1(S2) stands for the set of smooth fun
tions over S2 thoughtas an Abelian group under addition. The geometri
 interpretation of SG=� is intertwined to the followingresult. The subgroup of isometries of the spa
etime whi
h preserves the 
osmologi
al horizon stru
tureis inje
tively mapped to a subgroup of SG=� whi
h, hen
e, en
odes some of the possible symmetries ofthe spa
etime. However it must be remarked that SG=� is universal in the sense that it does not dependon the parti
ular spa
etime M in the 
lass under 
onsideration.As a result we �nd that, under suitable hypotheses on M { valid, in parti
ular, for 
ertain FRWspa
etimes whi
h are de Sitter asymptoti
ally { the algebra of observablesW(M) of a Klein-Gordon �eldinM is one-to-one (isometri
ally) mapped to a subalgebra of the algebra of observablesW(=�) naturally
onstru
ted on the 
osmologi
al horizon. In this sense information of quantum theory in the bulk Mis en
oded in the quantum theory de�ned on the boundary =�. It turns out that there is exa
tly onepure quasifree state � on W(=�) whi
h ful�ls a 
ertain energy-positivity 
ondition with respe
t to somegenerators of SG=� . The relevant generators are here those whi
h 
an be interpreted as limit values on=� of timelike Killing ve
tors ofM , whenever one �xes a spa
etimeM admitting =� as the 
osmologi
alhorizon. However, exa
tly as the geometri
 stru
ture of =�, � is universal in the sense that it does notdepend on the parti
ular spa
etime M in the 
lass under 
onsideration. The GNS-Fo
k representationof � individuates a unitary irredu
ible representation of SG=� . Fixing an expanding spa
etime M with
omplete 
osmologi
al horizon, � indu
es a preferred quantum state �M for the quantum theory in Mand it enjoys remarkable properties. It turns out to be invariant under all those isometries of M (if any)that preserve the 
osmologi
al horizon stru
ture. IfM admits a timelike Killing generator preserving =�,the asso
iated self-adjoint generator in the GNS representation of �M has positive spe
trum, i.e., energy.Eventually, if M is the expanding de Sitter spa
etime, �M 
oin
ides to the Eu
lidean (Bun
h-Davies)va
uum state, so that it is Hadamard in that 
ase at least. A
tually, Hadamard property seems to bevalid in general, but that issue will be investigated elsewhere.As a �nal te
hni
al remark we would like to report that in the derivation of many results reportedhere we have been guided by similar analyses previously performed in the 
ase of asymptoti
ally 
at3



spa
etime, using the null in�nity as 
o-dimension one submanifold. However, to follow the subsequentdis
ussion there is no need of being familiar with the tri
ky notion of asymptoti
ally 
at spa
etime.1.1. Notation, mathemati
al 
onventions. Throughout R+ := [0;+1), N := f0; 1; 2; : : :g. Forsmooth manifolds M;N , C1(M ;N) (omitting N whenever N = R) is the spa
e of smooth fun
tionsf :M ! N . C10 (M ;N) � C1(M ;N) is the subspa
e of 
ompa
tly-supported fun
tions. If � :M ! Nis a di�eomorphism, �� is the natural extension to tensor bundles (
ounter-, 
o-variant and mixed) fromM to N (Appendix C in [Wa84℄). A spa
etime (M; g) is a Hausdor�, se
ond-
ountable, smooth, four-dimensional 
onne
ted manifoldM , whose smooth metri
 has signature�+++. We shall also assume thata spa
etime is oriented and time oriented. We adopt de�nitions of 
ausal stru
tures of Chap. 8 in [Wa84℄.If S � M \ 
M , (M; g) and (
M; bg) being spa
etimes, J�(S;M) (I�(S;M)) and J�(S;
M) (I�(S; 
M))indi
ate the 
ausal (
hronologi
al) sets asso
iated to S and respe
tively referred to the spa
etimeM or 
M .1.2. Outline of the paper. In se
tion 2 we introdu
e and dis
uss the geometri
 set-up of the ba
k-grounds we are going to take into a

ount throughout this paper. Parti
ularly we �nd under whi
hanalyti
 
onditions on the expanding fa
tor, a Friedmann-Robertson-Walker (FRW) spa
etime 
an besmoothly extended to a larger spa
etime that en
ompasses the 
osmologi
al horizon. In se
tion 3 weprovide a generalisation of the results of se
tion 2 and we study their impli
ations. Furthermore we in-trodu
e and dis
uss the stru
ture of the horizon symmetry group showing its interplay with the possibleisometries of the bulk metri
. In se
tion 4 we study the stru
ture of bulk s
alar QFT and of the asso
i-ated Weyl algebra and its the horizon 
ounterpart. Furthermore we dis
uss the existen
e of a preferredalgebrai
 state invariant under the full symmetry group, whi
h enjoys some uniqueness/energy-positivityproperties. Subse
tions 4.3 and 4.4 are devoted to the development of the interplay between the bulk andthe boundary theory; a parti
ular emphasis is given to the sele
tion of a natural preferred bulk states andon the analysis of its properties. Sin
e all these 
on
lusions are based upon some a priori assumptionson the behaviour of the solutions in the bulk of the Klein-Gordon equation with a generi
 
oupling to
urvature, we shall devote se
tion 4.5 to test these requirements. Eventually, in se
tion 5, we draw some
on
lusions and we provide some hints on future resear
h perspe
tives.2 Cosmologi
al horizons and asymptoti
ally 
atness2.1. Friedmann-Robertson-Walker spa
etime and 
osmologi
al horizons. A homogeneous and isotropi
universe 
an be lo
ally des
ribed by a smooth spa
etime, in the following indi
ated by (M; gFRW ),whereM is a smooth Lorentzian manifold equipped with the following Friedmann-Robertson-Walker(FRW) metri
 gFRW = �dt
 dt+ a(t)2 � 11� �r2 dr 
 dr + r2dS2(�; ')� : (1)Above, dS2(�; ') = d� 
 d� + sin2 � d� 
 d� is the standard metri
 on the unit 2-sphere and, up tonormalisation, � 
an take the values �1; 0; 1 
orresponding respe
tively to an hyperboli
, 
at and 
losedspa
es. The 
oordinate t ranges in some open interval I . Here a(t) is a smooth fun
tion of t with 
onstantsign (sin
e g is nondegenerate). Hen
eforth we shall assume that a(t) > 0 when t 2 I . We also supposethat the �eld �t individuates the time orientation of the spa
etime.Physi
ally speaking and in the universe observed nowadays, the se
tions of M at �xed t are the isotropi
4



and homogeneous 3-spa
es 
ontaining the matter of the universe, the world lines des
ribing the histories ofthose parti
les of matter being integral 
urves of �t. In this pi
ture, the 
osmi
 time t is the proper-timemeasured at rest with ea
h of these parti
les, whereas the s
ale a(t) measures the size of the observed
osmi
 expansion in fun
tion of t.The metri
 (1) may enjoy two physi
ally important features. Consider a 
o-moving observer pi
turedby a integral line 
 = 
(t), t 2 I , of the �eld �t and fo
us on J�(
). If J�(
) does not 
over thewhole spa
etime M , the observer 
 
annot re
eive physi
al information from some events of M duringhis/her history: 
ausal future-dire
ted signals starting from M n J�(
) 
annot a
hieve any point on 
.In other words, and adopting the terminology of [Ri06℄, a 
osmologi
al horizon takes pla
e for 
 andit is the null 3-hypersurfa
e �J�(
). Conversely, whenever J+(
) does not 
over the whole spa
etimeM , physi
al information sent by the observer 
 during his/her story is prevented from getting to someevents of M : Causal future-dire
ted signals starting from 
 do not rea
h any point in M nJ+(
). In this
ase, exploiting again the terminology of [Ri06℄, a 
osmologi
al past horizon exists for 
. It is thenull 3-hypersurfa
e �J+(
).As it is well-known, a suÆ
ient 
ondition for the appearan
e of 
osmologi
al horizons 
an be obtainedfrom the following analysis. One re-arranges the metri
 (1) into the formgFRW = a2(�) ��d� 
 d� + 11� �r2 dr 
 dr + r2dS2(�; ')� := a2(�)g(�; r; �; '); (2)where �(t) = d+ Z a�1(t)dt (3)is the 
onformal 
osmologi
al time, d 2 R being any �xed 
onstant. By 
onstru
tion � = �(t) isa di�eomorphism from I to some open, possibly in�nite, interval (�; �) 3 � . Noti
e both that �� is a
onformal Killing ve
tor �eld whose integral lines 
oin
ide, up to the parametrisation, to the integrallines of �t and that (M; gFRW ) is globally hyperboli
.As 
ausal stru
tures are preserved under 
onformal res
aling of the metri
, a straightforward analysisbased on the shape of g in (2) establishes that J�(
) does not 
over he whole spa
etime M whenever� < +1. In that 
ase a 
osmologi
al event horizon takes pla
e for 
. Similarly J+(
) does not 
overthe whole spa
etime M whenever � > �1. In that 
ase a 
osmologi
al past horizon takes pla
e for 
.In both 
ases the horizons �J�(
) and �J+(
) are null 3-hypersurfa
es di�eomorphi
 to R � S2, madeof null geodesi
s of gFRW . One may think of these surfa
es as the limit light-
ones emanating from 
(t),respe
tively towards the past or towards the future, as t tends to sup I or inf I respe
tively. The tips ofthe 
ones generally get lost in the limit pro
edure: In realisti
 models � and � 
orrespond, when they are�nite, to a big bang or a big 
run
h respe
tively. As a general 
omment, we stress that the 
osmologi
alhorizons introdu
ed above generally depend on the �xed observer 
.Remark 2.1. The requirement on the �niteness of the bounds � and � for the range of the 
onformal
osmologi
al time � are suÆ
ient 
onditions for the existen
e of the 
osmologi
al horizons, but they areby no means ne
essary. Indeed it may happen that { and this is the 
ase of de Sitter spa
etime { there is,indeed a 
osmologi
al horizon arbitrarily 
lose to M , but outside M . This happens when the spa
etimeM and its metri
 
an be extended beyond its original region M to a larger spa
etime (
M; bg) so that ithappens that =+ = �J�(M ;
M) = �M and =� = �J+(M ;
M) = �M . Hen
e the 
osmologi
al horizon=+ or =� 
oin
ides with the boundary �M and, by 
onstru
tion, it does not depend on the 
onsideredobserver 
 (an integral 
urve of the �eld �t) evolving inM . Referring in parti
ular to a 
onformally stati
region M (equipped with the metri
 (1) for � = 0) embedded in the 
omplete de Sitter spa
etime 
M ,5



�M turns out to be a null surfa
e with the topology of R � S2. In the following we shall fo
us on thistype of 
osmologi
al horizons.2.2. FRW metri
s with � = 0 and asso
iated geometri
 stru
ture. Here, we would like to pinpoint somegeometri
al properties enjoyed by a sub
lass if the FRW spa
etimes that will be used later in order to getthe main results presented in this paper. To this end we 
onsider here the spa
etime (M; gFRW ), whereM ' (�; �) � R3 and the metri
 gFRW is like in (2), but with � = 0.Furthermore we shall restri
t our attention to the 
ase where the fa
tor a(�) in (2) has the following forma(�) = 
� +O� 1�2� ; da(�)d� = � 
�2 +O� 1�3� (4)for either (�; �) := (�1; 0) and 
 < 0, or (�; �) := (0;+1) and 
 > 0. The above asymptoti
 values aremeant to be taken as � ! �1 or � ! +1 respe
tively. The �rst issue we are going to dis
uss is theextension of the spa
etime (M; gFRW ) to a larger spa
etime (
M; bg) that en
ompasses =+ and/or =�. Tothis end, if we introdu
e the new 
oordinates U = tan�1(� + r) and V = tan�1(� � r) ranging in subsetsof R individuated by � 2 (�; �) and r 2 (0;+1), (2) 
an be written as:gFRW = a2(�(U; V ))
os2 U 
os2 V ��12dU 
 dV � 12dV 
 dU + sin2(U � V )4 dS2(�; ')� : (5)The metri
, obtained 
an
elling the overall fa
tor a2(�(U; V ))=(
os2 U 
os2 V ), is well-behaved and smoothfor U; V 2 R removing the axis U = V . This is nothing but the apparent singularity appearing for r = 0in the original metri
 (2). Consider R2 equipped with null 
oordinates U; V with respe
t to the standardMinkowskian metri
 on R2 and assume that every point is a 2-sphere with radius j sin(U � V )j=2 (hen
ethe spheres for U = V are degenerate). Then, let us fo
us on the segments in R2a; V = U with U 2 (��=2; �=2);b; U = �=2 with V 2 (��=2; �=2);
; V = ��=2 with U 2 (��=2; �=2):The original spa
etime M is realized as a suitable subset of the union of the segment a, i.e. r = 0, andthe interior of the triangle ab
, i.e. r > 0, as in the �gure 1. In this pi
ture it is natural to assume thatthe null endless segments b and 
 representing null 3-hypersurfa
es di�eomorphi
 to R � S2, individuaterespe
tively =+ and =� provided that � = +1 in the �rst 
ase and/or � = �1 in the se
ond 
asewhere (�; �) is the domain of � . Otherwise the points of M 
annot get 
loser and 
loser to all the pointsof those segments. Therefore we are 
ommitted to assume � = �1 and/or � = +1 and we sti
k withthis assumption in the following dis
ussion.Summarising, we wish to extend gFRW smoothly to a region larger than the open triangle ab
 joinedwith a, and in
luding one of the endless segments b and 
 at least. In the 
ase a(�) is of the form (4),the fun
tion a2(�(U; V ))=(
os2 U 
os2 V ) is smooth in neighbourhoods of the open segments b and 
 onlyif 
 6= 0, and in parti
ular it does not vanish on b and 
, making nondegenerate bg thereon. However, abad singularity appears as soon as U = �V , that is � = 0. Therefore either:(�; �) = (0;+1) { and in this 
ase M (r � 0, � 2 (0;+1)) 
oin
ides with the upper half of thetriangle ab
, and it may be extended to a larger spa
etime (
M; bg) by adding a neighbourhood of theendless segment b viewed as =+ { or(�; �) = (�1; 0) { and in this 
ase M (r � 0, � 2 (�1; 0)) 
oin
ides to the lower half of the triangleab
, and it may be extended to a larger spa
etime (
M; bg) by adding a neighbourhood the endless segment
 viewed as =�. 6
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Figure 1: The interior of the triangle represents the original FRW ba
kground seen as an open subsetof Einstein's stati
 universe. Ea
h point in the (U; V )-plane represents a 2-sphere and, furthermore, thesegments b and 
 are respe
tively =+ and =�.In both 
ases the line U = �V does not belong to M and to its extension, and the metri
 bg 
oin
ideswith the right-hand side of (5).The fun
tion a(�) and its interplay with the ve
tor �eld �� when approa
hing the 
osmologi
al horizonwill play a distinguished role in our 
onstru
tion for this reason let's enumerate below some of its propertiesthat we are going to generalise in the next se
tion. To this end, noti
e that a(�) is smooth in 
M andvanishes exa
tly either on =+ = �J�(M ;
M) or on =� = �J+(M ;
M), depending on the 
onsideredvalues for the interval (�; �) and for 
 as dis
ussed below formula (4). On the other hand, by dire
tinspe
tion da �=+= �2
dU ; da �=�= �2
dV; : (6)and hen
e da does not vanish either on =+ or on =�, provided 
 6= 0. By dire
t inspe
tion one �ndsthat, restri
ting either to =+ or =�, the metri
 bg takes the following distinguished form 
alled Bondiform: bg �=�= 
2 ��d`
 da� da
 d`+ dS2(�; ')� ;where, with =�, it is impli
itly assumed that one must 
hoose either =+ or =� and where, for arbitrarily�xed 
onstants k+; k�`(U) = �
�1 tanU + k� on =� ; `(V ) = �
�1 tanV + k+ on =+ ;hen
e ` 2 R turns out to be the parameter of the integral lines of n := ra.Consider then the ve
tor �eld �� , it is an easy task to 
he
k that it is a 
onformal Killing ve
tor for bg inM with 
onformal Killing equation L�� bg = �2�� (ln a) bg :where the right-hand side vanishes approa
hing either =+ or =�. Furthermore, �� tends to be
ometangent to either =+ or =� approa
hing it and it 
oin
ides to �
 brba thereon, as 
an be dire
tly seenfrom the form of `. 7



3 Expanding universes with 
osmologi
al horizon and its group.3.1. Expanding universes with 
osmologi
al horizon =�. The previous dis
ussion remarked that in anexpanding FRW spa
etimes the s
ale fa
tor a and its interplay with the 
onformal Killing �eld �� play adistinguished role when approa
hing the 
osmologi
al horizon. A reader interested in asymptoti
ally 
atspa
etime 
ould have noti
ed that many of the above mentioned geometri
al properties are shared by thestru
ture of null in�nity. In that realm, in [DMP06, Mo06, Mo07℄, it was shown that, when dealing withquantum �eld theory issues, a key role is played by a 
ertain symmetry group of di�eomorphisms de�nedon =+, the so 
alled BMS group, whi
h has the most notable property to embody the isometries of thebulk spa
etime [Ge77, AX78℄ through a suitable geometri
 
orresponden
e of generators. In the followingwe �rst generalise the result presented in the se
tion 2.2 and then we shall 
onstru
t the 
ounterpart ofthe BMS group for the found 
lass of spa
etimes and the parti
ular form of 
osmologi
al horizons.De�nition 3.1. A globally hyperboli
 spa
etime (M; g) equipped with a positive smooth fun
tion 
 :M ! R+ , a future-oriented timelike ve
tor X de�ned on M , and a 
onstant 
 6= 0, will be 
alledan expanding universe with (geodesi
ally 
omplete) 
osmologi
al (past) horizon when thefollowing fa
ts hold:1. Existen
e and 
ausal properties of horizon. (M; g) 
an be isometri
ally embedded as theinterior of a sub manifold-with-boundary of a larger spa
etime (
M; bg), the boundary =� := �Mverifying =� \ J+(M ;
M) = ;.2. Data interplay 1). 
 extends to a smooth fun
tion on 
M su
h that (i) 
�=�= 0 and (ii) d
 6= 0everywhere on =�.3. Data interplay 2). X is a 
onformal Killing ve
tor for bg in a neighbourhood of =� in M , withLX(bg) = �2X(ln
) bg ; (7)where (i) X(ln
) ! 0 approa
hing =� and (ii) X does not tend everywhere to the zero ve
torapproa
hing =� .4. Global Bondi-form of the metri
 on =� and geodesi
 
ompleteness. (i) =� is di�eomorphi
to R � S2, (ii) the metri
 bg �=� takes the Bondi form globally up to the 
onstant fa
tor 
2 > 0:bg�=�= 
2 ��d`
 d
� d

 d`+ dS2(�; �)� ; ` 2 R ; (�; �) 2 S2 ; 
 = 0 (8)dS2 being the standard metri
 on the unit 2-sphere. Hen
e =� is a null 3-submanifold, and (iii) the
urves R 3 ` 7! (`; �; �) are 
omplete null bg-geodesi
s.The manifold =� is 
alled the 
osmologi
al (past) horizon of M . The integral parameter of X is
alled the 
onformal 
osmologi
al time. There is a 
ompletely analogous de�nition of 
ontra
tinguniverse referring to the existen
e of =+ in the future instead of =�.Remark 3.1.(1) In view of 
ondition 3, the ve
tor X is a Killing ve
tor of the metri
 g0 := 
�2g in a neighbourhoodof =� in M . In su
h a neighbourhood, one 
an think of 
2 as an expansion s
ale evolving with rateX(
2) referred to the 
onformal 
osmologi
al time.(2) =� \ J+(M ;
M) = ; entails M = I+(M ;
M) and =� = �M = �I+(M ;
M) = �J+(M ;
M), so that8



=� has the proper interpretation as a past 
osmologi
al horizon in 
ommon for all the observers in (M; g)evolving along the integral lines of X .(3) It is worth stressing that the spa
etimes 
onsidered in the given de�nition are neither homogeneousnor isotropi
 in general; hen
e we 
an deal with a larger 
lass of manifolds than simply the FRW spa
e-times.Similarly to the parti
ular 
ase examined previously, also in the general 
ase pi
tured by De�nition 3.1,the 
onformal Killing ve
tor �eld X be
omes tangent to =� and it 
oin
ides with �` up to a nonnegativefa
tor, whi
h now may depend on angular variables, as we go to establish. The proof of the followingproposition is in the Appendix.Proposition 3.1. If (M; g;
; X; 
) is an expanding universe with 
osmologi
al horizon, the followingholds.(a) X extends smoothly to a unique smooth ve
tor �eld eX on =�, whi
h may vanish on a 
losedsubset of =� with empty interior at most. Then X ful�ls the bg-Killing equation on =�.(b) eX has the form f�`, where, referring to the representation =� � R � S2, f depends only on thevariables S2 and, furthermore, it is smooth and nonnegative.Sin
e, for the FRW spa
etimes, the fun
tion f = f(�; �) appearing in eX = f�` takes the 
onstant value 1,the presen
e of a nontrivial fun
tion f is related to the failure of isotropy for the more general spa
etimes
onsidered in De�nition 3.1.3.2. The horizon symmetry group SG=� . In the forth
oming dis
ussion we shall make use several timesof the following te
hni
al fa
t. In the representation =� � R � S2 3 (`; s), the null bg-geodesi
 segmentsimbedded in =� are all of the 
urvesJ 3 ` 7! (�`+ �; s) ; for 
onstants � 6= 0; � 2 R, s 2 S2, and some interval J � R. (9)In this se
tion, in the hypotheses of de�nition 3.1, we sele
t a subgroup SG=� of physi
ally relevantisometries of =�. We shall see in Proposition 3.3 that, as matter of fa
t, SG=� 
ontains the isometriesgenerated by Killing ve
tors obtained as a limit towards =� of (all possible) Killing ve
tors of (M; g),when these ve
tors tend to be
ome tangent to =�. As a preliminary proposition, it holds:Proposition 3.2. If (M; g;
; X; 
) is an expanding universe with 
osmologi
al horizon and Y is aKilling ve
tor �eld of (M; g), Y 
an be extended to a smooth ve
tor �eld bY de�ned on 
M and(a) LbY bg = 0 on M [ =�;(b) eY := bY �=� is uniquely determined by Y , and it is tangent to =� if and only if g(Y;X) vanishesapproa
hing =� from M . Restri
ting to the linear spa
e of the Killing �elds Y on (M; g) su
h thatg(Y;X)! 0 approa
hing =�, the following further fa
ts hold.(
) If eY vanishes in some A � =� and A 6= ; is open with respe
t to the topology of =�, then Y = 0everywhere in M as well as bY in M [ =�.(d) The linear map Y 7! eY is inje
tive, i.e. Killing ve
tors of (M; g) are represented on =� faithfullyThe proof of the proposition above is given in the Appendix.The statements (a) and (b) of Proposition 3.2 establish that the Killing ve
tors Y inM with g(Y;X)! 0approa
hing =� extend to Killing ve
tors of (=�; h), h being the degenerate metri
 on =� indu
ed by bg.9



Sin
e the ve
tor �elds bY tangent to =� admit =� as invariant manifold, we 
an de�neDe�nition 3.2. If (M; g;
; X; 
) is an expanding universe with 
osmologi
al horizon, a Killing ve
tor�eld of (M; g), Y , is said to to preserve =� if g(Y;X) ! 0 approa
hing =�. Similarly, the Killingisometries of the (lo
al) one-parameter group generated by Y are said to preserve =�.In the rest of this part we shall 
onsider the one-parameter group of isometries of (=�; h) generated by su
hKilling ve
tors bY �=� . These isometries amount to a little part of the huge group of isometries of (=�; h).For instan
e, referring to the representation (`; s) 2 R � S2 � =�, for every smooth di�eomorphismf : R ! R, the transformation `! f(`); s! s is an isometry of (=�; h). However only di�eomorphismsof the form f(`) = a` + b with a 6= 0 
an be isometries generated by the restri
tion bY �=� to =� ofextensions of Killing �elds Y of (M; g) as in the proposition 3.2. This is be
ause those isometries arerestri
tions of isometries of the manifolds-with-boundary (M [f=�g; bg�M[f=�g), and thus they preservethe null bg-geodesi
s in =�. These geodesi
s have the form (9). The requirement that, for every 
onstantsa; b 2 R, a 6= 0, there must be 
onstants a0; b0 2 R, a0 6= 0 su
h that f(a`+ b) = a0`+ b0 for all ` varyingin a �xed nonempty interval J , is ful�lled only if f is an aÆne transformation as said above. We relaxnow the 
onstraints on the above transformations allowing them also to be dependant on the angular
oordinates. Hen
e we aim to study the 
lass G=� of di�eomorphisms F : =� ! =�`! `0 := f(`; s) ; s! s0 := g(`; s) with ` 2 R and s 2 S2, (10)su
h that: (i) they are isometries of the degenerate metri
 h indu
ed by bg �=� (8) and (ii) they may berestri
tions to =� of isometries of bg in M [ =�.Assume that F 2 G=� . The 
urve 
 : R 3 ` ! 
s(`) � (`; s) (with s 2 S2 arbitrarily �xed) is a nullgeodesi
 forming =�, therefore R 3 `! F (
s(`)) has to be, �rst of all, a null 
urve. In other wordsbg�=���f�` ��` + �g�` ��� + �g�` ���; �f�` ��` + �g�` ��� + �g�` ���� = 0 :Using (8) and arbitrariness of s � (�; �), it implies that g does not depend on ` sin
e the standard metri
on the unital sphere is stri
tly positive de�nite. The map g has to be an isometry of S2 equipped with itsstandard metri
. In other words g 2 O(3). Moreover, R 3 `! F (
s(`)) = (f(`; s); g(s)) has to be a nullgeodesi
 whi
h belongs to =�. As a 
onsequen
e of (2) in remark 3.1, (f(`; s); g(s)) = (
(s)`+ b(s); g(s))for some �xed numbers 
(s); b(s) 2 R with 
(s) > 0, and for every ` 2 R. Summarising, it must beg(`; s) = R(s) for all `; s and f(`; s) = 
(s)` + b(s), for all `; s, for some R 2 O(3), 
; b 2 C1(S2) with
(s) 6= 0. It is obvious that, 
onversely, every su
h a di�eomorphism ful�ls (i) and (ii).Remark 3.2. (1) By dire
t inspe
tion one sees that the 
lass G=� of all di�eomorphisms F as above isa group with respe
t to the 
omposition of di�eomorphisms.(2) Only transformations F 2 G=� , asso
iated with R lying in the 
omponent 
onne
t to the identity ofO(3), i.e., SO(3) belong to a one-parameter group of isometries indu
ed by Killing ve
tors in M .From now on we shall restri
t ourselves to the subgroup of G=� whose elements are 
onstru
ted usingelements of SO(3) and ea
h element of the one-parameter group of di�eomorphisms generated by a ve
tor�eld Z will be denoted by expftZg being t 2 R.De�nition 3.3. The horizon symmetry group SG=� is the group (with respe
t to the 
ompositionof fun
tions) of all di�eomorphisms of R � S2,F(a;b;R) : R � S2 3 (`; s) 7! �ea(s)`+ b(s); R(s)� 2 R � S2 with ` 2 R and s 2 S2, (11)10



where a; b 2 C1(S2) are arbitrary smooth fun
tions and R 2 SO(3).The Horizon Lie algebra g=� is the in�nite-dimensional Lie algebra of smooth ve
tor �elds on R �S2generated by the �elds S1 ; S2 ; S3 ; ��` ; `��` ; for all �; � 2 C1(S2).S1; S2; S3 indi
ate the three smooth ve
tor �elds on the unit sphere S2 generating rotations about theorthogonal axes, respe
tively, x, y and z.It is worth noti
ing that SG=� depends on the geometri
 stru
ture of =� but not on the atta
hedspa
etime (M; g), whi
h, in prin
iple, 
ould not even admit any Killing ve
tor preserving =�. In thissense SG=� is a universal obje
t for the whole 
lass of expanding spa
etimes with 
osmologi
al horizon.SG=� may be seen as an abstra
t group de�ned on the set SO(3)�C1(S2)�C1(S2), without referen
eto any expanding spa
etime with 
osmologi
al horizon (M; g). Adopting this point of view, if we indi
ateFa;b;R by the abstra
t triple (R; a; b), the 
omposition between elements in SG=� reads(R; a; b)(R0; a0; b0) = �RR0; a0 + a ÆR0; eaÆR0b0 + b ÆR0� ; (12)for any (R; a; b); (R0; a0; b0) 2 SO(3) � C1(S2) � C1(S2) and where Æ denotes the usual 
omposition offun
tions.The relationship between SG=� and g=� is 
lari�ed in the following proposition.Proposition 3.3. Referring to the de�nition 3.3, the following fa
ts hold:(a) Ea
h ve
tor �eld Z 2 g=� is 
omplete and the generated global one-parameter group of di�eomor-phisms of R � S2, fexpftZggt2R, is a subgroup of SG=� .(b) For every F 2 SG=� there are Z1; Z2 2 g=� { with, possibly, Z1 = Z2 { su
h that F =expft1Z1g expft2Z2g for some real numbers t1; t2.The proof of this proposition is in the Appendix.Furthermore, we have the following important result whi
h �nally makes expli
it the interplay betweenKilling ve
tors Y in M preserving =�, the group SG=� and the Lie algebra g=� .Theorem 3.1. Let (M; g;
; X; 
) be an expanding universe with 
osmologi
al horizon and Y a Killingve
tor �eld of (M; g) preserving =�. The following holds.(a) The restri
tion of the unique smooth extension eY of Y to =� (see Prop. 3.2) belongs to g=� .(b) fexpfteY ggt2R is a subgroup of SG=� .The proof of this theorem is in the Appendix.As an example 
onsider the expanding universe M with 
osmologi
al horizon asso
iated with the metri
gFRW (2) with � = 1 and a as in (4). In this 
ase X := �� and there is a lot of Killing ve
torsY of (M; gFRW ) satisfying gFRW (Y;X) ! 0 approa
hing =�. The most trivial ones are all of theKilling ve
tors of the surfa
es at � =
onstant with respe
t to the indu
ed metri
. We have here a Liealgebra generated by 6 independent Killing ve
tors Y asso
iated, respe
tively, spa
e translations andspa
e rotations. In this 
ase gFRW (Y;X) = 0 so that the asso
iated Killing ve
tors bY �=� belongs tog=� . This is not the whole story in the sharp 
ase a(�) = 
=� with 
 < 0 whi
h 
orresponds to theexpanding de Sitter spa
etime. Indeed, in this 
ase, there is another Killing ve
tor B of gFRW ful�llinggFRW (B;X) ! 0 approa
hing =�. It is B := ��� + r�r . B, extended to M [ =�, gives rise to thestru
ture of a bifur
ate Killing horizon [KW91℄.A last te
hni
al result, proved in the Appendix and useful in the forth
oming dis
ussion, is11



Proposition 3.4. Let (M; g;
; X; 
) be an expanding universe with 
osmologi
al horizon and Y asmooth ve
tor �eld of (M; g) whi
h tends to the smooth �eld eY 2 g=� pointwisely.If there is an open set A � 
M with A � =� where Y �A\M is timelike and future dire
ted, then, everywhereon =�, eY (`; s) = f(s)�` ; for some f 2 C1(S2), with f(s) � 0 on S2. (13)4 Preferred states indu
ed by the 
osmologi
al horizon.In this se
tion (M; g;
; X; 
) is an expanding universe with 
osmologi
al horizon. Sin
e (M; g) is globallyhyperboli
 per de�nition, one 
an study properties of quantum �elds propagating therein, following thealgebrai
 approa
h in the form presented in [KW91, Wa94℄.4.1. QFT in the bulk. Consider real linear bosoni
 QFT in (M; g) based on the symple
ti
 spa
e(S(M); �M ), where S(M) is the spa
e of real smooth, 
ompa
tly supported on Cau
hy surfa
es, solutions' of P' = 0 ; where P is the Klein-Gordon operator P = 2+ �R+m2 : (14)with 2 = �rara, m > 0 and � 2 R 
onstants. The nondegenerate, Cau
hy-surfa
e independent,symple
ti
 form �M is:�M ('1; '2) := ZS ('2rN'1 � '1rN'2) d�(S)g 8'1; '2 2 S(M) ; (15)S being any Cau
hy surfa
e ofM with normal unit future-dire
ted ve
tor N and 3-volume measure d�(S)gindu
ed by g. As is well known [BR021, BR022℄, it is possible to asso
iate 
anoni
ally any symple
ti
spa
e, for instan
e (S(M); �M ), a Weyl C�-algebra, W(M) in this 
ase. This is, up to (isometri
) �-isomorphisms, unique and its generatorsWM (') 6= 0, ' 2 S(M), satisfyWeyl 
ommutation relations(from now on we employ 
onventions as in [Wa94℄)WM (�') =WM (')� ; WM (')WM ('0) = ei�M (';'0)=2W ('+ '0) : (16)W(M) represents the basi
 set of quantum observable asso
iated with the bosoni
 �eld � propagating inthe bulk spa
etime (M; g).The main goal of this se
tion is to prove that the geometri
 stru
tures on (M; g;
; X; 
) pi
k out avery remarkable algebrai
 state ! on W(M), whi
h, among other properties turns out to be invariantunder the natural a
tion of every Killing isometry of (M; g) whi
h preserves =�. This happens provideda 
ertain algebrai
 interplay between QFT in M and QFT on =� exists.4.2. Bosoni
 QFT on =� and SG=� -invariant states. Referring to =� � R � S2, 
onsiderS(=+) := � 2 C1(R � S2) ��  ; �` 2 L2(R � S2; d` ^ �S2(�; �)	 ; (17)�S2 being the standard volume form of the unit 2-sphere, and the nondegenerate symple
ti
 form ��( 1;  2) := ZR�S2� 2 � 1�` �  1 � 2�` � d` ^ �S2(�; �) 8 1;  2 2 S(=+) : (18)12



As in the previous se
tion, we asso
iate to (S(=�); �) the C�-algebraW(=�) whose generatorsW ( ) 6= 0satisfy the Weyl 
ommutation relations (16)Remark 4.1. Exploiting the given de�nitions, it is straightforwardly proved that (S(=+); �) is invariantunder the pull-ba
k a
tion of SG=� . In other words (i)  Æ g 2 S(=�) if  2 S(=�) and also (ii)�( 1 Æ g;  2 Æ g) = �( 1;  2) for all g 2 SG=� and  1;  2 2 S(=�). As a well known 
onsequen
e[BR022, BGP96℄, SG=� indu
es a �-automorphism G=� -representation � :W(=�) ! W(=�), uniquelyindividuated by linearity and 
ontinuity by the requirement�g(W ( )) :=W ( Æ g�1) ;  2 S(=�) and g 2 G=� : (19)Sin
e we are interested in physi
al properties whi
h are SG=� -invariant, we fa
e the issue about theexisten
e of �g-invariant algebrai
 states on W(=�) with g 2 SG=� .We adopt here the de�nition of quasifree state given in [KW91℄, and also adopted in [DMP06,Mo06, Mo07℄. Consider the quasifree state � de�ned on W(S(=�)) unambiguously de�ned as follows: if ;  0 2 S(=�), then�(W ( )) = e��( ; )=2 ; �( ;  0) := Re ZR�S22k�(k) b (k; �; �) b 0(k; �; �)dk ^ �S2(�; �) ; (20)the bar denoting the 
omplex 
onjugation, �(k) := 0 for k < 0 and �(k) := 1 for k � 0; here we haveused the `-Fourier-Plan
herel transform b of  :b (k; �; �) := ZR eik`p2� (`; �; �)d` ; (k; �; �) 2 R � S2 : (21)The 
onstraint j�( ;  0)j2 � 4 �( ;  )�( 0;  0) ; for every  ;  0 2 S ; (22)whi
h must hold for every quasifree state (see Appendix A in [Mo06℄), is ful�lled by the s
alar produ
t �, asthe reader 
an verify by inspe
tion exploiting (21) and the de�nition of � Consider the GNS representationof �, (H;�;�). Sin
e � is quasifree, H is a bosoni
 Fo
k spa
e F+(H) with 
y
li
 ve
tor � given by theFo
k va
uum and 1-parti
le Hilbert H spa
e obtained as the Hilbert 
ompletion of the 
omplex spa
egenerated by the \positive-frequen
y parts" � b =: K� , of every wavefun
tion  2 S(=�), with thes
alar produ
t h�; �i individuated by �, as stated in (ii) of Lemma A1 in the Appendix A of [Mo06℄. Inour 
ase hK� ;K� 0i = ZR�S2 2k�(k) b (k; �; �) b 0(k; �; �)dk ^ �S2(�; �): (23)The map K� : S(=�) ! H is R-linear and has a dense 
omplexi�ed range. A state similar to �, anddenoted by the same symbol, has been de�ned on =+ ' R � S2 in [DMP06, Mo06, Mo07℄1 and, barringminor adaption, it enjoys exa
tly the form (20). Therefore, we 
an make use of Theorem 2.12 in [DMP06℄we know that � is pure. Furthermore the one-parti
le spa
e H of its GNS representation is isomorphi
to the separable Hilbert spa
e L2(R+ � S2; 2kdk ^ �S2).1In [DMP06, Mo06℄ a di�erent, but unitarily-equivalent, Hilbert spa
e representation was used referring to the measuredk instead of 2kdk. Features of Fourier-Plan
herel theory on R� S2 were dis
ussed in the Appendix C of [Mo07℄.13



The state � enjoys further remarkable properties in referen
e to the group SG=� . Parti
ularly, sin
e(H;�;�) is its GNS triple, � turns out to be invariant under the �-automorphisms representation (19)for all g 2 SG=� . In other words �(�g(A)) turns out to be equal to �(a) for all A 2 W(=�) and forall g 2 SG=� as it 
an be realized out of the straightforward extension to the whole algebra of the thefollowing unitary a
tion V of SG=� on the one-parti
le Hilbert spa
e H:�V(R;a;b)'� (k; s) := ea(R�1(s))e�ikb(R�1(s))'�ea(R�1(s))k;R�1(s)� for all ' 2 H ; (24)being g = (R; a; b) 2 SG=� and s = (�; �). Furthermore, by standard manipulation, one 
an realize thatthe unique unitary representation U : SG=� 3 g 7! Ug that implements � in H while leaving � invariant,preserves H and it is unambiguously determined by U�H. U has the following tensorialised formU = I � U�H �(U�H 
 U�H)� (U�H 
 U�H 
 U�H)� � � � (25)Finally the restri
tion of U on the one-parti
le Hilbert spa
e H is an irredu
ible representation.A se
ond important result 
on
erns the positive-energy/uniqueness properties of �. In MinkowskiQFT positivity of energy, is a stability requirement and in general spa
etimes the notion of energy isasso
iated to that of a Killing time. This interpretation 
an be extended to this 
ase too, namely to thetheory on =�. The positive-energy requirement is ful�lled for the \asymptoti
" notion of time asso
iatedto the limit values eY towards =� of a timelike future-dire
ted ve
tor �eld Y inM , when eY 2 g=� . Noti
ethat Y may not be a Killing ve
tor outside =�; it is enough that Y ! eY 2 g=� . This in
ludes the 
aseY = X in parti
ular, due to Proposition 3.1.In the following, fexpftZggt2R is the one-parameter subgroup of G=� generated by any Z 2 g=� andf�(Z)t gt2R is the asso
iated one-parameter group of �-automorphisms of W(=�) (19).Proposition 4.1. Consider an expanding universe with 
osmologi
al horizon (M; g;X;
; 
), thequasifree, pure, SG=� -invariant state � on W(=�) de�ned in (20) and a timelike future-dire
ted ve
-tor �eld Y in M su
h that Y ! eY 2 g=� pointwisely approa
hing =� (Y = X in parti
ular, in view ofProposition 3.1). The following holds.(a) The unitary group fU (eY )t gt2R whi
h implements �(eY ) leaving �xed the 
y
li
 GNS ve
tor in the GNSrepresentation of � is strongly 
ontinuous with nonnegative self-adjoint generator H(eY ) = �i ddtsU (eY )t jt=0.(b) The restri
tion of H(eY ) to the one-parti
le spa
e has no zero modes if and only if eY vanishes on azero-measure subset of =� .Proof. From Proposition 3.4 one has that eY (`; s) = f(s)�` for some non negative smooth fun
tionf : S2 ! R. Therefore expftbY g amounts to the displa
ement (`; s) ! (` + f(s)t; s). As a 
onsequen
eof the previous dis
ussion, the one parameter group �(eY ) is unitarily represented by fU (eY )t gt2R. U (eY )tis the tensorialisation (as in (25)) of the (representation of the) unitary group in the one-parti
le spa
eVt : H! H, with (Vt�)(k; s) = eitkf(s) (k; s) = �eith( eY ) � (k; s) ; for all � 2 H.From standard theorems of operator theory one obtains that R 3 t 7! Vt is strongly 
ontinuous with self-adjoint generator h(eY ), in the one-parti
le spa
e H = L2(R+ � S2; 2kdk ^ �S2), given by (h(eY )�)(k; s) =kf(s)�(k; s), de�ned in the dense domains D(h(eY )) made of the elements of the Hilbert spa
e L2(R+ �14



S2; 2kdk ^ �S2) su
h that the right-hand side belongs to L2(R+ � S2; 2kdk ^ �S2). It is so evident that,sin
e f � 0, for every  2 D(H)h�; h(eY )�i = Z +10 2kdk ZS2 �S2(s)j�(k; s)j2kf(s) � 0 ; (26)and thus �(h(eY )) � [0;+1). Passing to the whole Fo
k spa
e by (25) the result remains un
hanged forthe whole generator H(eY ) = 0+h(eY )� I 
 h(eY )�h(eY )
 I � � � � using standard properties of generators.The last statement is a trivial 
onsequen
e of (26) using eY = f�`. 2The result applies in parti
ular for eY = �`, sin
e it is always possible to view �` as the limit value of sometimelike ve
tor �eld ofM . For expanding universes with 
osmologi
al horizon as des
ribed in se
tion 2.2,if X := �
�� , then X ! �` while approa
hing =�. In this above 
ase the energy-positivity propertyapplies for X and there are no zero modes.This is not the whole story, sin
e the positive-energy property for �`, determines 
ompletely �.Theorem 4.1. Consider the state � de�ned in (20) and its GNS representation. The following holds.(a) The state � is the unique pure quasifree state on W(=�) satisfying both:(i) it is invariant under �(�`),(ii) the unitary group whi
h implements �(�`) leaving �xed the 
y
li
 GNS ve
tor is strongly 
ontinu-ous with nonnegative self-adjoint generator (energy positivity 
ondition).(b) Ea
h folium of states on W(=�) 
ontains at most one pure �(�`)-invariant state.Proof. The proofs of (a) and (b), though rather te
hni
al, are identi
al to those of the 
orrespondingstatements in Theorem 3.1 of [Mo06℄, where, in the 
ited proof, F refers to a Bondi frame. This holdssin
e the self-adjoint generator of the unitary group t 7! Ut, implementing f�(�`)t gt2R and leaving �invariant, is the tensorialisation of the positive self-adjoint generator H a
ting in the one-parti
le spa
eL2(R+ � S2; 2kdk ^ �S2) as (H b )(k; �; �) = k b (k; �; �). Note that H is de�ned in the dense domainsof the elements of the Hilbert spa
e L2(R+ � S2; 2kdk ^ �S2) su
h that the right-hand side is still inL2(R+ � S2; 2kdk ^ �S2). Hen
e �(H) = �
(H) = [0;+1).The a
tion of the one-parameter subgroup R 3 t 7! g(�`)(t) of G=� on �elds de�ned on =� 
oin
idesexa
tly with the one-parameter subgroup of the BMS group on �elds de�ned on =�. Furthermorealso the unitary representations of SG=� and of the BMS group are identi
al when restri
ted to thosesubgroups. 24.3. Interplay of QFT in M and QFT on =�. While in the previous se
tion we have shown that itexists a preferred quasifree pure state � invariant under the a
tion of SG=� and enjoying some uniquenessproperties, we wonder now if it is possible to indu
e a state �M on the algebra of �eld observables inthe bulk starting from �. If this is the 
ase, we would expe
t �M to ful�l some invarian
e propertieswith respe
t to the possible isometries individuated by Killing ve
tors whi
h preserve =�. To this avail,we 
on
entrate beforehand on algebrai
 properties, establishing the existen
e of a ni
e interplay betweenW(=�) andW(M) under suitable hypotheses on the 
onsidered symple
ti
 forms. That interplay will beused to de�ne �M in the next subse
tion.The symple
ti
 form �M on S(M) de�ned in (15) 
an be equivalently rewritten as the integral of a 3-form,�M ('1; '2) := ZS �('1; '2) = ZS 16 ('1r�'2 � '2r�'1) p�bg ����
 dx� ^ dx� ^ dx
 ; (27)where ����
 is the totally antisymmetri
 Levi Civita symbol, S is a future oriented Cau
hy surfa
e andthe se
ond equality holds in any lo
al 
oordinate pat
h.15



Noti
e that, even though S is moved ba
k in the past and it seems to tend to 
oin
ide with =�, this isnot ne
essarily the 
ase, sin
e =� and Cau
hy surfa
es inM may have di�erent topologies. In parti
ular,information 
ould get lost through the time-like past in�nity i�, the tip of the 
one representing =�.That point does not belong to 
M in our hypotheses. However one may expe
t that, in 
ertain 
ases atleast, assuming that ea
h 'i extends to �'i 2 S(=�) smoothly, it holds�M ('1; '2) = Z=� �(�'1;�'2) : (28)Now, by dire
t inspe
tion one veri�es that, for  1;  2 2 S(=�),Z=� �( 1;  2) = 
2 ZR�S2� 2 � 1�` �  1 � 2�` � d` ^ �S2(�; �) ; (29)where 
 is the last 
onstant in (M; g;
; X; 
). Following this way one is led to expe
t that�M ('1; '2) = �(
�'1; 
�'2) : (30)Noti
e that this result is by no means trivial and it might not hold, sin
e it stri
tly depends on thebehaviour of the solutions of Klein-Gordon equations a
ross =�.Here we investigate the 
onsequen
es of (30) under the hypothesis that su
h an identity holds true.The existen
e of � : S(M) ! S(=�) ful�lling (30) implies the existen
e of a isometri
 �-homomorphism{ : W(M) ! W(=�). In this way the �eld observables of the bulk are mapped into observables of thetheory on =�. Moreover, the state � on =� indu
es a preferred state �M on W(M) via pull-ba
k. Thisstate enjoys interesting invarian
e properties with respe
t to the symmetries of (M; g) whi
h preserve=�, as well as a positivity property with respe
t to timelike Killing ve
tors of M whi
h preserve =�.Theorem 4.2. Consider an expanding universe with 
osmologi
al horizon (M; g;X;
; 
) and supposethat every ' 2 S(M) extends smoothly to some �� 2 S(=�) in order that (30) holds true:�M ('1; '2) = �(
�'1; 
�'2) ; for every '1; '2 2 S(M).In these hypotheses, there is an (isometri
) �-homomorphism { : W(M) ! W(=�) that identi�es theWeyl C�-algebra of the bulk M with a sub C�-algebra of the boundary =�; it is 
ompletely determined bythe requirement: { (WM (')) :=W (
�') ; for all ' 2W(M). (31)Proof. Noti
e that the linear map 
� : S(M) ! S(=�) has to be inje
tive due to nondegeneratenessof � and (30). Consider the sub Weyl-C�-algebra AM of W(=�) generated by the elements W (
�')with ' 2 S(M). Sin
e Weyl C�-algebras are determined up to (isometri
) �-algebra isomorphisms, AMis nothing but the Weyl C�-algebra asso
iated with the symple
ti
 spa
e (
�(S(M)); �) and the map
� : S(M) ! �(S(M)) is an isomorphism of symple
ti
 spa
es. Under these hypotheses [BR022℄, thereis a unique (isometri
) �-isomorphism { :W(M)! AM �W(=�) 
ompletely individuated by (31). 24.4. The preferred invariant state �M . We pro
eed to show that, in the hypotheses of Theorem 4.2, apreferred state �M on W(M) is indu
ed by �. That state enjoys very remarkable physi
al properties.From now on, if Y is a 
omplete Killing ve
tor of (M; g), the asso
iated one-parameter group of g-isometries, fexpftY ggt2R, preserves under pull-ba
k a
tion �M . Hen
e [BR022, BGP96℄ there is a uniqueisometri
 �-isomorphism �(Y )t :W(M)!W(M) indu
ed by�(Y )t (WM (')) :=WM (' Æ expf�tY g) ; for every ' 2 S(M).16



In the following we shall 
all �(Y ) := f�(Y )t gt2R the natural �-isomorphism a
tion of fexpftY ggt2Ron W(M). Similarly, every Z 2 g=� has a natural a
tion �(Z) on W(=�) in terms of isometri
�-isomorphism, obtained by requiring,�(Z)t (W ( )) :=W ( Æ expf�tZg) ; for every  2 S(=�),sin
e the pull-ba
k a
tion of fexpftZggt2R, generated by Z on �elds of S(=�) preserves �.To stress a further important point, let us 
onsider an expanding universe with 
osmologi
al horizon(M; g;X;
; 
) and let us suppose that every ' 2 S(M) extends smoothly to some �' 2 S(=�) in orderthat (30) holds true. In this 
ase there is a uniquely de�ned smooth fun
tion b' de�ned on M [=�, thatredu
es to ' in M and to �' on =�. If Y is a 
omplete Killing ve
tor of (M; g) preserving =�, the oneparameter group generated by its unique extension bY to M [=� (Proposition 3.2 and Theorem 3.1) a
tson b' globally. Taking the relevant restri
tions of s
alar �elds and Killing ve
tor �elds we obtain:(�') Æ expfteY g = � (' Æ expftY g) ; (32)where, as usual, eY := bY �=� . As a straightforward 
onsequen
e it holds{��(Y )t (a)� = �(eY )t ({(a)) ; for all a 2W(M) and t 2 R : (33)Theorem 4.3. Consider an expanding universe with 
osmologi
al horizon (M; g;X;
; 
) ful�lling thehypotheses of Theorem 4.2. Let �M : W(M) ! C be the state indu
ed by � de�ned in (20) through theisometri
 �-homomorphism { (31):�M (a) := �({(a)) ; for all a 2W(M). (34)�M enjoys the following properties:(a) Whenever (M; g) admits some 
omplete Killing ve
tor �eld Y preserving =�, then letting �(Y ) be thenatural a
tion on W(M), �M is invariant under �(Y ) and the unitary one-parameter group fU (Y )t gt2R,whi
h implements �(Y ) in the GNS representation of �M leaving �xed the 
y
li
 ve
tor, is strongly 
on-tinuous.(b) If Y above is everywhere timelike and future-dire
ted in M , then (i) the one-parameter groupfU (Y )t gt2R has positive self-adjoint generator, (ii) that generator has no zero-modes in the one-parti
lesubspa
e, if eY = 0 on a zero-measure subset of =�.Remark 4.2. As noti
ed before Proposition 4.1, positivity of energy is a stability requirement. Thestatement (b) of the theorem assures that, in the presen
e of a timelike Killing ve
tor out of whi
hde�ning the notion of energy, if it preserves =�, the 
ondition of energy positivity holds true. If su
ha timelike Killing ve
tor is absent, then Proposition 4.1 assures nonetheless the validity of a positivity-energy 
ondition, parti
ularly with respe
t to the 
onformal Killing ve
tor X .4.5. Testing the 
onstru
tion for the de Sitter 
ase and for other FRW metri
s. We pro
eed to showthat the hypotheses of Theorem 4.2 are valid when (M; g;X;
; 
) is in the 
lass of the FRW metri
s
onsidered in se
tion 2.2, so that the preferred state �M exists for those spa
etimes. That 
lass in
ludesthe expanding region of de Sitter spa
etime (see [BMG94, BM96℄ for a related analysis in the frameworkof Wightman's axioms). We shall verify, in this last 
ase, that the preferred state �M is nothing but thewell-known de Sitter Eu
lidean va
uum or Bun
h-Davies state, !E [SS76, BD78, Al85℄. Let us start withde Sitter s
enario. The expanding de Sitter region isM ' (�1; 0)� R3 ; g = a2(�) ��d� 
 d� + dr 
 dr + r2dS2(�; ')� ; (35)17



where � 2 (�1; 0) and where r; �; � are standard spheri
al 
oordinates on R3 , whereas a(�) = 
=� forsome 
onstant 
 < 0, so that and R = 12=
2. A 
lass of, generally 
omplex, solutions �k, k 2 R3 of (14)is2 �k(�;x) := eik�x(2�)3=2 �k(�)a(�) ; (36)where, a

ording to [SS76℄, it holds�k(�) := 12p��� ei��=2H(2)� (�k�) ; where � :=r94 � 12(m2R�1 + �) (37)being k := jkj and H(2)� is the se
ond-type Hankel fun
tion. The sign in front of the square root inthe de�nition of � (whi
h may be imaginary) does not a�e
t the right-hand side of (37) and it 
ouldbe �xed arbitrarily (either for � real or imaginary). With these 
hoi
es one �nds the time-independentnormalisation d�k(�)d� �k(�) � �k(�)d�k(�)d� = i ; for all � 2 (�1; 0). (38)Let us now show how !E is de�ned. To this end, take any ' 2 S(M) and a Cau
hy surfa
e �� in (M; g)at �xed � . De�nee'(k) := �i ZR3 "��k(�;x)�� '(�;x) � �k(�;x)�'(�;x)�� # a(�)2dx; : (39)where, per dire
t inspe
tion, the right-hand side of (39) does not depend on the 
hoi
e of � .Furthermore, H(2)� (z) de
ays as z�1=2 as jzj ! 1, e' 2 C1(R3 nf0g) and it vanishes for jkj ! 1 fasterthan every power jkj�n, n 2 N. From the known behaviour of the fun
tions H(2)� (z) in a neighbourhoodof z = 0 [GR95℄, one sees both that the leading divergen
e as k ! 0 due to the fun
tions �k is oforder jkj�jRe�j and that je'j2, as well as je'j, is integrable with respe
t to dk whenever jRe�j < 3=2 or,equivalently, m2 + �R > 0. On
e one 
onstru
ts e' out of (39), then ' is'(�;x) = ZR3 h�k(�;x)e'(k) + �k(�;x)e'(k)i dk : (40)This holds out of (36), (38), (39), and of the properties of Fourier transform for fun
tions in C10 (R3 ).Sin
e when m2 + �R > 0 and ' 2 S(M), e' 2 L2(R3 ; dk) \ L1(R3 ; dk) then� 2Im�ZR3 e'1(k)e'2(k)dk� = ZR3('2��'1 � '1��'2) a2(�)dx =: �M ('1; '2) 8'1; '2 2 S(M) : (41)The (restri
tion to M of the) Eu
lidean va
uum in de Sitter spa
e is nothing but the quasifree state!E on W(M) 
ompletely identi�ed by!E(WM (')) = e� 12 RR3 e'(k)e'(k) dk ; for every ' 2 S(M). (42)2The form of the modes as presented in [BD78, BD82℄ is di�erent both sin
e in [SS76, BD78℄ the 
ontra
ting region ofde Sitter spa
etime was 
onsidered and due to the absen
e of the overall exponential exp�i��=2, whi
h would a�e
t the�nal results and the normalisation (38) for � imaginary, but not the �nal form of the two-point fun
tion.18



Noti
e that the 
onstraint (22) is automati
ally ful�lled in view of (41).Remark 4.3. The maximally extended de Sitter spa
etime 
an be realized by glueing together twoisometri
 spa
etimes { one expanding and the other 
ontra
ting, when moving towards the future { onthe 
ommon 
osmologi
al horizon. The obtained spa
etime is maximally symmetri
 and admits SO(1; 5)as group of isometries. The state !E extends to a globally de�ned state on the whole de Sitter spa
etime[Al85℄ and su
h a state is O(1; 5)-invariant, hen
e it is invariant also under symmetries whi
h do notpreserve the horizon.Theorem 4.4. Consider the expanding universe (M; g;X;
; 
) given by (35) with a(�) = 
=� . Con-sider a quantum s
alar Klein-Gordon �eld propagating in (M; g) with m2 + �R > 0. Then,(a) If m2 + �R > 548R (see also Remark 4.4), every ' 2 S(M) extends smoothly to some �� 2 S(=�),(30) holds true and(b) �M on S(M) 
oin
ides with the restri
tion to M of !E.The proof will be given in the appendix.Remark 4.4. The requirement m2 + �R > 548R, i.e. jRe�j < 1 is used to assure that �' 2 S(=�) if' 2 S(M). A
tually the requirement 
an be dropped preserving only m2+ �R > 0 if we 
hange de�nition(15) of S(=�), namelyS(=�) := � 2 C1(R � S2) ���� ZR�S2 j b (k; �; �)j2jkj dk ^ �S2(�; �) < +1�where b indi
ates the Fourier-Plan
herel transform of the S
hwartz distribution  (as dis
ussed in theAppendix C of [Mo07℄). Then the symple
ti
 form on =� 
ould be de�ned Fourier transforming alongthe R-dire
tion (18). In this way, the identity (18) would hold true in a weaker limit sense, employing asuitable regularisation of  1 and or  2 by means of sequen
es of smooth 
ompa
tly supported fun
tions.Then the 
onstru
tion of � on W(=�) and of its GNS triple as well as the uniqueness/positive energytheorems would 
losely resemble to our previous analysis.To 
on
lude we have the last promised theorem proved in the Appendix: The hypotheses of Theorem4.2 are ful�lled, and thus �M is de�ned, for FRW metri
s as des
ribed in se
tion 2.2 with a(�) as in (4),provided the mass m of the Klein-Gordon �eld and/or the 
onstant � are large enough.Theorem 4.5. Consider a quantum s
alar Klein-Gordon �eld ', satisfying (14) and propagating inan expanding universe (M; g;X;
; 
). Consider a(�) as in (4) and with �a(�) = 2
=�3+O(1=�4) in su
ha way that R = 12=
2 +O(1=�), then, ifM ' (�1; 0)� R3 ; g = a2(�) ��d� 
 d� + dr 
 dr + r2dS2(�; ')� ;� 2 (�1; 0) and r; �; � standard spheri
al 
oordinates on R3 , X = �� and 
 = a(�) = 
=� + O(1=�2)as � ! �1 for some 
onstant 
 < 0.), whenever m2
2 + 12� > 2, every ' 2 S(M) extends smoothly tosome �� 2 S(=�) and (30) holds true.Remark 4.5. (1) Theorem 4.5 is also valid relaxing the hypothesis to the 
ase � = 1=6 and m = 0. Inthis 
ase the proof is similar to that of the 
ase studied in [DMP06, Mo06℄.(2) The validity of Hadamard property for the states �M will be investigated in a forth
oming paper.However, a �rst s
rutiny shows that it does hold for the states �M 
onsidered in Theorem 4.5 providedthe two-point fun
tion of su
h a state is a distribution of D0(M �M). The proof is similar to the one in19



[Mo07℄. The distributional requirement is ful�lled if the fun
tions �', ' 2 S(M), satisfy a suitable de
ayproperty as `! �1.5 Con
lusions and open issues.In this manus
ript, we were able to prove that, imposing some suitable 
onstraints on the expansion fa
tora(t), the FRW ba
kground 
an be extended to a larger spa
etime whi
h en
ompasses the 
osmologi
alhorizon. Su
h stru
ture is later generalised in de�nition 3.1 where we introdu
e a novel notion of anexpanding universe (M; g) with geodesi
ally 
omplete 
osmologi
al past horizon =�. It is worth to stressthat, in the set of ba
kgrounds we are taking into a

ount, besides the 
onformal fa
tor 
, a relevant roleis played by a future oriented timelike ve
tor X whi
h is a 
onformal Killing ve
tor for the metri
 g. As abyprodu
t of these geometri
 properties, we were able to 
onstru
t expli
itly the stru
ture of the subgroupSG=� of the isometry group of =�, i.e., the iterated semidire
t produ
t SO(3) n �C1(S2)n C1(S2)�.Su
h a result suggests us that one 
ould hope to readapt in this framework some of the properties of as
alar quantum �eld theory as dis
ussed in [DMP06, Mo06, Mo07℄.In fa
t, using only the universal stru
ture of =�, we was able to sele
t, for the theory on the horizon, apreferred state � whi
h is quasi-free and pure. � is the unique state whi
h, besides the previous properties,is also invariant under the a
tion of the horizon symmetry group; a
tually, uniqueness for pure quasifreestates on W(=�) holds with the only hypotheses of invarian
e with respe
t to the one-parameter groupgenerated by �` and a more general uniqueness property is valid as dis
ussed in Theorem 4.1. Moreover,for any future oriented timelike ve
tor �eld Y in the bulk su
h that it proje
ts on the horizon to eY , i.e. a generator of the Lie algebra of SG=� , then the unitary group of operators implementing the a
tionof eY on the GNS representation of � is strongly 
ontinuous with a non negative self-adjoint generator.Finally the one-parti
le spa
e in the GNS representation of the state � turns out to be an irredu
iblerepresentation of the group of horizon symmetries SG=� .In se
tion 4, we 
onsidered a generi
 massive s
alar Klein-Gordon equation with an arbitrary 
ouplingto 
urvature. Under the assumption that ea
h solution of su
h an equation for 
ompa
tly supportedinitial data proje
ts on the horizon to a rapidly de
reasing smooth fun
tion - say  - and that su
h aproje
tion preserves a suitable symple
ti
 form, then we were able to draw some interesting 
on
lusions.As a �rst step the proje
tion map between 
lassi
al �elds extends also at a level of Weyl algebras, namelywe 
an embed the bulk Weyl C�-algebra as a C�-subalgebra of the horizon 
ounterpart. Furthermore su
han embedding between Weyl algebras 
an be exploited in order to pull-ba
k � to a bulk state �M whi
his still quasi-free and invariant under the a
tion of any bulk isometry whi
h preserves the 
osmologi
alhorizon. Furthermore, whenever the Killing ve
tor is everywhere future oriented and timelike, thanthe one-parameter group of unitary operators implementing su
h an a
tion is positive with self-adjointgenerator.As previously mentioned these results hold true under 
ertain hypotheses whi
h we tested in se
tion 4.6where we studied the behaviour of solutions for the Klein-Gordon equation of motion with an arbitrary
oupling to 
urvature both in the de-Sitter and in the FRW ba
kground. Our analysis shows { seetheorem 4.6 { that the hypotheses made at the beginning of se
tion 4, hold true at least whenever 
ertain
onditions between the relevant parameters in the equation of motion are satis�ed. In the deSitter 
ase�M 
oin
ides with the well-known Eu
lidean Bun
h-Davies va
uum.On the overall we feel safe to 
laim that the analysis we performed proves that the investigation ofa quantum �eld theory in a suitable 
osmologi
al ba
kground by means of an horizon 
ounterpart is aviable option. Hen
e, as a future perspe
tive, one would hope as a �rst step to extend the domain ofappli
ability of theorem 4.6, and later to further dis
uss the properties for the bulk state. In parti
ularour long-term aim is to prove both that �M is pure and that it is Hadamard so that it 
an be used in20



renormalisation pro
edures, espe
ially for the stress energy tensor [Wa94, Mo03, HW05℄. Furthermorewe should also investigate possible relations with the adiabati
 states often exploited in the study of�eld theories on FRW ba
kgrounds [JS02, LR90, Ol07, Pa69℄. Con
erning the validity of Hadamardproperty, it holds true for �M when M is deSitter spa
etime sin
e in this 
ase �M is the Eu
lideanva
uum. However, a �rst s
rutiny shows that it does hold for all the states �M 
onsidered in Theorem4.5 provided the two-point fun
tion of su
h a state is a distribution of D0(M �M). The proof is almostthe same as that preformed in [Mo07℄.At last but not at least, it would be interesting to extend our results to intera
ting �elds. From aphysi
al perspe
tive this would be the most appealing s
enario sin
e, as mentioned in the introdu
tion,nowadays 
osmologi
al models are often based upon a single s
alar �eld whose dynami
 is governedby a non trivial potential. It 
ould also be worth to investigate possible appli
ations of our results tothe des
ription of dark matter. Being weakly intera
ting, it is feasible to model it, at least in a �rstapproximation, as a free quantum s
alar �eld on a 
urved ba
kground. Although here we do not addressall the above mentioned topi
s, we believe that this manus
ript 
ould be a ni
e �rst step towards thisdire
tion and we hope to dis
uss many if not all these mentioned points in a forth
oming manus
ript.A
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ussions.A Proof of some te
hni
al results.Proof of Proposition 3.1. (a) If there were a smooth extension of X to M it would be unique by
ontinuity, moreover, by 
ontinuity again, it would de�ne a Killing ve
tor for bg when restri
ting to thesurfa
e =�, be
ause the right-hand side of (7) vanishes there. We, in fa
t, will prove the existen
e ofa smooth extension to the whole 
M . Coordinates (`;
; �; �) are de�ned in a neighbourhood U � 
M of=� = �M . Using the whole 
lass of smooth 
urves 
 : t ! (`0; t; �0; �0) where (`0; �0; �0) 2 R � S2 are�xed arbitrarily, and the transport equations [Ge77, Hal04℄_
a bra bXb = _
a� bFab + 12bgab b'� ; _
a bra b' = _
a bKa_
a bra bFb
 = _
a � bRb
ad bXd + bK[b bg
℄a� ; _
a bra bKb = _
a � bXd brdbLab + b'bLab + 2 bRd(a bF b) d� (43)(where bLab := bRab� 16bgab bR) we 
an \transport" X , Fab = braXb� brbXa, 'bg := 12LX(bg), and Ka := bra'beyond =� in U . The transported �elds bX , bF , b', and bKa are nothing but the solutions of the �rst orderdi�erential equations (43), with initial 
onditions given by the known �elds X , F , ', K evaluated on a�xed smooth surfa
e 
 = 
(`; �; �) 
ompletely in
luded in M \U . In M , bX 
oin
ides with X itself (andbF 
oin
ides with F itself and so on), sin
e every 
onformal Killing ve
tor �eld ful�ls transport equations(43) [Ge77, Hal04℄ and uniqueness theorem holds for solutions of ordinary di�erential equations. OutsideM one gets a smooth �eld bX anyway, due to the jointly dependen
e of solution of di�erential equationsfrom the initial data (assigned on a smooth surfa
e as well ). Obviously the 
onstru
ted �eld bX doesnot need to ful�l 
onformal Killing equations outside M . In this way we have 
onstru
ted a smoothextension bX of X on the open set M [ U in
losing =�, the further extension to 
M is now trivial, using21



standard smoothing te
hnology. By 
ontinuity, L bX = 
�1X(
)bg must hold on =�. This means thatthe right-hand side smoothly extends there (to zero by hypotheses). In parti
ular, sin
e 
 = 0 on =�,bX(
) = 0 on =�. That is h bX�=� ; d
i = 0, and thus bX�=� is tangent to =� as wanted.The set on =� of the points where bX vanishes is 
losed sin
e bX is 
ontinuous. To 
on
lude, we wish toprove that bX�=� 
annot vanish on every (nonempty) open set A � =� (otherwise it vanishes everywhereon =�, but this 
ase is not allowed by de�nition of X). Assume that there is su
h A where bX �A= 0,take p 2 A and �x any other point q 2 =�, su
h that there is a bg-geodesi
s, 
 � =�, joining p and q.We assume here that 
 is either a spa
e-like geodesi
s on S2 or a null-like geodesi
 at 
onstant angularvariables. We want to prove that bX(q) = 0 when bX�A= 0.If bX�A= 0, all the derivatives bra bXb vanish, in A, when a 6= 
, that is referring to dire
tions tangent to=�. However, on =� it holdsL bXbg = 0, by hypotheses. Writing down these equations expli
itly, one �ndsthat bX = 0 on A implies br
 bXb = 0 if b 6= 
. However br
X
�=�= 0 holds sin
e both X
 = X(
) andX(
)=
 = X
=
 vanishes on =�. We have found that, in A, bFab = 0. Noti
e that ' = 0 in A, sin
e itis proportional to the limit of 
�1X(
) approa
hing =� whi
h vanishes by hypotheses. This also entailsthat bKa = 0 when a 6= 
, in A, that is bKa 6= 0 for a = ` at most, in A. Let k denote the value bK(p)for the 
onsidered �eld bX with bX�A= 0. Let us �nally fo
us on the di�erential equations (43 ) referredto the mentioned geodesi
 [0; 1℄ 3 t 7! 
(t). We argue that a solution, and thus the unique solution, forinitial data at p, bX(0) = 0, bFab(0) = 0, b'(0) = 0, bK(0) := k is bX(t) = 0, bFab(t) = 0, b'(t) = 0, bK(t), forall t 2 [0; 1℄, where the last fun
tion is the unique satisfying _
a bra bKb = 0 with bK(0) := k. To prove itnoti
e that, inserting these fun
tions in (43), the equations redu
e to_
a bKa = 0 ; _
a bKb � _
b bKa = 0 ; _
a bra bKb = 0; (44)The �rst two equations are 
ertainly ful�lled at t = 0 by hypotheses, the third one determines K uniquelywith the initial 
ondition bK(0) := k. However also the �rst two equations are ful�lled on this solution inview of the fa
t that they are ful�lled at t = 0 and that _
a bra _
b = 0 sin
e we are dealing with a geodesi
.We have found that, in parti
ular, X vanishes at q as wanted, sin
e X(1) = 0. With the same pro
edure,moving p and q about the original positions, we �nd that X vanishes in a open set Aq whi
h enlarges Aand it in
ludes q. Iterating the pro
edure, we 
an enlarge Aq in order to in
lude any third point q0 2 =�,joined to q by means of a se
ond geodesi
s, so that X vanishes at q0 too. In view of the form (8) ofthe metri
 on =�, for every 
ouple of points p; q0 2 =�, there is always a sequen
e of three 
onse
utivegeodesi
s, of the two above-mentioned types, joining p and q0. Therefore X vanishes everywhere on =�.(b) In a neighbourhood of =�, referring to 
oordinates 
; `; �; � one hasbX = f
�
 + f `�` + f��� + f��� :Approa
hing =� (i.e. as 
 = 0) one gets (1) f
 = 0, sin
e bX be
omes tangent to =�. However one also�nds (2) �
f
�=�= 0 as a 
onsequen
e of (f
�f
�=�)=
 = 
�1X(
)! 0 approa
hing=�. Sin
e bX�=�is tangent to the null surfa
e =� and it is the limit of a timelike ve
tor, we also know that, at the pointswhere it does not vanish, it must be light-like and future dire
ted. Sin
e bX �=�= f `�` + f��� + f���,the requirement bg( bX; bX)�=�= 0 implies that (3) f� = f� = 0 everywhere on =�, in view of the Bondiform of the metri
 on =�. Therefore (4) bX�=�= f `(0; `; �; �)�`. Using Bondi form of the metri
 again,the requirement (L bXbg)�=�= 0 produ
es immediately the 
onstraints �`f `�=�= 0 in view of (1),(2), (3),and (4), so that bX�=�= f(�; �)�`. Sin
e bX�=� 
annot vanish in any open set on =�, f 
annot vanishin any open set on S2. Sin
e f is smooth and thus 
ontinuous, the set f�1(0) must be 
losed. Sin
e,with our sign 
onvention for the Bondi metri
, both X and �` are future oriented, f 
annot be negative. 222



Proof of Proposition 3.2. We start from the proofs of (a) and (b). If there were a smooth extension ofY toM =M [=� it would be unique by 
ontinuity and it would satisfy LbY bg = 0 up to =� by 
ontinuityagain. Therefore it is suÆ
ient to establish the existen
e of a smooth extension to 
M to get the mostrelevant part of (a) and (b). The proof is essentially the same as done in the proof of Proposition 3.1,
on
erning the existen
e of the extension of the �eld X . Now, Y is a proper 
onformal Killing �eld sothat the transport equations (44) [Ge77, Hal04℄ redu
es to_
a bra bYb = _
a bFab and _
a bra bFb
 = bRb
ad _
a bY d ; (45)The pro
edure is exa
tly as that in the proof of Proposition 3.1 and, in this way, one obtains a smoothextention bY of Y on 
M and in parti
ular on =�. The 
ondition that bY is tangent to =� is hbY ; d
i = 0everywhere on =�. However gsb�b
 = (�`)s and X ! f�` approa
hing =�, for some nonnegative fun
-tion f 2 C1(S2), as showed in Proposition 3.1. Therefore hbY ; d
if = lim!=� g(bY ;X). If the limitvanishes approa
hing =�, hbY ; d
i = 0 on the points (`; s) 2 R �S2 where f(s) 6= 0. This happens on anopen nonempty set B � S2. Therefore hbY ; d
i = 0 on R � B. Let (`0; s0) 62 R � B. Sin
e S2 n B hasno interior (see Proposition 3.1), there is a sequen
e R � B 3 (`0; sn) ! (`0; s0) as n ! 1. Continuityof (`; s) 7! hbY ; d
i(`; s) implies hbY ; d
i = 0 in R � (S2 n B) and, thus, everywhere. Conversely, if bY istangent to =�, then hbY ; d
i = 0 on =�, and hen
e lim!=� g(bY ;X) = hbY ; d
if = 0.To 
on
lude, we prove the last statements: (
) and (d). Sin
e the map Y 7! bY �=� is linear by 
onstru
-tion, (d) is a trivial 
onsequen
e of (
). Let us prove (
). If the 
onsidered spa
e is made of the zerove
tor only, the proof of (
) is trivial. Assume that it is not the 
ase. To prove (
), it is suÆ
ient to provethat the identity bY �=�= 0 on a set A � =� whi
h is nonempty and open with respe
t to the topologyof =�, entails Y = 0 in M (and thus bY = 0 in M [ =� by 
ontinuity). Let us show it. Consider any�xed point p 2 M and a smooth path 
 from some q 2 A to p (it exists be
ause M is 
onne
ted and=� = �M). In view of the �rst order transport equations (45), Y (p) = bY (p) = 0 when both bY (q) andbFab(q) vanish. Let us show that it is the 
ase. Suppose that bY �=�= 0 on A as above. Using 
oordinates(`;
; �; �) about =�, one has that �a bY b�A= 0 if a 6= 
. On the other hand, the 
ondition LbY bgab = 0
omputed on A, taking into a

ount bY �A= 0 and �a bY b �A= 0 if a 6= 
, yields �
 bY b �A= 0, so thatbra bY b�A= �
 bY b�A +b�ba
 bY 
�A= 0. Therefore Fab�A= 0 and it 
on
ludes the proof. 2Proof of Proposition 3.3. (a) If (s1; s2) are (lo
al) 
oordinates of a point s 2 S2, �x �; � 2 C1(S2)and real 
onstants r1; r2; r3. We wish to study the integral lines t 7! (`(t); s(t)) 2 R � S2 of the �eldZ(`; s) := (�(s)` + �(s))�` +P3k=1 rkSik�si on R � S2, with initial 
ondition (`0; s0). By 
onstru
tion,the 
omponents referred to the sphere do not depend on ` and thus, the 
orresponding equations 
an beintegrated separately. Sin
e P3k=1 rkSik�si is smooth and S2 is 
ompa
t, the integral lines t 7! s(tjs0)(here and hen
eforth js0 denotes the initial 
ondition at t = 0) must be smooth and 
omplete (i.e. de�nedfor t 2 (�1;+1)), in view of well-known theorems of di�erential equations on manifolds. Then assumethat the smooth fun
tion R 3 t ! s(tjs0) is known (
omputed as above). The remaining di�erentialequation reads d`dt = �(s(tjs0))`+ �(s(tjs0)) :It 
an be integrated and the right-hand side is de�ned for the values of t where the full integral ' 
onverges:`(tjs0; `0) = eR t0 dt1�(s(t1js0))`0 + eR t0 dt1�(s(t1js0)) Z t0 dt1�(s(t1js0))e� R t10 dt2�(s(t2js0)): (46)It is apparent that the parameter t ranges in the whole real axis due to smoothness of R 3 t! �(s(tjs0))and R 3 t ! �(s(tjs0)), and that R 3 t 7! `(tjs0; t0) is smooth as well. We have established that23



the integral lines of Z are 
omplete and thus, in view of known theorems, the one-parameter groupof di�eomorphisms generated by Z is global. Sin
e s = s(t) must ne
essarily des
ribe a rotation ofSO(3), about the axis (r1; r2; r3)=pr21 + r22 + r23 with angle tpr21 + r22 + r23 , of the point on S2 initiallyindividuated by s0 and, taking (46) into a

ount, it is evident that ea
h di�eomorphismR � S2 3 (`0; s0) 7! (`(tjs0; t0); s(tjs0)) 2 R � S2 ;for every �xed t 2 R, has the form (11) and, thus, it belongs to SG=� .(b) A �xed (a; b; R) 2 SG=� 
an be de
omposed as(R; a; b) = (I; a ÆR�1; b ÆR�1) (R; 0; 0) :Looking at (46), (R; 0; 0) is an element of the one-parameter group generated by P3k=1 nkSk, where(n1; n2; n3) are the Cartesian 
omponents of the rotation axis of R; 
onversely the transformation(I; a ÆR�1; b ÆR�1) 
an be written as expf1Zg where Z = `a �R�1(s)� �` + b �R�1(s)� �`. 2Proof of Theorem 3.1. Consider the lo
al one-parameter group of di�eomorphisms generated by bY in asuÆ
iently small neighbourhood (in 
M) of a point q 2 =� and for t 2 (��; �) with � > 0 suÆ
iently small.In lo
al 
oordinates over =�, (`; s1; s2) 2 (a; b)�A, su
h a set of transformations 
an be represented by`! `t := f(`; s1; s2; t) ; (s1; s2)! (s1t ; s2t ) := g(`; s1; s2; t) with (`; s1; s2) 2 (a; b)�A. (47)Using the same argument as the one used to 
hara
terise the group SG=� (after De�nition 3.2), one�nds that it must be g(`; s1; s2; t) = Rt(s) for all `; s and f(`; s1; s2; t) = 
(s1; s2; t)` + b(s1; s2; t), forall `; s, for some Rt 2 O(3) depending on t smoothly, and where 
; b are jointly smooth real fun
tions.The requirement, that t 7! Rt is a (lo
al) one-parameter subgroup of SO(3), implies that dRtdt jt=0 =P3k=1 rkSk(s1; s2). Similarly dftdt jt=0 = �
(s1;s2;t)�t jt=0` + �b(s1;s2;t)�t jt=0. We have found that, in lo
al
oordinates bY �=�= 3Xk=1 rkSk(s1; s2) + �
(s1; s2; t)�t jt=0`�` + �b(s1; s2; t)�t jt=0�` ;and thus, about q, bY �=� takes the form of the ve
tors in g=� . However, sin
e it holds true in a neigh-bourhood of ea
h point on =�, we have that bY �=�2 g=� .To 
on
lude, (b) is an immediate 
onsequen
e of (a) and of the last part of (a) in Proof of Proposition3.3. 2Proof of Proposition 3.4. Sin
e eY 2 g=� , in prin
iple it has the formeY (`; s) = 3Xi=1 
iSi(s) + (f(s) + `g(s))�` :Sin
e bg(Y; Y ) < 0 about =� and its limit toward =�, namely eY , is tangent to =� it must satisfybg(eY ; eY ) = 0 by 
ontinuity (no timelike tangent ve
tors 
an be tangent to a null surfa
e). Using the form(8) of bg one see that it must be: P3i=1 
iSi(s) = 0 on =�. Using the expli
it form of S1; S2; S3 referringto the base ��; �� of TS2, one sees that this is equivalent to 
laim that, everywhere on the sphere,(
1 sin�� 
2 
os�) = 0 ; 
1 
ot � 
os�+ 
2 
ot � sin�+ 
3 = 024



As a 
onsequen
e 
1 = 
2 = 
3 = 0. Therefore, everywhere on =�eY = (f(s) + `g(s))�` ;for some fun
tions f; g 2 C1(S2). eY is the limit of a 
ausal future-dire
ted ve
tor. Therefore, it haseither to vanish or to be dire
ted as �` at every point of =�. Sin
e `g(s) may take every arbitrarilylarge, positive or negative, value (noti
e that g is bounded, it being smooth on a 
ompa
t set), it mustbe g(s) = 0 and f(s) � 0. 2Proof of Theorem 4.3. As before, from now on, (F+(H);�;�) is the GNS triple of �. First of all wenoti
e that �M is in fa
t a well-de�ned state on W(M) sin
e { is a �-homomorphism. �M is quasifreeasso
iated with a real s
alar produ
t �M : S(M) � S(M) ! R de�ned as �M ('; '0) := �(
�'; 
�'0).From this fa
t, it follows that the GNS triple of �M 
an be 
onstru
ted as (F+(HM );��AM ;�), whereAM � W(=�) is the sub C�-algebra isomorphi
 to W(M) in view of Theorem 4.2, HM is the Hilbertsubspa
e of H given by the 
losure of the spa
e of 
omplex linear 
ombinations of K�(�(')), for every' 2 S(M) and, thus, F+(HM ) is a Fo
k subspa
e of F+(H). In parti
ular, the 
anoni
al R-linear mapK�M : S(M)! HM is nothing but K�M = K� Æ 
�.(a) By 
onstru
tion, using the de�nition of �M , taking advantage of (33) as well as of the invarian
eproperty of � under the a
tion of SG=� , if a 2W(M), one has�M ��(Y )t (a)� = ��{��(Y )t (a)�� = ���(eY )t {(a)� = � ({(a)) = �M (a) :This proves the �rst part of (a). To 
on
lude the proof of (a), let V (eY )t : H! H the one-parameter groupof unitaries that implements �(eY )t in the one-parti
le spa
e H for �. From K�M = K� Æ 
�, (33) and the
onstru
tion of V one has:V (eY )t K�M' = V (eY )t K�
�(') = K� (
� (' Æ expf�tY g)) = K�M (' Æ expf�tY g) :We have found that, for every ' 2 S(M), V (eY )t K�M' = K�M (' Æ expf�tY g) ; hen
e V (eY )t leaves theone parti
le spa
e of �M , HM , invariant and V (eY )t �HM implements �(Y )t in HM . As a 
onsequen
e of thestru
ture of the GNS triple of �M , if U (eY )t implements �(eY )t unitarily in H = F+(H) leaving � invariant,it leaves also invariant the stru
ture of the GNS-Fo
k spa
e of �M and, therein, U (eY )t �F+(HM) implements�(Y )t unitarily in HM = F+(HM) leaving the 
y
li
 ve
tor invariant. In other wordsU (Y )t = U (eY )t �F+(HM ) :Noti
e that R 37! U (eY )t �F+(HM) is strongly 
ontinuous sin
e R 37! U (eY )t is su
h. Moreover the self-adjoint generator of U (eY )t �F+(HM ) is obtained by restri
ting that of U (eY )t �F+(HM) to F+(HM). If theformer generator is positive, the latter has to be so. In the 
onsidered 
ase, the former is positive sin
e Yis timelike and future dire
ted and thus we 
an apply (a) of Proposition 4.1. The same argument showsthat the self-adjoint generator of V (eY )t �HM has no zero modes if V (eY )t �HM has no zero modes. This lastfa
t happens if eY vanishes on a zero-measure subset of =� due to (b) of Proposition 4.1. 2Proof of Theorem 4.4. (a) Consider a wavefun
tion ' 2 S(M). It satis�es ' = Ef where E :C10 (M)! S(M) is the 
ausal propagator and f is some real smooth and 
ompa
tly supported fun
tioninM . Sin
e the maximally extended de Sitter spa
etimeM 0 is globally hyperboli
 andM �M 0, { so that25



C10 (M) � C10 (M 0) { one 
an fo
us on the wavefun
tion '0 := E0f , where E0 is the 
ausal propagator inM 0. By 
onstru
tion '0�M= ', so that '0 is a smooth extension of '. Sin
e =� � M 0, all that impliesthat ' extends to =� smoothly (and uniquely) and this extension is lim!=� ' = '0�=� . In this way, anR-linear map � : S(M) 3 ' ! '0�=�2 C10 (=�) is de�ned. To 
on
lude (a), it is enough to prove boththat Ran� � S(=�) and that � preserves the symple
ti
 forms. Let us prove them. Bearing in mind thepreviously dis
ussed behaviour of H(2)� (z) for large z (with jargzj � � � �), making use of (36) and (37),the identity (40) 
an be re
ast as'(�;x) = e�i�4
4�3=2 ZS2�S2(�; �) Z +10 dkkei(kr 
os �x(�;�)�k�) �� +O� 1k��pk e'(k; �; �) + 
:
: ; (48)where �x(�; �) 2 [0; �℄ is the angle between x and k. The iterated integrations make sense and 
an beinter
hanged (via Fubini-Tonelli theorem) sin
e both pk e'(k; �; �) and (pk e'(k; �; �) are integrable in themeasure dk. They are smooth everywhere but k = 0, they vanish very fast at large jkj and, for k = 0,e' / 1=jkj�Rej�j if m2+�R > 0 for �. Now, 
alling � = (u+v)=2 and r = (u�v)=2, =� arises as the limitv ! �1. The 
ontribution due to the fa
tor of O � 1k� vanishes due to the Riemann-Lebesgue lemma:(�') (u; �x; �x) = lims!+1 e�i�4
4�3=2 Z +10 dk ZS2�S2(�; �)ks2 ei ks2 [
os�x(�;�)+1℄e�iukpk e'(k; �; �) + 
:
:That limit 
an be 
omputed using integration by parts exa
tly as in the appendix A2 of [DMP06℄. Indetail, one rotates the axes so that the axis z 
oin
ides with x and, thinking of e' as a fun
tion of k; 
; �where 
 := 
os � 2 [�1; 1℄, one re-arranges the expression above as(�') (u; �x; �x) = lims!+1 �ie�i�4
4�3=2 Z +10 dk Z 2�0d� Z 1�1d
 ��
 �ei ks2 [
+1℄� e�iukpk e'(k; 
; �) + 
:
:where �x = 0 in our 
ase. The right-hand side 
an be expanded using integration by parts and only the
ontribution for 
 = �1 (that is � = ��, i.e. k=jkj = �x=jxj) survives, the others vanish as s ! +1,due to Riemann-Lebesgue's lemma (inter
hanging various integrations using Fubini-Tonelli theorem and�nally taking advantage of dominate 
onvergen
e theorem). The integration over � produ
es a trivialfa
tor 2� sin
e the dependen
e from � of the involved fun
tions disappears as � = 0; �. The �nal resultreads, using the initial generi
 
hoi
e for the axes x; y; z:(�') (u; �x; �x) = i2�e�i�4
4�3=2 Z +10 dk e�iuk pk e'(k; �(�x; �x)) + 
:
: ;� : S2! S2 denoting the parity inversion S2 3 n 7! �n 2 S2. Dropping the index x, and viewing �; � asthe standard 
oordinates on =�, the obtained result 
an be re-written as(
�') (`; �; �) = i e�i�4(�
) Z +10 dk e�i`kp2� s k2(�
) e'� k(�
) ; �(�; �)� + 
:
: : (49)where we have passed to the standard Bondi 
oordinates on =�, i.e. `; �; � with u = �
`. In ourhypotheses on ' and �, most notablym2+�R > 548R, the fun
tionsqk2 e'(k; �(�; �)) and kqk2 e'(k; �(�; �))belong also to L2(R+ � S2; dk ^ �S2(�; �)). This implies that both the fun
tions �'; �`�' belong toL2(R � S2; d` ^ �S2). In this way we have found that Ran� � S(=�). A
tually we have obtained mu
h26



more: by means of both (21) and the Fourier transformed expression of �, (49) implies that�(
�'; 
�'0) = �2Im((�
)�2 ZR+�S2dk ^ �S22k k2(�
) e'� k(�
) ; �(�; �)� e'0� k(�
) ; �(�; �)�)= �2Im�ZR+�S2k2dk ^ �S2 e'(k; �; �) e'0(k; �; �)� = �2Im�ZR3 dke'(k) e'0(k)� = �M ('; '0) ;where in the last step we exploited (41). Hen
e 
� preserves the symple
ti
 form as requested.(b) Exa
tly as in the last step of the proof of (a), sin
e the fun
tionsqk2 e'(k; �(�; �)) and kqk2 e'(k; �(�; �))are also in L2(R+ � S2; dk ^ �S2(�; �)), (23) and (49) imply:�(K�
�';K�
�') = (�
)�2 ZR+�S2dk ^ �S22k k2(�
) e'� k(�
) ; �(�; �)�e'� k(�
) ; �(�; �)�= ZR+�S2k2dk ^ �S2 e'(k; �; �)e'(k; �; �) = ZR3 dke'(k)e'(k)Therefore, for every ' 2 S(M), in view of (42),�M (WM (')) := �(W (
�')) = e��(K�
�';K�
�')=2 = e� 12 RR3 e'(k)e'(k) dk = !E(WM (')) ;and this 
on
ludes the proof. 2Proof of Theorem 4.5. Here, we exploit the same notation, i.e. x;k, as in the proof of Theorem4.4. In parti
ular � := q 94 � (m2
2 + 12�), so that � � 0 when 94 � (m2
2 + 12�) � 0 in the following.However the sign of � 
ould be �xed arbitrarily (and this applies for imaginary �, in parti
ular), sin
ethe fun
tions we shall employ are invariant under � ! ��.As a �rst step, we noti
e that if ' 2 S(M), it extends to =� smoothly so that �' := lim!=� ' 2 C1(=�)does exist. This is be
ause, as found in the se
tion 2.2, the spa
etime (M; g) extends to a larger spa
etimeequipped with a metri
 bg obtained by multiplying the metri
 of the 
losed stati
 Einstein universe witha stri
tly positive smooth fa
tor. Sin
e 
losed stati
 Einstein universe is globally hyperboli
 and globalhyperboli
ity does not depend on nonsingular 
onformal res
aling of the metri
, (M; g) itself is in
ludedin a globally hyperboli
 spa
etime. With the same argument used for de Sitter spa
etime in the proofof Theorem 4.4, one has that every ' 2 S(M) extends to =� smoothly. We have now to show thatRan� � S(=�) and that � preserves the symple
ti
 forms.First of all, analogously to what done in the de Sitter 
ase, we determine a 
lass of modes 	k(�;x)that will be useful in de
omposing the solutions of Klein-Gordon equation in order to take the limit ofwavefun
tions towards =�. 	k(�;x) := eik�x(2�)3=2 �k(�)a(�) ; (50)where, taking the exponential fa
tor into a

ount, the Klein-Gordon equation redu
es to the followingequation for the fun
tions (�1; 0) 3 � 7!  k(�),d2d�2 �k(�) + (V0(k; �) + V (�))�k(�) = 0;with V0(k; �) := k2 + �
� �2 �m2 +�� � 2
2�� ; V (�) = O(1=�3) : (51)27



Comparing with Klein-Gordon equation, one sees that V0(k; �) + V (�) = k2 + a(�)2[m2+ (� � 1=6)R(�)℄where V0 is nothing but the the 
ontribution of pure de Sitter metri
 and V is a perturbation. If wedropped the perturbation V (�), the fun
tions �k would redu
e to the fun
tions �k and the modes 	kwould redu
e to the modes �k used to 
onstru
t !E beforehand. Noti
e that the 
urvature of thespa
etime does not 
oin
ide with 12=
2 as in de Sitter spa
etime, but it reads R(�) = 12=
2 + O(1=�)and a(�) = 
=� +O(1=�2). It follows that the added potential V (�) = O(1=�3) above. A formal solutionof (51) is obtained in terms of the series: �k(�) = �k(�)+(�1)n+1Xn=1Z ��1dt1 Z t1�1dt2 � � � Z tn�1�1dtnSk(�; t1)Sk(t1; t2) � � �Sk(tn�1; tn)V (t1)V (t2) � � �V (tn)�k(tn); (52)where Sk(t; t0) := �i��k(t)�k(t0)� �k(t0)�k(t)� ; t; t0 2 (�1; 0) ; (53)satisfying, in view of antisymmetry and (38),Sk(t; t) = 0 and ��tSk(t; t0)����t0=t = 1 : (54)By dire
t inspe
tion and making use of (54), one sees that the right-hand side of (52) de�nes a solutionof (51) if one is allowed to inter
hange the � -derivative operator { up to the se
ond order { with the signof sum. This is always possible when the series itself and the series of the derivatives of �rst and se
ondorder 
onverge � -uniformly in a neighbourhood of every �xed � 2 (�1; 0). A
tually the lo
ally � -uniform
onvergen
e of the series of derivatives of se
ond order dire
tly follows from the uniform 
onvergen
e ofthose of zero and �rst order, when one refers to the solutions �k and the solutions Sk. Using the expression(37) of the modes �k, expanding H(2)� in terms of Bessel fun
tions J�� [GR95℄ and, �nally, exploitingstandard integral representations valid for Re� > �1=2 (formula 5 in 8.411 in [GR95℄) of J� , one a
hievesthe following bounds for Re� < 1=2 (that is m2
2 +12� > 2), for � < �1, and for some 
onstant C� � 0j�k(�)j � C�(��)Re�+1=2 �kRe� + k�Re�� ���d�k(�)d� ��� � C�(��)Re�+1=2 �kRe� + k�Re�� (1 + k); (55)where k = jkj. Furthermore, for the same reasons it is possible to obtain the following (non optimal)k-uniform bound for Re� < 1=2, for t2 � t1 < �1, and for some other 
onstant C 0� � 0jSk(t1; t2)j � C 0�(t1t2)Re�+1=2 : (56)Now �x any T < �1 and 
onsider � 2 (�1; T ℄, so that jV (�)j � KT =(��)3, for some 
onstant KT � 0.From (55), one sees with a few of trivial 
omputations, that the series in the right-hand side of (52) andthat of the � -derivatives are � -uniformly dominated, respe
tively, by�kRe� + k�Re�� S�;T ; �kRe� + k�Re�� (1 + k) S�;T ; (57)where S�;T is the following 
onvergent series of positive 
onstantsS�;T := C� +1Xn=1� 2C 0�KT1� 2Re��n 1n! 1((�T )1�2Re�)n�1=2 : (58)28



Summarising, we 
an 
on
lude that (52) de�nes a solution of (51) and that, the same equation entailsthe solution to be smooth. As a straightforward 
onsequen
e we also have the following � -uniform boundvalid on (�1; T ℄j�k(�) � �k(�)j � �kRe� + k�Re��S�;T ; ����d�k(�)d� � d�k(�)d� ���� � 2 �kRe� + k�Re�� (1 + k)S�;T : (59)This implies that, at �xed � , the measurable (sin
e limit of measurable fun
tions) fun
tions R3 3 k 7!�k(�) and R3 3 k 7! d�k(�)d� do not grow, for large jkj, fast than jkjRe� and jkj1+Re� respe
tively.Moreover, their divergen
e at k = 0 
annot be worse than that of R3 3 k 7! �k(�) and R3 3 k 7! d�k(�)d� ,that is k�jRe�j.Finally, noti
e that ea
h term in the series in the right-hand side of (52) and in the analogy for d�k=d�vanishes as � ! �1 by 
onstru
tion. In view of the fa
t that, � -uniformly, the series in (57) dominatesboth the series in the right-hand side of (52) and the series of � -derivatives, we are allowed to inter
hangethe operations of limit with that of sum, obtaininglim�!�1 (�k(�) � �k(�)) = 0 and lim�!�1�d�k(�)d� � d�k(�)d� � = 0 : (60)This result has a �rst important 
onsequen
e. Using equation (51), one sees that the fun
tion � 7!d�k(�)d� �k(�) � �k(�) d�k(�)d� is a
tually a 
onstant. The value of this 
onstant 
an be 
omputed by takingthe limit as � ! �1, making use of (38), (60) and taking into a

ount the fa
t that, for k �xed, d�k(�)d�and �k(�) are bounded on (�1; T ℄ (noti
e that these fun
tions have no limit for � ! �1), as one 
anshow employing the asymptoti
 behaviour of H(2)� (z) for large values of the argument z. In this way one�nds d�k(�)d� �k(�) � �k(�)d�k(�)d� = i : (61)Now, to analyse the behaviour of �', we 
an follow the same way as that followed in de Sitter spa
e.Take any (real by de�nition) ' 2 S(M) and �x a Cau
hy surfa
e �� in (M; g) individuated by the pointsin M with the �xed value of � ; eventually de�nee'(k) := �i ZR3 "�	k(�;x)�� '(�;x) �	k(�;x)�'(�;x)�� # a(�)2dx : (62)The right-hand side of (62) does not depend on the 
hoi
e of � , as it follows from dire
t inspe
tion,exploiting (51). Remembering that ' 2 S(M), so that its Cau
hy data are real, smooth and 
ompa
tlysupported, we have that their Fourier transform are of S
hwartz 
lass. Afterwards, exploiting the fa
t thatboth the measurable fun
tions R3 3 k 7! �k(�) and R3 3 k 7! d�k(�)d� grows at most as a polynomial withdegree two for large jkj, and that their divergen
e at k = 0 is at most of order k�jRe�j with Re� < 1=2,we �nd that e' 2 C1(R3 nf0g) and it vanishes for jkj ! 1 faster than every power jkj�n, n = 1; 2; : : :. Inparti
ular e' 2 L2(R3 ; dk) \ L1(R3 ; dk). On
e one knows e' by (62), the asso
iated ' 
an be 
onstru
tedout of a de
omposition in terms of modes 	k:'(�;x) = ZR3 h	k(�;x)e'(k) + 	k(�;x)e'(k)i dk : (63)29



This is a trivial 
onsequen
e of (62), (50), (61), and of the standard properties for the Fourier transformof smooth 
ompa
tly supported fun
tions on R3 . Eventually, per dire
t 
omputation, one veri�es that,if '1; '2 2 S(M),� 2Im�ZR3 e'1(k)e'2(k)dk� = ZR3('2��'1 � '1��'2) a2(�)dx =: �M ('1; '2) : (64)We are now in position to draw some 
on
lusions. Indeed, if ' 2 S(M), p 2 =� and (�q ;xq) are the
oordinates of q 2M , we 
an write down(�') (p) = limq!p ZR3dk eik�xq(2�)3=2 (�k(�q)� �k(�q)) e'(k) + limq!p ZR3dk eik�xq(2�)3=2�k(�)e'(k) + 
:
: (65)As q ! p 2 =�, �q ! �1 so that (�k(�q)� �k(�q)) ! 0 due to (60). Moreover, sin
e (57) is valid, wehave the � -uniform bound���� eik�x(2�)3=2 (�k(�)� �k(�)) e'(k)���� � S�;T(2�)3=2 �jkjRe� + jkj�Re�� je'(k)j ;where the right hand side is integrable be
ause Re� < 1=2, e' 2 L1(R3 ; dk) \ L2(R3 ; dk) and it vanishesfaster than any power for jkj ! +1. Lebesgue's dominate 
onvergen
e theorem implies that the formerlimit in (65) vanishes. The remaining limit has been 
omputed in the proof of (a) in Theorem 4.4. The�nal result reads as follows: if (`; �; �) are Bondi 
oordinates of p 2 =� and � : S2 ! S2 is the inversionn 7! �n on the sphere,(
�') (`; �; �) = i e�i�4(�
) Z +10 dk e�i`kp2� s k2(�
) e'� k(�
) ; �(�; �)� + 
:
: : (66)From this point on the proof 
arries on up to the 
on
lusions exa
tly as in the proof of (a) in Theorem4.4, sin
e (41) holds also in our generalised 
ase, as (64) shows. 2Referen
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