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Desy 07-218 - UTM 718 - ZMP-HH/07-12, Deember 2007Cosmologial horizons and reonstrution of quantum�eld theories.Claudio Dappiaggi1;a, Valter Moretti2;3;b, Niola Pinamonti1;1 II. Institut f�ur Theoretishe Physik, Universit�at Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany.2 Dipartimento di Matematia, Universit�a di Trento and Istituto Nazionale di Fisia Nuleare { Gruppo Collegatodi Trento, via Sommarive 14 I-38050 Povo (TN), Italy.3 Istituto Nazionale di Alta Matematia \F.Severi"{ GNFME-mail: alaudio.dappiaggi�desy.de, bmoretti�siene.unitn.it, niola.pinamonti�desy.deDediated to Professor Klaus Fredenhagen on the oasion of his 60th birthday.Abstrat. As a starting point, we state some relevant geometrial properties enjoyed by the osmologial horizonof a ertain lass of Friedmann-Robertson-Walker bakgrounds. Those properties are generalised to a larger lassof expanding spaetimes M admitting a geodesially omplete osmologial horizon =� ommon to all o-movingobservers. This struture is later exploited in order to reast, in a osmologial bakground, some reent results fora linear salar quantum �eld theory in spaetimes asymptotially at at null in�nity. Under suitable hypotheseson M , enompassing both the osmologial de Sitter bakground and a large lass of other FRW spaetimes, thealgebra of observables for a Klein-Gordon �eld is mapped into a subalgebra of the algebra of observables W(=�)onstruted on the osmologial horizon. There is exatly one pure quasifree state � on W(=�) whih ful�ls asuitable energy-positivity ondition with respet to a generator related with the osmologial time displaements.Furthermore � indues a preferred physially meaningful quantum state �M for the quantum theory in the bulk.If M admits a timelike Killing generator preserving =�, then the assoiated self-adjoint generator in the GNSrepresentation of �M has positive spetrum (i.e. energy). Moreover �M turns out to be invariant under everysymmetry of the bulk metri whih preserves the osmologial horizon. In the ase of an expanding de Sitterspaetime, �M oinides with the Eulidean (Bunh-Davies) vauum state, hene being Hadamard in this ase.Remarks on the validity of the Hadamard property for �M in more general spaetimes are presented.Contents1 Introdution 21.1 Notation, mathematial onventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 Outline of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Cosmologial horizons and asymptotially atness 42.1 Friedmann-Robertson-Walker spaetime and osmologial horizons . . . . . . . . . . . . . 42.2 FRW metris with � = 0 and assoiated geometri struture . . . . . . . . . . . . . . . . 61
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3 Expanding universes with osmologial horizon and its group. 83.1 Expanding universes with osmologial horizon =� . . . . . . . . . . . . . . . . . . . . . 83.2 The horizon symmetry group SG=� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Preferred states indued by the osmologial horizon. 124.1 QFT in the bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.2 Bosoni QFT on =� and SG=� -invariant states . . . . . . . . . . . . . . . . . . . . . . . 124.3 Interplay of QFT in M and QFT on =� . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.4 The preferred invariant state �M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.5 Testing the onstrution for the de Sitter ase and for other FRW metris . . . . . . . . . 175 Conlusions and open issues. 20A Proof of some tehnial results. 211 IntrodutionIn the framework of quantum �eld theory over urved bakgrounds we witnessed, in the past few year,an inreased display of new and important formal results. In many ases we an trak their origin in theexistene of a non trivial interplay between some �eld theories living on a Lorentzian bakground - sayM - and a suitable ounterpart onstruted over a o-dimension one submanifold of M , often hosen asthe onformal boundary of the spaetime. Usually thought of as a realization of the so-alled holographipriniple, this researh line provided its most remarkable results in the framework of (asymptotially)AdS bakgrounds. As a matter of fat, onepts suh as Maldaena's onjeture [AGM00℄ - in a stringframework - or Rehren's duality (see [DR02℄ and referenes therein) - in the algebrai quantum �eld theorysetting - are appearing nowadays almost ubiquitously in the theoretial high-energy physis literature.More reently a similar philosophy has been also adopted to deal with a rather di�erent senario, namelyasymptotially at spaetimes, where it is future null in�nity {=+ � R�S2, i.e. the onformal boundary {whih plays the role of the above-mentioned o-dimension one submanifold [DMP06, Mo06, Mo07, Da07℄.Although one ould safely laim that all these mentioned results are ompelling, one should alsoatively seek onnetions to those theoretial models whih are nowdays testable and, within this respet,one an safely laim that osmology is a rather natural playground. In this realm, one of the most widelyknown theories is ination where, as in other models, the pivotal role is played by a single salar �eldliving on an (almost) de Sitter bakground. Although, within this framework, most of the results aremainly, though not only, at a lassial level, it is to a ertain extent mandatory to look for a deep-rootedanalysis of the full-edged underlying quantum �eld theory in order to ahieve a more �rm understandingof the model under analysis.To this avail, the �rst, but to a ertain extent, not appealing hane is to perform a ase-by-aseanalysis of the quantum struture of all the possible models nowadays available. In our opinion a moreattrative possibility is to look for some mean allowing us to draw some general onlusions or to point outsome universal feature, independently from the hosen model or from the hosen bakground. Taking intoaount this philosophy, a natural \�rst step" to undertake would be to try to implement the previouslydisussed bulk-to-boundary orrespondene whih appears to enode, almost per onstrution, all theriteria of universality we are seeking for, in the ase of a large lass of osmologial models.As a starting point point let us assume the Cosmologial Priniple whih leads the underlying bak-ground to be endowed with the widely-used Friedmann-Robertson-Walker (FRW) metris. A diret2



inspetion of the geometri properties of these spaetimes points out that, in most of the relevant physi-al ases, suh as de Sitter to quote just one example, it exists a natural submanifold whih, at �rst glane,appears to be a good andidate as the preferred o-dimension 1 hypersurfae: the osmologial (future orpast) horizon as de�ned by Rindler [Ri06℄. More preisely, in this paper we shall onsider the osmologialpast horizon =�, in ommon with all the o-moving observers, in order to deal with expanding universes.The �rst of the main aims of this manusript is indeed to disuss some non trivial geometri features ofthe osmologial horizon =�. Partiularly, under some tehnial restritions on the analyti form of theexpanding fator in the FRW metri with at spatial setion, the horizon has a universal struture and,hene, it represents the natural setting where to stage a bulk-to-boundary orrespondene. An expandinguniverse admits a preferred future-oriented timelike vetor �eld X de�ning the worldlines of o-movingobservers, whose ommon expanding rest-frames are the 3-surfaes orthogonal to X . In FRW metris Xis a onformal Killing �eld whih beomes tangent to the osmologial horizon and, in the lass of FRWmetris we onsider, it individuates omplete null geodesis on =�.This extent will be generalised to expanding spaetimes M equipped with a geodesially ompleteosmologial horizon =� and an asymptotial onformal Killing �eld X , generally di�erent from FRWspaetimes. The leading role of X in suh a onstrution is strengthened by its intertwining relationwith the onformal fator whih is a primary ondition to take into aount if one wants to study thestruture of the symmetry group of the horizon (atually a subgroup of the huge full isometry groupof the horizon viewed as a semi-Riemannian manifold). We also address suh an issue and we disoverthat suh a group is atually an in�nite dimensional group SG=� whih has the struture of an iteratedsemidiret produt i.e. it is SO(3) n �C1(S2)n C1(S2)� where SO(3) is the speial orthogonal groupwith a three dimensional algebra, whereas C1(S2) stands for the set of smooth funtions over S2 thoughtas an Abelian group under addition. The geometri interpretation of SG=� is intertwined to the followingresult. The subgroup of isometries of the spaetime whih preserves the osmologial horizon strutureis injetively mapped to a subgroup of SG=� whih, hene, enodes some of the possible symmetries ofthe spaetime. However it must be remarked that SG=� is universal in the sense that it does not dependon the partiular spaetime M in the lass under onsideration.As a result we �nd that, under suitable hypotheses on M { valid, in partiular, for ertain FRWspaetimes whih are de Sitter asymptotially { the algebra of observablesW(M) of a Klein-Gordon �eldinM is one-to-one (isometrially) mapped to a subalgebra of the algebra of observablesW(=�) naturallyonstruted on the osmologial horizon. In this sense information of quantum theory in the bulk Mis enoded in the quantum theory de�ned on the boundary =�. It turns out that there is exatly onepure quasifree state � on W(=�) whih ful�ls a ertain energy-positivity ondition with respet to somegenerators of SG=� . The relevant generators are here those whih an be interpreted as limit values on=� of timelike Killing vetors ofM , whenever one �xes a spaetimeM admitting =� as the osmologialhorizon. However, exatly as the geometri struture of =�, � is universal in the sense that it does notdepend on the partiular spaetime M in the lass under onsideration. The GNS-Fok representationof � individuates a unitary irreduible representation of SG=� . Fixing an expanding spaetime M withomplete osmologial horizon, � indues a preferred quantum state �M for the quantum theory in Mand it enjoys remarkable properties. It turns out to be invariant under all those isometries of M (if any)that preserve the osmologial horizon struture. IfM admits a timelike Killing generator preserving =�,the assoiated self-adjoint generator in the GNS representation of �M has positive spetrum, i.e., energy.Eventually, if M is the expanding de Sitter spaetime, �M oinides to the Eulidean (Bunh-Davies)vauum state, so that it is Hadamard in that ase at least. Atually, Hadamard property seems to bevalid in general, but that issue will be investigated elsewhere.As a �nal tehnial remark we would like to report that in the derivation of many results reportedhere we have been guided by similar analyses previously performed in the ase of asymptotially at3



spaetime, using the null in�nity as o-dimension one submanifold. However, to follow the subsequentdisussion there is no need of being familiar with the triky notion of asymptotially at spaetime.1.1. Notation, mathematial onventions. Throughout R+ := [0;+1), N := f0; 1; 2; : : :g. Forsmooth manifolds M;N , C1(M ;N) (omitting N whenever N = R) is the spae of smooth funtionsf :M ! N . C10 (M ;N) � C1(M ;N) is the subspae of ompatly-supported funtions. If � :M ! Nis a di�eomorphism, �� is the natural extension to tensor bundles (ounter-, o-variant and mixed) fromM to N (Appendix C in [Wa84℄). A spaetime (M; g) is a Hausdor�, seond-ountable, smooth, four-dimensional onneted manifoldM , whose smooth metri has signature�+++. We shall also assume thata spaetime is oriented and time oriented. We adopt de�nitions of ausal strutures of Chap. 8 in [Wa84℄.If S � M \ M , (M; g) and (M; bg) being spaetimes, J�(S;M) (I�(S;M)) and J�(S;M) (I�(S; M))indiate the ausal (hronologial) sets assoiated to S and respetively referred to the spaetimeM or M .1.2. Outline of the paper. In setion 2 we introdue and disuss the geometri set-up of the bak-grounds we are going to take into aount throughout this paper. Partiularly we �nd under whihanalyti onditions on the expanding fator, a Friedmann-Robertson-Walker (FRW) spaetime an besmoothly extended to a larger spaetime that enompasses the osmologial horizon. In setion 3 weprovide a generalisation of the results of setion 2 and we study their impliations. Furthermore we in-trodue and disuss the struture of the horizon symmetry group showing its interplay with the possibleisometries of the bulk metri. In setion 4 we study the struture of bulk salar QFT and of the assoi-ated Weyl algebra and its the horizon ounterpart. Furthermore we disuss the existene of a preferredalgebrai state invariant under the full symmetry group, whih enjoys some uniqueness/energy-positivityproperties. Subsetions 4.3 and 4.4 are devoted to the development of the interplay between the bulk andthe boundary theory; a partiular emphasis is given to the seletion of a natural preferred bulk states andon the analysis of its properties. Sine all these onlusions are based upon some a priori assumptionson the behaviour of the solutions in the bulk of the Klein-Gordon equation with a generi oupling tourvature, we shall devote setion 4.5 to test these requirements. Eventually, in setion 5, we draw someonlusions and we provide some hints on future researh perspetives.2 Cosmologial horizons and asymptotially atness2.1. Friedmann-Robertson-Walker spaetime and osmologial horizons. A homogeneous and isotropiuniverse an be loally desribed by a smooth spaetime, in the following indiated by (M; gFRW ),whereM is a smooth Lorentzian manifold equipped with the following Friedmann-Robertson-Walker(FRW) metri gFRW = �dt
 dt+ a(t)2 � 11� �r2 dr 
 dr + r2dS2(�; ')� : (1)Above, dS2(�; ') = d� 
 d� + sin2 � d� 
 d� is the standard metri on the unit 2-sphere and, up tonormalisation, � an take the values �1; 0; 1 orresponding respetively to an hyperboli, at and losedspaes. The oordinate t ranges in some open interval I . Here a(t) is a smooth funtion of t with onstantsign (sine g is nondegenerate). Heneforth we shall assume that a(t) > 0 when t 2 I . We also supposethat the �eld �t individuates the time orientation of the spaetime.Physially speaking and in the universe observed nowadays, the setions of M at �xed t are the isotropi4



and homogeneous 3-spaes ontaining the matter of the universe, the world lines desribing the histories ofthose partiles of matter being integral urves of �t. In this piture, the osmi time t is the proper-timemeasured at rest with eah of these partiles, whereas the sale a(t) measures the size of the observedosmi expansion in funtion of t.The metri (1) may enjoy two physially important features. Consider a o-moving observer pituredby a integral line  = (t), t 2 I , of the �eld �t and fous on J�(). If J�() does not over thewhole spaetime M , the observer  annot reeive physial information from some events of M duringhis/her history: ausal future-direted signals starting from M n J�() annot ahieve any point on .In other words, and adopting the terminology of [Ri06℄, a osmologial horizon takes plae for  andit is the null 3-hypersurfae �J�(). Conversely, whenever J+() does not over the whole spaetimeM , physial information sent by the observer  during his/her story is prevented from getting to someevents of M : Causal future-direted signals starting from  do not reah any point in M nJ+(). In thisase, exploiting again the terminology of [Ri06℄, a osmologial past horizon exists for . It is thenull 3-hypersurfae �J+().As it is well-known, a suÆient ondition for the appearane of osmologial horizons an be obtainedfrom the following analysis. One re-arranges the metri (1) into the formgFRW = a2(�) ��d� 
 d� + 11� �r2 dr 
 dr + r2dS2(�; ')� := a2(�)g(�; r; �; '); (2)where �(t) = d+ Z a�1(t)dt (3)is the onformal osmologial time, d 2 R being any �xed onstant. By onstrution � = �(t) isa di�eomorphism from I to some open, possibly in�nite, interval (�; �) 3 � . Notie both that �� is aonformal Killing vetor �eld whose integral lines oinide, up to the parametrisation, to the integrallines of �t and that (M; gFRW ) is globally hyperboli.As ausal strutures are preserved under onformal resaling of the metri, a straightforward analysisbased on the shape of g in (2) establishes that J�() does not over he whole spaetime M whenever� < +1. In that ase a osmologial event horizon takes plae for . Similarly J+() does not overthe whole spaetime M whenever � > �1. In that ase a osmologial past horizon takes plae for .In both ases the horizons �J�() and �J+() are null 3-hypersurfaes di�eomorphi to R � S2, madeof null geodesis of gFRW . One may think of these surfaes as the limit light-ones emanating from (t),respetively towards the past or towards the future, as t tends to sup I or inf I respetively. The tips ofthe ones generally get lost in the limit proedure: In realisti models � and � orrespond, when they are�nite, to a big bang or a big runh respetively. As a general omment, we stress that the osmologialhorizons introdued above generally depend on the �xed observer .Remark 2.1. The requirement on the �niteness of the bounds � and � for the range of the onformalosmologial time � are suÆient onditions for the existene of the osmologial horizons, but they areby no means neessary. Indeed it may happen that { and this is the ase of de Sitter spaetime { there is,indeed a osmologial horizon arbitrarily lose to M , but outside M . This happens when the spaetimeM and its metri an be extended beyond its original region M to a larger spaetime (M; bg) so that ithappens that =+ = �J�(M ;M) = �M and =� = �J+(M ;M) = �M . Hene the osmologial horizon=+ or =� oinides with the boundary �M and, by onstrution, it does not depend on the onsideredobserver  (an integral urve of the �eld �t) evolving inM . Referring in partiular to a onformally statiregion M (equipped with the metri (1) for � = 0) embedded in the omplete de Sitter spaetime M ,5



�M turns out to be a null surfae with the topology of R � S2. In the following we shall fous on thistype of osmologial horizons.2.2. FRW metris with � = 0 and assoiated geometri struture. Here, we would like to pinpoint somegeometrial properties enjoyed by a sublass if the FRW spaetimes that will be used later in order to getthe main results presented in this paper. To this end we onsider here the spaetime (M; gFRW ), whereM ' (�; �) � R3 and the metri gFRW is like in (2), but with � = 0.Furthermore we shall restrit our attention to the ase where the fator a(�) in (2) has the following forma(�) = � +O� 1�2� ; da(�)d� = � �2 +O� 1�3� (4)for either (�; �) := (�1; 0) and  < 0, or (�; �) := (0;+1) and  > 0. The above asymptoti values aremeant to be taken as � ! �1 or � ! +1 respetively. The �rst issue we are going to disuss is theextension of the spaetime (M; gFRW ) to a larger spaetime (M; bg) that enompasses =+ and/or =�. Tothis end, if we introdue the new oordinates U = tan�1(� + r) and V = tan�1(� � r) ranging in subsetsof R individuated by � 2 (�; �) and r 2 (0;+1), (2) an be written as:gFRW = a2(�(U; V ))os2 U os2 V ��12dU 
 dV � 12dV 
 dU + sin2(U � V )4 dS2(�; ')� : (5)The metri, obtained anelling the overall fator a2(�(U; V ))=(os2 U os2 V ), is well-behaved and smoothfor U; V 2 R removing the axis U = V . This is nothing but the apparent singularity appearing for r = 0in the original metri (2). Consider R2 equipped with null oordinates U; V with respet to the standardMinkowskian metri on R2 and assume that every point is a 2-sphere with radius j sin(U � V )j=2 (henethe spheres for U = V are degenerate). Then, let us fous on the segments in R2a; V = U with U 2 (��=2; �=2);b; U = �=2 with V 2 (��=2; �=2);; V = ��=2 with U 2 (��=2; �=2):The original spaetime M is realized as a suitable subset of the union of the segment a, i.e. r = 0, andthe interior of the triangle ab, i.e. r > 0, as in the �gure 1. In this piture it is natural to assume thatthe null endless segments b and  representing null 3-hypersurfaes di�eomorphi to R � S2, individuaterespetively =+ and =� provided that � = +1 in the �rst ase and/or � = �1 in the seond asewhere (�; �) is the domain of � . Otherwise the points of M annot get loser and loser to all the pointsof those segments. Therefore we are ommitted to assume � = �1 and/or � = +1 and we stik withthis assumption in the following disussion.Summarising, we wish to extend gFRW smoothly to a region larger than the open triangle ab joinedwith a, and inluding one of the endless segments b and  at least. In the ase a(�) is of the form (4),the funtion a2(�(U; V ))=(os2 U os2 V ) is smooth in neighbourhoods of the open segments b and  onlyif  6= 0, and in partiular it does not vanish on b and , making nondegenerate bg thereon. However, abad singularity appears as soon as U = �V , that is � = 0. Therefore either:(�; �) = (0;+1) { and in this ase M (r � 0, � 2 (0;+1)) oinides with the upper half of thetriangle ab, and it may be extended to a larger spaetime (M; bg) by adding a neighbourhood of theendless segment b viewed as =+ { or(�; �) = (�1; 0) { and in this ase M (r � 0, � 2 (�1; 0)) oinides to the lower half of the triangleab, and it may be extended to a larger spaetime (M; bg) by adding a neighbourhood the endless segment viewed as =�. 6



2

−
2
π

c

a

b

VU

π

Figure 1: The interior of the triangle represents the original FRW bakground seen as an open subsetof Einstein's stati universe. Eah point in the (U; V )-plane represents a 2-sphere and, furthermore, thesegments b and  are respetively =+ and =�.In both ases the line U = �V does not belong to M and to its extension, and the metri bg oinideswith the right-hand side of (5).The funtion a(�) and its interplay with the vetor �eld �� when approahing the osmologial horizonwill play a distinguished role in our onstrution for this reason let's enumerate below some of its propertiesthat we are going to generalise in the next setion. To this end, notie that a(�) is smooth in M andvanishes exatly either on =+ = �J�(M ;M) or on =� = �J+(M ;M), depending on the onsideredvalues for the interval (�; �) and for  as disussed below formula (4). On the other hand, by diretinspetion da �=+= �2dU ; da �=�= �2dV; : (6)and hene da does not vanish either on =+ or on =�, provided  6= 0. By diret inspetion one �ndsthat, restriting either to =+ or =�, the metri bg takes the following distinguished form alled Bondiform: bg �=�= 2 ��d`
 da� da
 d`+ dS2(�; ')� ;where, with =�, it is impliitly assumed that one must hoose either =+ or =� and where, for arbitrarily�xed onstants k+; k�`(U) = ��1 tanU + k� on =� ; `(V ) = ��1 tanV + k+ on =+ ;hene ` 2 R turns out to be the parameter of the integral lines of n := ra.Consider then the vetor �eld �� , it is an easy task to hek that it is a onformal Killing vetor for bg inM with onformal Killing equation L�� bg = �2�� (ln a) bg :where the right-hand side vanishes approahing either =+ or =�. Furthermore, �� tends to beometangent to either =+ or =� approahing it and it oinides to � brba thereon, as an be diretly seenfrom the form of `. 7



3 Expanding universes with osmologial horizon and its group.3.1. Expanding universes with osmologial horizon =�. The previous disussion remarked that in anexpanding FRW spaetimes the sale fator a and its interplay with the onformal Killing �eld �� play adistinguished role when approahing the osmologial horizon. A reader interested in asymptotially atspaetime ould have notied that many of the above mentioned geometrial properties are shared by thestruture of null in�nity. In that realm, in [DMP06, Mo06, Mo07℄, it was shown that, when dealing withquantum �eld theory issues, a key role is played by a ertain symmetry group of di�eomorphisms de�nedon =+, the so alled BMS group, whih has the most notable property to embody the isometries of thebulk spaetime [Ge77, AX78℄ through a suitable geometri orrespondene of generators. In the followingwe �rst generalise the result presented in the setion 2.2 and then we shall onstrut the ounterpart ofthe BMS group for the found lass of spaetimes and the partiular form of osmologial horizons.De�nition 3.1. A globally hyperboli spaetime (M; g) equipped with a positive smooth funtion 
 :M ! R+ , a future-oriented timelike vetor X de�ned on M , and a onstant  6= 0, will be alledan expanding universe with (geodesially omplete) osmologial (past) horizon when thefollowing fats hold:1. Existene and ausal properties of horizon. (M; g) an be isometrially embedded as theinterior of a sub manifold-with-boundary of a larger spaetime (M; bg), the boundary =� := �Mverifying =� \ J+(M ;M) = ;.2. Data interplay 1). 
 extends to a smooth funtion on M suh that (i) 
�=�= 0 and (ii) d
 6= 0everywhere on =�.3. Data interplay 2). X is a onformal Killing vetor for bg in a neighbourhood of =� in M , withLX(bg) = �2X(ln
) bg ; (7)where (i) X(ln
) ! 0 approahing =� and (ii) X does not tend everywhere to the zero vetorapproahing =� .4. Global Bondi-form of the metri on =� and geodesi ompleteness. (i) =� is di�eomorphito R � S2, (ii) the metri bg �=� takes the Bondi form globally up to the onstant fator 2 > 0:bg�=�= 2 ��d`
 d
� d

 d`+ dS2(�; �)� ; ` 2 R ; (�; �) 2 S2 ; 
 = 0 (8)dS2 being the standard metri on the unit 2-sphere. Hene =� is a null 3-submanifold, and (iii) theurves R 3 ` 7! (`; �; �) are omplete null bg-geodesis.The manifold =� is alled the osmologial (past) horizon of M . The integral parameter of X isalled the onformal osmologial time. There is a ompletely analogous de�nition of ontratinguniverse referring to the existene of =+ in the future instead of =�.Remark 3.1.(1) In view of ondition 3, the vetor X is a Killing vetor of the metri g0 := 
�2g in a neighbourhoodof =� in M . In suh a neighbourhood, one an think of 
2 as an expansion sale evolving with rateX(
2) referred to the onformal osmologial time.(2) =� \ J+(M ;M) = ; entails M = I+(M ;M) and =� = �M = �I+(M ;M) = �J+(M ;M), so that8



=� has the proper interpretation as a past osmologial horizon in ommon for all the observers in (M; g)evolving along the integral lines of X .(3) It is worth stressing that the spaetimes onsidered in the given de�nition are neither homogeneousnor isotropi in general; hene we an deal with a larger lass of manifolds than simply the FRW spae-times.Similarly to the partiular ase examined previously, also in the general ase pitured by De�nition 3.1,the onformal Killing vetor �eld X beomes tangent to =� and it oinides with �` up to a nonnegativefator, whih now may depend on angular variables, as we go to establish. The proof of the followingproposition is in the Appendix.Proposition 3.1. If (M; g;
; X; ) is an expanding universe with osmologial horizon, the followingholds.(a) X extends smoothly to a unique smooth vetor �eld eX on =�, whih may vanish on a losedsubset of =� with empty interior at most. Then X ful�ls the bg-Killing equation on =�.(b) eX has the form f�`, where, referring to the representation =� � R � S2, f depends only on thevariables S2 and, furthermore, it is smooth and nonnegative.Sine, for the FRW spaetimes, the funtion f = f(�; �) appearing in eX = f�` takes the onstant value 1,the presene of a nontrivial funtion f is related to the failure of isotropy for the more general spaetimesonsidered in De�nition 3.1.3.2. The horizon symmetry group SG=� . In the forthoming disussion we shall make use several timesof the following tehnial fat. In the representation =� � R � S2 3 (`; s), the null bg-geodesi segmentsimbedded in =� are all of the urvesJ 3 ` 7! (�`+ �; s) ; for onstants � 6= 0; � 2 R, s 2 S2, and some interval J � R. (9)In this setion, in the hypotheses of de�nition 3.1, we selet a subgroup SG=� of physially relevantisometries of =�. We shall see in Proposition 3.3 that, as matter of fat, SG=� ontains the isometriesgenerated by Killing vetors obtained as a limit towards =� of (all possible) Killing vetors of (M; g),when these vetors tend to beome tangent to =�. As a preliminary proposition, it holds:Proposition 3.2. If (M; g;
; X; ) is an expanding universe with osmologial horizon and Y is aKilling vetor �eld of (M; g), Y an be extended to a smooth vetor �eld bY de�ned on M and(a) LbY bg = 0 on M [ =�;(b) eY := bY �=� is uniquely determined by Y , and it is tangent to =� if and only if g(Y;X) vanishesapproahing =� from M . Restriting to the linear spae of the Killing �elds Y on (M; g) suh thatg(Y;X)! 0 approahing =�, the following further fats hold.() If eY vanishes in some A � =� and A 6= ; is open with respet to the topology of =�, then Y = 0everywhere in M as well as bY in M [ =�.(d) The linear map Y 7! eY is injetive, i.e. Killing vetors of (M; g) are represented on =� faithfullyThe proof of the proposition above is given in the Appendix.The statements (a) and (b) of Proposition 3.2 establish that the Killing vetors Y inM with g(Y;X)! 0approahing =� extend to Killing vetors of (=�; h), h being the degenerate metri on =� indued by bg.9



Sine the vetor �elds bY tangent to =� admit =� as invariant manifold, we an de�neDe�nition 3.2. If (M; g;
; X; ) is an expanding universe with osmologial horizon, a Killing vetor�eld of (M; g), Y , is said to to preserve =� if g(Y;X) ! 0 approahing =�. Similarly, the Killingisometries of the (loal) one-parameter group generated by Y are said to preserve =�.In the rest of this part we shall onsider the one-parameter group of isometries of (=�; h) generated by suhKilling vetors bY �=� . These isometries amount to a little part of the huge group of isometries of (=�; h).For instane, referring to the representation (`; s) 2 R � S2 � =�, for every smooth di�eomorphismf : R ! R, the transformation `! f(`); s! s is an isometry of (=�; h). However only di�eomorphismsof the form f(`) = a` + b with a 6= 0 an be isometries generated by the restrition bY �=� to =� ofextensions of Killing �elds Y of (M; g) as in the proposition 3.2. This is beause those isometries arerestritions of isometries of the manifolds-with-boundary (M [f=�g; bg�M[f=�g), and thus they preservethe null bg-geodesis in =�. These geodesis have the form (9). The requirement that, for every onstantsa; b 2 R, a 6= 0, there must be onstants a0; b0 2 R, a0 6= 0 suh that f(a`+ b) = a0`+ b0 for all ` varyingin a �xed nonempty interval J , is ful�lled only if f is an aÆne transformation as said above. We relaxnow the onstraints on the above transformations allowing them also to be dependant on the angularoordinates. Hene we aim to study the lass G=� of di�eomorphisms F : =� ! =�`! `0 := f(`; s) ; s! s0 := g(`; s) with ` 2 R and s 2 S2, (10)suh that: (i) they are isometries of the degenerate metri h indued by bg �=� (8) and (ii) they may berestritions to =� of isometries of bg in M [ =�.Assume that F 2 G=� . The urve  : R 3 ` ! s(`) � (`; s) (with s 2 S2 arbitrarily �xed) is a nullgeodesi forming =�, therefore R 3 `! F (s(`)) has to be, �rst of all, a null urve. In other wordsbg�=���f�` ��` + �g�` ��� + �g�` ���; �f�` ��` + �g�` ��� + �g�` ���� = 0 :Using (8) and arbitrariness of s � (�; �), it implies that g does not depend on ` sine the standard metrion the unital sphere is stritly positive de�nite. The map g has to be an isometry of S2 equipped with itsstandard metri. In other words g 2 O(3). Moreover, R 3 `! F (s(`)) = (f(`; s); g(s)) has to be a nullgeodesi whih belongs to =�. As a onsequene of (2) in remark 3.1, (f(`; s); g(s)) = ((s)`+ b(s); g(s))for some �xed numbers (s); b(s) 2 R with (s) > 0, and for every ` 2 R. Summarising, it must beg(`; s) = R(s) for all `; s and f(`; s) = (s)` + b(s), for all `; s, for some R 2 O(3), ; b 2 C1(S2) with(s) 6= 0. It is obvious that, onversely, every suh a di�eomorphism ful�ls (i) and (ii).Remark 3.2. (1) By diret inspetion one sees that the lass G=� of all di�eomorphisms F as above isa group with respet to the omposition of di�eomorphisms.(2) Only transformations F 2 G=� , assoiated with R lying in the omponent onnet to the identity ofO(3), i.e., SO(3) belong to a one-parameter group of isometries indued by Killing vetors in M .From now on we shall restrit ourselves to the subgroup of G=� whose elements are onstruted usingelements of SO(3) and eah element of the one-parameter group of di�eomorphisms generated by a vetor�eld Z will be denoted by expftZg being t 2 R.De�nition 3.3. The horizon symmetry group SG=� is the group (with respet to the ompositionof funtions) of all di�eomorphisms of R � S2,F(a;b;R) : R � S2 3 (`; s) 7! �ea(s)`+ b(s); R(s)� 2 R � S2 with ` 2 R and s 2 S2, (11)10



where a; b 2 C1(S2) are arbitrary smooth funtions and R 2 SO(3).The Horizon Lie algebra g=� is the in�nite-dimensional Lie algebra of smooth vetor �elds on R �S2generated by the �elds S1 ; S2 ; S3 ; ��` ; `��` ; for all �; � 2 C1(S2).S1; S2; S3 indiate the three smooth vetor �elds on the unit sphere S2 generating rotations about theorthogonal axes, respetively, x, y and z.It is worth notiing that SG=� depends on the geometri struture of =� but not on the attahedspaetime (M; g), whih, in priniple, ould not even admit any Killing vetor preserving =�. In thissense SG=� is a universal objet for the whole lass of expanding spaetimes with osmologial horizon.SG=� may be seen as an abstrat group de�ned on the set SO(3)�C1(S2)�C1(S2), without refereneto any expanding spaetime with osmologial horizon (M; g). Adopting this point of view, if we indiateFa;b;R by the abstrat triple (R; a; b), the omposition between elements in SG=� reads(R; a; b)(R0; a0; b0) = �RR0; a0 + a ÆR0; eaÆR0b0 + b ÆR0� ; (12)for any (R; a; b); (R0; a0; b0) 2 SO(3) � C1(S2) � C1(S2) and where Æ denotes the usual omposition offuntions.The relationship between SG=� and g=� is lari�ed in the following proposition.Proposition 3.3. Referring to the de�nition 3.3, the following fats hold:(a) Eah vetor �eld Z 2 g=� is omplete and the generated global one-parameter group of di�eomor-phisms of R � S2, fexpftZggt2R, is a subgroup of SG=� .(b) For every F 2 SG=� there are Z1; Z2 2 g=� { with, possibly, Z1 = Z2 { suh that F =expft1Z1g expft2Z2g for some real numbers t1; t2.The proof of this proposition is in the Appendix.Furthermore, we have the following important result whih �nally makes expliit the interplay betweenKilling vetors Y in M preserving =�, the group SG=� and the Lie algebra g=� .Theorem 3.1. Let (M; g;
; X; ) be an expanding universe with osmologial horizon and Y a Killingvetor �eld of (M; g) preserving =�. The following holds.(a) The restrition of the unique smooth extension eY of Y to =� (see Prop. 3.2) belongs to g=� .(b) fexpfteY ggt2R is a subgroup of SG=� .The proof of this theorem is in the Appendix.As an example onsider the expanding universe M with osmologial horizon assoiated with the metrigFRW (2) with � = 1 and a as in (4). In this ase X := �� and there is a lot of Killing vetorsY of (M; gFRW ) satisfying gFRW (Y;X) ! 0 approahing =�. The most trivial ones are all of theKilling vetors of the surfaes at � =onstant with respet to the indued metri. We have here a Liealgebra generated by 6 independent Killing vetors Y assoiated, respetively, spae translations andspae rotations. In this ase gFRW (Y;X) = 0 so that the assoiated Killing vetors bY �=� belongs tog=� . This is not the whole story in the sharp ase a(�) = =� with  < 0 whih orresponds to theexpanding de Sitter spaetime. Indeed, in this ase, there is another Killing vetor B of gFRW ful�llinggFRW (B;X) ! 0 approahing =�. It is B := ��� + r�r . B, extended to M [ =�, gives rise to thestruture of a bifurate Killing horizon [KW91℄.A last tehnial result, proved in the Appendix and useful in the forthoming disussion, is11



Proposition 3.4. Let (M; g;
; X; ) be an expanding universe with osmologial horizon and Y asmooth vetor �eld of (M; g) whih tends to the smooth �eld eY 2 g=� pointwisely.If there is an open set A � M with A � =� where Y �A\M is timelike and future direted, then, everywhereon =�, eY (`; s) = f(s)�` ; for some f 2 C1(S2), with f(s) � 0 on S2. (13)4 Preferred states indued by the osmologial horizon.In this setion (M; g;
; X; ) is an expanding universe with osmologial horizon. Sine (M; g) is globallyhyperboli per de�nition, one an study properties of quantum �elds propagating therein, following thealgebrai approah in the form presented in [KW91, Wa94℄.4.1. QFT in the bulk. Consider real linear bosoni QFT in (M; g) based on the sympleti spae(S(M); �M ), where S(M) is the spae of real smooth, ompatly supported on Cauhy surfaes, solutions' of P' = 0 ; where P is the Klein-Gordon operator P = 2+ �R+m2 : (14)with 2 = �rara, m > 0 and � 2 R onstants. The nondegenerate, Cauhy-surfae independent,sympleti form �M is:�M ('1; '2) := ZS ('2rN'1 � '1rN'2) d�(S)g 8'1; '2 2 S(M) ; (15)S being any Cauhy surfae ofM with normal unit future-direted vetor N and 3-volume measure d�(S)gindued by g. As is well known [BR021, BR022℄, it is possible to assoiate anonially any sympletispae, for instane (S(M); �M ), a Weyl C�-algebra, W(M) in this ase. This is, up to (isometri) �-isomorphisms, unique and its generatorsWM (') 6= 0, ' 2 S(M), satisfyWeyl ommutation relations(from now on we employ onventions as in [Wa94℄)WM (�') =WM (')� ; WM (')WM ('0) = ei�M (';'0)=2W ('+ '0) : (16)W(M) represents the basi set of quantum observable assoiated with the bosoni �eld � propagating inthe bulk spaetime (M; g).The main goal of this setion is to prove that the geometri strutures on (M; g;
; X; ) pik out avery remarkable algebrai state ! on W(M), whih, among other properties turns out to be invariantunder the natural ation of every Killing isometry of (M; g) whih preserves =�. This happens provideda ertain algebrai interplay between QFT in M and QFT on =� exists.4.2. Bosoni QFT on =� and SG=� -invariant states. Referring to =� � R � S2, onsiderS(=+) := � 2 C1(R � S2) ��  ; �` 2 L2(R � S2; d` ^ �S2(�; �)	 ; (17)�S2 being the standard volume form of the unit 2-sphere, and the nondegenerate sympleti form ��( 1;  2) := ZR�S2� 2 � 1�` �  1 � 2�` � d` ^ �S2(�; �) 8 1;  2 2 S(=+) : (18)12



As in the previous setion, we assoiate to (S(=�); �) the C�-algebraW(=�) whose generatorsW ( ) 6= 0satisfy the Weyl ommutation relations (16)Remark 4.1. Exploiting the given de�nitions, it is straightforwardly proved that (S(=+); �) is invariantunder the pull-bak ation of SG=� . In other words (i)  Æ g 2 S(=�) if  2 S(=�) and also (ii)�( 1 Æ g;  2 Æ g) = �( 1;  2) for all g 2 SG=� and  1;  2 2 S(=�). As a well known onsequene[BR022, BGP96℄, SG=� indues a �-automorphism G=� -representation � :W(=�) ! W(=�), uniquelyindividuated by linearity and ontinuity by the requirement�g(W ( )) :=W ( Æ g�1) ;  2 S(=�) and g 2 G=� : (19)Sine we are interested in physial properties whih are SG=� -invariant, we fae the issue about theexistene of �g-invariant algebrai states on W(=�) with g 2 SG=� .We adopt here the de�nition of quasifree state given in [KW91℄, and also adopted in [DMP06,Mo06, Mo07℄. Consider the quasifree state � de�ned on W(S(=�)) unambiguously de�ned as follows: if ;  0 2 S(=�), then�(W ( )) = e��( ; )=2 ; �( ;  0) := Re ZR�S22k�(k) b (k; �; �) b 0(k; �; �)dk ^ �S2(�; �) ; (20)the bar denoting the omplex onjugation, �(k) := 0 for k < 0 and �(k) := 1 for k � 0; here we haveused the `-Fourier-Planherel transform b of  :b (k; �; �) := ZR eik`p2� (`; �; �)d` ; (k; �; �) 2 R � S2 : (21)The onstraint j�( ;  0)j2 � 4 �( ;  )�( 0;  0) ; for every  ;  0 2 S ; (22)whih must hold for every quasifree state (see Appendix A in [Mo06℄), is ful�lled by the salar produt �, asthe reader an verify by inspetion exploiting (21) and the de�nition of � Consider the GNS representationof �, (H;�;�). Sine � is quasifree, H is a bosoni Fok spae F+(H) with yli vetor � given by theFok vauum and 1-partile Hilbert H spae obtained as the Hilbert ompletion of the omplex spaegenerated by the \positive-frequeny parts" � b =: K� , of every wavefuntion  2 S(=�), with thesalar produt h�; �i individuated by �, as stated in (ii) of Lemma A1 in the Appendix A of [Mo06℄. Inour ase hK� ;K� 0i = ZR�S2 2k�(k) b (k; �; �) b 0(k; �; �)dk ^ �S2(�; �): (23)The map K� : S(=�) ! H is R-linear and has a dense omplexi�ed range. A state similar to �, anddenoted by the same symbol, has been de�ned on =+ ' R � S2 in [DMP06, Mo06, Mo07℄1 and, barringminor adaption, it enjoys exatly the form (20). Therefore, we an make use of Theorem 2.12 in [DMP06℄we know that � is pure. Furthermore the one-partile spae H of its GNS representation is isomorphito the separable Hilbert spae L2(R+ � S2; 2kdk ^ �S2).1In [DMP06, Mo06℄ a di�erent, but unitarily-equivalent, Hilbert spae representation was used referring to the measuredk instead of 2kdk. Features of Fourier-Planherel theory on R� S2 were disussed in the Appendix C of [Mo07℄.13



The state � enjoys further remarkable properties in referene to the group SG=� . Partiularly, sine(H;�;�) is its GNS triple, � turns out to be invariant under the �-automorphisms representation (19)for all g 2 SG=� . In other words �(�g(A)) turns out to be equal to �(a) for all A 2 W(=�) and forall g 2 SG=� as it an be realized out of the straightforward extension to the whole algebra of the thefollowing unitary ation V of SG=� on the one-partile Hilbert spae H:�V(R;a;b)'� (k; s) := ea(R�1(s))e�ikb(R�1(s))'�ea(R�1(s))k;R�1(s)� for all ' 2 H ; (24)being g = (R; a; b) 2 SG=� and s = (�; �). Furthermore, by standard manipulation, one an realize thatthe unique unitary representation U : SG=� 3 g 7! Ug that implements � in H while leaving � invariant,preserves H and it is unambiguously determined by U�H. U has the following tensorialised formU = I � U�H �(U�H 
 U�H)� (U�H 
 U�H 
 U�H)� � � � (25)Finally the restrition of U on the one-partile Hilbert spae H is an irreduible representation.A seond important result onerns the positive-energy/uniqueness properties of �. In MinkowskiQFT positivity of energy, is a stability requirement and in general spaetimes the notion of energy isassoiated to that of a Killing time. This interpretation an be extended to this ase too, namely to thetheory on =�. The positive-energy requirement is ful�lled for the \asymptoti" notion of time assoiatedto the limit values eY towards =� of a timelike future-direted vetor �eld Y inM , when eY 2 g=� . Notiethat Y may not be a Killing vetor outside =�; it is enough that Y ! eY 2 g=� . This inludes the aseY = X in partiular, due to Proposition 3.1.In the following, fexpftZggt2R is the one-parameter subgroup of G=� generated by any Z 2 g=� andf�(Z)t gt2R is the assoiated one-parameter group of �-automorphisms of W(=�) (19).Proposition 4.1. Consider an expanding universe with osmologial horizon (M; g;X;
; ), thequasifree, pure, SG=� -invariant state � on W(=�) de�ned in (20) and a timelike future-direted ve-tor �eld Y in M suh that Y ! eY 2 g=� pointwisely approahing =� (Y = X in partiular, in view ofProposition 3.1). The following holds.(a) The unitary group fU (eY )t gt2R whih implements �(eY ) leaving �xed the yli GNS vetor in the GNSrepresentation of � is strongly ontinuous with nonnegative self-adjoint generator H(eY ) = �i ddtsU (eY )t jt=0.(b) The restrition of H(eY ) to the one-partile spae has no zero modes if and only if eY vanishes on azero-measure subset of =� .Proof. From Proposition 3.4 one has that eY (`; s) = f(s)�` for some non negative smooth funtionf : S2 ! R. Therefore expftbY g amounts to the displaement (`; s) ! (` + f(s)t; s). As a onsequeneof the previous disussion, the one parameter group �(eY ) is unitarily represented by fU (eY )t gt2R. U (eY )tis the tensorialisation (as in (25)) of the (representation of the) unitary group in the one-partile spaeVt : H! H, with (Vt�)(k; s) = eitkf(s) (k; s) = �eith( eY ) � (k; s) ; for all � 2 H.From standard theorems of operator theory one obtains that R 3 t 7! Vt is strongly ontinuous with self-adjoint generator h(eY ), in the one-partile spae H = L2(R+ � S2; 2kdk ^ �S2), given by (h(eY )�)(k; s) =kf(s)�(k; s), de�ned in the dense domains D(h(eY )) made of the elements of the Hilbert spae L2(R+ �14



S2; 2kdk ^ �S2) suh that the right-hand side belongs to L2(R+ � S2; 2kdk ^ �S2). It is so evident that,sine f � 0, for every  2 D(H)h�; h(eY )�i = Z +10 2kdk ZS2 �S2(s)j�(k; s)j2kf(s) � 0 ; (26)and thus �(h(eY )) � [0;+1). Passing to the whole Fok spae by (25) the result remains unhanged forthe whole generator H(eY ) = 0+h(eY )� I 
 h(eY )�h(eY )
 I � � � � using standard properties of generators.The last statement is a trivial onsequene of (26) using eY = f�`. 2The result applies in partiular for eY = �`, sine it is always possible to view �` as the limit value of sometimelike vetor �eld ofM . For expanding universes with osmologial horizon as desribed in setion 2.2,if X := ��� , then X ! �` while approahing =�. In this above ase the energy-positivity propertyapplies for X and there are no zero modes.This is not the whole story, sine the positive-energy property for �`, determines ompletely �.Theorem 4.1. Consider the state � de�ned in (20) and its GNS representation. The following holds.(a) The state � is the unique pure quasifree state on W(=�) satisfying both:(i) it is invariant under �(�`),(ii) the unitary group whih implements �(�`) leaving �xed the yli GNS vetor is strongly ontinu-ous with nonnegative self-adjoint generator (energy positivity ondition).(b) Eah folium of states on W(=�) ontains at most one pure �(�`)-invariant state.Proof. The proofs of (a) and (b), though rather tehnial, are idential to those of the orrespondingstatements in Theorem 3.1 of [Mo06℄, where, in the ited proof, F refers to a Bondi frame. This holdssine the self-adjoint generator of the unitary group t 7! Ut, implementing f�(�`)t gt2R and leaving �invariant, is the tensorialisation of the positive self-adjoint generator H ating in the one-partile spaeL2(R+ � S2; 2kdk ^ �S2) as (H b )(k; �; �) = k b (k; �; �). Note that H is de�ned in the dense domainsof the elements of the Hilbert spae L2(R+ � S2; 2kdk ^ �S2) suh that the right-hand side is still inL2(R+ � S2; 2kdk ^ �S2). Hene �(H) = �(H) = [0;+1).The ation of the one-parameter subgroup R 3 t 7! g(�`)(t) of G=� on �elds de�ned on =� oinidesexatly with the one-parameter subgroup of the BMS group on �elds de�ned on =�. Furthermorealso the unitary representations of SG=� and of the BMS group are idential when restrited to thosesubgroups. 24.3. Interplay of QFT in M and QFT on =�. While in the previous setion we have shown that itexists a preferred quasifree pure state � invariant under the ation of SG=� and enjoying some uniquenessproperties, we wonder now if it is possible to indue a state �M on the algebra of �eld observables inthe bulk starting from �. If this is the ase, we would expet �M to ful�l some invariane propertieswith respet to the possible isometries individuated by Killing vetors whih preserve =�. To this avail,we onentrate beforehand on algebrai properties, establishing the existene of a nie interplay betweenW(=�) andW(M) under suitable hypotheses on the onsidered sympleti forms. That interplay will beused to de�ne �M in the next subsetion.The sympleti form �M on S(M) de�ned in (15) an be equivalently rewritten as the integral of a 3-form,�M ('1; '2) := ZS �('1; '2) = ZS 16 ('1r�'2 � '2r�'1) p�bg ���� dx� ^ dx� ^ dx ; (27)where ���� is the totally antisymmetri Levi Civita symbol, S is a future oriented Cauhy surfae andthe seond equality holds in any loal oordinate path.15



Notie that, even though S is moved bak in the past and it seems to tend to oinide with =�, this isnot neessarily the ase, sine =� and Cauhy surfaes inM may have di�erent topologies. In partiular,information ould get lost through the time-like past in�nity i�, the tip of the one representing =�.That point does not belong to M in our hypotheses. However one may expet that, in ertain ases atleast, assuming that eah 'i extends to �'i 2 S(=�) smoothly, it holds�M ('1; '2) = Z=� �(�'1;�'2) : (28)Now, by diret inspetion one veri�es that, for  1;  2 2 S(=�),Z=� �( 1;  2) = 2 ZR�S2� 2 � 1�` �  1 � 2�` � d` ^ �S2(�; �) ; (29)where  is the last onstant in (M; g;
; X; ). Following this way one is led to expet that�M ('1; '2) = �(�'1; �'2) : (30)Notie that this result is by no means trivial and it might not hold, sine it stritly depends on thebehaviour of the solutions of Klein-Gordon equations aross =�.Here we investigate the onsequenes of (30) under the hypothesis that suh an identity holds true.The existene of � : S(M) ! S(=�) ful�lling (30) implies the existene of a isometri �-homomorphism{ : W(M) ! W(=�). In this way the �eld observables of the bulk are mapped into observables of thetheory on =�. Moreover, the state � on =� indues a preferred state �M on W(M) via pull-bak. Thisstate enjoys interesting invariane properties with respet to the symmetries of (M; g) whih preserve=�, as well as a positivity property with respet to timelike Killing vetors of M whih preserve =�.Theorem 4.2. Consider an expanding universe with osmologial horizon (M; g;X;
; ) and supposethat every ' 2 S(M) extends smoothly to some �� 2 S(=�) in order that (30) holds true:�M ('1; '2) = �(�'1; �'2) ; for every '1; '2 2 S(M).In these hypotheses, there is an (isometri) �-homomorphism { : W(M) ! W(=�) that identi�es theWeyl C�-algebra of the bulk M with a sub C�-algebra of the boundary =�; it is ompletely determined bythe requirement: { (WM (')) :=W (�') ; for all ' 2W(M). (31)Proof. Notie that the linear map � : S(M) ! S(=�) has to be injetive due to nondegeneratenessof � and (30). Consider the sub Weyl-C�-algebra AM of W(=�) generated by the elements W (�')with ' 2 S(M). Sine Weyl C�-algebras are determined up to (isometri) �-algebra isomorphisms, AMis nothing but the Weyl C�-algebra assoiated with the sympleti spae (�(S(M)); �) and the map� : S(M) ! �(S(M)) is an isomorphism of sympleti spaes. Under these hypotheses [BR022℄, thereis a unique (isometri) �-isomorphism { :W(M)! AM �W(=�) ompletely individuated by (31). 24.4. The preferred invariant state �M . We proeed to show that, in the hypotheses of Theorem 4.2, apreferred state �M on W(M) is indued by �. That state enjoys very remarkable physial properties.From now on, if Y is a omplete Killing vetor of (M; g), the assoiated one-parameter group of g-isometries, fexpftY ggt2R, preserves under pull-bak ation �M . Hene [BR022, BGP96℄ there is a uniqueisometri �-isomorphism �(Y )t :W(M)!W(M) indued by�(Y )t (WM (')) :=WM (' Æ expf�tY g) ; for every ' 2 S(M).16



In the following we shall all �(Y ) := f�(Y )t gt2R the natural �-isomorphism ation of fexpftY ggt2Ron W(M). Similarly, every Z 2 g=� has a natural ation �(Z) on W(=�) in terms of isometri�-isomorphism, obtained by requiring,�(Z)t (W ( )) :=W ( Æ expf�tZg) ; for every  2 S(=�),sine the pull-bak ation of fexpftZggt2R, generated by Z on �elds of S(=�) preserves �.To stress a further important point, let us onsider an expanding universe with osmologial horizon(M; g;X;
; ) and let us suppose that every ' 2 S(M) extends smoothly to some �' 2 S(=�) in orderthat (30) holds true. In this ase there is a uniquely de�ned smooth funtion b' de�ned on M [=�, thatredues to ' in M and to �' on =�. If Y is a omplete Killing vetor of (M; g) preserving =�, the oneparameter group generated by its unique extension bY to M [=� (Proposition 3.2 and Theorem 3.1) atson b' globally. Taking the relevant restritions of salar �elds and Killing vetor �elds we obtain:(�') Æ expfteY g = � (' Æ expftY g) ; (32)where, as usual, eY := bY �=� . As a straightforward onsequene it holds{��(Y )t (a)� = �(eY )t ({(a)) ; for all a 2W(M) and t 2 R : (33)Theorem 4.3. Consider an expanding universe with osmologial horizon (M; g;X;
; ) ful�lling thehypotheses of Theorem 4.2. Let �M : W(M) ! C be the state indued by � de�ned in (20) through theisometri �-homomorphism { (31):�M (a) := �({(a)) ; for all a 2W(M). (34)�M enjoys the following properties:(a) Whenever (M; g) admits some omplete Killing vetor �eld Y preserving =�, then letting �(Y ) be thenatural ation on W(M), �M is invariant under �(Y ) and the unitary one-parameter group fU (Y )t gt2R,whih implements �(Y ) in the GNS representation of �M leaving �xed the yli vetor, is strongly on-tinuous.(b) If Y above is everywhere timelike and future-direted in M , then (i) the one-parameter groupfU (Y )t gt2R has positive self-adjoint generator, (ii) that generator has no zero-modes in the one-partilesubspae, if eY = 0 on a zero-measure subset of =�.Remark 4.2. As notied before Proposition 4.1, positivity of energy is a stability requirement. Thestatement (b) of the theorem assures that, in the presene of a timelike Killing vetor out of whihde�ning the notion of energy, if it preserves =�, the ondition of energy positivity holds true. If suha timelike Killing vetor is absent, then Proposition 4.1 assures nonetheless the validity of a positivity-energy ondition, partiularly with respet to the onformal Killing vetor X .4.5. Testing the onstrution for the de Sitter ase and for other FRW metris. We proeed to showthat the hypotheses of Theorem 4.2 are valid when (M; g;X;
; ) is in the lass of the FRW metrisonsidered in setion 2.2, so that the preferred state �M exists for those spaetimes. That lass inludesthe expanding region of de Sitter spaetime (see [BMG94, BM96℄ for a related analysis in the frameworkof Wightman's axioms). We shall verify, in this last ase, that the preferred state �M is nothing but thewell-known de Sitter Eulidean vauum or Bunh-Davies state, !E [SS76, BD78, Al85℄. Let us start withde Sitter senario. The expanding de Sitter region isM ' (�1; 0)� R3 ; g = a2(�) ��d� 
 d� + dr 
 dr + r2dS2(�; ')� ; (35)17



where � 2 (�1; 0) and where r; �; � are standard spherial oordinates on R3 , whereas a(�) = =� forsome onstant  < 0, so that and R = 12=2. A lass of, generally omplex, solutions �k, k 2 R3 of (14)is2 �k(�;x) := eik�x(2�)3=2 �k(�)a(�) ; (36)where, aording to [SS76℄, it holds�k(�) := 12p��� ei��=2H(2)� (�k�) ; where � :=r94 � 12(m2R�1 + �) (37)being k := jkj and H(2)� is the seond-type Hankel funtion. The sign in front of the square root inthe de�nition of � (whih may be imaginary) does not a�et the right-hand side of (37) and it ouldbe �xed arbitrarily (either for � real or imaginary). With these hoies one �nds the time-independentnormalisation d�k(�)d� �k(�) � �k(�)d�k(�)d� = i ; for all � 2 (�1; 0). (38)Let us now show how !E is de�ned. To this end, take any ' 2 S(M) and a Cauhy surfae �� in (M; g)at �xed � . De�nee'(k) := �i ZR3 "��k(�;x)�� '(�;x) � �k(�;x)�'(�;x)�� # a(�)2dx; : (39)where, per diret inspetion, the right-hand side of (39) does not depend on the hoie of � .Furthermore, H(2)� (z) deays as z�1=2 as jzj ! 1, e' 2 C1(R3 nf0g) and it vanishes for jkj ! 1 fasterthan every power jkj�n, n 2 N. From the known behaviour of the funtions H(2)� (z) in a neighbourhoodof z = 0 [GR95℄, one sees both that the leading divergene as k ! 0 due to the funtions �k is oforder jkj�jRe�j and that je'j2, as well as je'j, is integrable with respet to dk whenever jRe�j < 3=2 or,equivalently, m2 + �R > 0. One one onstruts e' out of (39), then ' is'(�;x) = ZR3 h�k(�;x)e'(k) + �k(�;x)e'(k)i dk : (40)This holds out of (36), (38), (39), and of the properties of Fourier transform for funtions in C10 (R3 ).Sine when m2 + �R > 0 and ' 2 S(M), e' 2 L2(R3 ; dk) \ L1(R3 ; dk) then� 2Im�ZR3 e'1(k)e'2(k)dk� = ZR3('2��'1 � '1��'2) a2(�)dx =: �M ('1; '2) 8'1; '2 2 S(M) : (41)The (restrition to M of the) Eulidean vauum in de Sitter spae is nothing but the quasifree state!E on W(M) ompletely identi�ed by!E(WM (')) = e� 12 RR3 e'(k)e'(k) dk ; for every ' 2 S(M). (42)2The form of the modes as presented in [BD78, BD82℄ is di�erent both sine in [SS76, BD78℄ the ontrating region ofde Sitter spaetime was onsidered and due to the absene of the overall exponential exp�i��=2, whih would a�et the�nal results and the normalisation (38) for � imaginary, but not the �nal form of the two-point funtion.18



Notie that the onstraint (22) is automatially ful�lled in view of (41).Remark 4.3. The maximally extended de Sitter spaetime an be realized by glueing together twoisometri spaetimes { one expanding and the other ontrating, when moving towards the future { onthe ommon osmologial horizon. The obtained spaetime is maximally symmetri and admits SO(1; 5)as group of isometries. The state !E extends to a globally de�ned state on the whole de Sitter spaetime[Al85℄ and suh a state is O(1; 5)-invariant, hene it is invariant also under symmetries whih do notpreserve the horizon.Theorem 4.4. Consider the expanding universe (M; g;X;
; ) given by (35) with a(�) = =� . Con-sider a quantum salar Klein-Gordon �eld propagating in (M; g) with m2 + �R > 0. Then,(a) If m2 + �R > 548R (see also Remark 4.4), every ' 2 S(M) extends smoothly to some �� 2 S(=�),(30) holds true and(b) �M on S(M) oinides with the restrition to M of !E.The proof will be given in the appendix.Remark 4.4. The requirement m2 + �R > 548R, i.e. jRe�j < 1 is used to assure that �' 2 S(=�) if' 2 S(M). Atually the requirement an be dropped preserving only m2+ �R > 0 if we hange de�nition(15) of S(=�), namelyS(=�) := � 2 C1(R � S2) ���� ZR�S2 j b (k; �; �)j2jkj dk ^ �S2(�; �) < +1�where b indiates the Fourier-Planherel transform of the Shwartz distribution  (as disussed in theAppendix C of [Mo07℄). Then the sympleti form on =� ould be de�ned Fourier transforming alongthe R-diretion (18). In this way, the identity (18) would hold true in a weaker limit sense, employing asuitable regularisation of  1 and or  2 by means of sequenes of smooth ompatly supported funtions.Then the onstrution of � on W(=�) and of its GNS triple as well as the uniqueness/positive energytheorems would losely resemble to our previous analysis.To onlude we have the last promised theorem proved in the Appendix: The hypotheses of Theorem4.2 are ful�lled, and thus �M is de�ned, for FRW metris as desribed in setion 2.2 with a(�) as in (4),provided the mass m of the Klein-Gordon �eld and/or the onstant � are large enough.Theorem 4.5. Consider a quantum salar Klein-Gordon �eld ', satisfying (14) and propagating inan expanding universe (M; g;X;
; ). Consider a(�) as in (4) and with �a(�) = 2=�3+O(1=�4) in suha way that R = 12=2 +O(1=�), then, ifM ' (�1; 0)� R3 ; g = a2(�) ��d� 
 d� + dr 
 dr + r2dS2(�; ')� ;� 2 (�1; 0) and r; �; � standard spherial oordinates on R3 , X = �� and 
 = a(�) = =� + O(1=�2)as � ! �1 for some onstant  < 0.), whenever m22 + 12� > 2, every ' 2 S(M) extends smoothly tosome �� 2 S(=�) and (30) holds true.Remark 4.5. (1) Theorem 4.5 is also valid relaxing the hypothesis to the ase � = 1=6 and m = 0. Inthis ase the proof is similar to that of the ase studied in [DMP06, Mo06℄.(2) The validity of Hadamard property for the states �M will be investigated in a forthoming paper.However, a �rst srutiny shows that it does hold for the states �M onsidered in Theorem 4.5 providedthe two-point funtion of suh a state is a distribution of D0(M �M). The proof is similar to the one in19



[Mo07℄. The distributional requirement is ful�lled if the funtions �', ' 2 S(M), satisfy a suitable deayproperty as `! �1.5 Conlusions and open issues.In this manusript, we were able to prove that, imposing some suitable onstraints on the expansion fatora(t), the FRW bakground an be extended to a larger spaetime whih enompasses the osmologialhorizon. Suh struture is later generalised in de�nition 3.1 where we introdue a novel notion of anexpanding universe (M; g) with geodesially omplete osmologial past horizon =�. It is worth to stressthat, in the set of bakgrounds we are taking into aount, besides the onformal fator 
, a relevant roleis played by a future oriented timelike vetor X whih is a onformal Killing vetor for the metri g. As abyprodut of these geometri properties, we were able to onstrut expliitly the struture of the subgroupSG=� of the isometry group of =�, i.e., the iterated semidiret produt SO(3) n �C1(S2)n C1(S2)�.Suh a result suggests us that one ould hope to readapt in this framework some of the properties of asalar quantum �eld theory as disussed in [DMP06, Mo06, Mo07℄.In fat, using only the universal struture of =�, we was able to selet, for the theory on the horizon, apreferred state � whih is quasi-free and pure. � is the unique state whih, besides the previous properties,is also invariant under the ation of the horizon symmetry group; atually, uniqueness for pure quasifreestates on W(=�) holds with the only hypotheses of invariane with respet to the one-parameter groupgenerated by �` and a more general uniqueness property is valid as disussed in Theorem 4.1. Moreover,for any future oriented timelike vetor �eld Y in the bulk suh that it projets on the horizon to eY , i.e. a generator of the Lie algebra of SG=� , then the unitary group of operators implementing the ationof eY on the GNS representation of � is strongly ontinuous with a non negative self-adjoint generator.Finally the one-partile spae in the GNS representation of the state � turns out to be an irreduiblerepresentation of the group of horizon symmetries SG=� .In setion 4, we onsidered a generi massive salar Klein-Gordon equation with an arbitrary ouplingto urvature. Under the assumption that eah solution of suh an equation for ompatly supportedinitial data projets on the horizon to a rapidly dereasing smooth funtion - say  - and that suh aprojetion preserves a suitable sympleti form, then we were able to draw some interesting onlusions.As a �rst step the projetion map between lassial �elds extends also at a level of Weyl algebras, namelywe an embed the bulk Weyl C�-algebra as a C�-subalgebra of the horizon ounterpart. Furthermore suhan embedding between Weyl algebras an be exploited in order to pull-bak � to a bulk state �M whihis still quasi-free and invariant under the ation of any bulk isometry whih preserves the osmologialhorizon. Furthermore, whenever the Killing vetor is everywhere future oriented and timelike, thanthe one-parameter group of unitary operators implementing suh an ation is positive with self-adjointgenerator.As previously mentioned these results hold true under ertain hypotheses whih we tested in setion 4.6where we studied the behaviour of solutions for the Klein-Gordon equation of motion with an arbitraryoupling to urvature both in the de-Sitter and in the FRW bakground. Our analysis shows { seetheorem 4.6 { that the hypotheses made at the beginning of setion 4, hold true at least whenever ertainonditions between the relevant parameters in the equation of motion are satis�ed. In the deSitter ase�M oinides with the well-known Eulidean Bunh-Davies vauum.On the overall we feel safe to laim that the analysis we performed proves that the investigation ofa quantum �eld theory in a suitable osmologial bakground by means of an horizon ounterpart is aviable option. Hene, as a future perspetive, one would hope as a �rst step to extend the domain ofappliability of theorem 4.6, and later to further disuss the properties for the bulk state. In partiularour long-term aim is to prove both that �M is pure and that it is Hadamard so that it an be used in20



renormalisation proedures, espeially for the stress energy tensor [Wa94, Mo03, HW05℄. Furthermorewe should also investigate possible relations with the adiabati states often exploited in the study of�eld theories on FRW bakgrounds [JS02, LR90, Ol07, Pa69℄. Conerning the validity of Hadamardproperty, it holds true for �M when M is deSitter spaetime sine in this ase �M is the Eulideanvauum. However, a �rst srutiny shows that it does hold for all the states �M onsidered in Theorem4.5 provided the two-point funtion of suh a state is a distribution of D0(M �M). The proof is almostthe same as that preformed in [Mo07℄.At last but not at least, it would be interesting to extend our results to interating �elds. From aphysial perspetive this would be the most appealing senario sine, as mentioned in the introdution,nowadays osmologial models are often based upon a single salar �eld whose dynami is governedby a non trivial potential. It ould also be worth to investigate possible appliations of our results tothe desription of dark matter. Being weakly interating, it is feasible to model it, at least in a �rstapproximation, as a free quantum salar �eld on a urved bakground. Although here we do not addressall the above mentioned topis, we believe that this manusript ould be a nie �rst step towards thisdiretion and we hope to disuss many if not all these mentioned points in a forthoming manusript.Aknowledgements.The work of C.D. is supported by the von Humboldt Foundation and that of N.P. has been supported bythe German DFG Researh Program SFB 676. We would like to thank K. Fredenhagen and R. Brunettifor useful disussions.A Proof of some tehnial results.Proof of Proposition 3.1. (a) If there were a smooth extension of X to M it would be unique byontinuity, moreover, by ontinuity again, it would de�ne a Killing vetor for bg when restriting to thesurfae =�, beause the right-hand side of (7) vanishes there. We, in fat, will prove the existene ofa smooth extension to the whole M . Coordinates (`;
; �; �) are de�ned in a neighbourhood U � M of=� = �M . Using the whole lass of smooth urves  : t ! (`0; t; �0; �0) where (`0; �0; �0) 2 R � S2 are�xed arbitrarily, and the transport equations [Ge77, Hal04℄_a bra bXb = _a� bFab + 12bgab b'� ; _a bra b' = _a bKa_a bra bFb = _a � bRbad bXd + bK[b bg℄a� ; _a bra bKb = _a � bXd brdbLab + b'bLab + 2 bRd(a bF b) d� (43)(where bLab := bRab� 16bgab bR) we an \transport" X , Fab = braXb� brbXa, 'bg := 12LX(bg), and Ka := bra'beyond =� in U . The transported �elds bX , bF , b', and bKa are nothing but the solutions of the �rst orderdi�erential equations (43), with initial onditions given by the known �elds X , F , ', K evaluated on a�xed smooth surfae 
 = 
(`; �; �) ompletely inluded in M \U . In M , bX oinides with X itself (andbF oinides with F itself and so on), sine every onformal Killing vetor �eld ful�ls transport equations(43) [Ge77, Hal04℄ and uniqueness theorem holds for solutions of ordinary di�erential equations. OutsideM one gets a smooth �eld bX anyway, due to the jointly dependene of solution of di�erential equationsfrom the initial data (assigned on a smooth surfae as well ). Obviously the onstruted �eld bX doesnot need to ful�l onformal Killing equations outside M . In this way we have onstruted a smoothextension bX of X on the open set M [ U inlosing =�, the further extension to M is now trivial, using21



standard smoothing tehnology. By ontinuity, L bX = 
�1X(
)bg must hold on =�. This means thatthe right-hand side smoothly extends there (to zero by hypotheses). In partiular, sine 
 = 0 on =�,bX(
) = 0 on =�. That is h bX�=� ; d
i = 0, and thus bX�=� is tangent to =� as wanted.The set on =� of the points where bX vanishes is losed sine bX is ontinuous. To onlude, we wish toprove that bX�=� annot vanish on every (nonempty) open set A � =� (otherwise it vanishes everywhereon =�, but this ase is not allowed by de�nition of X). Assume that there is suh A where bX �A= 0,take p 2 A and �x any other point q 2 =�, suh that there is a bg-geodesis,  � =�, joining p and q.We assume here that  is either a spae-like geodesis on S2 or a null-like geodesi at onstant angularvariables. We want to prove that bX(q) = 0 when bX�A= 0.If bX�A= 0, all the derivatives bra bXb vanish, in A, when a 6= 
, that is referring to diretions tangent to=�. However, on =� it holdsL bXbg = 0, by hypotheses. Writing down these equations expliitly, one �ndsthat bX = 0 on A implies br
 bXb = 0 if b 6= 
. However br
X
�=�= 0 holds sine both X
 = X(
) andX(
)=
 = X
=
 vanishes on =�. We have found that, in A, bFab = 0. Notie that ' = 0 in A, sine itis proportional to the limit of 
�1X(
) approahing =� whih vanishes by hypotheses. This also entailsthat bKa = 0 when a 6= 
, in A, that is bKa 6= 0 for a = ` at most, in A. Let k denote the value bK(p)for the onsidered �eld bX with bX�A= 0. Let us �nally fous on the di�erential equations (43 ) referredto the mentioned geodesi [0; 1℄ 3 t 7! (t). We argue that a solution, and thus the unique solution, forinitial data at p, bX(0) = 0, bFab(0) = 0, b'(0) = 0, bK(0) := k is bX(t) = 0, bFab(t) = 0, b'(t) = 0, bK(t), forall t 2 [0; 1℄, where the last funtion is the unique satisfying _a bra bKb = 0 with bK(0) := k. To prove itnotie that, inserting these funtions in (43), the equations redue to_a bKa = 0 ; _a bKb � _b bKa = 0 ; _a bra bKb = 0; (44)The �rst two equations are ertainly ful�lled at t = 0 by hypotheses, the third one determines K uniquelywith the initial ondition bK(0) := k. However also the �rst two equations are ful�lled on this solution inview of the fat that they are ful�lled at t = 0 and that _a bra _b = 0 sine we are dealing with a geodesi.We have found that, in partiular, X vanishes at q as wanted, sine X(1) = 0. With the same proedure,moving p and q about the original positions, we �nd that X vanishes in a open set Aq whih enlarges Aand it inludes q. Iterating the proedure, we an enlarge Aq in order to inlude any third point q0 2 =�,joined to q by means of a seond geodesis, so that X vanishes at q0 too. In view of the form (8) ofthe metri on =�, for every ouple of points p; q0 2 =�, there is always a sequene of three onseutivegeodesis, of the two above-mentioned types, joining p and q0. Therefore X vanishes everywhere on =�.(b) In a neighbourhood of =�, referring to oordinates 
; `; �; � one hasbX = f
�
 + f `�` + f��� + f��� :Approahing =� (i.e. as 
 = 0) one gets (1) f
 = 0, sine bX beomes tangent to =�. However one also�nds (2) �
f
�=�= 0 as a onsequene of (f
�f
�=�)=
 = 
�1X(
)! 0 approahing=�. Sine bX�=�is tangent to the null surfae =� and it is the limit of a timelike vetor, we also know that, at the pointswhere it does not vanish, it must be light-like and future direted. Sine bX �=�= f `�` + f��� + f���,the requirement bg( bX; bX)�=�= 0 implies that (3) f� = f� = 0 everywhere on =�, in view of the Bondiform of the metri on =�. Therefore (4) bX�=�= f `(0; `; �; �)�`. Using Bondi form of the metri again,the requirement (L bXbg)�=�= 0 produes immediately the onstraints �`f `�=�= 0 in view of (1),(2), (3),and (4), so that bX�=�= f(�; �)�`. Sine bX�=� annot vanish in any open set on =�, f annot vanishin any open set on S2. Sine f is smooth and thus ontinuous, the set f�1(0) must be losed. Sine,with our sign onvention for the Bondi metri, both X and �` are future oriented, f annot be negative. 222



Proof of Proposition 3.2. We start from the proofs of (a) and (b). If there were a smooth extension ofY toM =M [=� it would be unique by ontinuity and it would satisfy LbY bg = 0 up to =� by ontinuityagain. Therefore it is suÆient to establish the existene of a smooth extension to M to get the mostrelevant part of (a) and (b). The proof is essentially the same as done in the proof of Proposition 3.1,onerning the existene of the extension of the �eld X . Now, Y is a proper onformal Killing �eld sothat the transport equations (44) [Ge77, Hal04℄ redues to_a bra bYb = _a bFab and _a bra bFb = bRbad _a bY d ; (45)The proedure is exatly as that in the proof of Proposition 3.1 and, in this way, one obtains a smoothextention bY of Y on M and in partiular on =�. The ondition that bY is tangent to =� is hbY ; d
i = 0everywhere on =�. However gsb�b
 = (�`)s and X ! f�` approahing =�, for some nonnegative fun-tion f 2 C1(S2), as showed in Proposition 3.1. Therefore hbY ; d
if = lim!=� g(bY ;X). If the limitvanishes approahing =�, hbY ; d
i = 0 on the points (`; s) 2 R �S2 where f(s) 6= 0. This happens on anopen nonempty set B � S2. Therefore hbY ; d
i = 0 on R � B. Let (`0; s0) 62 R � B. Sine S2 n B hasno interior (see Proposition 3.1), there is a sequene R � B 3 (`0; sn) ! (`0; s0) as n ! 1. Continuityof (`; s) 7! hbY ; d
i(`; s) implies hbY ; d
i = 0 in R � (S2 n B) and, thus, everywhere. Conversely, if bY istangent to =�, then hbY ; d
i = 0 on =�, and hene lim!=� g(bY ;X) = hbY ; d
if = 0.To onlude, we prove the last statements: () and (d). Sine the map Y 7! bY �=� is linear by onstru-tion, (d) is a trivial onsequene of (). Let us prove (). If the onsidered spae is made of the zerovetor only, the proof of () is trivial. Assume that it is not the ase. To prove (), it is suÆient to provethat the identity bY �=�= 0 on a set A � =� whih is nonempty and open with respet to the topologyof =�, entails Y = 0 in M (and thus bY = 0 in M [ =� by ontinuity). Let us show it. Consider any�xed point p 2 M and a smooth path  from some q 2 A to p (it exists beause M is onneted and=� = �M). In view of the �rst order transport equations (45), Y (p) = bY (p) = 0 when both bY (q) andbFab(q) vanish. Let us show that it is the ase. Suppose that bY �=�= 0 on A as above. Using oordinates(`;
; �; �) about =�, one has that �a bY b�A= 0 if a 6= 
. On the other hand, the ondition LbY bgab = 0omputed on A, taking into aount bY �A= 0 and �a bY b �A= 0 if a 6= 
, yields �
 bY b �A= 0, so thatbra bY b�A= �
 bY b�A +b�ba bY �A= 0. Therefore Fab�A= 0 and it onludes the proof. 2Proof of Proposition 3.3. (a) If (s1; s2) are (loal) oordinates of a point s 2 S2, �x �; � 2 C1(S2)and real onstants r1; r2; r3. We wish to study the integral lines t 7! (`(t); s(t)) 2 R � S2 of the �eldZ(`; s) := (�(s)` + �(s))�` +P3k=1 rkSik�si on R � S2, with initial ondition (`0; s0). By onstrution,the omponents referred to the sphere do not depend on ` and thus, the orresponding equations an beintegrated separately. Sine P3k=1 rkSik�si is smooth and S2 is ompat, the integral lines t 7! s(tjs0)(here and heneforth js0 denotes the initial ondition at t = 0) must be smooth and omplete (i.e. de�nedfor t 2 (�1;+1)), in view of well-known theorems of di�erential equations on manifolds. Then assumethat the smooth funtion R 3 t ! s(tjs0) is known (omputed as above). The remaining di�erentialequation reads d`dt = �(s(tjs0))`+ �(s(tjs0)) :It an be integrated and the right-hand side is de�ned for the values of t where the full integral ' onverges:`(tjs0; `0) = eR t0 dt1�(s(t1js0))`0 + eR t0 dt1�(s(t1js0)) Z t0 dt1�(s(t1js0))e� R t10 dt2�(s(t2js0)): (46)It is apparent that the parameter t ranges in the whole real axis due to smoothness of R 3 t! �(s(tjs0))and R 3 t ! �(s(tjs0)), and that R 3 t 7! `(tjs0; t0) is smooth as well. We have established that23



the integral lines of Z are omplete and thus, in view of known theorems, the one-parameter groupof di�eomorphisms generated by Z is global. Sine s = s(t) must neessarily desribe a rotation ofSO(3), about the axis (r1; r2; r3)=pr21 + r22 + r23 with angle tpr21 + r22 + r23 , of the point on S2 initiallyindividuated by s0 and, taking (46) into aount, it is evident that eah di�eomorphismR � S2 3 (`0; s0) 7! (`(tjs0; t0); s(tjs0)) 2 R � S2 ;for every �xed t 2 R, has the form (11) and, thus, it belongs to SG=� .(b) A �xed (a; b; R) 2 SG=� an be deomposed as(R; a; b) = (I; a ÆR�1; b ÆR�1) (R; 0; 0) :Looking at (46), (R; 0; 0) is an element of the one-parameter group generated by P3k=1 nkSk, where(n1; n2; n3) are the Cartesian omponents of the rotation axis of R; onversely the transformation(I; a ÆR�1; b ÆR�1) an be written as expf1Zg where Z = `a �R�1(s)� �` + b �R�1(s)� �`. 2Proof of Theorem 3.1. Consider the loal one-parameter group of di�eomorphisms generated by bY in asuÆiently small neighbourhood (in M) of a point q 2 =� and for t 2 (��; �) with � > 0 suÆiently small.In loal oordinates over =�, (`; s1; s2) 2 (a; b)�A, suh a set of transformations an be represented by`! `t := f(`; s1; s2; t) ; (s1; s2)! (s1t ; s2t ) := g(`; s1; s2; t) with (`; s1; s2) 2 (a; b)�A. (47)Using the same argument as the one used to haraterise the group SG=� (after De�nition 3.2), one�nds that it must be g(`; s1; s2; t) = Rt(s) for all `; s and f(`; s1; s2; t) = (s1; s2; t)` + b(s1; s2; t), forall `; s, for some Rt 2 O(3) depending on t smoothly, and where ; b are jointly smooth real funtions.The requirement, that t 7! Rt is a (loal) one-parameter subgroup of SO(3), implies that dRtdt jt=0 =P3k=1 rkSk(s1; s2). Similarly dftdt jt=0 = �(s1;s2;t)�t jt=0` + �b(s1;s2;t)�t jt=0. We have found that, in loaloordinates bY �=�= 3Xk=1 rkSk(s1; s2) + �(s1; s2; t)�t jt=0`�` + �b(s1; s2; t)�t jt=0�` ;and thus, about q, bY �=� takes the form of the vetors in g=� . However, sine it holds true in a neigh-bourhood of eah point on =�, we have that bY �=�2 g=� .To onlude, (b) is an immediate onsequene of (a) and of the last part of (a) in Proof of Proposition3.3. 2Proof of Proposition 3.4. Sine eY 2 g=� , in priniple it has the formeY (`; s) = 3Xi=1 iSi(s) + (f(s) + `g(s))�` :Sine bg(Y; Y ) < 0 about =� and its limit toward =�, namely eY , is tangent to =� it must satisfybg(eY ; eY ) = 0 by ontinuity (no timelike tangent vetors an be tangent to a null surfae). Using the form(8) of bg one see that it must be: P3i=1 iSi(s) = 0 on =�. Using the expliit form of S1; S2; S3 referringto the base ��; �� of TS2, one sees that this is equivalent to laim that, everywhere on the sphere,(1 sin�� 2 os�) = 0 ; 1 ot � os�+ 2 ot � sin�+ 3 = 024



As a onsequene 1 = 2 = 3 = 0. Therefore, everywhere on =�eY = (f(s) + `g(s))�` ;for some funtions f; g 2 C1(S2). eY is the limit of a ausal future-direted vetor. Therefore, it haseither to vanish or to be direted as �` at every point of =�. Sine `g(s) may take every arbitrarilylarge, positive or negative, value (notie that g is bounded, it being smooth on a ompat set), it mustbe g(s) = 0 and f(s) � 0. 2Proof of Theorem 4.3. As before, from now on, (F+(H);�;�) is the GNS triple of �. First of all wenotie that �M is in fat a well-de�ned state on W(M) sine { is a �-homomorphism. �M is quasifreeassoiated with a real salar produt �M : S(M) � S(M) ! R de�ned as �M ('; '0) := �(�'; �'0).From this fat, it follows that the GNS triple of �M an be onstruted as (F+(HM );��AM ;�), whereAM � W(=�) is the sub C�-algebra isomorphi to W(M) in view of Theorem 4.2, HM is the Hilbertsubspae of H given by the losure of the spae of omplex linear ombinations of K�(�(')), for every' 2 S(M) and, thus, F+(HM ) is a Fok subspae of F+(H). In partiular, the anonial R-linear mapK�M : S(M)! HM is nothing but K�M = K� Æ �.(a) By onstrution, using the de�nition of �M , taking advantage of (33) as well as of the invarianeproperty of � under the ation of SG=� , if a 2W(M), one has�M ��(Y )t (a)� = ��{��(Y )t (a)�� = ���(eY )t {(a)� = � ({(a)) = �M (a) :This proves the �rst part of (a). To onlude the proof of (a), let V (eY )t : H! H the one-parameter groupof unitaries that implements �(eY )t in the one-partile spae H for �. From K�M = K� Æ �, (33) and theonstrution of V one has:V (eY )t K�M' = V (eY )t K��(') = K� (� (' Æ expf�tY g)) = K�M (' Æ expf�tY g) :We have found that, for every ' 2 S(M), V (eY )t K�M' = K�M (' Æ expf�tY g) ; hene V (eY )t leaves theone partile spae of �M , HM , invariant and V (eY )t �HM implements �(Y )t in HM . As a onsequene of thestruture of the GNS triple of �M , if U (eY )t implements �(eY )t unitarily in H = F+(H) leaving � invariant,it leaves also invariant the struture of the GNS-Fok spae of �M and, therein, U (eY )t �F+(HM) implements�(Y )t unitarily in HM = F+(HM) leaving the yli vetor invariant. In other wordsU (Y )t = U (eY )t �F+(HM ) :Notie that R 37! U (eY )t �F+(HM) is strongly ontinuous sine R 37! U (eY )t is suh. Moreover the self-adjoint generator of U (eY )t �F+(HM ) is obtained by restriting that of U (eY )t �F+(HM) to F+(HM). If theformer generator is positive, the latter has to be so. In the onsidered ase, the former is positive sine Yis timelike and future direted and thus we an apply (a) of Proposition 4.1. The same argument showsthat the self-adjoint generator of V (eY )t �HM has no zero modes if V (eY )t �HM has no zero modes. This lastfat happens if eY vanishes on a zero-measure subset of =� due to (b) of Proposition 4.1. 2Proof of Theorem 4.4. (a) Consider a wavefuntion ' 2 S(M). It satis�es ' = Ef where E :C10 (M)! S(M) is the ausal propagator and f is some real smooth and ompatly supported funtioninM . Sine the maximally extended de Sitter spaetimeM 0 is globally hyperboli andM �M 0, { so that25



C10 (M) � C10 (M 0) { one an fous on the wavefuntion '0 := E0f , where E0 is the ausal propagator inM 0. By onstrution '0�M= ', so that '0 is a smooth extension of '. Sine =� � M 0, all that impliesthat ' extends to =� smoothly (and uniquely) and this extension is lim!=� ' = '0�=� . In this way, anR-linear map � : S(M) 3 ' ! '0�=�2 C10 (=�) is de�ned. To onlude (a), it is enough to prove boththat Ran� � S(=�) and that � preserves the sympleti forms. Let us prove them. Bearing in mind thepreviously disussed behaviour of H(2)� (z) for large z (with jargzj � � � �), making use of (36) and (37),the identity (40) an be reast as'(�;x) = e�i�44�3=2 ZS2�S2(�; �) Z +10 dkkei(kr os �x(�;�)�k�) �� +O� 1k��pk e'(k; �; �) + :: ; (48)where �x(�; �) 2 [0; �℄ is the angle between x and k. The iterated integrations make sense and an beinterhanged (via Fubini-Tonelli theorem) sine both pk e'(k; �; �) and (pk e'(k; �; �) are integrable in themeasure dk. They are smooth everywhere but k = 0, they vanish very fast at large jkj and, for k = 0,e' / 1=jkj�Rej�j if m2+�R > 0 for �. Now, alling � = (u+v)=2 and r = (u�v)=2, =� arises as the limitv ! �1. The ontribution due to the fator of O � 1k� vanishes due to the Riemann-Lebesgue lemma:(�') (u; �x; �x) = lims!+1 e�i�44�3=2 Z +10 dk ZS2�S2(�; �)ks2 ei ks2 [os�x(�;�)+1℄e�iukpk e'(k; �; �) + ::That limit an be omputed using integration by parts exatly as in the appendix A2 of [DMP06℄. Indetail, one rotates the axes so that the axis z oinides with x and, thinking of e' as a funtion of k; ; �where  := os � 2 [�1; 1℄, one re-arranges the expression above as(�') (u; �x; �x) = lims!+1 �ie�i�44�3=2 Z +10 dk Z 2�0d� Z 1�1d �� �ei ks2 [+1℄� e�iukpk e'(k; ; �) + ::where �x = 0 in our ase. The right-hand side an be expanded using integration by parts and only theontribution for  = �1 (that is � = ��, i.e. k=jkj = �x=jxj) survives, the others vanish as s ! +1,due to Riemann-Lebesgue's lemma (interhanging various integrations using Fubini-Tonelli theorem and�nally taking advantage of dominate onvergene theorem). The integration over � produes a trivialfator 2� sine the dependene from � of the involved funtions disappears as � = 0; �. The �nal resultreads, using the initial generi hoie for the axes x; y; z:(�') (u; �x; �x) = i2�e�i�44�3=2 Z +10 dk e�iuk pk e'(k; �(�x; �x)) + :: ;� : S2! S2 denoting the parity inversion S2 3 n 7! �n 2 S2. Dropping the index x, and viewing �; � asthe standard oordinates on =�, the obtained result an be re-written as(�') (`; �; �) = i e�i�4(�) Z +10 dk e�i`kp2� s k2(�) e'� k(�) ; �(�; �)� + :: : (49)where we have passed to the standard Bondi oordinates on =�, i.e. `; �; � with u = �`. In ourhypotheses on ' and �, most notablym2+�R > 548R, the funtionsqk2 e'(k; �(�; �)) and kqk2 e'(k; �(�; �))belong also to L2(R+ � S2; dk ^ �S2(�; �)). This implies that both the funtions �'; �`�' belong toL2(R � S2; d` ^ �S2). In this way we have found that Ran� � S(=�). Atually we have obtained muh26



more: by means of both (21) and the Fourier transformed expression of �, (49) implies that�(�'; �'0) = �2Im((�)�2 ZR+�S2dk ^ �S22k k2(�) e'� k(�) ; �(�; �)� e'0� k(�) ; �(�; �)�)= �2Im�ZR+�S2k2dk ^ �S2 e'(k; �; �) e'0(k; �; �)� = �2Im�ZR3 dke'(k) e'0(k)� = �M ('; '0) ;where in the last step we exploited (41). Hene � preserves the sympleti form as requested.(b) Exatly as in the last step of the proof of (a), sine the funtionsqk2 e'(k; �(�; �)) and kqk2 e'(k; �(�; �))are also in L2(R+ � S2; dk ^ �S2(�; �)), (23) and (49) imply:�(K��';K��') = (�)�2 ZR+�S2dk ^ �S22k k2(�) e'� k(�) ; �(�; �)�e'� k(�) ; �(�; �)�= ZR+�S2k2dk ^ �S2 e'(k; �; �)e'(k; �; �) = ZR3 dke'(k)e'(k)Therefore, for every ' 2 S(M), in view of (42),�M (WM (')) := �(W (�')) = e��(K��';K��')=2 = e� 12 RR3 e'(k)e'(k) dk = !E(WM (')) ;and this onludes the proof. 2Proof of Theorem 4.5. Here, we exploit the same notation, i.e. x;k, as in the proof of Theorem4.4. In partiular � := q 94 � (m22 + 12�), so that � � 0 when 94 � (m22 + 12�) � 0 in the following.However the sign of � ould be �xed arbitrarily (and this applies for imaginary �, in partiular), sinethe funtions we shall employ are invariant under � ! ��.As a �rst step, we notie that if ' 2 S(M), it extends to =� smoothly so that �' := lim!=� ' 2 C1(=�)does exist. This is beause, as found in the setion 2.2, the spaetime (M; g) extends to a larger spaetimeequipped with a metri bg obtained by multiplying the metri of the losed stati Einstein universe witha stritly positive smooth fator. Sine losed stati Einstein universe is globally hyperboli and globalhyperboliity does not depend on nonsingular onformal resaling of the metri, (M; g) itself is inludedin a globally hyperboli spaetime. With the same argument used for de Sitter spaetime in the proofof Theorem 4.4, one has that every ' 2 S(M) extends to =� smoothly. We have now to show thatRan� � S(=�) and that � preserves the sympleti forms.First of all, analogously to what done in the de Sitter ase, we determine a lass of modes 	k(�;x)that will be useful in deomposing the solutions of Klein-Gordon equation in order to take the limit ofwavefuntions towards =�. 	k(�;x) := eik�x(2�)3=2 �k(�)a(�) ; (50)where, taking the exponential fator into aount, the Klein-Gordon equation redues to the followingequation for the funtions (�1; 0) 3 � 7!  k(�),d2d�2 �k(�) + (V0(k; �) + V (�))�k(�) = 0;with V0(k; �) := k2 + �� �2 �m2 +�� � 22�� ; V (�) = O(1=�3) : (51)27



Comparing with Klein-Gordon equation, one sees that V0(k; �) + V (�) = k2 + a(�)2[m2+ (� � 1=6)R(�)℄where V0 is nothing but the the ontribution of pure de Sitter metri and V is a perturbation. If wedropped the perturbation V (�), the funtions �k would redue to the funtions �k and the modes 	kwould redue to the modes �k used to onstrut !E beforehand. Notie that the urvature of thespaetime does not oinide with 12=2 as in de Sitter spaetime, but it reads R(�) = 12=2 + O(1=�)and a(�) = =� +O(1=�2). It follows that the added potential V (�) = O(1=�3) above. A formal solutionof (51) is obtained in terms of the series: �k(�) = �k(�)+(�1)n+1Xn=1Z ��1dt1 Z t1�1dt2 � � � Z tn�1�1dtnSk(�; t1)Sk(t1; t2) � � �Sk(tn�1; tn)V (t1)V (t2) � � �V (tn)�k(tn); (52)where Sk(t; t0) := �i��k(t)�k(t0)� �k(t0)�k(t)� ; t; t0 2 (�1; 0) ; (53)satisfying, in view of antisymmetry and (38),Sk(t; t) = 0 and ��tSk(t; t0)����t0=t = 1 : (54)By diret inspetion and making use of (54), one sees that the right-hand side of (52) de�nes a solutionof (51) if one is allowed to interhange the � -derivative operator { up to the seond order { with the signof sum. This is always possible when the series itself and the series of the derivatives of �rst and seondorder onverge � -uniformly in a neighbourhood of every �xed � 2 (�1; 0). Atually the loally � -uniformonvergene of the series of derivatives of seond order diretly follows from the uniform onvergene ofthose of zero and �rst order, when one refers to the solutions �k and the solutions Sk. Using the expression(37) of the modes �k, expanding H(2)� in terms of Bessel funtions J�� [GR95℄ and, �nally, exploitingstandard integral representations valid for Re� > �1=2 (formula 5 in 8.411 in [GR95℄) of J� , one ahievesthe following bounds for Re� < 1=2 (that is m22 +12� > 2), for � < �1, and for some onstant C� � 0j�k(�)j � C�(��)Re�+1=2 �kRe� + k�Re�� ���d�k(�)d� ��� � C�(��)Re�+1=2 �kRe� + k�Re�� (1 + k); (55)where k = jkj. Furthermore, for the same reasons it is possible to obtain the following (non optimal)k-uniform bound for Re� < 1=2, for t2 � t1 < �1, and for some other onstant C 0� � 0jSk(t1; t2)j � C 0�(t1t2)Re�+1=2 : (56)Now �x any T < �1 and onsider � 2 (�1; T ℄, so that jV (�)j � KT =(��)3, for some onstant KT � 0.From (55), one sees with a few of trivial omputations, that the series in the right-hand side of (52) andthat of the � -derivatives are � -uniformly dominated, respetively, by�kRe� + k�Re�� S�;T ; �kRe� + k�Re�� (1 + k) S�;T ; (57)where S�;T is the following onvergent series of positive onstantsS�;T := C� +1Xn=1� 2C 0�KT1� 2Re��n 1n! 1((�T )1�2Re�)n�1=2 : (58)28



Summarising, we an onlude that (52) de�nes a solution of (51) and that, the same equation entailsthe solution to be smooth. As a straightforward onsequene we also have the following � -uniform boundvalid on (�1; T ℄j�k(�) � �k(�)j � �kRe� + k�Re��S�;T ; ����d�k(�)d� � d�k(�)d� ���� � 2 �kRe� + k�Re�� (1 + k)S�;T : (59)This implies that, at �xed � , the measurable (sine limit of measurable funtions) funtions R3 3 k 7!�k(�) and R3 3 k 7! d�k(�)d� do not grow, for large jkj, fast than jkjRe� and jkj1+Re� respetively.Moreover, their divergene at k = 0 annot be worse than that of R3 3 k 7! �k(�) and R3 3 k 7! d�k(�)d� ,that is k�jRe�j.Finally, notie that eah term in the series in the right-hand side of (52) and in the analogy for d�k=d�vanishes as � ! �1 by onstrution. In view of the fat that, � -uniformly, the series in (57) dominatesboth the series in the right-hand side of (52) and the series of � -derivatives, we are allowed to interhangethe operations of limit with that of sum, obtaininglim�!�1 (�k(�) � �k(�)) = 0 and lim�!�1�d�k(�)d� � d�k(�)d� � = 0 : (60)This result has a �rst important onsequene. Using equation (51), one sees that the funtion � 7!d�k(�)d� �k(�) � �k(�) d�k(�)d� is atually a onstant. The value of this onstant an be omputed by takingthe limit as � ! �1, making use of (38), (60) and taking into aount the fat that, for k �xed, d�k(�)d�and �k(�) are bounded on (�1; T ℄ (notie that these funtions have no limit for � ! �1), as one anshow employing the asymptoti behaviour of H(2)� (z) for large values of the argument z. In this way one�nds d�k(�)d� �k(�) � �k(�)d�k(�)d� = i : (61)Now, to analyse the behaviour of �', we an follow the same way as that followed in de Sitter spae.Take any (real by de�nition) ' 2 S(M) and �x a Cauhy surfae �� in (M; g) individuated by the pointsin M with the �xed value of � ; eventually de�nee'(k) := �i ZR3 "�	k(�;x)�� '(�;x) �	k(�;x)�'(�;x)�� # a(�)2dx : (62)The right-hand side of (62) does not depend on the hoie of � , as it follows from diret inspetion,exploiting (51). Remembering that ' 2 S(M), so that its Cauhy data are real, smooth and ompatlysupported, we have that their Fourier transform are of Shwartz lass. Afterwards, exploiting the fat thatboth the measurable funtions R3 3 k 7! �k(�) and R3 3 k 7! d�k(�)d� grows at most as a polynomial withdegree two for large jkj, and that their divergene at k = 0 is at most of order k�jRe�j with Re� < 1=2,we �nd that e' 2 C1(R3 nf0g) and it vanishes for jkj ! 1 faster than every power jkj�n, n = 1; 2; : : :. Inpartiular e' 2 L2(R3 ; dk) \ L1(R3 ; dk). One one knows e' by (62), the assoiated ' an be onstrutedout of a deomposition in terms of modes 	k:'(�;x) = ZR3 h	k(�;x)e'(k) + 	k(�;x)e'(k)i dk : (63)29
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