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tThe Bethe equations, arising in des
ription of the spe
trum of the dilatation operatorfor the su(2) se
tor of the N =4 supersymmetri
 Yang{Mills theory, are 
onsidered in theanti{ferromagneti
 regime. These equations are deformation of those for the HeisenbergXXX magnet. It is proven that in the thermodynami
 limit roots of the deformedequations group into strings. It is proven that the 
orresponding Yang's a
tion is 
onvex,whi
h implies uniqueness of solution for 
enters of the strings. The state formed of stringsof length (2n+1) is 
onsidered and the density of their distribution is found. It is shownthat the energy of su
h a state de
reases as n grows. It is observed that non{analyti
ityof the left hand side of the Bethe equations leads to an additional 
ontribution to thedensity and energy of strings of even length. When
e it is 
on
luded that the stru
ture ofthe anti{ferromagneti
 va
uum is determined by the behaviour of exponential 
orre
tionsto string solutions in the thermodynami
 limit and possibly involves strings of length 2.1 Introdu
tionIntegrable models, in parti
ular, spin 
hains, appear in several problems of high energyphysi
s as e�e
tive models of intera
tion. For example, the Hamiltonian of the XXX spin
hain with the non{
ompa
t representation of spin s=�1 arises in des
ription of s
atteringof hadrons at high energies [1, 2℄, and also in des
ription of mixing of 
omposite operatorsunder renormalization in QCD [3℄.Mixing of 
omposite operators under renormalization in the super{symmetri
 Yang{Mills theory also gives rise to an XXX{
hain but with a 
ompa
t representation. In thistheory, one 
onsiders lo
ally invariant operators of the formO = tr(ZJ1W J2 + permutations); (1)where Z and W are two 
omplex s
alar �elds from the supermultiplet. The 
onformaldimensions � of this operators 
omprise the spe
trum of the dilatation operator D. Itis 
onvenient to des
ribe mixing of operators (1) under renormalization with the help ofan analogy with the quantum spin 
hain of length L = J1 + J2, where ea
h o

urren
eof Z is represented by a spin up, and ea
h o

urren
e of W is is represented by a spindown. For example, the state ZZZWWZWZ 
orresponds to the following spin 
hain"""##"#"ji. An important observation made in [4℄ was that, in the su(2){se
tor of thetheory in the one{loop approximation (i.e., in the �rst order in � = g2YMN , where gYM isthe Yang{Mills 
oupling 
onstant, and N is the number of 
olours) the dilatation operatorD 
an be expressed via the XXX Hamiltonian of spin s=12 for the des
ribed above 
hain:D = 
onst� �HXXX +O(�2) : (2)1
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Therefore, determining the spe
trum ofD in this approximation is redu
ed to investigatingthe Bethe equations for the Heisenberg magnet (see [5, 6, 7℄),�uj + i=2uj � i=2�L =Yk 6=j uj � uk + iuj � uk � i ; (3)where ui are the rapidities of elementary ex
itations.The high{loop 
orre
tions to (2) were found in arti
les that followed [4℄, and there it wasshown that the 
orresponding expressions are also integrable Hamiltonians for the spin
hain (those that in
lude intera
tion between several nearest sites). In these approxima-tions, the spe
trum of D is determined not by equations (3) but by their \deformations"whi
h expli
itely 
ontain the parameter � in the left{hand side. Assuming that integra-bility of D takes pla
e in all orders, Beisert, Dippel, and Stauda
her [8℄ argued that theexa
t Bethe equations determining the spe
trum of D look like following�x(uj + i=2)x(uj � i=2)�L =Yk 6=j uj � uk + iuj � uk � i ; (4)where x(u) = 12 �u+pu2 � �2� ; �2 � �4�2 : (5)For the spin 
hain of length L, the spe
trum of the Hamiltonian is bounded by theenergies of the ferromagneti
 and the antiferromagneti
 va
ua. Therefore, the spe
trumof the operator D, i.e. the dimensions of operators (1), belongs to the intervalL 6 � 6 �max : (6)The lower bound here follows obviously from the stru
ture of the antiferromagneti
 va
-uum (all spins up), whereas determining the upper bound requires a non{trivial evaluationof the energy of the antiferromagneti
 va
uum. The value of �max in the thermodynami
limit was found in [9℄ and [10℄ by means of the standard te
hnique of passing to the limitL!1 in the Bethe equations. In this pro
edure it was assumed that, like for equations(3), the antiferromagneti
 va
uum is formed of strings of length 1, i.e., real roots of equa-tions (4). However, the example of the XXX spin 
hain of higher spin [11,12℄ shows thatthe antiferromagneti
 va
uum for Bethe equations whose left{hand side di�ers from (3)
an have other stru
ture, for instan
e, it 
an be �lled by strings of greater length.The aim of the present work is to prove existen
e of solutions 
orresponding to stringsof length greater than 1 for the equations (4) in the thermodynami
 limit and to 
he
kvalidity of the assumption about the stru
ture of the antiferromagneti
 va
uum.2 Existen
e of string solutionsTo make from x(u) an analyti
 single{valued fun
tion, we �x in C the 
ut [��; �℄ andde�ne x(u) on C =[��; �℄ as follows:x(u) = 14 �pr1 e i2 �1 +pr2 e i2 �2�2 ; (7)where r1; r2 2 R+ and �1; �2 2 ℄��; �℄ are determined from the relations u = �+ r1ei�1 =��+r2ei�2 . Noti
e that the signs of the imaginary parts of u and x(u) 
oin
ide, that is x(u)maps a point from the upper/lower half{plane to the upper/lower half{plane, respe
tively.2



Let us prove that the following relations����x(u+ iÆ)x(u� iÆ) ���� 8><>:> 1; for Imu > 0;= 1; for Imu = 0;< 1; for Imu < 0: (8)hold for every Æ > 0.Let us denote s = Re(u), t = Im(u), a = Re�x(u)�, b = Im�x(u)�. It follows from (7)that jx(u)j is a fun
tion 
ontinuous in u (in parti
ular, even when u 
rosses the 
ut), andjx(u)j = jx(u)j. Therefore, with s being �xed, the fun
tion jx(s + it)j is 
ontinuous andsymmetri
 in t. We will prove that this fun
tion is 
onvex, of whi
h (8) will then be anobvious 
onsequen
e.It follows from (5) that the fun
tion inverse to x(u) is given by u(x) = x+ �24x . When
eit is easy to derive the following relationss = �1 + �2a2 + b2� a; t = �1� �2a2 + b2� b: (9)Let �t denote the partial derivative w.r.t t (i.e. �ts = 0). Applying it to (9) and solvingthe system of equations for �ta and �tb, we �nd�ta = 2�2abD ; �tb = 1D �(a2 + b2)2 + �2(b2 � a2)� ; (10)where D = ((�� a)2 + b2)((�+ a)2 + b2). When
e we obtain�tjx(u)j2 = 2 a2 + b2D (a2 + b2 + �2) b: (11)Due to the remark made after equation (7), t and b are of the same sign. Therefore,expression (11) is positive/negative in the upper/lower half{plane, respe
tively. Hen
ejx(u)j is 
onvex in Im(u), whi
h 
ompletes the proof of (8).Relations (8) allow us to adapt the analysis of 
omplex roots of equations (3) (see [5,7℄)to the 
ase of equations (4). Namely, it follows from (8) that, in the L ! 1 limit, theabsolute value of the l.h.s. of (4) tends to 1 when Im(uj) > 0 and to 0 when Im(uj) < 0.This implies that r.h.s. has, respe
tively, a pole or a zero, i.e. there must exist also theroot uj � i in the �rst 
ase and the root uj + i in the se
ond 
ase. Thus, like in 
ase ofthe XXX magnet, roots of equations (4) group in the thermodynami
 limit into \strings"whi
h are 
omplexes of the form uj;m = uj + im, where uj 2 R and 2m 2 Z.3 Strings of odd length3.1 Equation for the 
enters of stringsNow we will investigate what state has the maximal energy in the 
ase when the va
uumis �lled with strings of length 2n+1, where n is integer. The number of these strings �n is�xed by the 
ondition (2n+1)�n = L=2. Following [5{7℄, we multiply Bethe equations (4)along a string of length 2n+1. Sin
e the right{hand side of these equations is the same asin the \undeformed" Bethe equations, strings will have the same form, i.e. uj = unj + im,m 2 Z. Further, 
onsidering the thermodynami
 limit (L ! 1), we obtain that the3




enters of strings are arranged along the real axis with some density whi
h satis�es 
ertainintegral equation. Having found this density, one 
an 
ompute the energy of the groundstate (see [5,6℄).Thus, we obtain the following equation for the 
enters of strings:i2L ln x�unj + (2n+ 1) i2�x�unj � (2n+ 1) i2� = �Qnj + �nXk=1�n;n(unj � unk); (12)where �n;n(u) = ar
tan u2n+ 1 + 2 2n�1Xm=0 ar
tan um+ 1 : (13)3.2 Yang's a
tionTo prove the uniqueness of a solution to equations (12) for a given set of integer numbersQnj , we will use the Yang's a
tion. As in the 
ase of the XXX magnet [7℄, there exists afun
tional S (
alled Yang's a
tion) su
h that equations (12) are the 
onditions of its ex-tremum, �u�S = 0. Let us 
onsider the quadrati
 form for the matrix of se
ond derivativesof S:X�;� v� �2S�u��u� v� = i2LX� �u� ln x(u� + i2(2n+ 1))x(u� � i2(2n+ 1)) v2� +X�>� 1(u� � u�)2 + 1(v� � v�)2;(14)where v� 2 R. It is obvious that the se
ond term is always positive. Let us prove thepositivity of the �rst one:i2�s log x(s+ it)x(s� it) = �s ar
tan ab = b�sa� a�sb(a2 + b2) = a�ta+ b�tb(a2 + b2) = �tjx(s+ it)j22(a2 + b2) : (15)Here we used the same notation as in Se
tion 2 and applied the Cau
hy equations forderivatives of an analyti
 fun
tion. Relation (11) shows that (15) is positive for b > 0.Therefore the quadrati
 form (14) is positive de�nite and, 
onsequently, the a
tion S hasa unique minimum.3.3 Thermodynami
 limitLet us go to the thermodynami
 limit now. Taking L!1 and di�erentiating (12) withrespe
t to u, we obtain for the left{hand side:l:h:s: = i2� 1q� (2n+1)2 i+ u�2 � �2 � 1q� (2n+1)2 i� u�2 � �2�: (16)Now we introdu
e the root density �(u):�(u) = 1�dudq�q=q(u) ; (17)4



where q(u) = Qj=L. �(u) plays the role of density of numbers q(u) on the interval du.Having introdu
ed this density, we 
an rewrite the l.h.s. of (12) as followsr:h:s: = ��(u) 1Z�1 d� �(�)� 2n+ 1(2n+ 1)2 + (u� �)2 + 2 2n�1Xm=0 m+ 1(m+ 1)2 + (u� �)2 �: (18)This integral equation 
an be solved by means of the Fourier transform. To this end we
ompute �rstZ 1�1du eikup(u+ il)2 � �2 = �(�kl) e�jklj I dqq exp�ik�q + �24q��= sign (�l)�(�kl) e�jklj Z 2�0 id' eik� 
os' = 2�i sign (�l)�(�kl) e�jklj J0(�k); (19)where J0(k) is the Bessel fun
tion of the �rst kind. Thus, after the Fourier transform, theleft{hand side of our integral equation a
quires the following formF [l:h:s℄ = � e� 2n+12 jkj J0(�k) : (20)On the r.h.s. the Fourier integral is divided into the following terms1Z�1 d� �(�) 1Z�1 eiku AA2 + (u� �)2du = � 1Z�1 d� �(�) ei�k e�jkjA = � e�jkjA e�(k); (21)where e�(k) stands for the Fourier transform of the density �(u). These terms 
an besummed up:�e�(k) 2 2n�1Xm=0 e�jkj(m+1)+e�jkj(2n+1)! = �e�(k) 2� e�2njkj� e�(2n+1)jkjejkj�1 ! : (22)As a result, we obtain the following expression for the Fourier transformed density e�(k):e�(k) = J0(�k) ejkj�1e� 2n+12 jkj(1 + ejkj)(e(2n+1)jkj�1) = J0(�k) tanh jkj22 sinh �n+ 12� jkj : (23)This yields the solution of the integral equation,�(u) = 12� 1Z�1 J0(�k) tanh jkj22 sinh �n+ 12� jkj eiku dk: (24)For n = 0 (i.e. strings of length 1) this expression 
oin
ides with the expression for thedensity that was obtained in [9, 10℄.3.4 Energy of strings of odd lengthNow we will 
ompute the energy (or, equivalently, the maximal dimension of the dilatationoperator �max) for the state �lled with strings of length 2n + 1, where n is integer. The5



dispersion in the 
onsidered theory di�ers from that of the XXXmagnet, the 
orrespondingenergy density is given by [9℄�maxL = 1 + i�8�2 1Z�1 du �(u) 1x �u+ 2n+12 i� � 1x �u� 2n+12 i�! : (25)Substituting here the expression (24) for the density, we obtain:�maxL = 1 + p�� 1Z0 dkk J0(�k)J1(�k) tanh k2e(2n+1)k �1 : (26)Here we used the following relation:�22  ip(u� il)2 � �2 � ip(u+ il)2 � �2! = 12��� ��22i � 1x(u+ il) � 1x(u� il)�� : (27)Below we provide a plot whi
h shows how the se
ond term in (26) depends on n for a �xedvalue of �.
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It is apparent that the maximum of the integral (and thus the maximum of �max) is at-tained at n = 0. In the Appendix we give a stri
t proof that �max de
reases monotonouslyas n grows.Thus, we 
on
lude that the state with maximal energy in the se
tor of strings of oddlength indeed 
orresponds to strings of length 1, as it was assumed in [9, 10℄. However, inthe next se
tion we will show that the real anti{ferromagneti
 va
uum might have a more
ompli
ated stru
ture and possibly 
orresponds to strings of length 2.4 Strings of even lengthUnlike the absolute value jx(u)j, the phase of x(u) is not a 
ontinuous fun
tion. Its value
hanges by a �nite amount when u 
rosses the 
ut. Using (7) it is easy to derive that foru 2 [��; �℄ we have the following relation:lim�!0 ln x(u� i�)x(u+ i�) = 2i �� ar
tanp�2 � u2u ; (28)where �� = �1 if � tends to the zero from the right and �� = 1 if � tends to the zero fromthe left. 6



For a 
hain of a large but �nite length L, the roots of Bethe equations group intostrings only up to exponential deviations: uj;m = uj + i(m + �m), where m is integeror half{integer and �m = O(e�!mL), !m > 0. The total energy of a string is given byEj = i2Pm � 1x(uj;m+ i2 ) � 1x(uj;m� i2 )�. Computing this expression for a string of even lengthand taking relation (28) into a

ount, we observe that the rootsuj + i�12+��; uj � i�12+�� (29)give additional 
ontributions,Ej = lim�!0 i2� 1x(uj�i�) � 1x(uj+i�) + + 1x(uj+2n+12 i) � 1x(uj�2n+12 i)�: (30)It is important to remark here that, for the regime 
orresponding to �� = �1, the �rsttwo terms in (30) give a negative 
ontribution to Ej . Furthermore, it 
an be shown thatin this regime Ej is positive not everywhere on the real axis. As a 
onsequen
e, the anti{ferromagnet va
uum in this 
ase has a more 
ompli
ated stru
ture | it has to be �lledwith strings only in the intervals where Ej > 0. In the present work we will 
onsider onlythe regime 
orresponding to �� = 1. Let us remark that in this 
ase the proof of 
onvexityof the Yang's a
tion given in Se
tion 3.2 remains valid.Taking produ
t of the left hand sides of the Bethe equations (4) along a string of evenlength and taking into a

ount the additional 
ontributions due to the roots (29), we �ndthat the l.h.s. of the equation for the 
enters of strings looks like followinglim�%0�x(uj � i�)x(uj + i�)�L  x(uj + i2(2n+ 1))x(uj � i2(2n+ 1))!L : (31)Taking logarithm of this expression, we obtain equations (12) but with an additional termon the left hand side. Di�erentiating (28) w.r.t. u, then making the Fourier transformation,F h�u lim�!0 ln x(u� i�)x(u+ i�)i = �2i �� Z ��� eiku dup�2 � u2 = �2�i �� J0(�k); (32)and 
omparing with formula (19), we see that, for strings of even length in the regime�� = 1, equation (20) a
quires the following formF [l:h:s℄ = ��e� 2n+12 jkj + 1�J0(�k): (33)Repeating now the 
omputation of the Fourier image of the density as was done in Se
-tion 3.3, we �nd ��(u) = 12� 1Z�1 J0(�k)�1 + e 2n+12 jkj� tanh jkj22 sinh �n+ 12� jkj eikudk: (34)Formula (33) shows that the additional 
ontributions from the roots (29) yield the samee�e
t as if the va
uum were �lled with mixture of strings of length (2n+1) and stringsof length 0 (whi
h formally 
orresponds to n = �12). In this 
ontext we remark thatexpressions of the type (31) appear in the left hand sides of Bethe equations for 
hainswith alternating spins (see, e.g. [13, 14℄). 7



Formula (30) implies that, in order to 
ompute the total energy of the 
hain, we haveto repla
e (25) with�L = 1+ i�22 lim�%0 1Z�1 du ��(u)� 1x(u� i�) � 1x(u+ i�) + 1x �u+ 2n+12 i� � 1x �u� 2n+12 i�! :(35)Substituting here (34) and making the same 
omputation in the Se
tion 3.4, we obtain�L = 1 + 2� 1Z0 dkk J0(�k)J1(�k) tanh k2 
oth (2n+1)k4 : (36)Using the method des
ribed in the Appendix, one 
an show that for n � 12 expression (36)de
reases monotonously as n grows. The maximal value of (36) at n = 12 is given by�maxL = 1 + 2� 1Z0 dkk J0(�k)J1(�k): (37)In order to 
ompare this expression with the value of �maxL 
orresponding to strings oflength 1, one 
an subtra
t the value of (26) for n = 0 from (37). The resulting expressionhas the form of the integral in (38) with monotonously de
reasing in k fun
tion f(k). Asshown in the Appendix, su
h an integral is positive.Thus, �lling the va
uum with strings of length 2 in the regime �� = 1 yields largervalue for �maxL than �lling it with strings of length 1. However, what regime is indeedrealized for string of even length in the thermodynami
 limit, remains at present an openquestion. Its resolution requires quite subtle analysis of the exponential 
orre
tions � in(29) for L!1.AppendixLet us denote � = (2n+ 1), � = p�=(2�) and make in (26) a substitution k0 = �k. Then����maxL � = �2 1Z0 dk J0(k)J1(k) f(k); (38)where f(k) = � 1e k� + 1�� e�k�e�k� � 1�� e k� � 1e�k� � 1�: (39)In this form, it is evident that f(k) de
reases monotonously as k grows for all � > 1 and� > 0. Using this we will show that the integral in (38) is positive.Let 0 < t1 < t3 < t5 : : : be the ordered set of roots of J0(t), and 0 = t0 < t2 < t4 : : : bethe ordered set of roots of J1(t). It follows from the relation�tJ0(t) = �J1(t) (40)that t2n < t2n+1 < t2n+2. Taking into a

ount that J0(t)J1(t) is positive on ℄t2n; t2n+1[ andnegative on ℄t2n+1; t2n+2[, and the fun
tion f(k) is positive and monotonously de
reasing8



for all k > 0 , we obtain the following estimate:1Z0 dk J0(k)J1(k) f(k) = 1Xn=0Z t2n+2t2n dk J0(k)J1(k) f(k) > (41)> 1Xn=0hf(t2n+1)Z t2n+2t2n dk J0(k)J1(k)i = 12 1Xn=0hf(t2n+1) �J20 (t2n)� J20 (t2n+2)�i:In the last equality we used relation (40). Now, sin
e roots of J1(t) are the points of lo
alextrema for J0(t), and the values of jJ0(t)j at these points form a de
reasing sequen
e,we 
on
lude that the sum on the r.h.s. of (41) and hen
e the initial integral are positive.Thus, ����maxL � < 0, whi
h implies that �maxL de
reases monotonously as n grows.A
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