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Deember 2007 DESY 07-216On string solutions of Bethe equationsin N =4 supersymmetri Yang{Mills theoryAndrei G. Bytsko1;2 and Igor E. Shenderovih31 Steklov Mathematis Institute, Fontanka 27, 191023, St. Petersburg, Russia2 DESY Theory Group, Notkestrasse 85, D{22603 Hamburg, Germany3 Physis Department, St.Petersburg State University, St.Petersburg, 198504, RussiaAbstratThe Bethe equations, arising in desription of the spetrum of the dilatation operatorfor the su(2) setor of the N =4 supersymmetri Yang{Mills theory, are onsidered in theanti{ferromagneti regime. These equations are deformation of those for the HeisenbergXXX magnet. It is proven that in the thermodynami limit roots of the deformedequations group into strings. It is proven that the orresponding Yang's ation is onvex,whih implies uniqueness of solution for enters of the strings. The state formed of stringsof length (2n+1) is onsidered and the density of their distribution is found. It is shownthat the energy of suh a state dereases as n grows. It is observed that non{analytiityof the left hand side of the Bethe equations leads to an additional ontribution to thedensity and energy of strings of even length. Whene it is onluded that the struture ofthe anti{ferromagneti vauum is determined by the behaviour of exponential orretionsto string solutions in the thermodynami limit and possibly involves strings of length 2.1 IntrodutionIntegrable models, in partiular, spin hains, appear in several problems of high energyphysis as e�etive models of interation. For example, the Hamiltonian of the XXX spinhain with the non{ompat representation of spin s=�1 arises in desription of satteringof hadrons at high energies [1, 2℄, and also in desription of mixing of omposite operatorsunder renormalization in QCD [3℄.Mixing of omposite operators under renormalization in the super{symmetri Yang{Mills theory also gives rise to an XXX{hain but with a ompat representation. In thistheory, one onsiders loally invariant operators of the formO = tr(ZJ1W J2 + permutations); (1)where Z and W are two omplex salar �elds from the supermultiplet. The onformaldimensions � of this operators omprise the spetrum of the dilatation operator D. Itis onvenient to desribe mixing of operators (1) under renormalization with the help ofan analogy with the quantum spin hain of length L = J1 + J2, where eah ourreneof Z is represented by a spin up, and eah ourrene of W is is represented by a spindown. For example, the state ZZZWWZWZ orresponds to the following spin hain"""##"#"ji. An important observation made in [4℄ was that, in the su(2){setor of thetheory in the one{loop approximation (i.e., in the �rst order in � = g2YMN , where gYM isthe Yang{Mills oupling onstant, and N is the number of olours) the dilatation operatorD an be expressed via the XXX Hamiltonian of spin s=12 for the desribed above hain:D = onst� �HXXX +O(�2) : (2)1
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Therefore, determining the spetrum ofD in this approximation is redued to investigatingthe Bethe equations for the Heisenberg magnet (see [5, 6, 7℄),�uj + i=2uj � i=2�L =Yk 6=j uj � uk + iuj � uk � i ; (3)where ui are the rapidities of elementary exitations.The high{loop orretions to (2) were found in artiles that followed [4℄, and there it wasshown that the orresponding expressions are also integrable Hamiltonians for the spinhain (those that inlude interation between several nearest sites). In these approxima-tions, the spetrum of D is determined not by equations (3) but by their \deformations"whih expliitely ontain the parameter � in the left{hand side. Assuming that integra-bility of D takes plae in all orders, Beisert, Dippel, and Staudaher [8℄ argued that theexat Bethe equations determining the spetrum of D look like following�x(uj + i=2)x(uj � i=2)�L =Yk 6=j uj � uk + iuj � uk � i ; (4)where x(u) = 12 �u+pu2 � �2� ; �2 � �4�2 : (5)For the spin hain of length L, the spetrum of the Hamiltonian is bounded by theenergies of the ferromagneti and the antiferromagneti vaua. Therefore, the spetrumof the operator D, i.e. the dimensions of operators (1), belongs to the intervalL 6 � 6 �max : (6)The lower bound here follows obviously from the struture of the antiferromagneti va-uum (all spins up), whereas determining the upper bound requires a non{trivial evaluationof the energy of the antiferromagneti vauum. The value of �max in the thermodynamilimit was found in [9℄ and [10℄ by means of the standard tehnique of passing to the limitL!1 in the Bethe equations. In this proedure it was assumed that, like for equations(3), the antiferromagneti vauum is formed of strings of length 1, i.e., real roots of equa-tions (4). However, the example of the XXX spin hain of higher spin [11,12℄ shows thatthe antiferromagneti vauum for Bethe equations whose left{hand side di�ers from (3)an have other struture, for instane, it an be �lled by strings of greater length.The aim of the present work is to prove existene of solutions orresponding to stringsof length greater than 1 for the equations (4) in the thermodynami limit and to hekvalidity of the assumption about the struture of the antiferromagneti vauum.2 Existene of string solutionsTo make from x(u) an analyti single{valued funtion, we �x in C the ut [��; �℄ andde�ne x(u) on C =[��; �℄ as follows:x(u) = 14 �pr1 e i2 �1 +pr2 e i2 �2�2 ; (7)where r1; r2 2 R+ and �1; �2 2 ℄��; �℄ are determined from the relations u = �+ r1ei�1 =��+r2ei�2 . Notie that the signs of the imaginary parts of u and x(u) oinide, that is x(u)maps a point from the upper/lower half{plane to the upper/lower half{plane, respetively.2



Let us prove that the following relations����x(u+ iÆ)x(u� iÆ) ���� 8><>:> 1; for Imu > 0;= 1; for Imu = 0;< 1; for Imu < 0: (8)hold for every Æ > 0.Let us denote s = Re(u), t = Im(u), a = Re�x(u)�, b = Im�x(u)�. It follows from (7)that jx(u)j is a funtion ontinuous in u (in partiular, even when u rosses the ut), andjx(u)j = jx(u)j. Therefore, with s being �xed, the funtion jx(s + it)j is ontinuous andsymmetri in t. We will prove that this funtion is onvex, of whih (8) will then be anobvious onsequene.It follows from (5) that the funtion inverse to x(u) is given by u(x) = x+ �24x . Wheneit is easy to derive the following relationss = �1 + �2a2 + b2� a; t = �1� �2a2 + b2� b: (9)Let �t denote the partial derivative w.r.t t (i.e. �ts = 0). Applying it to (9) and solvingthe system of equations for �ta and �tb, we �nd�ta = 2�2abD ; �tb = 1D �(a2 + b2)2 + �2(b2 � a2)� ; (10)where D = ((�� a)2 + b2)((�+ a)2 + b2). Whene we obtain�tjx(u)j2 = 2 a2 + b2D (a2 + b2 + �2) b: (11)Due to the remark made after equation (7), t and b are of the same sign. Therefore,expression (11) is positive/negative in the upper/lower half{plane, respetively. Henejx(u)j is onvex in Im(u), whih ompletes the proof of (8).Relations (8) allow us to adapt the analysis of omplex roots of equations (3) (see [5,7℄)to the ase of equations (4). Namely, it follows from (8) that, in the L ! 1 limit, theabsolute value of the l.h.s. of (4) tends to 1 when Im(uj) > 0 and to 0 when Im(uj) < 0.This implies that r.h.s. has, respetively, a pole or a zero, i.e. there must exist also theroot uj � i in the �rst ase and the root uj + i in the seond ase. Thus, like in ase ofthe XXX magnet, roots of equations (4) group in the thermodynami limit into \strings"whih are omplexes of the form uj;m = uj + im, where uj 2 R and 2m 2 Z.3 Strings of odd length3.1 Equation for the enters of stringsNow we will investigate what state has the maximal energy in the ase when the vauumis �lled with strings of length 2n+1, where n is integer. The number of these strings �n is�xed by the ondition (2n+1)�n = L=2. Following [5{7℄, we multiply Bethe equations (4)along a string of length 2n+1. Sine the right{hand side of these equations is the same asin the \undeformed" Bethe equations, strings will have the same form, i.e. uj = unj + im,m 2 Z. Further, onsidering the thermodynami limit (L ! 1), we obtain that the3



enters of strings are arranged along the real axis with some density whih satis�es ertainintegral equation. Having found this density, one an ompute the energy of the groundstate (see [5,6℄).Thus, we obtain the following equation for the enters of strings:i2L ln x�unj + (2n+ 1) i2�x�unj � (2n+ 1) i2� = �Qnj + �nXk=1�n;n(unj � unk); (12)where �n;n(u) = artan u2n+ 1 + 2 2n�1Xm=0 artan um+ 1 : (13)3.2 Yang's ationTo prove the uniqueness of a solution to equations (12) for a given set of integer numbersQnj , we will use the Yang's ation. As in the ase of the XXX magnet [7℄, there exists afuntional S (alled Yang's ation) suh that equations (12) are the onditions of its ex-tremum, �u�S = 0. Let us onsider the quadrati form for the matrix of seond derivativesof S:X�;� v� �2S�u��u� v� = i2LX� �u� ln x(u� + i2(2n+ 1))x(u� � i2(2n+ 1)) v2� +X�>� 1(u� � u�)2 + 1(v� � v�)2;(14)where v� 2 R. It is obvious that the seond term is always positive. Let us prove thepositivity of the �rst one:i2�s log x(s+ it)x(s� it) = �s artan ab = b�sa� a�sb(a2 + b2) = a�ta+ b�tb(a2 + b2) = �tjx(s+ it)j22(a2 + b2) : (15)Here we used the same notation as in Setion 2 and applied the Cauhy equations forderivatives of an analyti funtion. Relation (11) shows that (15) is positive for b > 0.Therefore the quadrati form (14) is positive de�nite and, onsequently, the ation S hasa unique minimum.3.3 Thermodynami limitLet us go to the thermodynami limit now. Taking L!1 and di�erentiating (12) withrespet to u, we obtain for the left{hand side:l:h:s: = i2� 1q� (2n+1)2 i+ u�2 � �2 � 1q� (2n+1)2 i� u�2 � �2�: (16)Now we introdue the root density �(u):�(u) = 1�dudq�q=q(u) ; (17)4



where q(u) = Qj=L. �(u) plays the role of density of numbers q(u) on the interval du.Having introdued this density, we an rewrite the l.h.s. of (12) as followsr:h:s: = ��(u) 1Z�1 d� �(�)� 2n+ 1(2n+ 1)2 + (u� �)2 + 2 2n�1Xm=0 m+ 1(m+ 1)2 + (u� �)2 �: (18)This integral equation an be solved by means of the Fourier transform. To this end weompute �rstZ 1�1du eikup(u+ il)2 � �2 = �(�kl) e�jklj I dqq exp�ik�q + �24q��= sign (�l)�(�kl) e�jklj Z 2�0 id' eik� os' = 2�i sign (�l)�(�kl) e�jklj J0(�k); (19)where J0(k) is the Bessel funtion of the �rst kind. Thus, after the Fourier transform, theleft{hand side of our integral equation aquires the following formF [l:h:s℄ = � e� 2n+12 jkj J0(�k) : (20)On the r.h.s. the Fourier integral is divided into the following terms1Z�1 d� �(�) 1Z�1 eiku AA2 + (u� �)2du = � 1Z�1 d� �(�) ei�k e�jkjA = � e�jkjA e�(k); (21)where e�(k) stands for the Fourier transform of the density �(u). These terms an besummed up:�e�(k) 2 2n�1Xm=0 e�jkj(m+1)+e�jkj(2n+1)! = �e�(k) 2� e�2njkj� e�(2n+1)jkjejkj�1 ! : (22)As a result, we obtain the following expression for the Fourier transformed density e�(k):e�(k) = J0(�k) ejkj�1e� 2n+12 jkj(1 + ejkj)(e(2n+1)jkj�1) = J0(�k) tanh jkj22 sinh �n+ 12� jkj : (23)This yields the solution of the integral equation,�(u) = 12� 1Z�1 J0(�k) tanh jkj22 sinh �n+ 12� jkj eiku dk: (24)For n = 0 (i.e. strings of length 1) this expression oinides with the expression for thedensity that was obtained in [9, 10℄.3.4 Energy of strings of odd lengthNow we will ompute the energy (or, equivalently, the maximal dimension of the dilatationoperator �max) for the state �lled with strings of length 2n + 1, where n is integer. The5



dispersion in the onsidered theory di�ers from that of the XXXmagnet, the orrespondingenergy density is given by [9℄�maxL = 1 + i�8�2 1Z�1 du �(u) 1x �u+ 2n+12 i� � 1x �u� 2n+12 i�! : (25)Substituting here the expression (24) for the density, we obtain:�maxL = 1 + p�� 1Z0 dkk J0(�k)J1(�k) tanh k2e(2n+1)k �1 : (26)Here we used the following relation:�22  ip(u� il)2 � �2 � ip(u+ il)2 � �2! = 12��� ��22i � 1x(u+ il) � 1x(u� il)�� : (27)Below we provide a plot whih shows how the seond term in (26) depends on n for a �xedvalue of �.
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It is apparent that the maximum of the integral (and thus the maximum of �max) is at-tained at n = 0. In the Appendix we give a strit proof that �max dereases monotonouslyas n grows.Thus, we onlude that the state with maximal energy in the setor of strings of oddlength indeed orresponds to strings of length 1, as it was assumed in [9, 10℄. However, inthe next setion we will show that the real anti{ferromagneti vauum might have a moreompliated struture and possibly orresponds to strings of length 2.4 Strings of even lengthUnlike the absolute value jx(u)j, the phase of x(u) is not a ontinuous funtion. Its valuehanges by a �nite amount when u rosses the ut. Using (7) it is easy to derive that foru 2 [��; �℄ we have the following relation:lim�!0 ln x(u� i�)x(u+ i�) = 2i �� artanp�2 � u2u ; (28)where �� = �1 if � tends to the zero from the right and �� = 1 if � tends to the zero fromthe left. 6



For a hain of a large but �nite length L, the roots of Bethe equations group intostrings only up to exponential deviations: uj;m = uj + i(m + �m), where m is integeror half{integer and �m = O(e�!mL), !m > 0. The total energy of a string is given byEj = i2Pm � 1x(uj;m+ i2 ) � 1x(uj;m� i2 )�. Computing this expression for a string of even lengthand taking relation (28) into aount, we observe that the rootsuj + i�12+��; uj � i�12+�� (29)give additional ontributions,Ej = lim�!0 i2� 1x(uj�i�) � 1x(uj+i�) + + 1x(uj+2n+12 i) � 1x(uj�2n+12 i)�: (30)It is important to remark here that, for the regime orresponding to �� = �1, the �rsttwo terms in (30) give a negative ontribution to Ej . Furthermore, it an be shown thatin this regime Ej is positive not everywhere on the real axis. As a onsequene, the anti{ferromagnet vauum in this ase has a more ompliated struture | it has to be �lledwith strings only in the intervals where Ej > 0. In the present work we will onsider onlythe regime orresponding to �� = 1. Let us remark that in this ase the proof of onvexityof the Yang's ation given in Setion 3.2 remains valid.Taking produt of the left hand sides of the Bethe equations (4) along a string of evenlength and taking into aount the additional ontributions due to the roots (29), we �ndthat the l.h.s. of the equation for the enters of strings looks like followinglim�%0�x(uj � i�)x(uj + i�)�L  x(uj + i2(2n+ 1))x(uj � i2(2n+ 1))!L : (31)Taking logarithm of this expression, we obtain equations (12) but with an additional termon the left hand side. Di�erentiating (28) w.r.t. u, then making the Fourier transformation,F h�u lim�!0 ln x(u� i�)x(u+ i�)i = �2i �� Z ��� eiku dup�2 � u2 = �2�i �� J0(�k); (32)and omparing with formula (19), we see that, for strings of even length in the regime�� = 1, equation (20) aquires the following formF [l:h:s℄ = ��e� 2n+12 jkj + 1�J0(�k): (33)Repeating now the omputation of the Fourier image of the density as was done in Se-tion 3.3, we �nd ��(u) = 12� 1Z�1 J0(�k)�1 + e 2n+12 jkj� tanh jkj22 sinh �n+ 12� jkj eikudk: (34)Formula (33) shows that the additional ontributions from the roots (29) yield the samee�et as if the vauum were �lled with mixture of strings of length (2n+1) and stringsof length 0 (whih formally orresponds to n = �12). In this ontext we remark thatexpressions of the type (31) appear in the left hand sides of Bethe equations for hainswith alternating spins (see, e.g. [13, 14℄). 7



Formula (30) implies that, in order to ompute the total energy of the hain, we haveto replae (25) with�L = 1+ i�22 lim�%0 1Z�1 du ��(u)� 1x(u� i�) � 1x(u+ i�) + 1x �u+ 2n+12 i� � 1x �u� 2n+12 i�! :(35)Substituting here (34) and making the same omputation in the Setion 3.4, we obtain�L = 1 + 2� 1Z0 dkk J0(�k)J1(�k) tanh k2 oth (2n+1)k4 : (36)Using the method desribed in the Appendix, one an show that for n � 12 expression (36)dereases monotonously as n grows. The maximal value of (36) at n = 12 is given by�maxL = 1 + 2� 1Z0 dkk J0(�k)J1(�k): (37)In order to ompare this expression with the value of �maxL orresponding to strings oflength 1, one an subtrat the value of (26) for n = 0 from (37). The resulting expressionhas the form of the integral in (38) with monotonously dereasing in k funtion f(k). Asshown in the Appendix, suh an integral is positive.Thus, �lling the vauum with strings of length 2 in the regime �� = 1 yields largervalue for �maxL than �lling it with strings of length 1. However, what regime is indeedrealized for string of even length in the thermodynami limit, remains at present an openquestion. Its resolution requires quite subtle analysis of the exponential orretions � in(29) for L!1.AppendixLet us denote � = (2n+ 1), � = p�=(2�) and make in (26) a substitution k0 = �k. Then����maxL � = �2 1Z0 dk J0(k)J1(k) f(k); (38)where f(k) = � 1e k� + 1�� e�k�e�k� � 1�� e k� � 1e�k� � 1�: (39)In this form, it is evident that f(k) dereases monotonously as k grows for all � > 1 and� > 0. Using this we will show that the integral in (38) is positive.Let 0 < t1 < t3 < t5 : : : be the ordered set of roots of J0(t), and 0 = t0 < t2 < t4 : : : bethe ordered set of roots of J1(t). It follows from the relation�tJ0(t) = �J1(t) (40)that t2n < t2n+1 < t2n+2. Taking into aount that J0(t)J1(t) is positive on ℄t2n; t2n+1[ andnegative on ℄t2n+1; t2n+2[, and the funtion f(k) is positive and monotonously dereasing8
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